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Abstract

This paper associates a dual problem to the minimization of an arbitrary
linear perturbation of the robust sum function introduced in [8]. It provides an
existence theorem for primal optimal solutions and, under suitable duality as-
sumptions, characterizations of the primal-dual optimal set, the primal optimal
set, and the dual optimal set, as well as a formula for the subdi¤ential of the
robust sum function. The mentioned results are applied to get simple formulas
for the robust sums of suba¢ ne functions (a class of functions which contains
the a¢ ne ones) and to obtain conditions guaranteeing the existence of best ap-
proximate solutions to inconsistent convex inequality systems.
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1 Introduction

In our previous paper [8] we have introduced the so-called robust sum
PR

i2I fi of an
in�nite family (fi)i2I of proper functions from a given locally convex Hausdor¤ topo-
logical vector space X to R[f+1g : To this aim we denoted by F (I) the collection
of all nonempty �nite subsets of I and de�ned the robust sum of (fi)i2I asXR

i2I
fi (x) := sup

J2F(I)

X
i2J
fi (x) ;8x 2 X:

�International University, Vietnam National University - HCMC, Linh Trung ward, Thu Duc dis-
trict, Ho Chi Minh city, Vietnam (ndinh02@gmail.com).

yDepartment of Mathematics, University of Alicante, Spain (mgoberna@ua.es)
zAvignon University, LMA EA 2151, Avignon, France (michel.volle@univ-avignon.fr)

1

Usuario
Texto escrito a máquina
This is a previous version of the article published in Applied Mathematics & Optimization. 2019, 80(3): 643-664. doi:10.1007/s00245-019-09596-9

https://doi.org/10.1007/s00245-019-09596-9


In order to motivate this de�nition, consider the �nite sum
P

i2J fi for each J 2 F (I)
and interpret F (I) as an uncertainty set for the uncertain optimization problem

(PJ) f (x) = inf
x2X

X
i2J
fi (x) :

Then, the robust (or pessimistic) counterpart of this parametric problem is (see [1] and
references therein) the deterministic problem

(RP) inf
x2X

sup
J2F(I)

X
i2J
fi (x) ; (1.1)

whose objective function
PR

i2I fi cannot be exactly computed at a given x but can be
approximated through the �nite sums

P
i2J fi (x) ; with J 2 F (I) : Observe that the

above uncertain problem only makes sense when I is in�nite as, otherwise,
P

i2I fi (x)
is computable at any x 2 Rn and (PI) is the deterministic problem to be solved.
However, this uninteresting case allows to appreciate the pessimistic character of (RP)
in comparison with (PI) : Indeed, de�ning I (x) := fi 2 I : fi (x) � 0g ; the objective
function of (RP) reads

f (x) =

�
maxi2I fi (x) ; if I (x) = ;;P

i2I(x) fi (x) ; else,

with f being an upper estimate of
P

i2I fi (the di¤erence f �
P

i2I fi may be quite
large).

It is worth observing that, in contrast with the well-known limit sumX
i2I
fi (x) := lim

J2F(I)

X
i2J
fi (x) ;8x 2 X

(where F (I) and lim must be interpreted as a set directed by inclusion and the limit
of the corresponding net, respectively), the robust sum

PR
i2I fi is always well-de�ned

on X:

In [8, Section 1] we gave two examples of optimization problems arising in extended
regression and best approximate solution to inconsistent linear system which can be
formulated as (RP) ; with (fi)i2I being families of quadratic functions and maxima of
a¢ ne functions, respectively.

In this paper we assume that some element x� of the dual space X� of X is given and
introduce a dual problem for the linearly perturbed robust sum

PR
i2I fi � hx�; �i : More

precisely, we are concerned with the non-emptiness and the structure of the optimal
sets of the dual pair of optimization problems

(RPx�) inf ff (x)� hx�; xi : x 2 Xg

and

(RDx�) sup

(
�
X
j2J

f �j (x
�
j) :

�
J; (x�j)j2J

�
2 F (x�)

)
;
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where f :=
PR

i2I fi represents the robust sum of the family (fi)i2I ; the objective
function �

P
j2J f

�
j (x

�
j) of (RDx�) is well de�ned thanks to the properness of fi (guar-

anteeing that its conjugate function f �i does not take the value �1) for all i 2 I; and
the feasible set of the dual problem, F (x�) ; is de�ned as

F (x�) :=

(�
J; (x�j)j2J

�
: J 2 F (I) ; (x�j)j2J 2 (X�)J ;

X
j2J

x�j = x
�

)
:

When x� is the null functional, the pair formed by (RPx�) and (RDx�) collapses to
the pair of dual problems analyzed in [8], for which we characterized weak duality, zero
duality gap, and strong duality, and their corresponding stable versions, but without
paying attention to their optimal solution sets.

Many works have been written on the numerical methods for the problem of best
least squares solutions of inconsistent �nite linear inequality systems (see, e.g., [21] and
references therein), for which the existence of optimal solutions has been proved in three
di¤erent ways in [5]. Unfortunately, as shown in [9], the existence of optimal solution
for the best least squares approximation problems relies on the �niteness of the number
of constraints and the type of norm used to measure the residual of an approximate
solution. The novelties of Section 6, in comparison with its unique antecedent [9], is
that, here, we consider convex systems instead of linear ones, describe the structure of
the sets of best `1 and `1 approximate solutions (instead of just an existence theorem
for best `1 approximation problems), and provide strong duality theorems for best `1
and `1 approximation problems.

This paper is organized as follows. Section 2 introduces the necessary notation and
some preliminary results. Section 3 provides an existence theorem for primal optimal
solutions. Section 4 characterizes the primal-dual optimal solutions with zero duality
gap, as well as, under suitable assumptions, primal optimal solutions, dual optimal
solutions and also provides a closed formula for the subdi¤erential of the robust sum
function. Section 5 provides formulas for the robust sums of suba¢ ne functions (con-
cept introduced in Section 2). Finally, Section 6 provides existence theorems for best
approximate solutions to inconsistent convex inequality systems with respect to the `1
and the `1 pseudo-norms.

2 Preliminaries

We �rst recall some standard notation regarding locally convex spaces to be used in
the sequel. We denote by 0X and 0�X the null vectors of X and X�; respectively. Given
a set A � X; we denote by coA, coneA; a� A; A; coA; and coneA the convex hull
of A, the cone generated by A [ f0Xg ; the smallest linear manifold containing A; the
closure of A; the closed convex hull A, and the closed conic hull of A; respectively. The
same notation is used when either A � X� (by default equipped equipped with the
w��topology) or A � X��R (equipped with the product topology). We represent by
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projX� the mapping from X� �R to X� such that projX� (x�; r) = x�: When X = Rn;
we denote by riA the relative interior of A:

Given A;B � X; A is said [2] to be closed regarding to B if B \A = B \A: Clearly,
A is closed regarding B if and only if A is closed regarding each subset of B:

We denote by R the extended real line with �1 and by RX the linear space of
functions from X to R: Given h 2 RX ; its lower level sets are [h � r] := fx 2 X :
h(x) � rg; with r 2 R; its domain is the set domh := fx 2 X : h(x) < +1g; its
epigraph is epih := f(x; r) 2 X�R : h(x) � rg; its strict epigraph is epis h := f(x; r) 2
X � R : h(x) < rg; and its Fenchel conjugate the function h� 2 RX

�
such that

h�(x�) := supfhx�; xi � h(x) : x 2 Xg;8x� 2 X�:

Moreover, the closed hull of h is the function h 2 RX whose epigraph epih is the
closure of epih in X �R: The de�nitions are similar if h 2 RX

�
; in particular, h is the

w��closed hull of h: The subdi¤erential of h at a 2 X is

@h(a) :=

�
fx� 2 X� : h(x) � h(a) + hx�; x� ai;8x 2 Xg; if h(a) 2 R;
;; else.

The indicator function of A � X is represented by �A (i.e. �A(x) = 0 if x 2 A; and
�A(x) = +1 if x =2 A). The support function of A 6= ;; �A (x�) := sup

x2A
hx�; xi; is the

conjugate of its indicator, i.e., �A = �
�
A: The support functions are sublinear, i.e., they

are subaditive and positively homogeneous.

We denote by � (X) the cone of RX formed by the proper closed convex functions
on X: For instance, �A 2 � (X) if and only if A is a nonempty closed convex set while
�A 2 � (X�) for all nonempty A � X: The sublinear elements of � (X) are the support
functions of the nonempty w��closed convex subsets of X�:

The continuous a¢ ne functions on X are the sums of continuous linear functionals
with constants, i.e., functions of the form ha�; �i + r = �fa�g + r; with a� 2 X� and
r 2 R: In the same vein, we de�ne the suba¢ ne functions on X as those functions
which can be expressed as �A + r; with A being a nonempty w��closed convex subset
of X� and r 2 R: For instance, the polar A� of such a set A is the lower level set of
some suba¢ ne function. Indeed,

A� := fx 2 X : ha�; xi � 1;8a� 2 Ag = [�A � 1 � 0] :

Obviously, any continuous a¢ ne function is suba¢ ne.

Remark 2.1 The above class of suba¢ ne functions is not related with others types of
functions introduced under the same name in di¤erent settings:
1. Generalized convexity (see, e.g., [20], [16],[19], [22]): a function f 2 RX is called
suba¢ ne (or truncated a¢ ne) if it can be written as f = min fx� + r; sg ; for x� 2 X�

and r; s 2 R:
2. Elliptic PDEs (see, e.g., [11], [18]): a function f 2 RRn is called suba¢ ne if it is
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upper semicontinuous and there exists a ball B such that for each a¢ ne function h,
f � h on bdB implies that f � h on B. A C2 function is suba¢ ne in this sense i¤ its
Hessian matrix has at least one nonnegative eigenvalue at each point.

We now come back to the pair of problems (RPx�) and (RDx�); whose optimal sets
are respectively denoted

sol(RPx�) = fx 2 X : f (x)� hx�; xi = inf(RPx�)g

and

sol(RDx�) =

(�
J; (x�j)j2J

�
2 F (x�) : �

X
j2J

f �j (x
�
j) = sup(RDx�)

)
:

When sol(RPx�) 6= ; we write min(RPx�) instead of inf(RPx�): Similarly, we write
max(RDx�) instead of sup(RDx�) if sol(RDx�) 6= ;:
Adopting the robust optimization approach under uncertainty (as in [4], [6], [7], [15],

etc.) we have shown in [8] that (RPx�) may be interpreted as the robust optimization
counterpart of some uncertain optimization problem and (RDx�) as its optimistic dual.
In particular, the relation

sup(RDx�) � inf(RPx�) (2.1)

always holds [8, Proposition 3.1]. The characterization of the strong duality, namely
inf(RPx�) = max(RDx�); involves the set

A :=
[

J2F(I)

X
j2J

epi f �j : (2.2)

As shown below, the set A may be convex in favorable circumstances.

Lemma 2.1 Let (Ai)i2I be a family of convex subsets of a linear space Z such that

0Z 2
T
i2I
Ai: Then A :=

[
J2F(I)

P
j2J
Aj is a convex subset of Z:

Proof. Notice that

 P
j2J
Aj

!
J2F(I)

is a family of convex subsets of Z which is directed

with respect to the inclusion. It follows that A is convex. �

Example 2.1 The set A =
[

J2F(I)

P
j2J
epi f �j is convex if the functions fj; j 2 J; are

non-negative.

Example 2.2 The set A :=
[

J2F(I)

P
j2J
dom f �j is convex if each function fj; j 2 J; is

bounded below.
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We have the following characterization of strong duality under convexity.

Theorem 2.1 (Strong zero duality gap under convexity) [8, Theorem 6.1] As-
sume the fi 2 � (X) ; i 2 I; and dom f 6= ;: The next statements are equivalent:
(i) inf(RPx�) = max(RDx�):
(ii) A is w��closed convex regarding fx�g � R:
In particular, (i) holds for any x� 2 X� if and only if A is w��closed convex.

3 Minimizing the robust sum: existence of primal
optimal solutions

In this section we assume that (fi)i2I � � (X) and, unless speci�ed otherwise, that
f =

PR
i2I fi is proper. We thus have f 2 � (X) : Additionally, we suppose that

f is weakly inf-locally compact (3.1)

in the sense that the lower level set [f � r] is weakly locally compact for each r 2 R:
Let us note that this condition is always satis�ed if X is �nitely dimensional. It is also
satis�ed if supi2I fi is weakly inf-locally compact or, a fortiori, if there exists i 2 I such
that fi is weakly inf-locally compact.

By [12, Chapter 1, Proposition 5.4] or by [14, Theorem 7.7.6], (3.1) is equivalent to:

f � is quasicontinuous with respect to the Mackey topology � (X�; X) on X�:

Let us recall that a convex function � : X� �! R is said to be � (X�; X)�quasicontinuous
if the following four properties are satis�ed ([12], [13], [14]):

� a� dom � is � (X�; X)�closed (or w��closed).

� a� dom � is of �nite codimension.

� The � (X�; X)�relative interior of dom �; say ri dom �; is nonempty.

� The restriction of � to a� dom � is � (X�; X)�continuous on ri dom �:

Remark 3.1 A convex function majorized by a �(X�; X)-quasicontinuous one is
�(X�; X)-quasicontinuous, too (see [17, Theorem 2.4], [23, Proposition 2.2.15]). If
X = X� = Rn, any extended real-valued convex function with nonempty domain is
quasicontinuous.

Let us consider the subdi¤erential of f � at x� 2 X�; namely,

@f � (x�) =

�
fx 2 X : f � (x�) � f � (x�) + hx� � x�; xi ;8x� 2 X�g ; if f � (x�) 2 R;
;; else.

6



For x� 2 dom f �; since f 2 � (X) entails f �� = f; one has

@f � (x�) = argmin (f � hx�; �i) = sol(RP�x�): (3.2)

We are faced with the subdi¤erentiability of f � at x�; for which the dual version [17,
Theorem III.3] gives a very useful criterion:

Lemma 3.1 Assume that g 2 � (X) is weakly inf-locally compact and

cone (dom g� � x�) is a linear subspace of X�: (3.3)

Then @g� (x�) is the sum of a nonempty weakly compact convex set and a �nitely
dimensional linear subspace of X:

Remark 3.2 Condition (3.3) means that the sets dom g� and fx�g are united in the
sense that they cannot be properly separated (all weak�-closed hyperplanes which sepa-
rate them contain both of them). A su¢ cient (in general not necessary) condition for
this is that x� belongs to the relative algebraic interior of dom g� (see [23, Proposition
1.2.8] for more details).

To exploit Lemma 3.1 in the case that g = f =
PR

i2I fi; we need an explicit formula-
tion of the criterion (3.3) in terms of the functions f �i : To this end, let us consider the
function ' de�ned on X� by

' (x�) := inf

(X
j2J

f �j (x
�
j) :

�
J; (x�j)j2J

�
2 F (x� + x�)

)
;8x� 2 X�: (3.4)

One has straightfordwardly

'� (x) = f (x)� hx�; xi ;8x 2 X;

'�� (x�) = f � (x� + x�) ;8x� 2 X�;

and
dom f � � x� = dom'��: (3.5)

Since dom'� = dom f 6= ;; the biconjugate function '�� coincides with thew��closed
convex hull co' of '; which satis�es

epi co' = co epi': (3.6)

Let us observe that
projX� (co epi') = co dom': (3.7)

Now, by (3.6) and (3.7), one has

dom co' = projX� (co epi') � projX� (co epi') = co dom';
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and, since co dom' is w��closed,

dom co' � co dom':

Conversely, since co' � '; we have dom' � dom co' and, since dom co' is convex,
co dom' � dom co': So, co dom' = co dom' � dom co': Consequently,

co dom' = domco'; (3.8)

and hence, it follows from (3.5) that

cone (dom f � � x�) = cone dom'�� = cone dom co'

= cone
�
dom co'

�
= cone (co dom')

= cone (co dom') :

Now, from the very de�nition of '; one has

dom' =

0B@ [
J2F(I)

X
j2J

dom f �j

1CA� x�;
and the criterion (3.3) writes, for g = f;

cone co

8><>:
0B@ [

J2F(I)

X
j2J

dom f �j

1CA� x�
9>=>; is a linear subspace of X�: (3.9)

Together with (3.2) and Lemma 3.1, we have thus proved the following result:

Theorem 3.1 (Existence of optimal solution) Assume that (fi)i2I � � (X) ; f =PR
i2I fi is proper weakly inf-locally compact and (3.9) holds. Then (RPx�) admits at

least an optimal solution. More precisely, sol(RPx�) is the sum of a nonempty convex
weakly compact set and a �nitely dimensional linear subspace of X:

For nonnegative functions we obtain:

Corollary 3.1 Let (fi)i2I be a family of nonnegative �(X)-functions such that the
in�nite sum

P
i2I fi is proper weakly inf-locally compact. Assume that

cone
[

J2F(I)

X
j2J

dom f �j is a linear subspace of X�: (3.10)

Then the optimal solution set of the problem

inf
x2X

X
i2I
fi(x)

is the sum of a nonempty convex weakly compact set and a �nitely dimensional linear
subspace of X.
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Proof. Since the functions fi, i 2 I are nonnegative, their robust sum coincides with
the in�nite sum

P
i2I fi. Moreover, one has 0X� 2 dom f �i for each i 2 I, and the set[

J2F(I)

P
j2J
dom f �j is convex (see Example 2.2). We conclude the proof with Theorem

3.1. �

Remark 3.3 If I is �nite and all functions fi; i 2 I; are nonnegative, then[
J2F(I)

X
j2J

dom f �j =
X
i2I
dom f �i ;

and condition (3.10) becomes

cone
X
i2I
dom f �i is a linear subspace of X�:

Observe that, under the assumptions of Theorem 3.1, one has in particular inf(RPx�) 2
R: Observe also that when X = X� = Rn; (3.3) writes x� 2 ri (dom g�) ; and in such a
case, one has the next corollary.

Corollary 3.2 Assume that (fi)i2I � � (Rn) ; dom f 6= ;; and

x� 2 ri co

0B@ [
J2F(I)

X
j2J

dom f �j

1CA : (3.11)

Then, sol(RPx�) is the sum of a nonempty convex compact set and a linear subspace
of Rn:

Remark 3.4 If each function fi; i 2 I; is bounded below, then (see Example 2.2) the
criteria (3.9) and (3.11) collapse respectively to

cone

8><>:
0B@ [

J2F(I)

X
j2J

dom f �j

1CA� x�
9>=>; is a linear subspace of X�

and

x� 2 ri

0B@ [
J2F(I)

X
j2J

dom f �j

1CA :
Note that the conclusion of Theorem 3.1 does not entail that

min(RPx�) = sup(RDx�): (3.12)

One has in fact, with ' de�ned as in (3.4), the following lemma.

9



Lemma 3.2 Assume that either sup(RDx�) = +1 or ' is subdi¤erentiable at 0X� :
Then (3.12) holds.

Proof. Since inf(RPx�) � sup(RDx�); (3.12) is obvious if sup(RDx�) = +1: Assume
now that x 2 @' (0X�) : Then ' (0X�) + '� (x) = h0X� ; xi = 0 and we thus have

inf(RPx�) � f (x)� hx�; xi = '� (x) = �' (0X�) = sup(RDx�) � inf(RPx�);

and (3.12) follows. �

Remark 3.5 Recall that A =
[

J2F(I)

P
j2J
epi f �j and dom' =

0B@ [
J2F(I)

P
j2J
dom f �j

1CA� x�:
From (3.4) one has

epis ' � A� (x�; 0) � epi'
and, consequently,

' (x�) = inf ft 2 R : (x�; t) 2 A� (x�; 0)g :

It follows that, if A is convex, then ' is convex too.

Theorem 3.2 (Primal attainment) Assume that (fi)i2I � � (X), ' de�ned by (3.4)
is convex and Mackey-quasicontinuous, and that

cone

8><>:
0B@ [

J2F(I)

X
j2J
dom f �j

1CA� x�
9>=>; is a linear subspace of X�: (3.13)

Then,
min(RPx�) = sup(RDx�):

Proof. By Lemma 3.2 one may assume that ' (0X�) 6= �1: By [17, Theorem 3.3] we
have @' (0X�) 6= ; and by Lemma 3.2 again we are done. �

Remark 3.6 Since for each (i; x�) 2 I �X� one has ' (x�) � f �i (x� + x�) ; the func-
tion ' (assumed to be convex) is Mackey-quasicontinuous whenever there exists i0 2 I
such that fi0 is weakly inf-locally compact (see Remark 3.1).

Corollary 3.3 Let (fi)i2I � � (Rn) be such that
[

J2F(I)

P
j2J
epi f �j is convex and

x� 2 ri

0B@ [
J2F(I)

X
j2J

dom f �j

1CA : (3.14)

Then min(RPx�) = sup(RDx�):
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Proof. As A =
[

J2F(I)

P
j2J
epi f �j is convex, ' is convex, too (Remark 3.5). Moreover,

as X = Rn and dom' 6= ;, ' is Mackey-quasicontinuous. Now, again, as X = Rn,
(3.14) , (3.13), and the conclusion follows from Theorem 3.2. �

4 Primal-dual optimality relations

We need to introduce some additional notations. Given g : X �! R; we denote by
Mg : X

� � X the set-valued mapping de�ned, for each x� 2 X�, as

(Mg) (x
�) =

�
argmin (g � hx�; �i) ; if g� (x�) 2 R;
;; else.

In fact,Mg is nothing else than the inverse of the subdi¤erential mapping @g : X � X�;
i.e.,

x 2 (Mg) (x
�)() x� 2 @g (x) :

One has (Mg) (x
�) � @g� (x�) and equality holds whenever g = g�� (e.g., when g 2

� (X)).

Given x 2 X; we denote by Sf (x) the (possibly empty) set of those J 2 F (I) that
realize the supremum in the de�nition of the robust sum when f (x) is �nite:

Sf (x) =

( n
J 2 F (I) :

P
j2J fj (x) = f (x)

o
; if x 2 dom f;

;; else.

The inverse of the set-valued mapping Sf : X � F (I) is denoted by Tf : One has
Tf : F (I)� X and

x 2 Tf (J)() J 2 Sf (x) :
If I is �nite one has of course Sf (x) 6= ; for each x 2 dom f: We now make explicit
Sf (x) in di¤erent situations. To this aim, we introduce the supremum function f0 :=
supi2I fi:

� If f0 (x) � 0 we have f (x) = f0 (x) [8, Lemma 2.5]. Then

Sf (x) =

�
ffjg : j 2 I; fj (x) = f0 (x)g ; if f0 (x) < 0;
fJ 2 F (I) : fj (x) = 0;8j 2 Jg ; if f0 (x) = 0:

� If f0 (x) 2 ]0;+1[ we have f (x) =
P
i2I
f+i (x) :=

P
i2I
max ffi (x) ; 0g [8, Lemma

2.5] and

Sf (x) =

�
fi 2 I : fi (x) > 0g ; if this set is �nite,
;; else.
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Theorem 4.1 (Primal-dual optimality with zero duality gap) Assume that all
functions fi are proper and let x 2 dom f and

�
J; (x�j)j2J

�
2 F (x�) : Next statements

are equivalent:
(i) x 2 sol(RPx�);

�
J; (x�j)j2J

�
2 sol(RDx�); and inf(RPx�) = sup(RDx�):

(ii) J 2 Sf (x) and x�j 2 @fj (x) for all j 2 J:

(iii) x 2 Tf (J) \
 T
j2J
Mfj(x

�
j)

!
:

If (fi)i2I � � (X) we can add

(iv) x 2 Tf (J) \
 T
j2J
@f �j (x

�
j)

!
:

Proof. From the de�nitions of the set-valued mappings Sf ; Tf ; and Mfj it is clear
that (ii)() (iii) and (iii)() (iv) under the assumption that (fi)i2I � � (X) :
[(i) =) (ii)] Since x 2 dom f we have

P
j2J
fj (x) 2 R andX

j2J
fj (x)� hx�; xi � f (x)� hx�; xi = inf(RPx�) = sup(RDx�) = �

X
j2J

f �j (x
�
j): (4.1)

By Fenchel and Young inequality we have

�
X
j2J

f �j (x
�
j) �

X
j2J

fj (x)� hx�; xi : (4.2)

Since
�
J; (x�j)j2J

�
2 F (x�) we haveX
j2J

�
fj (x)�



x�j ; x

��
=
X
j2J

fj (x)� hx�; xi : (4.3)

Combining (4.1), (4.2), and (4.3), we obtain
P
j2J
fj (x) = f (x) ; that means J 2 Sf (x)

and X
j2J

�
fj (x) + f

�
j (x

�
j)�



x�j ; x

��
= 0:

By Fenchel and Young inequality all terms of the above sum are nonnegative, hence
equal to zero, that means x�j 2 @fj (x) for all j 2 J:

[(ii) =) (i)] Since J 2 Sf (x) ;
P

j2J x
�
j = x�; x�j 2 @fj (x) for all j 2 J; and�

J; (x�j)j2J
�
2 F (x�) ; we have

f (x)� hx�; xi =
P
j2J
fj (x)� hx�; xi

=
P
j2J

�
fj (x)�



x�j ; x

��
= �

P
j2J
f �j (x

�
j)

� sup(RDx�)
� inf(RPx�)
� f (x)� hx�; xi :

12



All terms of the above chain of inequalities are thus equal and this proves that (i)
holds. �

Next corollary assumes that inf(RPx�) = max(RDx�) (i.e., strong duality), which is
characterized (in the convex case) in Theorem 2.1.

Corollary 4.1 Assume that all functions fi are proper and let x 2 dom f and inf(RPx�) =
max(RDx�): Next statements are equivalent:
(i) x 2 sol(RPx�):
(ii) For all

�
J; (x�j)j2J

�
2 sol(RDx�) one has J 2 Sf (x) and x�j 2 @fj (x) for all j 2 J:

(iii) There exists
�
J; (x�j)j2J

�
2 sol(RDx�) such that J 2 Sf (x) and x�j 2 @fj (x) for

all j 2 J:
(iv) There exists

�
J; (x�j)j2J

�
2 F (x�) such that J 2 Sf (x) and x�j 2 @fj (x) for all

j 2 J:
Moreover, for any

�
J; (x�j)j2J

�
2 sol(RDx�) one has

sol(RPx�) = Tf (J) \
 \
j2J
Mfj(x

�
j)

!
: (4.4)

Proof. [(i) =) (ii)] It follows from the statement [(i) =) (ii)] in Theorem 4.1.

[(ii) =) (iii)] It is obvious as sol(RDx�) 6= ;:
[(iii) =) (iv)] It is obvious.

[(iv) =) (i)] Since J 2 Sf (x) ;
P

j2J x
�
j = x

�; and x 2Mfj(x
�
j) for each j 2 J;

inf(RPx�) � f (x)� hx�; xi =
P
j2J
fj (x)� hx�; xi

=
P
j2J

�
fj (x)�



x�j ; x

��
= �

P
j2J
f �j (x

�
j)

� sup(RDx�) � inf(RPx�):

This ensures that f (x)� hx�; xi = inf(RPx�) and (i) holds.
Let us prove the last assertion of Corollary 4.1. Let

�
J; (x�j)j2J

�
2 sol(RDx�): From

[(i)() (ii)] one has x 2 sol(RPx�) if and only if J 2 Sf (x) and x�j 2 @fj (x) for all
j 2 J or, equivalently,

x 2 Tf (J) \
 \
j2J
Mfj(x

�
j)

!
: �

Notice that, if (fi)i2I � � (X) ; then Mfj(x
�
j) = @f �j (x

�
j) for each j 2 J and the

equation (4.4) writes

sol(RPx�) = Tf (J) \
 \
j2J
@f �j (x

�
j)

!
:
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Corollary 4.2 Assume that all functions fi and f are proper and let
�
J; (x�j)j2J

�
2

F (x�) and min(RPx�) = sup(RDx�): Next statements are equivalent:
(i)
�
J; (x�j)j2J

�
2 sol(RDx�);

(ii) For all x 2 sol(RPx�) one has J 2 Sf (x) and x�j 2 @fj (x) for all j 2 J;
(iii) There exists x 2 sol(RPx�) such that J 2 Sf (x) and x�j 2 @fj (x) for all j 2 J;
(iv) There exists x 2 X such that J 2 Sf (x) and x�j 2 @fj (x) for all j 2 J:
Moreover, for any

�
J; (x�j)j2J

�
2 sol(RDx�) one has

sol(RDx�) =
��
J; (x�j)j2J

�
2 F (x�) : J 2 Sf (x) and x�j 2 @fj (x) ;8j 2 J

	
for either some (all) x 2 sol(RPx�) or for some x 2 X:

Proof. [(i) =) (ii)] It comes from the statement [(i) =) (ii)] in Theorem 4.1.

[(ii) =) (iii)] It is obvious as sol(RPx�) 6= ;:
[(iii) =) (iv)] It is obvious.

[(iv) =) (i)] Since
�
J; (x�j)j2J

�
2 F (x�) ; x�j 2 @fj (x) for all j 2 J;

P
j2J x

�
j = x�;

and J 2 Sf (x) ; one has

sup(RDx�) � �
P
j2J
f �j (x

�
j)

=
P
j2J

�
fj (x)�



x�j ; x

��
=
P
j2J
fj (x)� hx�; xi

= f (x)� hx�; xi
� inf(RPx�)
� sup(RDx�):

Consequently, sup(RDx�) = �
P

j2J f
�
j (x

�
j) and (i) holds.

The last assertion of Corollary 4.2 comes directly from the equivalences (i), (ii),
(iii), (iv): �

For the last result of this section we still assume (fi)i2I � (R[f+1g)
X is an in�nite

family of proper functions, but we do not consider a �xed element x� 2 X�: The
equation (4.5) is called stable strong duality in [3].

Corollary 4.3 Assume that

inf(RPx�) = max(RDx�);8x� 2
[
x2X

@f (x) : (4.5)

Then one has
@f (x) =

[
J2Sf (x)

X
j2J

@fj (x) ;8x 2 X: (4.6)

14



Proof. Let us show that the inclusion � always holds in (4.6).
Let x� :=

P
j2J x

�
j with J 2 Sf (x) and x�j 2 @fj (x) for all j 2 J: We thus have,

f (x)� hx�; xi =
P
j2J

�
fj (x)�



x�j ; x

��
= �

P
j2J
f �j (x

�
j)

� sup(RDx�)
� inf(RPx�)
= �f � (x�)
� f (x)� hx�; xi :

Finally, f (x)� hx�; xi = �f � (x�) ; that means x� 2 @f (x) :
We now prove the reverse inclusion � in (4.6).
Let x� 2 @f (x) : Then x 2 @f � (x�) and, by (3.2), x 2 sol(RPx�): By (4.5) and

Corollary 4.1, there exists
�
J; (x�j)j2J

�
2 F (x�) such that J 2 Sf (x) and x�j 2 @fj (x)

for all j 2 J: We thus have x� =
P
j2J
x�j 2

P
j2J
@fj (x) : �

5 Robust sum of suba¢ ne functions

Let (Ai)i2I be a family of nonempty, w
��closed convex subsets of X�; ti 2 R for all

i 2 I and the suba¢ ne functions fi := �Ai � ti; i 2 I: Then (fi)i2I � �(X) and we
have f �i := �Ai + ti and epi f

�
i = Ai� [ti;+1[ = Ai�ftig+ f0X�g�R+ for each i 2 I.

The robust sum f of this family is

f (x) =
XR

i2I
fi (x) = sup

J2F(I)

X
j2J

h
�Aj (x)� tj

i
;8x 2 X

and the set A de�ned by (2.2) now becomes

A :=

0B@ [
J2F(I)

X
j2J

h
Aj � ftjg

i1CA+ f0X�g � R+: (5.1)

Let us introduce the set-valued mapping

A : F (I)� X� such that A (J) =
X
j2J

Aj:

Then the problem (RPx�) and its dual (RDx�) write as

inf(RPx�) = infff(x)� hx�; xi : x 2 Xg = �f �(x�)

and

sup(RDx�) = sup

(
�
X
j2J

f �i (x
�
j) : J 2 A�1(x�)

)
= � inf

(X
j2J

tj : J 2 A�1(x�)
)
;
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and hence, the zero duality gap relation amounts to

f � (x�) = inf

(X
j2J

tj : J 2 A�1 (x�)
)
:

We now brie�y quote some remarkable properties on the duality and the convexity
and closedness of the qualifying set A:
� It is worth observing �rstly that if A�1 (x�) = ; (i.e., x� =2

[
J2F(I)

P
j2J
Aj), one has

x� =2 dom f � and sup(RDx�) = �1:
� In the case when dom f 6= ; (for instance, if

PR
i2I ti 2 R), Theorem 2.1 says that

the stable strong duality of the pair (RPx�)-(RDx�) holds, i.e.,

f � (x�) = min
nX

j2J
tj : J 2 A�1(x�)

o
;8x� 2 dom f � (5.2)

if and only if the set

A =

0B@ [
J2F(I)

X
j2J

h
Aj � ftjg

i1CA+ f0X�g � R+ is w� � closed and convex: (5.3)

� According to Lemma 2.1 and Example 2.1, we know that the set A in (5.1) is
convex if 0X� 2

T
i2I
Ai 6= ; and supi2I ti � 0: Moreover, the set A is w��closed if[

J2F(I)

P
j2J (Aj � ftjg) is w��compact.

On the primal attainment and the strong duality of the robust sum for suba¢ ne
functions (RPx�), one has the following consequence of Theorem 3.1 and Lemma 2.1.

Proposition 5.1 Assume that 0X� 2
T
i2I
Ai and the robust sum

PR
i2I (�Ai � ti) is

proper and weakly inf-locally compact. Let x� 2 X� be such that

cone

0@ [
J2F(I)

X
j2J

Aj � x�
1A is a linear subspace of X�: (5.4)

Then the optimal solution set of the problem

(RPx�) inf
x2X

�XR

i2I
(�Ai(x)� ti)� hx�; xi

�
is the sum of a nonempty weakly compact set and a �nitely dimensional linear subspace
of X.

Applying Theorem 3.2 we get
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Proposition 5.2 Assume that 0X� 2
T
i2I
Ai 6= ; and supi2I ti � 0; and there exists

i0 2 I such that �Ai0 is Mackey quasicontinuous. Then for each x
� 2 X� satisfying

(5.4) we have

min
x2X

�XR

i2I
(�Ai(x)� ti)� hx�; xi

�
= sup

�
�
X
j2J

tj : J 2 A�1(x�)
	
:

Proof. By Lemma 2.1 (Example 2.1) the set A is convex and the function ' is
convex, too (Remark 3.5). On the other hand, by Remark 3.6, the function ' is
Mackey quasicontinuous. The conclusion follows from Theorem 3.2. �

In �nite dimension we have (as an immediate consequence of Proposition 5.2):

Proposition 5.3 Let (Ai)i2I be a family of closed convex subsets of Rn such that 0X� 2T
i2I
Ai. Assume that supi2I ti � 0. Then for any x� 2 ri

� [
J2F(I)

P
j2J Aj

�
one has

min
x2X

�XR

i2I
(�Ai(x)� ti)� hx�; xi

�
= sup

�
�
X
j2J

tj : J 2 A�1(x�)
	
:

We end this section with a formula on the subdi¤erential of the robust sum f =PR
i2I(�Ai � ti). Let us recall that for each x 2 X one has, by de�nition,

Sf (x) = fJ 2 F(I) :
X
j2J
(�Aj(x)� tj) = f(x)g:

We observe also that

@�Ai(x) = fx� 2 Ai : hx�; xi = �Ai(x)g

or, in other words,
@�Ai(x) = argmaxAih�; xi: (5.5)

We then have:

Proposition 5.4 Assume that 0X� 2
T
i2I
Ai, supi2I ti � 0, f is proper, and the set0B@ [

J2F(I)

X
j2J

h
Aj � ftjg

i1CA+ f0X�g � R+; (5.6)

is w�-closed regarding the set
S
u2X

@f(u). Then one has

@f(x) =
[

J2Sf (x)

X
j2J

argmaxAjh�; xi;8x 2 X:
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Proof. Noting that the set in (5.6) is nothing but

A =
[

J2F(I)

X
j2J

epi(�Aj � tj)�;

which is convex. The conclusion now follows from Theorem 2.1, Corollary 4.3, and
(5.5). �

6 Approximate solutions to inconsistent convex in-
equality systems

In this section (fi)i2I � �(X). We consider the system

(S) ffi(x) � 0; i 2 Ig;

that we assume to be inconsistent. De�ning

f0(x) := sup
i2I
fi(x); (6.1)

we have f0(x) > 0 for all x 2 X.
The i�th residual of x is given by f+i (x) and, in some sense, the infeasibility of x

is measured by sup
i2I
f+i (x); that is, f0(x) too. We may also consider the cumulative

infeasibility of x, namely the in�nite sum
P
i2I
f+i (x) (see [9]). Since f0(x) > 0 we know

that
P

i2I f
+
i coincides with the robust sum

PR
i2I fi of the family (fi)i2I (see [8, Lemma

2.5]).

In formal terms, let us de�ne a best `1-approximate solution of the inconsistent
system (S) as an optimal solution to the problem

infx2X f0(x) = sup
i2I
fi(x) = sup

i2I
f+i (x)

and, similarly, a best `1-approximate solution of (S) as an optimal solution to the
problem

infx2X
X
i2I
f+i (x) =

XR

i2I
fi(x):

We denote by `1-sol (S) (resp., `1-sol (S)) the set of best `1 (resp., `1) approximate
solutions of the inconsistent system (S).

In order to associate a suitable dual problem with infx2X f0(x) we de�ne, as in [10],
the unit simplex in the linear space R(I) of real-valued functions � 2 RI with �nite
support set supp� := fi 2 I : �i 6= 0g as

SI :=

(
� 2 R(I) :

X
i2I
�i = 1; �i � 0;8i 2 I

)

18



and the modi�ed Lagrangian function as L : X � SI such that

L (x; �) :=
X

i2supp�

�ifi(x);8 (x; �) 2 X � SI :

Proposition 6.1 (Structure of `1-sol (S) and strong duality) Assume that f0 is
proper and weakly inf-locally compact, and that cone co

S
i2I
dom f �i is a linear subspace

of X�. Then `1 � sol (S) is the sum of a nonempty convex weakly compact set and a
�nitely dimensional linear subspace of X. Moreover, one has

infx2X sup
i2I
fi(x) = max

(
inf
x2X

X
i2I
�ifi(x) : � 2 SI

)
if and only if [

�2SI

epi

 X
i2I
�ifi

!�
is w� � closed regarding f0X�g � R:

Proof. Since f0 2 �(X) one has `1�sol (S) = @f �0 (0X�). We intend to apply Lemma
3.1 for g = f0 and x� = 0X�. We have to make explicit the criterion (3.3) in terms of
the conjugate of the data functions fi. To this end consider the function 	 := inf

i2I
f �i .

One has dom	 = [i2I dom f �i , 	� = f0 and, since dom f0 6= ;, f �0 = co	. Now, as in
(3.8), we have co dom	 = domco	 and, consequently,

cone dom f �0 = cone(dom(co	)) = cone co(dom	) = cone
�
co
[
i2I
dom f �i

�
:

The strong duality theorem is consequence of [10, Corollary 3.4]. �

Observe that, if at least one of the functions fi is weakly inf-locally compact, then
f0 is weakly inf-locally compact, too. The next corollary is an immediate consequence
of Proposition 6.1.

Corollary 6.1 Assume that (fi)i2I � �(Rn); dom f0 6= ;, and 0Rn 2 ri co
� S
i2I
dom f �i

�
:

Then `1-sol (S) is the sum of a nonempty convex compact set and a linear subspace of
Rn.

Example 6.1 Let fhai; xi � bi; i 2 Ig be an inconsistent linear system posed in Rn:
This is a particular case of system (S) above, with fi = hai; �i � bi; ai 2 Rn and bi 2 R
for all i 2 I: Denoting by 0n the null vector in Rn; by Corollary 6.1, if dom f0 6= ;
and 0n 2 ri co fai; i 2 Ig ; then `1-sol (S) is the sum of a nonempty convex compact
set and a linear subspace of Rn ([9, Proposition 1(S)] only asserts that, under these
assumptions, `1-sol (S) 6= ;). Moreover, since[

�2SI

epi

 X
i2I
�ifi

!�
=

(X
i2I
�i (ai; bi) : � 2 SI

)
+ f0ng � R+;
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the strong duality theorem becomes here

infx2Rn sup
i2I
(hai; xi � bi) = max

(
inf
x2Rn

X
i2I
�i (hai; xi � bi) : � 2 SI

)
;

if and only if(X
i2I
�i (ai; bi) : � 2 SI

)
+ f0ng � R+ is closed regarding f0ng � R+:

Proposition 6.2 (Structure of `1-sol (S) and strong duality) Assume that the ro-
bust sum

PR
i2I fi is proper, weakly inf-locally compact, and cone co

� S
J2F(I)

P
j2J
dom f �j

�
is

a linear subspace of X�: Then, `1-sol (S) is the sum of a nonempty convex weakly com-
pact set and a �nitely dimensional linear subspace of X. Moreover, one has

infx2X
X
i2I
f+i (x) = max

n
�
X
j2J

f �j (x
�
j) : J 2 F(I); (x�j)j2J 2 (X�)J ;

X
j2J

x�j = 0X�

o
if and only if [

J2F(I)

X
j2J

epi f �j is w
� � closed convex regarding f0X�g � R:

Proof. It is direct consequence of Theorem 3.1 and Theorem 2.1 for x� = 0X�, due
to the relation

PR
i2I fi =

P
i2I f

+
i . �

Example 6.2 Consider again the linear system (S) in Example 6.1. By Proposition

6.2, if
PR

i2I (hai; �i � bi) is proper and 0n 2 ri
� S
J2F(I)

P
j2J
aj
�
; then `1-sol (S) is the sum

of a nonempty convex compact set and a �nitely dimensional linear subspace of Rn.
Observe that, for each (xj)j2J 2 (Rn)J ; one has

X
j2J

f �j (xj) =
X
j2J

�
��fajg(xj) + bj

�
=

( P
j2J
bj; if xj = aj; 8j 2 J;

+1; else.

So, again by Proposition 6.2,

infx2Rn
X
i2I
(hai; xi � bi)+ = max

n
�
X
J2F(I)

bj : J 2 F(I);
X
J2F(I)

aj = 0n

o
if and only if[

J2F(I)

X
j2J

(faig � [bi;+1[) is closed convex regarding f0ng � R:
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