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Abstract

In this paper we associate with an in�nite family of real extended functions
de�ned on a locally convex space, a sum, called robust sum, which is always
well-de�ned. We also associate with that family of functions a dual pair of
problems formed by the unconstrained minimization of its robust sum and the
so-called optimistic dual. For such a dual pair, we characterize weak duality,
zero duality gap, and strong duality, and their corresponding stable versions,
in terms of multifunctions associated with the given family of functions and a
given approximation parameter " � 0 which is related to the "-subdi¤erential
of the robust sum of the family. We also consider the particular case when
all functions of the family are convex, assumption allowing to characterize the
duality properties in terms of closedness conditions.

Keywords Robust sum function � Weak duality � Zero duality � Strong
duality � Stable duality theorems
Mathematics Subject Classi�cations (2010) 90C46� 49N15 � 46N10

1 Introduction

Given a locally convex Hausdor¤ topological vector space X and an in�nite family
(fi)i2I of functions fi : X �! R1 := R[f+1g for all i 2 I (situation in the sequel
denoted as (fi)i2I � (R1)

X) of objective proper functions, we are concerned with the
uncertain problem of minimizing a �nite but unknown sum of the objective functions
fi: Adopting the robust optimization approach under uncertainty (see [4], [7], [8], [13]),
and taking the set F (I) of non-empty �nite subsets of I as uncertainty set, the robust
counterpart of this uncertain problem is

(RP) inf
x2X

sup
J2F(I)

X
i2J
fi (x) : (1.1)
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This kind of problem arises in situations where one must minimize the robust-Lp
(pseudo) norm function khkp de�ned on X by

khkp(x) :=
"
sup
J2F(I)

X
i2J
jhi(x)jp

# 1
p

= sup
J2F(I)

"X
i2J
jhi(x)jp

# 1
p

2 R1;

for any in�nite family h = (hi)i2I of functions hi : X �! R; i 2 I; and p � 1. Since
the exact value of khkp can hardly be computed, in practice it should be replaced
by the maximum of

�P
i2J jhij

p� 1p for a sample of non-empty �nite sets J picked at
random from I: This way,

�P
i2J jhij

p� 1p can be interpreted as an uncertain function
with uncertain parameter J ranging on the uncertainty set F (I) :
As a �rst example, in the extension of the classical least squares linear regression

model (see, e.g., [1, Subsection 3.2.1]) to the case of in�nite point clouds f(ti; si); i 2 Ig �
R2, when the shape of the latter set suggests a linear dependence of magnitude s with
respect to magnitude t; the problem consists in computing the ordinate at the origin,
x1; and the slope, x2; of the line s = x1 + x2t better �tted to that set. To �nd it, one
should minimize khk22 (x1; x2) on R2; where the i�th component of the residual func-
tion h; is hi (x1; x2) := x1 + x2ti � si; i 2 I: In the terminology of robust optimization,
the uncertain objective function

P
i2J jhi (x)j

2 at x represents the sum of squares error
for the line s = x1+x2t relative to the �nite point cloud f(ti; si); i 2 Jg ; the worst-case
objective function supJ2F(I)

P
i2J jhi (x)j

2 is the least upper bound, for J 2 F (I) ; of
the errors corresponding to that line, and a robust optimal solution of (RP) is a best
in�nite regression line for the point cloud f(ti; si); i 2 Ig.
A second example comes from the search of a best approximate solution to an incon-

sistent system fhai; xi � bi; i 2 Ig in Rn. Denote by h (x) the residual of x 2 Rn; i.e.,
hi (x) := max fhai; xi � bi:0g ; i 2 I:When I is �nite, the minimization of the Lp norm
of the residual vector h (x) on Rn is a convex optimization problem [1, page 120] that
can be reformulated as a linear programming problem for p 2 f1;1g by using the lin-
earization technique described in [1, Subsubsection 1.1.5.4] or directly solved by means
of ad hoc numerical methods for p = 2 (see [16] and references therein). Assuming that
I is the union of a discrete set with a �nite union of pairwise disjoint boxes as well as
the continuity on these boxes of the function i 7�! (ai; bi) ; [10] analyzes the minimiza-
tion of the components of the residual function h, involving integrals whose existence is
guaranteed by the continuity assumption. One can get rid of any assumption on I and
the function i 7�! (ai; bi) by considering the minimization of the robust pseudonorm
function kh (x) kp for an arbitrary in�nite set I; in which case an optimal solution of
(RP) provides a best robust-Lp approximate solution of fhai; xi � bi; i 2 Ig :
The third example is an extension of the classical Markowitz [15] portfolio model,

which is based on historical return data allowing to estimate the expected return and
the expected variance (identi�ed with the risk) of each portfolio: We now brie�y de-
scribe Markowitz�s model. The decision maker (DM) tries to invest, in an optimal way,
a unit of capital into a �nite set I of assets with expected return ri; i 2 I; and estimated
covariance vij of the returns of assets i; j 2 I: In the absence of other constraints, the
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DM has to decide the amount xi to be invested at asset i 2 I; so that the expected
return

P
i2I
rixi is maximized while the expected variance

P
i;j2I

vijxixj is minimized. In

other words, she must solve the ordinary bi-objective problem

(P1) max
P
i2I
rixi

min
P
i;j2I

vijxixj

s.t.
P
i2I
xi � 1;

xi � 0; i 2 I:

This model implicitly assumes a quadratic utility (or risk) function, but there exists
a wide literature on utility functions in portfolio models [12]. Taking into account
the almost unlimited number of existing assets in the global economy, it is natural to
replace (P1) by the following bi-objective in�nite dimensional optimization problem
involving robust sums of linear functions and quadratic forms:

(P2) min supJ2F(N)
P

i2J (�rixi)
min supK2F(N2)

P
(i;j)2K vijxixj

s.t. supJ2F(N)
P

i2J xi � 1;
xi � 0; i 2 N:

It is worth observing that this third example involves a problem of minimizing a vector-
valued robust sum function under some constraints. In this paper, however, we consider
only unconstrained scalar problems. The class of vector robust sum problems with
constraints will be considered in another work.

The aim of this paper is to establish some duality principles for the problem (RP)
and to characterize in various ways the zero duality gap property. We call robust sum
of the family (fi)i2I � (R1)X , represented by

PR
i2I fi : X �! R1, the objective

function of (RP), namely,XR

i2I
fi (x) := sup

J2F(I)

X
i2J
fi (x) ;8x 2 X:

The term �robust sum�is not new in the literature, but it has been only used in the
framework of the uncertain optimization of �nite sums (see, e.g., [2], [5]).

In the case where all functions fi are non-negative,XR

i2I
fi (x) =

X
i2I
fi (x) := lim

J2F(I)

X
i2J
fi (x) ;8x 2 X; (1.2)

where the limit is taken respect to the directed set F (I) ordered by the inclusion
relation. The advantage of the robust sum

PR
i2I fi in comparison with the in�nite

sum
P

i2I fi is that
PR

i2I fi (x) is well de�ned for each x 2 X while
P

i2I fi (x) may
not exist (see Remark 2.1 and Lemma 2.6 below). Formulas for the subdi¤erential ofP

i2I fi in the case that all functions fi are continuous have been given in [18] and

3



[19, Proposition 2.3], while duality theorems on in�nite sums of proper, convex and
lower semicontinuous (lsc in short) functions can be found in [14, Section 3]. The
mentioned subdi¤erential formulas and duality theorems for

P
i2I fi have been used

in [19, Proposition 2.3] and [14, Section 5] to obtain error bounds for convex in�nite
systems and optimality conditions for convex in�nite programs, respectively.

Throughout this paper we assume that all functions fi; i 2 I; are proper, as well as
their robust sum f :=

PR
i2I fi: The paper is organized as follows. Section 2 introduces

the robust sum of an in�nite family in R1 and analyzes its relationship with the in�nite
sum of the family. Sections 3, 4 and 5 provide results characterizing weak duality, zero
duality gap, and strong duality, for the robust sum of a family of arbitrary functions,
respectively, in terms of multifunctions associated with (fi)i2I . Section 6 analyzes
the robust sum under the assumption that (fi)i2I is a family of proper, lsc and convex
functions; the main result of this section is Theorem 6.1, which characterizes the strong
zero duality gap of f under a closedness assumption instead of "-subdi¤erentials and
epigraphs of the family of corresponding conjugate functions, as in [14, Theorem 3.2]
for

P
i2I fi: Example 6.1 shows that the properness of a family of continuous a¢ ne

functions (fi)i2I does not imply the properness of its robust sum and illustrates the
checkability of the conditions involved in the duality theorems. Finally, Section 7
provides a stable zero duality theorem for the in�nite sum of proper, lsc, and non-
negative convex functions (as in the above in�nite regression problem).

2 Some rules for the robust sum

We associate with a given in�nite family of extended real numbers (ai)i2I (situation in
the sequel denoted as (ai)i2I 2 (R1)

I) its robust sumXR

i2I
ai := sup

J2F(I)

X
i2J
ai; (2.1)

together with its inferior and superior limits,

lim inf
J2F(I)

X
i2J
ai := sup

J2F(I)
inf

J�K2F(I)

X
i2K

ai;

and
lim sup
J2F(I)

X
i2J
ai := inf

J2F(I)
sup

J�K2F(I)

X
i2K

ai;

respectively.

Lemma 2.1 One has
�1 < sup

i2I
ai �

XR

i2I
ai � +1; (2.2)

and
�1 < lim inf

J2F(I)

X
i2J
ai �

XR

i2I
ai � +1: (2.3)
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Proof. Let j 2 I: Setting J = fjg in (2.1) we get

�1 < aj �
XR

i2I
ai � +1:

Taking the supremum over j 2 I; (2.2) holds true.
Let J 2 F (I) : We have

�1 � inf
K2F(I)

X
i2K

ai �
X
i2J
ai �

XR

i2I
ai � +1:

Taking the supremum over J 2 F (I) ; (2.3) holds true.
We also de�ne the in�nite sum of the family (ai)i2I asX

i2I
ai := lim

J2F(I)

X
i2J
ai;

provided that the unconditional limit lim
J2F(I)

P
i2J ai exists as a member of R; i.e.,

�1 � lim inf
J2F(I)

X
i2J
ai = lim sup

J2F(I)

X
i2J
ai � +1:

In the case when (ai)i2I 2 [0;+1]
I ; we have

0 �
XR

i2I
ai =

X
i2I
ai � +1:

For each � 2 R we consider �+ := max f�; 0g and �� := max f��; 0g :

Lemma 2.2
�PR

i2I ai

�+
=
PR

i2I a
+
i =

P
i2I
a+i :

Proof. Since ai � a+i and a+i � 0 for all i 2 I; we haveXR

i2I
ai �

XR

i2I
a+i =

X
i2I
a+i :

Since
P

i2I a
+
i � 0 we obtain

�PR
i2I ai

�+
�
P

i2I a
+
i : Let us prove the reverse in-

equality. Let J 2 F (I) and KJ := fi 2 J : ai > 0g : If KJ = ; then
P

i2J a
+
i = 0 ��PR

i2I ai

�+
. If, alternatively, KJ 6= ; then

0 �
X
i2J
a+i =

X
i2KJ

ai �
XR

i2I
ai �

�XR

i2I
ai

�+
:
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In both cases we have
P

i2J a
+
i �

�PR
i2I ai

�+
; and, since J 2 F (I) is arbitrary, we

obtain X
i2I
a+i =

XR

i2I
a+i �

�XR

i2I
ai

�+
;

and the proof is complete.

As an immediate consequence of Lemma 2.2 we have:

Lemma 2.3 One has XR

i2I
ai 2 R()

X
i2I
a+i < +1:

Lemma 2.4 Next statements are equivalent:
(i) sup

i2I
ai � 0:

(ii)
PR

i2I ai � 0:
(iii)

PR
i2I ai =

P
i2I a

+
i :

Proof. One has [(i) =) (ii)] by Lemma 2.1 and [(ii) =) (i)] by Lemma 2.2. Assume
now that (i) does not hold, i.e., there exists " > 0 such that ai � �" for all i 2 I:
For each J 2 F (I) we have

P
i2J ai � �" � card J � �": Since J is arbitrary we getPR

i2I ai � �" and (iii) does not hold. So, [(iii) =) (i)] and the proof is complete.

Lemma 2.5 One has

XR

i2I
ai =

8<:
P

i2I a
+
i ; if sup

i2I
ai � 0;

sup
i2I
ai; if sup

i2I
ai � 0:

(2.4)

Proof. If sup
i2I
ai � 0, (2.4) holds by Lemma 2.4. Assume now that sup

i2I
ai � 0: By

Lemma 2.1 we have just to check that
PR

i2I ai � sup
i2I
ai: Let J 2 F (I) : Picking j 2 J ,

we have X
i2J
ai � aj � sup

i2I
ai;

and, since J is arbitrary, we are done.

Remark 2.1 We note that
PR

i2I ai always exists in R1 while
P

i2I ai may not exist in

R: This is for instance the case when I = N and ai = (�1)i or ai = (�1)i
i
: In both cases

we have
P

i2I a
+
i = +1 and, by Lemma 2.3,

PR
i2I ai = +1; while there are subnets

of
�P

i2J ai
	
J2F(I) converging towards distinct limits, so that

P
i2I ai does not exist in

R: However, in the case when
PR

i2I ai 2 R;
P

i2I ai does exist in R[f�1g as the next
lemma shows.
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Lemma 2.6 Assume that
PR

i2I ai 2 R: Then either
P

i2I a
�
i < +1 or

P
i2I a

�
i =

+1, and in the �rst case it holds
P

i2I ai 2 R while in the latter one,
P

i2I ai = �1:

Proof. Since
PR

i2I ai 2 R; Lemma 2.3 says that
P

i2I a
+
i < +1:

Assume that
P

i2I a
�
i < +1: Then,X

i2I
a+i �

X
i2I
a�i =

X
i2I

�
a+i � a�i

�
=
X

i2I
ai 2 R:

Assume that
P

i2I a
�
i = +1 and let us prove that

P
i2I ai = �1:

Let r 2 R and s :=
P

i2I a
+
i 2 R. There exist J1; J2 2 F (I) such that,

8J 2 F (I) ; J1 � J =)
X

i2J
a+i � s+ 1;

8J 2 F (I) ; J2 � J =)
X

i2J
a�i � s+ 1� r:

Thus, for each J 2 F (I) such that J1 [ J2 � J , we haveX
i2J
ai =

X
i2J
a+i �

X
i2J
a�i � r;

which means that
P

i2I ai = �1:

Example 2.1 Let I = N and, for each i 2 I;

ai =

�
1
i2
; if i is even;

�1
i
; if i is odd:

By Lemma 2.5 we have
PR

i2I ai =
P

i2I a
+
i =

�2

24
and, since

P
i2I a

�
i = +1; by Lemma

2.6, we have
P

i2I ai = �1:

3 Weak duality

We now introduce the notation that will be used in the rest of the paper. The topo-
logical dual space of X is denoted by X�: We denote by 0X and 0�X the null vector of
X and X�; respectively. The closure of a subset A � X will be denoted by A and the
same symbol will be used for the closure of a subset of the dual space X�.

Given a function h 2 RX ; its domain is the set domh := fx 2 X : h(x) < +1g;
its epigraph is epih := f(x; r) 2 X � R : h(x) � rg; its strict epigraph is epis h :=
f(x; r) 2 X � R : h(x) < rg; and its Fenchel conjugate is the function h� 2 RX

�
such

that h�(x�) := supfhx�; xi � h(x) : x 2 Xg for any x� 2 X�. Moreover, the lsc hull of
h is the function h 2 RX whose epigraph epih is the closure of epih in X � R:
Given " 2 R, we denote by [h � "] := fx 2 X : h(x) � "g the lower level set of h at

level ": The de�nition of the strict lower level set [h < "] is similar.
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Given " � 0; we de�ne the "�minimizers of h as

"� argminh :=
( n

x 2 X : h (x) � inf
X
h+ "

o
; if inf

X
h 2 R;

;; else.

Given a 2 X and " � 0, we denote by

@"h(a) :=

�
fx� 2 X� : h(x) � h(a) + hx�; x� ai � "; 8x 2 Xg; if h(a) 2 R;
;; else,

the "�subdi¤erential of h at a: For " = 0 one sets @h(a) instead of @0h(a): By de�nition,
@"h : X � X� is a multifunction whose inverse multifunction we denote by M "h :
X� � X: For each x� 2 X� one has

M "h(x�) =

�
"� argmin(h� x�); if h�(x�) 2 R;
;; else:

The multifunction M "h(�) will be of a crucial importance in the paper. Notice that,
with the rule (+1)� (�1) = (�1) + (+1) = +1; one has

x 2M "h(x�)() x� 2 @"h(x)() h(x) + h�(x�) � hx�; xi+ ": (3.1)

We are now turning back to the problem (RP) de�ned in (1.1) by an in�nite family
(fi)i2I � (R1)

X of proper functions with f =
PR

i2I fi, which is assumed to be proper
as well. Note that as the functions f , fi are proper, the conjugate functions f �, f �i ;
i 2 I; never take the value �1:
For each x� 2 X� consider the dual pair of problems

(RPx�) inf
x2X

[f(x)� hx�; xi];

(RDx�) sup
J2F(I)

(x�i )i2J2(X�)JP
i2J x

�
i=x

�

�
X
i2J
f �i (x

�
i ):

It is clear that (RP) is nothing else but (RP0X� ) and from now on, we will write (RP)
and (RD) instead of (RP0X� ) and (RD0X� ), respectively. Note that (RD) is nothing
but the optimistic dual problem of (RP).

Let us now introduce the function ' : X� �! R de�ned as

' (x�) := inf
J2F(I)

(X
i2J
f �i (x

�
i ) : (x

�
i )i2J 2 (X�)J ;

X
i2J
x�i = x

�

)
;8x� 2 X�:

Then it is clear that for each x� 2 X�,

inf(RPx�) = �f �(x�) and sup(RDx�) = �'(x�):
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Proposition 3.1 (Weak duality) For each x� 2 X� we have

�1 � sup(RDx�) � inf(RPx�) < +1;

or, equivalently,
�1 < f � (x�) � ' (x�) � +1: (3.2)

Proof. Since f is proper, its conjugate does not take the value �1: Let x� 2
X�; J 2 F (I) ; (x�i )i2J 2 (X�)J ;

X
i2J
x�i = x�; and x 2 X: One has to check that

hx�; xi � f (x) �
X
i2J
f �i (x

�
i ) : By de�nition of f

�
i we have

X
i2J
f �i (x

�
i ) �

X
i2J
(hx�i ; xi � fi (x)) = hx�; xi �

X
i2J
fi (x) � hx�; xi � f(x);

as by the de�nition of f ,
X

i2J
fi (x) � f (x) for all x 2 X.

4 Zero duality gap

De�nition 4.1 We say that the robust sum problem (RPx�) has zero duality gap at a
given x� 2 X� if

inf(RPx�) = sup(RDx�); (4.1)

(or equivalently, f � (x�) = ' (x�)). If (4.1) holds at each x� 2 X�; we will say that
(RPx�); seen as a parametric problem, has stable zero duality gap.

The characterization of the zero duality gap involves two mutually inverse multifunc-
tions associated with the given family of functions (fi)i2I with robust sum f:

For each � � 0 let us de�ne S�f : X � F (I) such that

S�f (x) :=

� �
J 2 F (I) : f (x) �

P
i2J fi (x) + �

	
; if x 2 dom f;

;; else,

and T�f : F (I)� X such that

T�f (J) :=
n
x 2 dom f : f (x) �

X
i2J
fi (x) + �

o
:

So, for any (x; J) 2 X �F (I) we have

J 2 S�f (x)() x 2 T�f (J) :

We �rst characterize the zero duality gap at a �xed x� 2 X� and then the same
property on the whole of X�; i.e., the so-called stable zero duality gap.
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4.1 Zero duality at a given linear functional

Let us now put in light a necessary condition for the robust sum problem to have zero
duality gap at a given x� 2 X�: So, assume that

f � (x�) � ' (x�) 2 R (4.2)

(see the weak duality (3.2)) and let " � 0: For any � > 0 and x 2M "f(x�); one has

f (x)� hx�; xi � �f � (x�) + " < �' (x�) + "+ �:

Then, by de�nition of '; there exist J 2 F (I) and (x�i )i2J 2 (X�)J such thatX
i2J
x�i = x

� and

f (x)� hx�; xi � �
X
i2J
f �i (x

�
i ) + "+ �:

This last inequality can be rewritten as"
f (x)�

X
i2J
fi (x)

#
+
X
i2J
[fi (x) + f

�
i (x

�
i )� hx�i ; xi] � "+ �:

All the above brackets being non-negative, there exists
�
�; ("i)i2J

�
2 R+ � RJ+ such

that �+
P

i2J "i = "+ � and

f (x)�
X
i2J
fi (x) � � and fi (x) + f �i (x�i )� hx�i ; xi � "i; i 2 J:

In other words,
x 2 T�f (J) and x 2M "if(x�i );8i 2 J: (4.3)

Hence we have quoted that for any x 2M "f(x�) and any � > 0; there exist J 2 F (I) ;
(x�i )i2J 2 (X�)J and

�
�; ("i)i2J

�
2 R+�RJ+ such that

X
i2J
x�i = x

�; �+
P

i2J "i = "+�

and (4.3) holds.

Thus, if (4.2) holds, then, for any " � 0 we have M "f(x�) � N "f(x�); where the
multifunction N "f : X� � X is de�ned, for each x� 2 X�; by

N "f(x�) =
\
�>0

[
J2F(I)

[
(x�i )i2J2(X

�)JP
i2J x�i=x

�

[
(�;("i)i2J)2R+�RJ+
�+

P
i2J "i="+�

 
T�f (J)

\ \
i2J
M "if(x�i )

!!
: (4.4)

Since M "f(x�) = ; when f � (x�) =2 R; we can state:

Lemma 4.1 If (RPx�) has zero duality gap at x� 2 X�; then

M "f(x�) � N "f(x�);8" � 0:
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It turns out that the reverse inclusion always holds:

Lemma 4.2 For any x� 2 X�; it holds

M "f(x�) � N "f(x�);8" � 0:

If, moreover, f �(x�) = '(x�), then

M "f(x�) = N "f(x�);8" � 0:

Proof. Let " � 0 and x =2M "f(x�). If f (x) = +1; then, by de�nition of T�f (J) ; we
have T�f (J) = ; for any (�; J) 2 R+ �F (I) : Consequently, x =2 N "f(x�) = ;:
Assume now that f (x) 2 R: Since x =2M "f(x�); there exists � > 0 such that

f (x) + f � (x�)� hx�; xi > "+ �: (4.5)

Let us suppose now that x 2 N "f(x�): Then, there exist J 2 F (I) ; (x�i )i2J 2 (X�)J ;

and
�
�; ("i)i2J

�
2 R+ � RJ+ such that

X
i2J
x�i = x�; � +

P
i2J "i = " + �; and

x 2 T�f (J) \
�T

i2JM
"if(x�i )

�
: By de�nition of ' we thus have f � (x�) � ' (x�) �X

i2J
f �i (x

�
i ) and, so,

f (x) + f � (x�)� hx�; xi �
�
f (x)�

P
i2J
fi (x)

�
+
X
i2J
[fi (x) + f

�
i (x

�
i )� hx�i ; xi]

� �+
P

i2J "i = "+ �;

which contradicts (4.5). So, x =2 N "f(x�) and we are done.

We now observe that the converse statement in Lemma 4.1 always holds. In fact, we
can prove a little more:

Lemma 4.3 Let x� 2 X� and assume that there exists " > 0 such that

M "f(x�) � N "f(x�);8" 2 ]0; "[ :

Then f � (x�) = ' (x�) :

Proof. We have just to check that ' (x�) � f � (x�) : This is obvious if f � (x�) = +1:
Assume now that f � (x�) 2 R: Let us assume that ' (x�) > f � (x�) :
There exists " 2 ]0; "[ such that

' (x�) > f � (x�) + 3": (4.6)

Let us pick x 2 M "f(x�); which is non-empty since f � (x�) 2 R: By hypothesis
x 2 N "f(x�) and, by (4.4), with � = "; there exist J 2 F (I) ; (x�i )i2J 2 (X�)J ; and
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�
�; ("i)i2J

�
2 R+�RJ+ such that

X
i2J
x�i = x

�; �+
P

i2J "i = 2"; f (x)�
P

i2J fi (x) �
�; and fi (x) + f �i (x

�
i ) � hx�i ; xi+ "i; for all i 2 J: We thus have

�f � (x�) � f (x)� hx�; xi

=

�
f (x)�

P
i2J
fi (x)

�
+
X
i2J
[fi (x) + f

�
i (x

�
i )� hx�i ; xi]�

X
i2J
f �i (x

�
i )

� �+
P
i2J
"i �

X
i2J
f �i (x

�
i )

� 2"� ' (x�) ;

which contradicts (4.6). So, ' (x�) � f � (x�), which together with the weak duality
shows that ' (x�) = f � (x�) and we are done.

We now state the main result of this section.

Theorem 4.1 (Zero duality gap) Let (fi)i2I be a family of proper functions with
f =

PR
i2I fi proper, and let x

� 2 X�: The next statements are equivalent:
(i) (RPx�) has zero duality gap,
(ii) M "f(x�) = N "f(x�);8" � 0;
(iii) There exists " > 0 such that

M "f(x�) = N "f(x�);8" 2 ]0; "[ ;

(iv) There exists " > 0 such that

M "f(x�) � N "f(x�);8" 2 ]0; "[ :

Proof. Lemma 4.2 says that [(i) =) (ii)] ; while [(ii) =) (iii)] and [(iii) =) (iv)]
are obvious. Finally, [(iv) =) (i)] is Lemma 4.3.

4.2 Stable zero duality gap

We now characterize stable zero duality gap for the robust sum problem. To this
end, let us introduce �"f := (N "f)�1 ; i.e., the inverse multifunction of N "f: One has
�" _f : X � X� and, for any (x�; x) 2 X� �X;

x� 2 �"f (x)() x 2 N "f (x�) :

The next explicit formula holds:

Lemma 4.4 For any (x; ") 2 X � R+ we have

�"f (x) =
\
�>0

[
0���"+�

[
J2S�

f
(x)

[
("i)i2J2RJ+P
i2J "i="+���

X
i2J
@"ifi (x) : (4.7)

12



Proof. By (4.4) we have x� 2 �"f (x) if and only if for any � > 0 there exist
J 2 F (I) ; (x�i )i2J 2 (X�)J ; and

�
�; ("i)i2J

�
2 R+ � RJ+ such that

X
i2J
x�i = x�;

� +
P

i2J "i = " + �; x 2 T�f (J) (i.e., J 2 S�f (x)), and x 2
T
i2JM

"ifi(x
�
i ) (i.e.,

x�i 2 @"ifi (x) for all i 2 J). This exactly means that x� belongs to the set in the right
hand side of (4.7).

Lemma 4.5 For any (x; ") 2 X � R+ one has

�"f (x) � @"f (x) :

Proof. Let x� 2 �"f (x) : We have x 2 N "f (x�) and, by Lemma 4.2, x 2 M "f(x�);
that means x� 2 @"f (x) :
We now characterize the stable zero duality gap for the robust sum problem.

Theorem 4.2 (Stable zero duality gap) Let (fi)i2I be a family of proper functions
with f =

PR
i2I fi (x) proper. The next statements are equivalent:

(i) f � (x�) = ' (x�) ;8x� 2 X�;
(ii) @"f (x) = �"f (x) ;8 (x; ") 2 X � R+;
(iii) There exists " > 0 such that

@"f (x) = �"f (x) ;8 (x; ") 2 X � ]0; "[ ;

(iv) There exists " > 0 such that

@"f (x) � �"f (x) ;8 (x; ") 2 X � ]0; "[ :

Proof. [(i) =) (ii)] Let (x; ") 2 X � R+: We know that x� 2 @"f (x) if and only if
x 2M "f(x�): By Theorem 4.1, M "f(x�) = N "f(x�): So,

x� 2 @"f (x)() x 2 N "f(x�)() x� 2 �"f (x)

and (ii) holds.

[(ii) =) (iii)] and [(iii) =) (iv)] are obvious.

[(vi) =) (i)] Let (x�; ") 2 X� � ]0; "[ and x 2 M "f(x�): We have x� 2 @"f (x) and,
by Theorem 4.1, x� 2 �"f (x) ; that means x 2 N "f(x�): So, M "f(x�) � N "f(x�) for
any " 2 ]0; "[ ; and, again by Theorem 4.1, f � (x�) = ' (x�) :

5 Strong duality

De�nition 5.1 We say that the robust sum problem (RPx�) has a strong zero duality
gap at a given x� 2 X� if there exist J 2 F (I) and (x�i )i2J 2 (X�)J such that x� =X
i2J
x�i and

13



inf(RPx�) = �f � (x�) = �
X
i2J
f �i (x

�
i ) = sup(RDx�): (5.1)

If the above condition holds at each x� 2 X� we will say that (RPx�) has a stable strong
zero duality gap.

To characterize the strong zero duality gap of the robust sum problem (RPx�), let us
�x some notation �rst. Given x� 2 X�, " � 0, J 2 F(I), (x�i ){2J 2 (X�)J , de�ne

B"(J;(x�i )i2J )f(x
�) :=

8><>:
S

(�;("i)i2J)2R+�RJ+
�+

P
i2J "i="

T�f (J)
T�T

i2JM
"if(x�i )

�
; if

P
i2J
x�i = x

�;

;; else.

Theorem 5.1 (Strong zero duality gap) Let (fi)i2I be a family of proper functions
with f =

PR
i2I fi proper, and let x

� 2 X�: The next statements are equivalent:
(i) The robust sum problem (RPx�) has a strong zero duality gap,
(ii) 9J 2 F(I), 9(x�i )i2J 2 (X�)J : M "f(x�) = B"(J;(x�i )i2J )

f(x�), 8" � 0;
(iii) There exist " > 0, J 2 F(I), (x�i )i2J 2 (X�)J such that

M "f(x�) = B"(J;(x�i )i2J )f(x
�); 8" 2 ]0; "[ ; (5.2)

Proof. [(i) =) (ii)] By the very de�nition of B"(J;(x�i )i2J )f(x
�), (4.4), and Lemma 4.2

we have
B"(J;(x�i )i2J )f(x

�) � N "f(x�) �M "f(x�):

Let x 2M "f(x�). By (i) there exist J 2 F(I), (x�i )i2J 2 (X�)J such that
P

i2J x
�
i = x

�

and X
i2J
f �i (x

�
i ) = f

�(x�) � hx�; xi � f(x) + ":

Consequently, X
i2J

h
f �i (x

�
i ) + fi(x)� hx�i ; xi

i
+
h
f(x)�

X
i2J
fi(x)

i
� ":

Since all the above brackets are non negative, there exist (�; ("i)i) 2 R+ � RJ+ such
that f(x) �

P
i2J fi(x) � �, that means x 2 T�f (J), � +

P
i2J "i = ", and for each

i 2 J ,
f �i (x

�
i ) + fi(x)� hx�i ; xi � "i;

that means x 2 \i2JM "ifi(x
�
i ). So x 2 B"(J;(x�i )i2J )f(x

�) and (ii) holds.

[(ii) =) (iii)] is obvious.

[(iii) =) (i)] Assume that (iii) holds. So, there exist " > 0, J 2 F(I), (x�i )i2J 2
(X�)J such that (5.2) holds. Let us �rst prove that

P
i2J f

�
i (x

�
i ) � f �(x�). Assume the

contrary, i.e., there exists " > 0, that we can choose " < ", such that

f �(x�) + " <
X
i2J
f �i (x

�
i ): (5.3)
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We have f �(x�) 2 R. Picking x 2 M "f(x�) which is non-empty, we have x 2
B"(J;(x�i )i2J )

f(x�) and hence, there exist (�; ("i)i) 2 R+�RJ+ such that �+
P

i2J "i = ",P
i2J x

�
i = x

� and x 2 T�f (J) \ (\i2JM "ifi(x
�
i )). ThenX

i2J
f �i (x

�
i ) �

X
i2J
[hx�i ; xi � fi(x) + "i] = hx�; xi �

X
i2J
fi(x) +

X
i2J
"i

� hx�; xi � f(x) + �+
X
i2J
"i = hx�; xi � f(x) + "

� f �(x�) + ";

which contradicts (5.3). We then have

'(x�) �
X
i2J
f �i (x

�
i ) � f �(x�) � '(x�):

So, '(x�) =
P

i2J f
�
i (x

�
i ) = f

�(x�) with
P

i2J x
�
i = x

�, that means that (i) holds.

In order to characterize the stable strong zero duality gap for the robust sum problem
(RPx�), let us introduce, for each " � 0, the set-valued mapping N "

s f : X
� � X de�ned

by
N "
s f(x

�) :=
[

J2F(I);(x�i )i2J2(X
�)JP

i2J x�i=x
�

B"(J;(x�i )i2J )f(x
�); 8x� 2 X�;

and its inverse �"sf : X � X�. For each (x; x�) 2 X �X� one has

x� 2 �"sf (x)() x 2 N "
s f (x

�) :

More explicitly one has straightforwardly, for each x 2 X,

�"sf (x) =
[

0���"

[
J2S�

f
(x)

[
("i)i2J2RJ+P
i2J "i="��

X
i2J
@"ifi (x) ;

where S�f (x) = fJ 2 F(I) :
P

i2J fi(x) + � � f(x) 2 Rg as in Section 4. We have

N "
s f(x

�) � (N "f)(x�) � (M "f)(x�);

and, passing to the inverse multivalued mappings,

(�"sf)(x) � (�"f)(x) � @"f(x);8x 2 X;8" � 0: (5.4)

Theorem 5.2 (Stable strong zero duality gap) Let (fi)i2I be a family of proper
functions with f =

PR
i2I fi proper. The next statements are equivalent:

(i) The robust sum problem (RPx�) has stable strong zero duality gap,
(ii) @"f (x) = �"sf (x) ;8 (x; ") 2 X � R+,
(iii) 9" > 0: @"f (x) = �"sf (x) ;8 (x; ") 2 X � [0; "] :
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Proof. [(i) =) (ii)] We only have to prove the inclusion ��" in (ii). So, let x� 2
@"f(x). By (i), there exist J 2 F(I), (x�i )i2J 2 (X�)J such that

P
i2J x

�
i = x

� andX
i2J
f �i (x

�
i ) = f

�(x�) � hx�; xi � f(x) + ":

Consequently,X
i2J

h
f �i (x

�
i ) + fi(x)� hx�i ; xi

i
+
h
f(x)�

X
i2J
f �i (x

�
i )
i
� ";

and there exist (("i)i2J ; �) 2 RJ�R such that f �i (x�i )+fi(x)�hx�i ; xi � "i for each i 2 J ,
f(x)�

P
i2J fi(x) � �, and �+

P
i2J "i = ". We thus have x

� =
P

i2J x
�
i 2

P
i2J @

"fi(x)
with 0 � � � ", J 2 S�f (x), and

P
i2J "i = "� �, that means x� 2 (�"sf)(x), and (ii)

holds.

[(ii) =) (iii)] is obvious.

[(iii) =) (i)] Let x� 2 X�. If f �(x�) = +1 then '(x�) = +1 and f has obviously a
strong zero duality gap at x�. Since dom f 6= ; we have f �(x�) 6= �1 and it remains
to consider the case f �(x�) 2 R. Pick x 2 M "f(x�) which is non-empty, and set
" := f �(x�) + f(x) � hx�; xi. One has " 2 [0; "], x� 2 @"f(x) and, by (iii); there
exist � 2 [0; "], J 2 S�f (x), (x�i )i2J 2 (X�)J , ("i)i2J 2 RJ+ such that � +

P
i2J "i = ",P

i2J x
�
i = x

�, and x�i 2 @"ifi(x) for each i 2 J . We thus have

'(x�) �
X
i2J
f �i (x

�
i ) �

X
i2J

h
hx�i ; xi � fi(x) + "i

i
= hx�; xi �

X
i2J
fi(x) +

X
i2J
"i

� hx�; xi � f(x) + �+
X
i2J
"i

= hx�; xi � f(x) + " = f �(x�) � '(x�):

Consequently, f �(x�) =
P

i2J f
�
i (x

�
i ) with J 2 F(I) and

P
i2J x

�
i = x

�, that means f �

has strong zero duality gap at x� and we are done.

6 Duality for the robust sum of closed convex func-
tions

Denote by coA the convex hull of A � X��R, by A its closure w.r.t. the w��topology
and by coA its w��closed convex hull. We also denote by � (X) the set of all proper
convex lsc functions on X: In this section we assume that

(fi)i2I � � (X) and dom f 6= ; (6.1)

(recall that f =
PR

i2I fi). We thus have f 2 �(X).
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Let us introduce the set
A :=

[
J2F(I)

X
i2J
epi f �i ;

which is related with the function

' (x�) := inf
J2F(I)

(X
i2J
f �i (x

�) : (x�i )i2J 2 (X�)J ;
X
i2J
x�i = x

�

)
;8x� 2 X�;

by the (easily checkable) double inclusion

epis ' � A � epi': (6.2)

Thus,
coA = co epi': (6.3)

Lemma 6.1 Assume that (6.1) holds. Then '� = f and epi f � = coA:

Proof. We have ' = inf
J2F(I)

(�i2Jf �i ) ; where

�i2Jf �i (x�) := inf
(X
i2J
f �i (x

�
i ) :

X
i2J
x�i = x

�

)
;8x� 2 X�;

is the in�mal convolution of the �nite family of functions ff �i ; i 2 Jg : So,

'� = sup
J2F(I)

(�i2Jf �i )� = sup
J2F(I)

X
i2J
f ��i = sup

J2F(I)

X
i2J
fi = f:

For the second statement, one has f � = '�� and, since f � is proper, epi f � = epi'�� =
co epi' = coA (the last equality follows from (6.3)).

To go further let us recall the following notions (see, e.g., [3], [6], and [9]).

De�nition 6.1 A subset A � X��R is said to be closed (respectively, closed convex)
regarding another subset B � X��R if B\A = B\A (respectively, B\coA = B\A).

Theorem 6.1 (Strong zero duality gap under convexity) Assume that (6.1) holds
and let x� 2 X�: The next statements are equivalent:
(i) The robust sum problem (RPx�) has a strong zero duality gap,
(ii) A is closed convex regarding fx�g � R:

Proof. Assume that f � (x�) = +1: By Lemma 6.1, we have (fx�g � R) \ coA = ;
and (ii) holds. By Proposition 3.1, ' (x�) = +1 and (i) holds too. So, in this case,
both statements (i) and (ii) hold. Thus, we can assume that f � (x�) < +1:
[(i) =) (ii)] Let r 2 R be such that (x�; r) 2 coA: By Lemma 6.1 we have f � (x�) � r

and, by (i); there exist J 2 F (I) and (x�i )i2J 2 (X�)J such that
X

i2J
x�i = x

� and
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f �(x�) =
X

i2J
f �i (x

�
i ) � r: From this last inequality, there exists (ri)i2J 2 RJ such

that f �i (x
�
i ) � ri; for all i 2 J; and

X
i2J
ri = r: It follows that

(x�; r) =
X
i2J
(x�i ; ri) 2

X
i2J
epi f �i 2 A:

[(ii) =) (i)] Since f is proper we have r := f � (x�) 2 R and, by Lemma 6.1, (x�; r) 2
coA: Then, by (ii); (x�; r) 2 A and there exist J 2 F (I) ; (x�i )i2J 2 (X�)J ; and

(ri)i2J 2 RJ such that
X
i2J
x�i = x�;

X
i2J
ri = r; and f �i (x

�
i ) � ri for all i 2 J: Then,

again by Proposition 3.1, we have

' (x�) �
X
i2J
f �i (x

�
i ) �

X
i2J
ri = r = f

� (x�) � ' (x�) ;

that means that (i) holds.

Since A is closed convex if and only if it is closed convex regarding fx�g � R for all
x� 2 X�; we have:

Corollary 6.1 (Stable strong zero duality gap) Assume that (6.1) holds. The
next statements are equivalent:
(i) The robust sum problem (RPx�) has stable strong zero duality gap,
(ii) A is closed and convex.

We now consider the simple, but non-trivial case that (fi)i2I is a family of a¢ ne
functions with a proper robust sum f:

Example 6.1 Let

fi = ha�i ; �i � ti; (a�i ; ti) 2 X� � R; 8i 2 I;

be a family of continuous a¢ ne functions. According to Remark 2.1, if a�i = 0�X for
all i 2 I; we may have f =

PR
i2I (�ti)i2I = +1 or not depending on the given family

(ti)i2I of real numbers; in particular, by Lemma 2.5, f is �nite whenever infi2I
ti � 0:

So, to ensure the properness of f =
PR

i2I fi; we suppose the existence of x 2 X and
M 2 R such that X

i2J
(ha�i ; xi � ti) �M; 8J 2 F (I) : (6.4)

For each i 2 I; we have f �i = �a�i + ti; where �a�i : X
� �! R[f+1g represents the

indicator function of a�i ; i.e., �a�i (x
�) = 0; if x� = a�i ; and �a�i (x

�) = +1; otherwise.
De�ning A : F (I) �! X� such that A (J) =

P
i2J a

�
i ; the function ' writes

' (x�) := inf
J2A�1(x�)

X
i2J
ti; 8x� 2 X�:
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The robust sum problem (RPx�) has a zero duality gap means that

inf
x2X

sup
J2F(I)

X
i2J
(ha�i � x�; xi � ti) = sup

J2A�1(x�)
�
X
i2J
ti: (6.5)

We note that, given " � 0;

M "fi(x
�) =

�
X; if x� = a�i ;
;; else:

Consequently, from (4.4),

N "f(x�) =
\
�>0

[
J2A�1(x�)

T "+�f (J) : (6.6)

By Theorem 4.1, (6.5) holds if and only if

M "f(x�) =
\
�>0

[
J2A�1(x�)

T "+�f (J) ; 8" � 0:

By (6.6) one has x� 2 (N "f)�1 (x) if and only if for each � > 0 there exists J 2 F (I)
such that x� 2 A (J) and J 2 S"+�f (x) ; that means

x� 2
\
�>0

[
J2S"+�

f
(x)

X
i2J
a�i :

Consequently, from Theorem 4.2, (6.5) holds for each x� 2 X� if and only if

@"f (x) =
\
�>0

[
J2S"+�

f
(x)

X
i2J
a�i ; 8 (x; ") 2 X � R+:

Regarding the closedness criteria in Theorem 6.1 and Corollary 6.1, observe that

A =
[

J2F(I)

P
i2J
epi f �i

=
[

J2F(I)

��P
i2J
(a�i ; ti)

�
+ f0X�g � R+

�

is the union of in�nitely many vertical closed half-lines.

It is worth observing that in case all functions are linear (i.e., ti = 0 for all i 2 I),

A is closed (convex, respectively) if and only if
�P
i2J
a�i : J 2 F (I)

�
is closed (convex).

When I is countable (as in the robust sums of linear functions in the third example

19



of the introduction),
�P
i2J
a�i : J 2 F (I)

�
is countable too, so that it cannot be convex.

Finally, in the simplest case that all functions are constants (i.e., a�i = 0X� for all
i 2 I and, according to (6.4), � :=

PR
i2I �ti 2 R), we have f0X�g�] � �;+1[ �

A � f0X�g � [��;+1[ and either A = f0X�g�]� �;+1[ or A = f0X�g � [��;+1[.
So, A is convex. However, A is closed if and only if there exists J 2 F(I) such that
� =

P
i2J
�ti.

7 Duality for the in�nite sum of non-negative con-
vex functions and related situations

The case that the functions fi; i 2 I; are non-negative presents many speci�cities. For
example, in such a case the robust sum coincides with the in�nite sum, i.e.,

f(x) =
XR

i2I
fi (x) = lim

J2F(I)

X
i2J
fi (x) =

X
i2I
fi (x) ;8x 2 X:

As in Section 2, the limit is taken with respect to the directed set F (I) ordered by the
inclusion relation. We have the next important convexity properties.

Lemma 7.1 Assume that fi � 0 for each i 2 I: Then the set A =
[

J2F(I)

P
i2J
epi f �i and

the function ' are convex.

Proof. Let (x�; r) ; (y�; s) 2 A and t 2 [0; 1] : There exist J;K 2 F (I) such that
(x�; r) 2

P
j2J epi f

�
j and (y

�; s) 2
P

k2K epi f
�
k :

Let l 2 I: As fl � 0; we have f �l (0X�) � 0; that is (0X� ; 0) 2 epi f �l : Let L := J [K 2
F (I) : Since (0X� ; 0) 2 epi f �l for all l 2 L; (x�; r) ; (y�; s) 2

P
l2L epi f

�
l which is a

convex subset of A. Thus, (1� t) (x�; r) + t (y�; s) 2 A and A is convex.
The convexity of ' is a consequence of (6.2). In fact, we have

' (x�) = inf fr 2 R : (x�; r) 2 Ag ;8x� 2 X�;

which is a convex functions thanks to the convexity of A:
In what follows we assume that

(fi)i2I � � (X) ; f =
XR

i2I
fi is proper, and A =

[
J2F(I)

X
i2J
epi f �i is convex. (7.1)

Lemma 7.2 Assume that (7.1) holds. Then f � = ' (the w�-lsc hull of ').

Proof. By Lemma 6.1, we have '�� = f �: As shown in the proof of Lemma 7.1,
' is convex due to the convexity of A. Since f is proper, one has dom'� 6= ; and,
consequently, ' = '�� = f �:

20



Lemma 7.3 Assume that (7.1) holds. Then for any x 2 X and any " > 0; we have

@"f (x) = �"sf (x):

Proof. If f (x) = +1, then @"f (x) = �"sf (x) = ;: Assume now f (x) 2 R: By
Lemma 7.2, f � = ' and it now follows from (3.1) that

@"f (x) = ['� h�; xi+ f (x) � "] =
h
'� h�; xi+ f (x) � "

i
: (7.2)

As '� (x) = f (x) (by Lemma 6.1), we have 0 = f(x)�'�(x) = inf
X�
f'� h�; xi+ f (x)g < ":

By [11, Lemma 1.1] (applies to the function '�h�; xi+f (x)) we have
h
'� h�; xi+ f (x) � "

i
=

['� h�; xi+ f (x) < "]: Taking (7.2) into account, we have

@"f (x) = ['� h�; xi+ f (x) < "]:

Now it is straightforward to check that ['� h�; xi+ f (x) < "] � �"sf (x), and hence,

@"f (x) = ['� h�; xi+ f (x) < "] � �"sf (x):

It now follows from (5.4) and Lemma 4.5,

�"sf (x) � �"f (x) � @"f (x) � �"sf (x):

Since @"f (x) is w�-closed, we get @"f (x) = �"sf (x):

Theorem 7.1 (Stable zero duality gap under convexity) Assume that (7.1) holds.
The next statements are equivalent:
(i) The robust sum problem (RPx�) has stable zero duality gap,
(ii) �"f (x) = �"sf (x); 8x 2 X; 8" > 0,
(iii) There exists " > 0 such that

�"f (x) = �"sf (x); 8 (x; ") 2 X � ]0; "[ ;

(iv) There exists � > 0 such that

@"f (x) � �"�s f (x) ;8 (x; ") 2 X � ]0;+1[ :

Proof. The equivalence of (i); (ii) and (iii) follows from Theorem 4.2 and Lemma
7.3.

[(i) =) (iv)] By Theorem 4.2 we have @"f (x) = �"f (x) : Now

�"f (x) =
\
�>0

�"+�s f (x) � �2"s f (x)

and (iv) holds with � = 2:

21



[(iv) =) (i)] Assume that (i) does not hold and let � > 0: We will show that there
exist x 2 X and " > 0 such that

�"sf (x) * �"�s f (x) : (7.3)

Since (i) does not hold, there exist x� 2 X� and " > 0 such that f � (x�) + "� < ' (x�) :
Pick x 2 @"f � (x�) (which is non-empty since " > 0). We have x� 2 @"f (x) = �"sf (x):
Assume that x� 2 �"�s f (x) : Then, exist � 2 [0; "�] ; J 2 S�f (x) ; ("i)i2J 2 RJ+; and
x�i 2 @"ifi (x) for all i 2 J; such that �+

P
i2J "i = "� and

P
i2J x

�
i = x

�: Then

' (x�) �
P
i2J
f �i (x

�
i )

�
P
i2J
(hx�i ; xi � fi (x) + "i)

= hx�; xi �
P
i2J
fi (x) + "� � �

� hx�; xi � f (x) + �+ "� � �
� f � (x�) + "� < ' (x�) ;

which contradicts f � (x�)+"� < ' (x�). So x� =2 �"�s f (x), (7.3) is proved and the proof
is complete.

Corollary 7.1 Assume that (7.1) holds and �"sf (x) is w
�-closed for each x 2 X and

" > 0: Then the robust sum problem (RPx�) has stable zero duality gap.

Proof. Under the assumption, it follows from Lemma 7.3 that @"f (x) = �"sf (x) =
�"sf (x), which means that statement (iv) of Theorem 7.1 holds with � = 1:

Acknowledgements The authors wish to thank two anonymous referees and the
Handling Editor for their valuable comments which helped to improve the manuscript.
This research was supported by the National Foundation for Science & Technology De-
velopment (NAFOSTED), Vietnam, Project 101.01-2018.310 Some topics on systems
with uncertainty and robust optimization, and by the Ministry of Science, Innovation
and Universities of Spain and the European Regional Development Fund (ERDF) of
the European Commission, Project PGC2018-097960-B-C22.

References

[1] Aragón, F.J., Goberna, M.A., López, M.A., Rodríguez, M.M.L.: Nonlinear Opti-
mization. Springer, Cham, Switzerland (2019)

[2] Ardestani-Jaafari, A., Delage, E.: Robust optimization of sums of piecewise linear
functions with application to inventory problems. Operations Research 64 (2),
474-494 (2016)

[3] Bo̧t, R.I.: Conjugate Duality in Convex Optimization. Springer, Berlin (2010)

22



[4] Bo̧t, R.I., Jeyakumar, V., Li, G.Y.: Robust duality in parametric convex opti-
mization. Set-Valued Var. Anal. 21, 177-189 (2013)

[5] Dhara, A., Natarajanyz, K.: On the polynomial solvability of distributionally ro-
bust k-sum optimization. Optimization Methods and Software 32 (4), 1-16 (2016)

[6] Dinh, N., Goberna, M.A., López, M.A., Mo, H.: Robust optimization revisited
via robust vector Farkas lemmas. Optimization 66, 939-963 (2017)

[7] Dinh, N., Goberna, M.A., López, M.A., Volle, V.: Characterizations of robust
and stable duality for linearly perturbed uncertain optimization problems. In:
Burachik, R., Li, G.Y. (eds.) From Analysis to Visualization: A Celebration of
the Life and Legacy of Jonathan M. Borwein, Callaghan, Australia, September
2017. Springer, to appear.

[8] Dinh, N., Goberna, M.A., López, M.A., Volle, V.: Convexity and closedness in
stable robust duality. Opt. Letters 13, 325-339 (2019)

[9] Ernst, E., Volle, M.: Zero duality gap and attainment with possibly non-convex
data. J. Convex Anal. 23, 615-629 (2016)

[10] Goberna, M.A., Hiriart-Urruty, J.-B.,López, M.A.: Best approximate solutions of
inconsistent linear inequality systems. Vietnam J. Math. 46, 271-284 (2018)

[11] Hiriart-Urruty, J.B., Moussaoui, M., Seeger, A. Volle,M.: Subdi¤erential calcu-
lus without quali�cation conditions, using approximate subdi¤erentials: a survey.
Nonlinear Anal. 23, 1727-1754 (1995)

[12] Kirkwood, C.W.: Approximating risk aversion in decision analysis applications.
Decision Anal. 1, 51-67 (2004)

[13] Li, G.Y., Jeyakumar, V., Lee, G.M.: Robust conjugate duality for convex opti-
mization under uncertainty with application to data classi�cation. Nonlinear Anal.
74, 2327-2341 (2011)

[14] Li, G.Y., Ng, K.F.: On extension of Fenchel duality and its application. SIAM J.
Opt. 19, 1498-1509 (2008)

[15] Markowitz, H.M.: Portfolio Selection: E¢ cient Diversi�cation of Investment. Wi-
ley, New York (1959)
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