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Abstract

State-of-the-art methods for finding the m-best solutions to graph matching (QAP) rely
on exclusion strategies. The k-th best solution is found by excluding all better ones
from the search space. This provides diversity, a natural requirement for transforming
a MAP problem into a m-Best one. Since diversity enforces mode hopping, it is usu-
ally combined with a mode-approximation strategy such as marginalisation. However,
these methods are generic insofar they do not incorporate the detailed structure of the
problem at hand, i.e. the properties of the global affinity matrix which characterise
the search space. Without this knowledge, it is thus hard to devise a practical crite-
rion for choosing the next variable to clamp. In this paper, we propose several strate-
gies to select the next variable to clamp, spanning the whole range between depth-first
and breadth-first search, and we contribute with a unifying view for characterising the
search space on the fly. Our strategies are: a) number of factors in which the variables
participate, b) centrality measures associated with the affinity matrix, and c) discrete
pooling. Our experiments show that max number of factors and centrality provide a
trade-off between efficiency and accuracy, whereas discrete pooling leads to an im-
provement of the state-of-the-art.
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1. Introduction

1.1. Motivation

The importance of finding the m-best solutions to discrete optimization problems
has been appreciated for four decades [15][20][29][8][1][13][12]. However, its prac-
tical utility for solving computer vision problems has not been demonstrated until re-
cently [21][2][26][24][23]. The principle underpinning this utility is the fact that the
MAP (Maximum a Posteriori) solution provides a single low-energy configuration.
Such a configuration might be very far from the ground-truth, as it has been shown in
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large-scale empirical studies concerning stereo vision [19] and other low-level vision
problems [27]. A promising alternative is to capture the multi-modal structure of the
energy landscape, for instance through enforcing diverse solutions. As an example,
in [2], m qualitatively different highly probable solutions are obtained through mode
hopping. This is done by formulating the m-best mode problem in terms of provid-
ing solutions that are at least k units dissimilar from the MAP solution. If one uses
a dot-product dissimilarity function such as the Hamming distance, m-mode selection
reduces to the original MAP problem whose unary potentials (e.g. data terms) are
modified (perturbed) while the binary potentials (e.g. the edge or discontinuity label
process) are left unchanged. This provides solutions that are biased away from the cur-
rent solution.

The m-best mode algorithm and its variations [2][13] are direct methods because
they implicitly enforce diversity by penalizing their original energy functions. Such a
design does not necessarily impose any sequentiality (for instance to obtain the 3rd best
solution after having the 1st and the 2nd ones). A recent formulation of the joint m-best
diverse problem [12] provides a nice set of nested solutions and efficient algorithms as
well. However, it is limited to binary labellings.

On the other hand, indirect methods drive the location of the k-th best solution
through iterative exclusion with respect to the prior k− 1 solutions. While these meth-
ods are forced to be sequential, some of them provide a characterization of the search
space for the k-th solution after excluding the prior k− 1 solutions. For instance, the
well-known STRIPES method [8] derives a condition that defines the marginal poly-
tope resulting from excluding the 1st best solution. This condition produces an exact
characterization of the so-called assignment-excluded maximal polytope when the fac-
tors defining the MRF define a tree. Consequently, in the general case, i.e. when the
MRF defines a forest it is applied to a set of spanning trees. This is the STRI (Span-
ning Tree Inequality) part of the algorithm. The PES (Partitioning for Enumerating
Solutions) part consists of partitioning the search space using constraint satisfaction as
in [15][20][29]. Given any variable whose value is different in the two previous so-
lutions, the method selects one of them randomly and explores two possibilities while
preserving the previous constraints, namely a) having a given value and b) having a
different value.

Regarding the Quadratic Assignment Problem (QAP) or graph matching, there have
been few efforts for providing an m-best approach. The most significant one is that of
Rezatofighi et al. [23] which drives on [24] where a Partition Enumeration Strategy
(PES) is combined with an efficient exclusion strategy. Although the PES is driven
by the selection of a particular matching among the ones differing from previous so-
lutions, such a selection is done randomly for the sake of compensating the depth-
first behaviour of the Binary Tree Partitioning construction which supports the m-best
search.

For that, these methods for finding the m-best solutions to graph matching (QAP)
rely on exclusion strategies, where the k-th best solution is found by excluding all
better ones from the search space, providing diversity and combining with a mode-
approximation strategy such as marginalisation. However, these methods are generic
insofar they do not incorporate the detailed structure of the problem, as the properties
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of the global affinity matrix which characterise the search space. We propose to study
different criteria for selecting the next variable to clamp.

1.2. Contributions

In this paper, we fill this gap of the state of the art by proposing several strategies for
variable selection. We study how works the state-of-the-art methods for finding the m-
best solutions to graph matching rely on exclusion strategies, where different solutions
are found by excluding all better ones from the search space. These methods are generic
insofar they do not incorporate the detailed structure that characterise the search space.
Our working hypothesis is that the structure of the problem, which is encoded by the
affinity matrix, provides valuable information for focusing on informative subspaces.
For that, it is thus hard to devise a practical criterion for choosing the next variable to
clamp (the state-of-the-art methods use random criterion)

The main novelty of our paper is to propose four strategies to select the next variable
to clamp. Our main goal is to obtain better results with our proposed strategies that
improve over the state-of-the-art criterion (random strategy) with a smaller number of
solutions, and reducing the running time. In summary, we: i) span the whole range
of possibilities between depth-first and breadth-first search, ii) we obtain a unifying
view for characterising the search space, and iii) we improve over the state-of- the-art
methods in terms of both efficiency and accuracy.

Another objective is to establish a discussion about the importance of devising a
correct strategy of variable selection, opening the door to study the different proposal
of variable selection in m-best approaches which that incorporate a better balanced
search between depth and breath, reaching the optimal solution in fewer iterations.

For that, in this paper, in Section 2, we will formulate the problem of m-Best Graph
Matching and we will present our main contributions in Section 3: four variable selec-
tion strategies to characterise the search space of m-best problems (max factor, discrete
pooling, median discrete pooling and trimmed centrality). In Section 4 is devoted to
an in-depth experimental analysis of a challenging standard benchmark. Our experi-
ments confirm the hypothesis and some of the strategies improve the state-of-the-art
both in quantitative and efficiency terms, wheres others are competitive with the state-
of-the-art in terms of accuracy but provide better running-times. For that, we have
studied: i) the comparison between of all our strategies with a several methods of the
state of the art, showing how our strategies improve the remaining methods in accuracy
and running time, ii) the behaviour of the m-best approach for a large number of so-
lutions, obtaining that our strategies tolerate a high number of outliers, characterizing
the search space (providing a trade-off between breadth-first and depth-first search and
recovering earlier from a wrong variable selection), iii) the efficiency of our methods in
terms of how many solutions are needed to outperform the state of the art (modes and
running time), and iv) the analysis of all pairs by spectral characterization, explaining
how our best strategy finds an intelligent trade-off between depth-first and breadth-first
search. Finally, in Section 5 we summarise our conclusions and future work.
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2. m-Best Graph Matching

2.1. Graph Matching

Given two attributed graphs G = (V, E) and G′ = (V′, E′), where V represents
the set of nodes and E the set of edges, each node vi ∈ V or edge eij ∈ E has an
associated feature vector fi or fij. Let n = |V| and n′ = |V′| the number of features
in both graphs. For each pair of unary features fi and f′k, associated respectively with
nodes vi ∈ V and v′k ∈ V′, there is a node affinity measure φ(fi, f′k). Similarly, for
each pair of edges eij ∈ E and e′kl ∈ E′ there is a pairwise affinity measure ψ(eij, e′kl).
The affinity structure is represented by a symmetric affinity matrix K ∈ Rnn′×nn′ ,
where the diagonal elements Kiikk = φ(fi, f′k) contain the unary affinities, whereas the
off-diagonal elements Kikjl = ψ(eij, e′kl) contain the pairwise affinities.
Given the two graphs and the affinity matrix, the Graph Matching (GM) problem con-
sists of finding the optimal binary assignment matrix X ∈ {0, 1}n×n′ , where Xik = 1
implies that node vi ∈ V corresponds to node v′k ∈ V′, and Xik = 0 otherwise. Herein,
optimality refers to maximizing the quadratic function:

J(X) = ∑
ik

Xikφ(fi, f′k) + ∑
ikjl

XikXjlψ(eij, e′kl) , (1)

which naturally leads to the Lawler’s formulation of the Quadratic Assignment Prob-
lem (QAP) [14]:

J(X) = ∑
ik

XikKiikk + ∑
ikjl

XikXjlKikjl

= xTKx ≡ J(x) , (2)

where x = vec(X) ∈ Rnn′ is a vectorization of X given by the concatenation of its
columns. In addition, since the solution X is constrained to be a one-to-one mapping,
we have the following integer quadratic program (IQP):

x∗ = arg max
x

(xTKx) (3)

s.t.

{
x ∈ {0, 1}n×n′

∀i ∑n′
k=1 xik ≤ 1 , ∀k ∑n

i=1 xik ≤ 1 ,

which is known to be an NP-hard problem. As a result, its tractability relies on
convenient relaxations. The most common relaxation is to transform the IQP into a
non-convex quadratic problem by both making x ∈ [0, 1]n×n′ (i.e. continuous) and
transforming the two-way constraints into doubly-stochastic matrices (the sum of both
their rows and columns must be the unit) [9][30][28][33]. As an alternative, dropping
doubly-stochasticity and imposing the unit norm ||x||2 = 1 leads to spectral relax-
ations, since xTKx can be interpreted as the Rayleigh quotient [16][5][3]. The third
group of approaches rely on convex relaxations. For instance, in [25] a new variable
Y = xxT is constrained to be semi-definite which leads to a convex program, whereas
in [28] the objective function is transformed into a convex function.
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2.2. m-Best Graph Matching
Relaxing the IQP may lead us to miss the global optimum x∗. In [18], Lyzinski et

al. prove that this is the case for convex relaxations, especially when the graphs being
matched are uncorrelated1. For non-convex relaxations, we have that J(x) = xTKx is
thus multi-modal, which in turn compromises the quality of the solutions obtained by
gradient ascent methods.

Enforcing Diversity. In a multi-modal scenario, the maximum a posteriori (MAP)
criterion is forced to choose a solution x1 = arg maxx(xTKx) where x1 6= x∗, in
general. It is then more convenient to retain a set of m > 1 modes. Finding the m-Best
solution to the QAP problem can be enforced by adding diversity constraints to the
formulation in Eq. 3. These constraints take the following shape:

∆(x, xm′) ≥ km′ ∀m′ ∈ {1, . . . , m− 1} , (4)

where xm′ is the m′-best solution, ∆(x, xm′) is a dissimilarity function, and km′ estab-
lishes a minimum degree of similarity with respect to previously chosen solutions [2].
For instance, let ∆(x, xm′) = ∑a[[xa 6= xm′

a ]], with a = ik, the Hamming distance ([[.]]
is thus an indicator function). Then, from [22] and [33] we obtain

xm = arg max
x

J∆(x)

= arg max
x ∑

a

(
Ka +

m−1

∑
m′=1

λm′ [[xa 6= xm′
a ]]

)
xa

+ tr(KT
q Y) , (5)

where λm′ are Lagrange multipliers, Ka = Kiikk, Kq is the off-diagonal of K, and
Y ∈ {0, 1}nn′×nn′ is an edge compatibility matrix. Therefore, diversity can be en-
forced through the deterministic perturbation of the unary affinities. As a consequence,
J(x) becomes J∆(x).

Marginalization. The second ingredient of m-Best QAP aims to cope with the
uncertainty of the prediction, and thus it is probabilistic. In certain situations, some
correspondences xa are either disclosed through learning [10] or predicted by other
algorithms (such as convex relaxations). With these correspondences at hand, the
joint probability P(x) = 1

Z eJ(x) with partition function Z, becomes more tractable.
As an alternative, the tractability of the joint probability can be improved by com-
puting the marginals of a subset of correspondences. In practice, where Z is not
available, the marginalization captures some unnormalised slices of the joint proba-
bility. In this regard, marginals, such as marg(xa) = ∑x,xa=1 exp(J(x)), or max-
marginals max−marg(xa) = maxx,xa=1 exp(J(x)) are often intractable in Graph
Matching. Since for m > 1 we pool a set of modes x1, . . . , xm, we define the sets

1To the best of our knowledge this is the first work that explicitly relates the properties of the graphs with
the chance of reaching optimal solutions. We will come back to this point later on.
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Xa = {xm′ : xm′
a = 1 ∀m′ ∈ {1, . . . , m}}. Then, the so-called mode marginals ex-

press the whole spectrum between marginals and max-marginals [22]. Mode marginals
are defined as the probabilistic support of each particular matching xa:

Φ(xa) = ∑
xm′∈Xa

exp(J∆(xm′))

∑xt∈Xa
exp(J∆(xt))

. (6)

When m = 1 we have max-marginals, and when X is the whole matching space,
we have marginals. Therefore, mode marginals provide a balanced strategy for fusing
evidence coming from diverse modes. This strategy can be either applied online, i.e.
at each mode seeking step, or off-line, i.e. as a bias of the whole process. The former
choice is convenient when one wants to focus on a particular set of matchings, for
instance those which are close enough to the disclosed ones, (see focused inference
examples in [22]). The second choice (off-line) supports matching binarisation (clean-
up) [23].

2.3. Sequential vs Joint m-Best
The interplay between diversification and marginalization leads to a systematic

analysis of the search space in the neighbourhood of the MAP solution. In m-Best
graph matching, where the marginals are usually computed offline, the critical element
is diversity. To commence, it is hard to learn the values of km′ in Eq. 4 unless the
topology of the energy landscape is unveiled (for instance through the spectral analysis
of K). As a result, the λm′ multipliers cannot provide a good trade-off between energy
and diversity. Secondly, the incremental (greedy) update of xm does not guarantee that
all the m modes are placed in local maxima [11]. Recent joint m-Best methods [12],
which do not enforce the MAP solution as part of the set of solutions, outperform se-
quential ones both in terms of quality and runtime, but the difference in runtime grows
with m. Thus, a trade-off between sequential and joint m-best can be implemented by
expanding a tree-like structure, such as a binary tree partitioning (BTP) [24][23], but
driven by heuristic variable selection. Herein we present variable selection strategies
specifically tailored to the graph matching problem.

2.4. Illustrating the Alternatives
In a BTP Model, the binary tree partition algorithm is a PES (Partitioning for Enu-

merating Solutions) [8] strategy (see Fig. 1). It assumes that x1 and x2 are already
known, they are different x1 6= x2 and such a difference is at least one bit. Then,
∆(x1, x2) ≡ [(x1)Tx2 < ||x2||1] > 1. Since BTP starts by locating x3, let X 3

be the void root of the tree: X 3 spans two children X 3,1 and X 3,2 so that the for-
mer one must contain a mode satisfying ∆(x3,1, x1) > 1 and the second child must
contain a mode with ∆(x3,2, x2) > 1. Then, these modes are obtained by triggering
graph matching with a conveniently perturbed cost functions J∆(x), and the obtained
J∆(x3,1) and J∆(x3,2) are respectively assigned to X 3,1 and X 3,2. For the next level
(depth d = 2) there are two legal operations, namely a) expand two children from
X 3,∗ = arg maxr{J∆(x3,r)}, and b) copy the non-winning node. Therefore, for depth
d, the BTP retains d + 1 active solutions and X d+2,∗ = arg maxr{J∆(xd+2,r)}.
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Figure 1: BTP example. In this figure, we show how works the selection of the following solution. In
this example, we compare the BP random variable selection strategy (left) and another strategy different of
random selection (right). Regarding the graphical notation, we differentiate between an expanded action in
the tree (solid arrow) and a copy action (dotted arrow), and we show (in red) the path of m-best selected
solutions, where a continued path means a probable promising subspace, whereas a discontinue one means a
jump to another subspace (diversity). In each iteration (green, yellow and purple areas), we select a variable b
through a heuristic (we propose four strategies in the following sections), and we expand two partial solutions
from previous solutions and the best solution of the previous ones with respect to different constraints on b.
Finally, we obtain an objective value of each partial solution and select the m-best solutions between all
non-selected partial solutions.

The BTP model: Heuristic Variable Selection. BTP exploits the fact that ∆(xr, xs) >
1 to focus on one of the different bits b. This bit, chosen at random, leads to comple-
mentary assignments. For instance, if x1 and x2 differ in b, then a convenient assign-
ment to x3,1 before triggering graph matching is x3,1

b = x1
b. As a consequence, setting

x3,2
b = x2

b leads to: a) complementary subspaces associated with X 3,1 and X 3,2, and
b) redundant constraints, since x3,1

b = x1
b leads implicitly to ∆(x3,2, x2) > 1 and the

constraint [(x3,1)Tx2 < ||x2||1] > 1 is no longer necessary; symmetrically the assign-
ment x3,2

b = x2
b makes [(x3,2)Tx1 < ||x1||1] > 1 redundant.

The BTP model (see Algorithm 1) provides a) complementary subspaces, which
yields a balanced breadth-wise organisation as depth increases, and b) redundancy,
which ensures the tractability of the m-best graph matching for large values of m.
However, the random selection of differing bits is not criticised in [24][23]. It basi-
cally follows up the approaches in [15][20][29]. However, the main contribution of
this approach is to show that heuristic variable selection (in red in Alg. 1) provides a
significant room for improvement (both in quantitatively and running-time terms).

2.4.1. Variable Selection
The BTP model. BTP exploits the fact that ∆(xr, xs) > 1 to focus on one of

the different bits b. This bit, chosen at random, leads to complementary assignments.
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For instance, if x1 and x2 differ in b, then a convenient assignment to x3,1 before
triggering graph matching is x3,1

b = x1
b. As a consequence, setting x3,2

b = x2
b leads

to: a) complementary subspaces associated with X 3,1 and X 3,2, and b) redundant
constraints, since x3,1

b = x1
b leads implicitly to ∆(x3,2, x2) > 1 and the constraint

[(x3,1)Tx2 < ||x2||1] > 1 is no longer necessary; symmetrically the assignment
x3,2

b = x2
b makes [(x3,2)Tx1 < ||x1||1] > 1 redundant.

The BTP model provides a) complementary subspaces, which yields a balanced
breadth-wise organisation as depth increases, and b) redundancy, which ensures the
tractability of the m-Best graph matching for large values of m. However, the ran-
dom selection of differing bits is not criticised in [24][23]. It basically follows up the
approaches in [15][20][29]. However, the main contribution of this paper is to show
that heuristic variable selection provides a significant room for improvement (both in
quantitatively and running-time terms).

3. Proposing Alternative Strategies for Variable Selection

In Fig. 2, we show a toy example of graph matching in order to illustrate the alter-
native strategies for variable selection. Given the 1st (b) and 2nd (m) best solutions,
which differ in the variables v2 and v3 (bits 2b and 3d in xm, and bits 2d and 3b in xb),
the Binary Tree Partition (BTP) must create a root node and expand two candidates for
the 3rd best solution: one of the coming from branch b and the other one from branch
m. If we select the variable v2 as the most promising one, then the branch b will ex-
plore new solutions with v2 6= b, whereas the branch m will focus on new solutions
with v2 = b. Similarly, if the variable v3 is selected, the branch b will explore new
solutions with v3 6= d, and the branch m will focus on new solutions with v3 = d.
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Figure 2: Toy example and graphical summary. Top left: graph matching example with 1st and 2nd best
solutions. Top right: detailed structure of the affinity matrix K as well as its interactions with xm and xb.
These interactions lead to the strategies DP and MDP. Bottom right: edges and nodes of the affinity matrix,
leading to the strategies MF and TC. Bottom right: numerical results for each strategy (see text).

3.1. Max Factor

The first proposed strategy (MF) is based on the MRF notation, θi(yi) = Kii,yiyi
and θij(yi, yj) = Kiyi ,jyj + Kjyj ,iyi specify respectively the unary and pairwise poten-
tials associated with variables i and j. If two variables i and j are related through
a pairwise potential θij(yi, yj), then some of the entries Kiyi ,jyj should be non-zero.
These entries represent edge compatibilities between ij and yi, yj. We can thus define
how influential is the variable i associated with the node vi ∈ V in terms of how many
potential matchings are available in K:

IMF(i) =
|V|

∑
j=1

[[Kiyi ,jyj 6= 0]]yi 6=i,yj 6=j , (7)

that is, IMF(i) is not exactly the degree deg(vi) of vi ∈ V but the number of poten-
tial rectangles (i, yi, j, yj) rooted on the node vi. This is consistent with the Graduated
Assignment method [9] which maximizes the number of these rectangles. Therefore,
let D(xm, xb) be the set of indices a = ik associated with the bits where two candidate
solutions xm and xb differ. Then, the max-factor (MF) strategy will select the variable
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v = arg maxik∈D(xm ,xb) IMF(i), where v ∈ V , i.e. it represents a node and i is the in-
dex of a vector v where vi = k. Therefore, herein we prefer to represent the matchings
ik as |V|-dimensional vectors v.

In Fig. 2, given the affinity graph (Fig. 2-Bottom left) where candidate matchings
are the nodes and their candidate rectangles are the edges2, we have that the variable
v2 is involved in nodes 2a, 2b and 2c. Since the node 2b is a hub in the affinity graph,
it can potentially close 6 rectangles (links in affinity matrix): (2, b, 1, a), (2, b, 3, a),
(2, b, 1, c), (2, b, 3, c), (2, b, 4, c), and (2, b, 4, d). In addition, the nodes 2a and 2c
contribute with one rectangle: (2, a, 3, b) and (2, c, 1, b) respectively. Then there are 8
factors associated with v2 . Similarly, we have 5 factors associated with v3 , which is
involved in nodes 3a, 3b and 3c . Consequently, the leading variable for MF is v2 .

3.2. Trimmed Centrality

Our second proposed strategy for selecting the next variable to clamp is inspired by
spectral methods. It is well known that these approaches to graph matching [16][5][3]
rely on the principal eigenvector v1 of K, i.e. the one maximising the Rayleigh quo-
tient: Ψ1 = arg maxΨ ΨTKΨ. This is the Perron-Frobenius vector and its components
can be interpreted as cluster memberships which tend to establish agreement links [16].
However, according to the spectral perturbation theory, only small perturbations of K
are tolerated, and structured perturbations cause wrong assignments to belong to strong
clusters. Only the Reweighted Random Walks Matching [3] (RRWM), where absorb-
ing nodes soak affinity, tolerate a larger amount of noise. However, their performance
is still far from the state-of-the-art.

Following this line of work we propose to increment the number of variational
modes (eigenvectors) so that higher-order correlations in K are considered. As an al-
ternative to RRWM, where random walks are dominated by degree statistics, centrality
measures are more general and robust. For instance, in [6] subgraph centrality accounts
for the participation of each node in all the subgraphs in a graph. When this concept is
applied to the affinity matrix K we have that the relevance of a matching a = ik is

ITC(a) =
p

∑
j=1

Ψj(a) exp(λj) , (8)

where KΨj = λjΨj and, in principle, λ1 ≥ λ2 ≥ . . . ≥ λnn′ . Since solving the
eigensystem takes O((nn′)3), we will retain only the p � n largest eigenpairs. In
principle, this approximation is acceptable since K is indefinite in general. This im-
plies that many λj’s are negative and it contributes to a significant decay of exp(λj).
With the relevances ITC(a) for all matchings a = ik at hand, letD(xm, xb) be the set of
indices defined above (bits where xm and xb differ). Then, the trimmed centrality (TC)

2Nodes, i.e., matching pairs with no interactions, are not shown for the sake of clarity
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will select v = arg maxik∈D(xm ,xb)(maxk IMF(ik)): for each matching ik in which i
is involved we retain the k yielding the maximum TC for ik, and finally we select the
variable associated with the maximum of all these maxima.

The affinity graph is also useful for understanding TC. Subgraph centrality accounts
for the participation of each node in all the possible subgraphs. As we will detail below,
the participation of a node is measured by the number of closed walks of all lengths
that start and end at this node. Since the affinity graphs come from the matrix K whose
diagonal is not zero in general, we consider than non-zero elements in this diagonal
lead to self-loops in the affinity graph. In this regard, the most central node is 2b
(3.8851× 103) followed by the node 3a (2.2677× 104) because of the strength of its
tie with node 2a (both nodes encircled in magenta).
For the solution m in Fig. 2-Top left, we have that v2 = b. Then its assigned TC is
that of edge 2b (3.8851× 103). However since whereas v3 = d for the solution m,
we consider the TC of 3d, which is the unit since 3d is an isolated node in the affinity
graph and it only participated in self-loops. Therefore, TC selects v2 . This result is
consistent with the relative position of 2b in the affinity graph.

3.3. Discrete Pooling
The following proposed selection strategy is inspired in the gradient of the cost

function J(x). The first-order Taylor expansion around a given solution xm leads to

J(x) = xTKx ≈ J(xm) + (x− xm)Kxm , (9)

where Kxm = ∂J(x)
∂x

∣∣∣
xm

. In [9], Kxm leads to relaxing the QAP to a linear assign-

ment problem. It can be interpreted as the suitability of xm for becoming the optimal
matching. More precisely, each column of Kxm pools the confidences associated with
a candidate match [4]. As a result, the relevance of a matching ik is given by:

IDP = (Kxm)ik = ∑
jl

xm
jl Kikjl (10)

This expression is considered a sum pooling since for any candidate match ik it
accumulates all the affinities leading to close a rectangle, which rather differences from
the MF strategy that accounts for all potential rectangles, regardless of their weight.
When used for Graph Matching, as in [4], Eq. 13 is a weighted sum pooling since the
matching variables xm

ik ∈ [0, 1].

IDP(a) = (Kxm)ik = xm
ikKiikk + ∑

ik
∑
jl

xm
jl Kikjl (11)

Consequently, the weighted sum pooling is prone to noise. However, in a m-best con-
text, where xm

ik ∈ {0, 1}, the mode xm filters out uninformative elements (i.e. noisy
scores) and Kxm smoothes the search space, providing a nice trade-off between depth
search and breadth search.

11



Then, with (Kxm)ik at hand, the so called discrete pooling (DP) selection strategy
retains the following variable v = arg maxik∈D(xm) IDP(ik). Again, for each match-
ing ik in which i is involved we retain the k yielding the maximum TC for ik, and
finally we select the variable associated with the maximum of all these maxima.

In Fig. 2, given the affinity matrix K (Fig. 2-Top right), we have that the relevance
of a given edge iyi, in particular 2b , comes from the correlation KT

iyi ,∗∗x
m between its

row and the m solution. For 2b we have that KT
2b,∗∗x

m = K2b,1a + K2b,4c + K2b,2b +

K2b,4c = 10. However, for 3d we have KT
3d,∗∗x

m = 0. For the solution m in in Fig. 2-
Top left. we have that DP assigns a relevance of 10 to v2, whereas the relevance of v3
is 0. Consequently DP selects v2 because its current value (b) pools more similarities
(weighted rectangles) than that of v3 .

3.4. Median Discrete Pooling

For a given depth d, the BTP model always holds the last temporary optimal solu-
tion xm, which is associated with the tree node X d+2,∗ = arg maxr{J∆(xd+2,r)},
and the best previous solution xb, which is associated with the node X 1...d+1,∗ =
arg maxr{J∆(x1...d+1,r)}. So far, all the proposed strategies generate the next can-
didate solution by comparing xm and xb. In addition, all variables v are referred to
xm. This usually introduces a depth-first bias which may lead to over-explore low-
energy (bad) subspaces, although this behaviour will depend on each variable selection
strategy. This is why median discrete pooling MDP aims to set a trade-off between
breadth-first search and depth-first search. In order to do so, we compute both Kxm

and Kxb.

IMDP(i) = ∑
ki

∑
jl

xm
jl Kiki jl + ∑

kj

∑
jl

xb
jlKikj jl (12)

For each matching ik, where i ∈ D (letD be the set of variables whose assignments
are different, and consider also the solutions xm and xb, in the example D = {2, 3})
and k represents all different vi (ki = vm

i and k j = vb
i ), we compute the median

given by M = med{IMDP(i)} and the selected variable i is the one that minimizes
|IMDP(i)−M|. In this case (see Fig. 2-Bottom right) we have that M = 5 and thus,
any variable v2 or v3 is equally closer (in terms of MDP) from M. This illustrates the
breadth-first behaviour of MDP in contrast with DP.

Our four strategies are studied in our experiments in Section 4, evaluating and
testing our hypothesis.

4. Experimental Results

Once we have studied the m-best solutions to Graph Matching, which rely on ex-
clusion strategies where the k-th best solution is found by excluding all the k-1 better
ones from the search space. The main problem is that the state-of-the-art methods are
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generic insofar they do not incorporate the detailed structure of the problem, e.g. the
properties of the global affinity matrix which characterise the search space.

For that, in this section, we propose several strategies or heuristics for spanning the
whole range between depth-first and breadth-first search for improving the state-of-
the-art methods in terms of accuracy and efficiency. We follow up the experimental set
performed in the test of the Hungarian BP + BTP method [23] which can be seen as the
state-of-the-art technique for m-best graph matching. Herein, we focus on the car (30
pairs) and motor (20 pairs) datasets, both from the PASCAL VOC 2007 challenge [7].

The graph matching algorithms compared are: the Graduated Assignment (GA) [9],
Probabilistic Matching (PM) [31], Spectral Matching (SM) [16], Spectral Matching
with Affine Constraints (SMAC) [5], Integer Projected Fixed Point Solver (IPFPS) [17],
Reweighted Random Walks Matching (RRWM) [3], Factorized Graph Matching (FGM) [33]
and finally, BP (Hungarian BP + BTP) [23].

4.1. Experiment #1: Comparing all Strategies
In Table 1 and Fig. 3, we show the average matching accuracies for the 30 Car

pairs and 20 Motor pairs as the number of outliers increases from 0 to 20. Regarding
the m-best strategy, we set m = 5. The strategies compared are:
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Figure 3: Accuracy of the alternative strategies for Car dataset

• BP (Hungarian BP + BTP) [23]. This strategy is based on the BP Graph Match-
ing method [32]. This graph-matching approach is the state-of-the-art, since the
Binary Tree Partition (BTP) strategy must be initialised with a high-quality MAP
solution. Even with this starting solution is provided, the performance of the BP
method degrades as the number of outliers increases.

• MF (Max Factor). However, the MF variable selection exploits the structure
of the problem by accounting for the potential number of rectangles that can be
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Table 1: Matching accuracy and processing times for Car Dataset with different number of outliers

Outliers PM GA SM SMAC IPFPS RRWM FGMD BP IPFPS5 BP5 MF5 DP5 MDP5 TC5

0 0.57 0.62 0.73 0.79 0.83 0.88 0.91 0.92 0.87 0.92 0.93 0.92 0.92 0.92

1 0.54 0.57 0.69 0.75 0.78 0.86 0.89 0.89 0.82 0.89 0.88 0.88 0.88 0.89

2 0.50 0.54 0.66 0.74 0.77 0.87 0.89 0.88 0.80 0.88 0.88 0.89 0.88 0.89

3 0.46 0.54 0.65 0.74 0.76 0.83 0.85 0.87 0.80 0.89 0.90 0.89 0.89 0.88

4 0.47 0.52 0.67 0.72 0.76 0.84 0.87 0.85 0.79 0.85 0.85 0.87 0.86 0.84

5 0.40 0.50 0.61 0.70 0.77 0.81 0.86 0.87 0.80 0.87 0.88 0.88 0.89 0.89

6 0.39 0.46 0.61 0.70 0.72 0.77 0.84 0.83 0.75 0.87 0.88 0.89 0.86 0.86

7 0.40 0.48 0.63 0.66 0.80 0.80 0.81 0.87 0.81 0.84 0.84 0.85 0.85 0.84

8 0.41 0.47 0.57 0.67 0.69 0.78 0.77 0.83 0.69 0.86 0.85 0.86 0.85 0.87

9 0.39 0.44 0.56 0.65 0.67 0.76 0.79 0.83 0.68 0.82 0.82 0.82 0.81 0.83

10 0.36 0.42 0.54 0.64 0.70 0.76 0.80 0.82 0.71 0.84 0.84 0.86 0.85 0.82

11 0.36 0.41 0.53 0.66 0.67 0.75 0.82 0.80 0.70 0.86 0.85 0.86 0.85 0.86

12 0.34 0.41 0.57 0.66 0.70 0.77 0.76 0.77 0.72 0.80 0.80 0.79 0.79 0.79

13 0.35 0.41 0.54 0.65 0.69 0.79 0.75 0.77 0.70 0.77 0.79 0.79 0.77 0.80

14 0.36 0.39 0.55 0.63 0.69 0.77 0.81 0.80 0.71 0.79 0.78 0.79 0.80 0.79

15 0.35 0.38 0.49 0.65 0.64 0.77 0.81 0.80 0.65 0.75 0.78 0.76 0.77 0.77

16 0.30 0.35 0.50 0.62 0.61 0.79 0.75 0.74 0.62 0.79 0.79 0.81 0.80 0.79

17 0.34 0.37 0.51 0.65 0.63 0.75 0.79 0.76 0.63 0.79 0.78 0.81 0.79 0.79

18 0.31 0.35 0.47 0.61 0.59 0.73 0.76 0.78 0.60 0.76 0.75 0.81 0.77 0.77

19 0.29 0.34 0.50 0.62 0.66 0.70 0.68 0.76 0.67 0.78 0.80 0.80 0.79 0.77

20 0.29 0.33 0.46 0.57 0.60 0.70 0.65 0.69 0.60 0.75 0.77 0.77 0.75 0.76

Time 0.01 0.03 0.03 0.03 0.07 1.38 19.18 4.90 0.63 264.54 259.89 253.86 256.76 258.67

closed by a given matching. For a moderate number of outliers, MF slightly
improves the accuracy (1% for the Car dataset and similar values for the Motor
dataset). However, it also degrades for more than 11 outliers. A detailed analysis
by pairs reveals that certain matching problems (pairs 4, 5, 8, 25 and 28) are very
hard to solve for all the Graph Matching methods. The affinity matrices for these
pairs are characterised by spectra with uneven inter-eigenvalue gaps. These pairs
are penalised by the depth-first behaviour of BTP and the MF selection cannot
recover from a wrong decision for small values of m. However, in these pairs the
random variable selection provides a trade-off between breadth-first and depth-
first. For the remaining pairs MF improves BP. As we will detail in experiment
#3 in Subsection 4.3, MF selection requires smaller values of m to improve the
accuracy of BP.

• DP (Discrete Pooling). The DP variable selection improves both BP and MF
even for a moderate number of outliers. This is due to the filtering provided by
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the discrete accumulation of scores. In DP, only existing rectangles are consid-
ered whereas MF accounts for all potential rectangles. This selective behaviour
flattens the search space, and this improves the breadth-first strategy of BP. DP
tends to explore a subspace in depth when it is sure that it is promising. In addi-
tion, the tolerance to outliers and the selective behaviour yield better increments
of accuracy as m increases. For instance, with m = 10 and 20 outliers, DP sig-
nificantly outperforms BP (4%, see Fig. 5 and Table 2)

• MDP (Median Discrete Pooling). The main difference between Median DP and
DP is that MDP seeks for diversity (breadth-first). When MDP outperforms DP,
the gain is quite significant. However, MDP requires a large number of modes to
capture the most promising subspace.

• TC (Trimmed Centrality). TC (with p=6 eigenvectors) works well only for
a moderate number of outliers. It slightly improves the accuracy of BP, but as
MF its performance degrades for difficult pairs. It slightly relaxes the depth-first
behaviour of BP, but it is the more depth strategy (see experiment 4.3).

Moreover, we use the CMU house image dataset, that consists of 111 frames of a
house, each of which has been manually labelled with 30 landmarks. We show a per-
formance using 20 nodes, because the total performance produces a perfect matching
in the state of the art. We matched all possible image pairs, spaced by 0:10:90 frames
and computed the average matching accuracy per sequence gap. In Fig. 4.1 we can
see that our algorithms improve BP (1 %), but the improvement is less than in Car and
Motor datasets due to the difficult of pairs implied in matching.
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Figure 4: Comparison of all algorithms on the CMU house datasets using 20 nodes
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We complement these experiments (done for m = 5) with an asymptotic test with
m = 10. This analysis is motivated by the results obtained for m = 5, where we found
diverging accuracies for different pairs. For the Car Dataset we identified several pairs
as difficult or hard (those with a matching accuracy below 75% for BP). These pairs
are: 2, 4, 5, 8, 24, 25, 26, 28 and 29 (see pairs in red in Table 5). This threshold (75%)
allows us to study pairs with a certain degree of confusion/ambiguity. We have that MF
and TC are outperformed by BP in these pairs but DP and MDP improve BP therein.
In addition, DP holds its robustness in these pairs.

Summarising the analysis for m = 10, DP is the winning strategy for difficult pairs
and it is also the most robust strategy (high tolerance to outliers as we can see in Fig. 5).
This complements Table 2, where the data is shown according to an increasing number
of outliers (from 0 to 20). However, what is the expected behaviour when m increases
(better marginalisation)?. We note that DP can outperform significantly BP for a large
value of m.
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Figure 5: The accuracy for Car (left) and Motor datasets (right) as the number of outliers increases (m = 10).

Rezatofighi et al. [23] hold that as m increases the probability of finding the best
solution (ideally to guess the ground truth) is higher. However, this statement is only
true when each discovered mode is among the best possible modes.

In experiment #3 (Figures 8 and 9, Tables 3 and 4) is targeted to analyze the quality
of the modes obtained by all the alternatives.
In practice, we have that the asymptotic accuracy depends on the quality of the initial
modes (m = 1, 2, . . .). A bad choice in m = 1 often leads to a depth search. There-
fore, any strategy needs a large value of m to recover from these failures. This fact is
critical when the number of outliers increases. In particular, we want to be sure that our
improvement over the random selection strategy (BP) still holds for m > 5. In other
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words, we run BP and DP for m = 10 to favour the recovery of BP.

In Table 2 (see also Figure 5), we show both the matching accuracy and running
time for BP and DP when m = 10. We observe that for m = 10, DP is even more
robust and better conditioned for dealing with hard pairs, than in the m = 5 case. This
is motivated by the fact that DP has the chance of being more diverse (flattening the
search space) as m increases. For hard pairs in the Car dataset, we have an improvement
of 2% for m = 5, whereas for m = 10 the improvement peaks 4.5%. The average
accuracy of DP for m = 10 is 84.33% whereas that of BP is 82.32%. The average
running time of DP for m = 10 is 720.02 seconds, whereas that of BP is 759.96
seconds. However, for m = 5 the average accuracies for DP and BP are 83.87% and
82.82% respectively, and the average running times are 253.86 (DP) vs 264.54 seconds
(BP). In the Motor dataset, we have less difficult pairs (only pairs 14 and 15), and obtain
an improvement of 2.5% in m = 5, whereas the average accuracies are 83.26 (DP) and
82.26 (BP), and running time are 188.77 (DP) and 197.4 (BP) seconds, respectively. In
Fig. 6, we show how BP and DP match the cars in Pair 8 (without outliers and m = 10).

BP

DP

Figure 6: Matching of Pair 8 for Car Dataset without outliers. Top-BP with 76.92% of accuracy and Botton-
DP with 84.62%. False positive matchings in green, and false negative matchings in blue.

4.2. Experiment #2: Exploring Solutions Subspaces for m=100

In previous experiments, we show compare our strategies with the state-of-the-art
with the same number of m=5, to keep coherence with previous works [23]. We obtain
better results in terms of accuracy and efficiency. As we explain in Subsection 2.4,
and we have illustrate in Fig. 1 and algorithm 1, the two initial modes are the same
for all strategies. From third solution, the variable selection strategies are relevant to
a correct exploration of the search space of solutions to reach the optimal solution. In
particular, in difficult pairs is critical the selection of a balanced strategy that can be
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Table 2: Matching accuracy and processing times of BP and DP for all pairs for Car and Motor Datasets with
different number of outliers with m=10

Outliers BPcar DPcar BPmotor DPmotor

0 0.92 0.92 0.97 0.97

1 0.89 0.89 0.94 0.95

2 0.88 0.89 0.93 0.93

3 0.89 0.88 0.93 0.93

4 0.86 0.88 0.90 0.90

5 0.88 0.88 0.87 0.87

6 0.83 0.82 0.86 0.86

7 0.84 0.86 0.85 0.88

8 0.83 0.84 0.85 0.85

9 0.85 0.86 0.83 0.83

10 0.84 0.85 0.82 0.81

11 0.81 0.85 0.80 0.82

12 0.79 0.83 0.86 0.85

13 0.81 0.85 0.81 0.81

14 0.78 0.80 0.73 0.75

15 0.79 0.82 0.72 0.76

16 0.75 0.81 0.79 0.78

17 0.79 0.82 0.79 0.80

18 0.80 0.82 0.73 0.75

19 0.73 0.77 0.75 0.77

20 0.74 0.78 0.77 0.78

Avg Acc 0.82 0.84 0.83 0.84

Avg Time 759.96 720.02 480.23 448.26

able to recover from wrong solutions, as we can see in Table 5. Our hypothesis is that
the choice of the number of m is not the most important point in this paper, because
the main goal is to provide a criterion to find the best solution with less number of m,
characterizing the search space of solutions.

For that, we propose the following experiment: we explore the long-term behaviour
(m = 100) of all the strategies for a difficult pair (Pair 8 of Car dataset). We consider
0, 10 and 20 outliers. Our aim is to study the correlation between the accuracy and the
value of the objective function as the number of solutions increase. We also analyse the
jumping trends of each strategy. In Fig. 4.2, we show that for a low number of outliers,
all the strategies behave similarly but reaching best accuracy earlier than BP. As we
have seen in Experiment #1, both DP and MPD tolerate a high number of outliers.
Their Hamming pairwise distances show that pooling methods a quite focused in a
limited number of subspaces (see blocks in Figure 4.2).

In Subsection 4.1, we explain that in difficult pairs, as we show in this experiment,
BP searches solutions in the search space of solutions in a randomly way (diversity),
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Figure 7: Exploring the long-term behaviour (100 m-best iterations). We show a difficult pair, number 8,
representing the Hamming pairwise distances and Accuracy vs Objective for different number of outliers.

and needs a high number of solutions to recover from failures. In contrast, DP need not
a high number of m to obtain the best result because it recovers better from failures.
This explanation is complemented with an experiment with m=10 (Table 2) and in
with this experiment, where we show the curves of accuracy and objective value of
a difficult pair with m=100. DP reaches the best result with a less number of m (i.e.
without outliers, BP reaches its best result with m=11, DP reaches its best case in with
m=4). Moreover, we show that our strategies works very well with a high number of
outliers.

4.3. Experiment #3: Test of Efficiency Dual and Dual-Counterpart

In this third experiment, our aim is to estimate the average number of modes needed
to outperform the alternatives, for m = 5. In other words, we test the efficiency in
terms of how many solutions are needed to outperform the state of the art (BP). In the
Dual case we evaluate how many number of modes are needed to outperform BP. If it
is needed more than 10 solutions, we stop in m = 10 (yellow bars in Figures 8 and 9).
As we show in Tables 3 and 4, our proposed variable selectors need only around 37%
of the total number of modes to outperform BP in both datasets (i.e. in dual test of
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car dataset, BP needs 3150 solutions to obtain a 83.31% whereas DP needs only 1171
solutions to obtain a 84.67% of accuracy). In the Dual-Counterpart case we fix m = 5
for DP and evaluate the number of modes needed by the alternatives to outperform our
best strategy (DP). In this case, the alternatives require close to 45% of the total number
of modes to outperform DP in car dataset (1394 solutions), and 46% in motor dataset.
The global improvement of DP is a 8% in car dataset and 9.04% in motor dataset.This
is due to an early stop of DP with respect to the alternatives as we can see in Fig. 8
and Fig. 9, where in dual test (left) we need fewer solutions to outperform to BP (blue
bars) in contrast of dual counterpart test (right), where we need more solutions (smaller
blue bars). We also show therein that in the Dual-Counterpart, the alternative strategies
often require m = 10 or more solutions to outperform DP (higher yellow bars). In
running time, DP improves a 36.45% (car) and 15.15% (motor) of global improvement
to BP (i.e., in car dataset, dual test has 267.93 sec vs 87.67 sec, and in dual counterpart
test we have 242.29 sec vs 165.84 sec). In conclusion, DP is the best strategy both in
terms of the number of modes and in running time.

Table 3: Dual (left) and Dual Counterpart (right) for Car Dataset (3150 solutions are the accumulative number
of m solutions from 30 (pairs) × 21 (cases of outliers, from 0 to 20) × 5 (m-best))

Alg Avg Acc Avg Time M Times Alg Avg Acc Avg Time M Times

BP 0.8331 267.93 3150 DP 0.8428 242.29 3150
MF 0.8441 106.04 1221 BP 0.8488 165.94 1394
DP 0.8467 87.67 1171 MF 0.8507 147.97 1337
MDP 0.8450 98.08 1256 MDP 0.8474 119.67 1409
TC 0.8434 96.10 1259 TC 0.8476 127.50 1402

Table 4: Dual (left) and Dual Counterpart (right) for Motor Dataset (2100 solutions are the accumulative
number of m solutions from 20 (pairs) × 21 (cases of outliers, from 0 to 20) × 5 (m-best))

Alg Avg Acc Avg Time M Times Alg Avg Acc Avg Time M Times

BP 0.8319 192.24 2100 DP 0.8404 184.03 2100
MF 0.8497 110.47 827 BP 0.8446 94.38 991
DP 0.8496 70.04 803 MF 0.8469 124.80 907
MDP 0.8492 72.76 827 MDP 0.8451 88.02 953
TC 0.8490 70.80 809 TC 0.8461 92.09 954
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4.4. Experiment #4: Analysis by pairs by spectral characterization
We have often referred to both easy and hard pairs. In general, the difficulty of

a graph matching problem can be determined by the degree of indefiniteness of the
matrix K. However, in practice we often face similar degrees of indefiniteness (see
Fig. 11-Top). Consequently, we need a more precise characterization of the difficulty
of a graph matching problem.
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Table 5: Matching accuracy and processing times of all pairs for Car Dataset with different number of outliers
for all strategies

Pair 1 2 3 4 5 6 7 8 9 10

BP 0.76 0.69 0.96 0.30 0.71 0.87 0.99 0.51 1.00 0.93
MF 0.77 0.71 0.96 0.29 0.73 0.87 0.99 0.48 1.00 0.93
DP 0.78 0.70 0.97 0.33 0.74 0.88 0.99 0.54 1.00 0.94

MDP 0.77 0.71 0.96 0.31 0.67 0.86 0.99 0.52 1.00 0.92
TC 0.77 0.71 0.96 0.31 0.65 0.87 0.99 0.52 1.00 0.94

Pair 11 12 13 14 15 16 17 18 19 20

BP 0.99 0.97 0.98 0.89 0.93 0.96 0.85 0.97 0.98 0.97
MF 0.99 0.97 0.98 0.88 0.92 0.96 0.87 0.97 0.98 0.97
DP 0.99 0.97 0.98 0.88 0.92 0.97 0.90 0.97 0.97 0.97

MDP 0.99 0.98 0.99 0.89 0.92 0.97 0.85 0.96 0.97 0.97
TC 0.99 0.97 0.98 0.89 0.92 0.97 0.87 0.97 0.98 0.97

Pair 21 22 23 24 25 26 27 28 29 30

BP 0.99 0.90 0.82 0.70 0.55 0.71 0.97 0.45 0.75 0.81
MF 0.99 0.91 0.82 0.71 0.50 0.71 0.97 0.49 0.76 0.80
DP 0.99 0.90 0.83 0.71 0.58 0.72 0.97 0.48 0.77 0.81

MDP 0.99 0.91 0.83 0.76 0.53 0.73 0.97 0.47 0.73 0.81
TC 0.99 0.88 0.82 0.74 0.53 0.71 0.97 0.49 0.76 0.80

4.5. Discrete Pooling flattens the search space: Difficult Problems
Our experiments with m = 5 show that Discrete Pooling is, by far, the best strat-

egy for variable selection. As we note in the paper, this is consistent with the results
obtained in [4], where discrete pooling is used as a means of tolerating a large number
of outliers. However, in an m-Best Graph-Matching context, we have a) to exploit the
fact that the matching variables (xm

ik and xm
jl ) in

IDP(a) = (Kxm)ik = xm
ikKiikk + ∑

ik
∑
jl

xm
jl Kikjl (13)

are discrete, and b) analyse the role of Kxm (the derivative of the cost function ∂J(x)
∂x

∣∣∣
xm

)

at xm) as a means of quantifying the local gradient of the cost function. In this regard,
the existence of both node and edge attributes in K transforms a locally flat landscape
into a more rugged one, which is dominated by low-frequency modes. We are inter-
ested in hopping between high-frequency modes within a given low-frequency one,
ideally the mode containing the best solutions. Therefore, we have to ensure that we
are not going to jump to another low-frequency mode unless it is required.
Since DP is embedded in a Binary Tree Partition structure, which is depth-first focused,
the risk of jumping to another low-frequency mode is very high. Why does DP find an
intelligent trade-off between depth-first and breadth-first search?
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In order to answer this question we have complemented Experiment #1 with the
following test. Given an affinity matrix Ke supposed to characterise an easy graph
matching problem (for instance Pair 1 in the Car Dataset) we have slightly perturbed
the ground truth (the diagonal). Let Sn the set of (n

2) pairs (i, j), where n is the num-
ber of features to match. Then, Sn = {(1, 2), . . . , (1, n), (2, 3), . . . , (2, n), . . . , (k, k +
1), . . . , (k, n) . . . (n − 1, n)}. For each element of (i, j) ∈ Sn we have replaced the
matching i → i (ground truth) by i → j while leaving the remaining matchings un-
changed. In this way, we produce (n

2) perturbations of x for the same K. These pertur-
bations simulate an energy landscape of (n

2) modes for xKx.
In Fig. 10 we plot J(x) = xTKx vs J(x) + max(Kx) (left column). For the first
and second row we have an easy pair with 0 and 10 outliers respectively. The local
ruggedness of the energy landscape increases with the number of outliers (i.e. with the
degree of ambiguity). Let then ∆ = max(Kx) the maximum derivative (it is actually
the value used for variable selection). It is worth noting that this upper bound of the
local derivative flattens the neighbouring discrete poolings (see the right columns of
Fig. 10) in such a way that DP increases the diversity of the search space. The two first
rows correspond to the easy case (Ke) with 0 and 10 outliers respectively. Therefore,
as the number of outliers increases, the high-frequency modes get closer and can be
more easily smoothed by ∆. In addition, the smoothing effect of ∆ is stronger for a
hard pair (Kh), such as Pair 5 in Car Dataset, which is populated with high-frequency
modes even for 0 outliers (third row in Fig. 10). There are no significant differences in
terms of ∆ for the same hard pair and 10 outliers.
As a conclusion, DP increases the diversity of the search space (the breadth-first be-
haviour) while keeping the correct searching direction. In terms of the associated Par-
titioning Enumeration Subspaces (PES), DP finds the correct subspace earlier than the
alternatives. This behaviour is held when the number of outliers increases, because this
regime produces deeper BTPs and an intelligent trade-off between depth-first search
and breadth-first search is critical.

5. Conclusions and Future Work

In this paper, we have characterized the search space of QAP in m-best Graph
Matching problems. We transform a MAP problem into a m-best one where we com-
bine both approximation and marginalization strategies. We propose four new different
strategies to discuss the randomly criterion of variable selection of the state of the art.
To that end, we have proposed four strategies for selecting the next variable to clamp
(MF, TC, DP and MDP). The experiments show that all the proposed strategies reaches
important improvements, outperforming the state-of-the-art (random variable selection
or BP) in terms of matching accuracy, being DP the best one (from 1% with m=5 un-
til 2% with m=10), specially when the level of noise increases (outliers). Moreover,
the experiments performed with difficult matching pairs show that the improvement
reaches 4.5%. Concerning efficiency, all the proposed heuristics speed-up the process,
up to 5% on average with respect to BP.

Regarding the exploration of the search space, BP, MF and TC are more sensi-
tive to errors (selection of wrong variables) whereas DP and MDP provide a trade-off
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between breadth-based search (diversity) and depth-based (digging in a promising sub-
space). As a result, DP and MDP can recover earlier from wrong variable selections.
Our experiments show that the most robust heuristic is DP. Finally, the amount of ex-
ploration needed for finding the optimal solution, all our strategies improve BP. Here,
DP (the best, again) needs only to explore 37% of the solutions (modes) analyzed by
BP (for m=5) to outperform it. Conversely, BP needs to explore 45% of the solutions
analyzed by DP for improving it. Therefore, DP is the best heuristic concerning the
relative exploration effort.

Summarising, we show how the choice of variable selection strategy in m-best
matching can improve the performance of the state-of-the-art criterion (random selec-
tion) in terms of both accuracy and efficiency. This study opens up the possibility for
finding the optimal solution with a small numbers of iterations through a deeper study
of the structure of the search space when an appropriate variable selection strategy is
used.
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Algorithm 1 Binary Tree Partition Algorithm
Input: m
Output: xk, k = 1, ..., m;
STEP 1. Find the 1st best solution:
x1 = arg maxx∈X J∆(x)
X 1 = X and J∆(x1) is assigned to X 1

STEP 2. Find the 2nd best solution:
X 2 = {x ∈ X 1 | ∆(x1, x2) > 1}
x2 = arg maxx∈X 2 J∆(x)
X = X 1 ∩ X 2 and J∆(x2) is assigned to X 2

STEP 3a. Finding the 3rd best solution: Select variable b through a strategy, where
the previous two first solutions differ in x1

b 6= x2
b

STEP 3b. Split the feasible set into two disjoints sets as follows (expand action):
X 3,1 = {x ∈ X 1 | xb 6= x2

b, ∆(x, x1) > 1, ∆(x, x2) > 1}
X 3,2 = {x ∈ X 2 | xb = x2

b, ∆(x, x2) > 1, ∆(x, x1) > 1}
Remove redundant constraints (in orange)
STEP 3c. Select solution as follows:
x3,1 = arg maxx∈X 3,1 J∆(x)
X 1 = X 3,1 ∩ X 1 and J∆(x3,1) is assigned to X 3,1

x3,2 = arg maxx∈X 3,2 J∆(x)
X 2 = X 3,2 ∩ X 2 and J∆(x3,2) is assigned to X 3,2

Assign x3 = arg maxr{J∆(x3,r)}
Insert the non-assigned solution to x3, with value J∆(x3,∗), in a vector y (copy ac-
tion)
repeat

STEP 4a. Finding the k-th best solution: Select b (as in Step 3a) where the
previous solution k − 1 and the best solution between the selected solutions l
(l 6= k− 1) differ in xl

b 6= xk−1
b . Then, expand two disjoints sets X k,1 and X k,2

as in Step 3b with the following constraints (remove orange ones):
X k,r = {x ∈ X l | xb 6= xk−1

b , ∆(x, xl) > 1, ∆(x, xk−1) > 1}
X k,k−1 = {x ∈ X k−1 | xb = xk−1

b , ∆(x, xk−1) > 1, ∆(x, xl) > 1}
STEP 4b. Select xk,r and xk,k−1 from X k,r and X k,k−1, respectively (as in Step
3c), and assign xk = arg max{J∆(xk,1), J∆(xk,2), y}. If xk ∈ y, remove it from
y.
Insert the non-assigned solution to xk, with value J∆(xk,∗), in vector y (copy
action)

until k > m
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Figure 10: DP flattening the search space. First row: J(x) = xTKex vs J(x) + max(Kex) for an easy pair
(Pair 1) and 0 outliers (left) vs ∆ = max(Kex) (right). Second row: the same for an easy pair (Pair 1) and
10 outliers (left) vs ∆ = max(Kex) (right). Third and fourth row: same as first and second rows for a hard
pair (Pair 5) and 0 and 10 outliers.
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Figure 11: Spectral Characterisation of K. Top, the spectra of an easy pair (Pair 1) as the number of outliers
increases (in blue) vs the spectra of a hard pair (Pair 5) (in green). Down: detail when the eigenvalues are
large enough.
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