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ABSTRACT 8 

Displacement of every point in a concrete specimen during some loading-unloading cycles is 9 

measured by using digital image cross-correlation (DICC) only using its original surface texture 10 

without adding or attaching any particular pattern or target to the surface. The total surface of 11 

the probe was tessellated and DICC was performed on each local area. The cross-correlation 12 

peak was refined thus obtaining improved sub-pixel correlation. In the paper, we discuss the 13 

method that was followed to select the optimal local area size and the obtained results. We 14 

show that, with natural non-optimized textures, the technique allows to locally measure the 15 

concrete deformation due to small strains (<0.1%) with an error below 50 µε. Although results 16 

are more inaccurate than those obtained by a strain gauge, our method is able to non-invasively 17 

determine the strains in a concrete surface under small loads with reasonable accuracy.  18 
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1. INTRODUCTION 22 

Image processing is a well-known discipline that has been recently introduced to structural 23 

analysis. It has evident advantages in the inspection and monitoring of buildings and structures 24 
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such as being a non-invasive technique, long distance measurement capability and wide 1 

availability since it can be implemented with not expensive devices. Considering scientific image 2 

processes that are carried out to analyze the specimens, two main different approaches are 3 

found. One of them tries to find more information from a single image while the other tries to 4 

find differences between two images of the same object that has slightly changed. This work 5 

focusses on the second one. One of the most used tool in image processing to find differences 6 

between two images is digital image correlation. This operation, which can be performed in one-7 

dimensional signals as well as in two or even in three [1], gives the degree of similarity between 8 

two signals. Used on images (two-dimensional signal), it gives the position in which one of them 9 

(called template) best matches on the other image. In dynamics, this operation is performed 10 

between two images in order to find the movement of some pattern included in both of them.  11 

Different modifications to this basic procedure can be implemented in order to improve its 12 

accuracy. One of these tools is the division of the whole area into several parts, allowing the 13 

calculation of correlation between each one of these parts in different states [2]. This gives an 14 

approximation to the local behavior of the material if the part is small enough. Another 15 

improvement is the interpolation of the correlation peak location in a small area around the 16 

previously found peak [3]. Besides, additional conditions can be used to allow the contour of the 17 

template to have different shapes between the initial state and the final one. This condition is 18 

called “order-shape”, with order zero meaning that no deformation is allowed between different 19 

states [4]. These features are already implemented in different specialized software like GeoPIV 20 

[5, 6], Ncorr [7] or GOMCorrelate [8] among others.  21 

Although these applications are oriented to different fields, they share the need of a previous 22 

object preparation: specimens are covered by a pseudo-speckle (uniform random-dot) pattern 23 

in order to offer optimal conditions for obtaining digital correlation with subpixel accuracy. 24 

Therefore, the use of speckle patterns is common in tasks involving object displacements or 25 
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deformations. Usually, this pattern can be painted or projected on the surface of the object to 1 

test, which requires the material to have a uniform roughness and a non-reflective surface. With 2 

this procedure, the image is transformed to a distribution of intensities that are locally unique. 3 

The displacement of these local patterns can be measured using digital image correlation on 4 

small domains covering the whole image, thus informing about shifts or local deformations of 5 

the whole piece. The size of the spots and gradient of intensities of the textured pattern gives 6 

an idea of the goodness of the results that can be found using image correlation [4].  7 

Concrete surfaces are also measured using this method and a speckle pattern. However, 8 

concrete is one of the most used materials in big structures (such as dams, buildings or bridges, 9 

for example) and generally the point with the largest movement is also the most inaccessible 10 

point in the structure. This fact encourages the need of measuring the concrete movement 11 

without physically reaching the point to measure, in order to avoid risk to the involved workers. 12 

Under this point of view, image techniques offer a big advantage, which unfortunately vanishes 13 

when a particular pattern needs to be painted in the surface to measure. Therefore, the 14 

measurement of concrete surface without use of any artificial pattern becomes of great interest. 15 

Recently some studies have been made in which no additional pattern was used on the concrete 16 

surface. Alam et al. [9] used DIC together to an acoustic emission technique to measure crack 17 

opening and spacing in beams with different cross section under bending moment. Kim el al. 18 

[10] studied the influence of different threshold in the binarized images to best approach the 19 

width of cracks. Also, an extended digital image correlation which includes a distance transform 20 

algorithm was proposed by [11] to detect microcracks in targetless concrete surfaces. However, 21 

since these works are related with the appearance of cracks, strains are the highest possible in 22 

concrete and displacements will be at least those related with that maximum strains. When 23 

crack is already developed, much higher displacement will happen, hence making easier the 24 



4 
 

displacement detection. Up to our knowledge, there are few works that analyze concrete 1 

deformation when small loads are applied [12]. 2 

The use of the naked concrete surface to measure movements and deformations under its yield 3 

limit relays in the degree of similarity of this pattern with the speckle pattern successfully used 4 

until now. The particular surface texture of concrete due to its fabrication could give a good 5 

approximation to a speckle pattern. During the formwork of concrete, a good vibration must be 6 

done into the fresh concrete in order to remove all bubbles of air that were enclosed during the 7 

concrete pouring. Even with a very good vibration technique and experience, it is usual that 8 

some small bubbles stay in the walls of the formwork. When enduring, these bubbles become 9 

in small hollows in the concrete surface that can be randomly distributed or not. Additionally, 10 

changes in water, sand and gravel distributions or even external temperature during the 11 

concrete hardening make the surface to have non-uniformities that, together with the small 12 

hollows, makes a nearly random spot distribution in the surface.  13 

Finally, and bearing in mind that our goal is to determine the real accuracy of the proposal when 14 

applied to real structures, another problem to face is uneven illumination of the region under 15 

study. Lab experiments can be designed to have optimal illumination and contrast on the image, 16 

thus helping to improve the efficiency of image processing methods. Unfortunately, on site (and 17 

in non-reachable points) light cannot be controlled and different shadows and contrast will 18 

appear in the image. 19 

In this paper we want to take a further step on this issue by studying the real accuracy of image 20 

processing methods by using natural (non-optimal) illumination and measuring strain 21 

displacements within the compressive yield point. 22 

The experiment is performed in a laboratory, where the compressive forces applied to the 23 

specimen can be easily controlled. Despite of this, the remaining conditions of the experiment 24 

will not optimized, so the surface of the concrete will remain naked, without any particular 25 
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pattern applied on it and the illumination on the specimen will come from the lab windows thus  1 

no artificial illumination is used to cancel the shadows on the surface. 2 

The manuscript is detailed as follows. First, we will introduce the main methods used and the 3 

image preprocessing techniques that have been implemented in order to optimize the results. 4 

Then, in the following sections, the main results obtained are presented and discussed. The 5 

conclusions of our proposal are summarized in the last section.   6 

2. METHODS 7 

As we said in the introduction, the goal of this communication is to find local deformations in a 8 

concrete piece under compression tests. In this section, the image processing technique 9 

together with the implemented experiment used to find the local displacement of the image in 10 

a video sequence are detailed. 11 

2.1 Experimental setup 12 

A cubic concrete piece with side length of 15 cm (see Figure 1) was tested in a compression 13 

testing machine Servosis MES-350 with a limit force 3500 kN. In order to maintain its accuracy 14 

and functionality the test machine is recalibrated every year. It has two plates to apply the 15 

compression between them. On working, the machine raises the lower plate using a hydraulic 16 

actuator while the upper plate remains still. The lower plate is completely fixed in horizontal 17 

position, while the upper plate is pinned in the three dimensions to have homogeneous 18 

compression on the specimen in the case their upper and lower surfaces are not parallel.  19 
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 1 

Fig.1: Concrete specimen located at testing machine. Red dotted line delimits the area that will 2 
be analyzed. Patterns attached to the upper part of the compression machine and in the 3 

background are set for control purposes.  4 

 5 

Four loading-unloading cycles were applied with a maximum load below the concrete yield limit. 6 

Using a set of 3 concrete cubes, the average failure strength of this concrete sample was set in 7 

600 kN, so an upper limit of 400 kN was stablished as the maximum load to be reached during 8 

the experiments. The speed in both loading and unloading cycles was 5 kN/s. Some strain gauges 9 

were attached to the concrete probe, in order to check the results given by our image processing 10 

technique. Maximum strain measured through longitudinal gauge was 1000 µε, which confirms 11 

that the concrete was working in elastic range during the whole experiment.  12 

The images were recorded with a Basler camera acA640-120gc with an objective lens SIGMA 13 

150-500 mm attached to the camera through a C-mount adapter. From the three color channels 14 

provided, from now on, we will only consider the image coming from the green channel. The 15 

camera was working with a temporal resolution of 1 frame per second and a frame size of 16 

4600x3288 px. Due the slow speed of the loading cycles, not more than 1 frame per second was 17 

needed. Since no protecting screen was used to isolate the concrete piece, the camera was set 18 
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at a security distance, far enough to avoid debris thrown from the specimen in the case of 1 

fracture and also shadows on the sample. According to the lab limitations, this distance was 5 2 

m from the specimen, which, with the proper objective lens provided a spatial resolution of 17.6 3 

px/mm. A structured pattern was attached to the upper plate of the concrete testing machine 4 

(due to its uniformity) to check the relative movement of concrete with respect to the machine 5 

(Figure 1). Notice that no pattern was added or painted on the concrete surface, so all 6 

calculations were done with its natural texture. The scene was illuminated only with sunlight 7 

coming from the windows and no additional lamp was used to illuminate the concrete surface. 8 

Because of this, a clear shadow can be seen dividing the upper and the lower part of the concrete 9 

surface in Figure 1. Non-perfect illumination of the scene, despite increasing the error in the 10 

measurement, gives a better approximation to real conditions of structures in its final 11 

emplacement.  12 

Finally, once the image system was set in place and adjusted, a sequence was taken with the 13 

machine stopped, in order to have some additional information about the calculation noise 14 

introduced by the procedure. 15 

2.2 Image processing algorithms 16 

In brief, the procedure followed consists of dividing the whole region of interest into some small 17 

rectangular regions, whose size was previously calculated. By analyzing the movement of the 18 

texture within these local areas, we obtain the local deformation of the concrete cube. To do so, 19 

a normalized cross correlation was calculated for each one of these regions, using the first image 20 

as reference for each one of them. In order to increase the accuracy a smooth surface was fitted 21 

to each local correlation and the peak location was refined. This allows to find the peak of the 22 

correlation with a subpixel accuracy [3].  23 

The size of the local area is important in order to determine the degree of spatial accuracy of 24 

the method. Since the accuracy of the correlation depends on the amount of information 25 
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contained in the image, a non-optimal division will result in a less accurate method. On one 1 

hand, too small areas will provide accurate localized information, but the number of local 2 

regions needed to cover the whole area will be very high and so will be the requirements of 3 

computational time and memory. Additionally, since the texture is not homogenously 4 

distributed over the surface, a excessively small region may contain very few information. On 5 

the other hand, selection of large areas will result in efficient methods and areas with relevant 6 

information but at the cost of losing spatial accuracy in the determination of displacements. Up 7 

to our knowledge, area tessellation must be done attending to the particular texture of the 8 

concrete surface in a way that all the information of the local areas is similar, or at least, 9 

differences among them are minimum. 10 

The Shannon’s entropy is a mathematical function that is commonly used in image compression 11 

to assess the effective amount of information that is carried by a signal or an image [13]. The 12 

entropy of a gray-scale image is defined as:  13 

𝐻 = −∑𝑝𝑘 log2(𝑝𝑘)

𝑘

 (1) 

Where k is the number of gray levels and pk is the probability associated with the gray level k, 14 

which can be estimated through the image histogram. This function measures the number of 15 

bits that are needed to codify an image, or a part of it. In our case we have used it for testing 16 

the homogeneity of the local regions in which the total image is divided.  17 

We have implemented the following procedure. The image within the red area in Fig.1. was 18 

subdivided into a grids of size NxN, with N ranging from 5 to 100 (see the example in Fig. 2), and 19 

the entropy within each local area was evaluated. Then the mean and standard deviation of all 20 

the entropy values obtained for each grid division was calculated, thus obtaining a measure of 21 

the information dispersion. 22 
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 1 

Fig. 2: Local regions considered on the concrete surface for local tracking of the texture 2 

elements through correlation.  3 

In Figure 3, we have represented the relative dispersion as the standard deviation divided by the 4 

mean value of the local areas, calculated for the different grid divisions. One can see there that 5 

there is a minimum dispersion for a 15x15 division or, equivalently, for divisions every 1 cm. 6 

According to this result, we tessellated the concrete surface in 15x15 rectangles, each one of 7 

167x171 px. According to the resolution of the image, the local element size is of 9.49x9.72 mm.  8 
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 1 

Fig. 3: Relative standard deviation of the local entropy in function of the grid size. The 2 

minimum reveals the grid size where the information distribution is more homogeneous.  3 

 4 

After determining the optimal local element size, the whole sequence, was analyzed. To this 5 

end, we consider the image from the green channel, which was codified in 8 bits, instead of 6 

binarized versions of the image. Once the concrete surface was divided into mosaic elements, a 7 

normalized cross-correlation was performed for each frame and for each local area, using the 8 

first frame as the reference image for all of them.  9 

The obtained correlation matrix was fitted to a smooth surface following thin-plate splines [14]. 10 

To this end, only a neighborhood of 5x5 px around the correlation peak was used, and the result 11 

was an enhanced location of the peak with an accuracy of the order of 0.01 px or higher. Despite 12 

the accurate results, it is known that interpolation of the correlation surface introduces a bias in 13 
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the location of the peak. This phenomenon is called “peak-locking” and depends both of the 1 

object and the interpolation method [4]. According to the literature and to our own tests, 2 

interpolation with splines provide more accurate results than other methods [15] so we used 3 

this method here. With this interpolation, subpixel resolution in the object location was 4 

achieved 5 

4. RESULTS 6 

4.1. Accuracy of the method 7 

Prior to the real measurement, the error of the procedure was calculated both theoretically and 8 

experimentally. The theoretical model provides a fast result that allow a rough estimation about 9 

the expected accuracy. On the contrary, the experimental procedure is more realistic since it 10 

evaluates the whole experimental setup but is time consuming. Here, for the sake of 11 

completeness, we explain both of them. 12 

According to [16] the accuracy of an image-based tracking method is mainly determined by the 13 

dynamic range of the image. Being this true, one must also consider that the image is not always 14 

captured in optimal condition of illumination, contrast, etc. and thus not all available levels (or 15 

bits) are used. Therefore, the effective dynamic range that we can find in a natural image tends 16 

to be much lower. As we said above, measure of the effective amount of information that is 17 

carried in a signal is obtained through the Shannon’s entropy [13]. The entropy of an image gives 18 

an estimation of the number of bits that are required to store the image or, equivalently, the 19 

effective dynamic range used by the image. A gray-scale where all the levels are equally used 20 

presents a maximum entropy of 8. This is the case that would happen for a perfect speckle 21 

texture. On the contrary, an equally distributed black-and-white image has an entropy value of 22 

1. Notice that this is a statistical value and does not represent the quality of the information that 23 

is contained in the image.  24 

 25 
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In the case we are dealing with, we have calculated the entropy in each of the local areas in 1 

which the image was divided (see Figure 4). Results provided an average entropy estimation of 2 

5.670.38 (mean  standard deviation) distributed as it is shown in Figure 4. This result means 3 

that only 51 (25.67) from 256 levels are being used. This seems reasonable, since the background 4 

is grey, and the darkest parts are not completely black, thus many levels remain unoccupied. 5 

Notice that, since these levels are lost from the beginning, image processing operations may 6 

improve the final appearance of the image, but not the total amount of information that is 7 

contained in the image. 8 

 9 

Fig. 4: Local entropy map calculated for each local region defined on the concrete surface 10 

according to Fig. 2 11 

According to [16], the maximum expected accuracy can be roughly calculated as 1/2n, being n 12 

the number of bits of the image codification. Therefore, and identifying the entropy as the 13 

effective number of bits, the maximum subpixel accuracy that is expected with this image can 14 

be established in 0.02 px.  15 

In order to confirm this result and include in the accuracy calculations environmental variables 16 

like the tripod, the camera or the lens, we implemented our method on a static sequence. Since 17 

the object remains unaltered, the mean displacement measured should be zero and the 18 
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standard deviation sets the fluctuation of our measurements or equivalently, the average 1 

subpixel accuracy that can be expected. Notice that this procedure does not only take into 2 

account the calculation errors, but also the ambient noise such as vibrations or shadows 3 

together with possible drifts of the camera.  4 

Therefore, once the concrete probe was set into the compression machine without any 5 

compression on it, the image system was set in its position and the image adjusted and focused, 6 

a video with the specimen with the machine completely stopped was taken. Using these images, 7 

the ROI and tessellate shown in figure 2 were taken to check the zero error and the maximum 8 

expected accuracy. In this case, we obtained an error of 0.010.03 px for the vertical position 9 

and -0.000.03 px for the horizontal one (see figure 5). According to this, the experimental 10 

accuracy of the method can be set in 0.03 px, which is of the same order of magnitude than the 11 

value obtained through the entropy.  12 

  13 

Fig. 5: Standard error maps calculated from local tracking a static concrete cube sequence. 14 

Results are shown for both vertical and horizontal displacements 15 

We would like to underline that with both methods, i.e. entropy and static image, the expected 16 

accuracy of the lower part of the concrete sample is always lower than the upper part. According 17 

to Figure 2, one can see that this part corresponds to an area in the shadow. Therefore, we show 18 

here the importance of a good illumination of the specimen, and also how real measurements 19 
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in open air can have their accuracy diminished just because uneven illumination, despite the 1 

accuracy of the quality of the imaging system being used.  2 

Summarizing these results, we can conclude that the expected experimental accuracy of our 3 

method is 0.03 px within an area of 167x171 px. or equivalently, 1.7 m in an area of 4 

approximately 9.5x9.5 mm2. 5 

4.2. Testing the concrete surface 6 

After accuracy determination of the method, the concrete piece was subjected to several load-7 

unload cycles and the displacement in each local area has been measured. Since we are 8 

observing compression and dilation of the piece, all displacements are relative, so an internal 9 

reference has been taken. In the case of vertical compression or dilations, all movements are 10 

referred to the lower row. For horizontal movements, the reference has been the central 11 

column, i.e. column 8 of 15.   12 

In figure 6, we show the vertical movement registered for each row averaged for all rows at the 13 

same height. In Figure 6a we depict the obtained values while Figure 6b, we depict a color map 14 

representing the vertical displacement of each column in time. The image coordinates are set 15 

so that the origin of distances is in the last row (lower part of the picture) and positive direction 16 

pointing upwards. Therefore, negative values mean that the element is approaching to the 17 

origin, which in this case represents a compression of the cube. We said above that the results 18 

from the lower part of the image have higher errors than the upper ones due to uneven 19 

illumination, but in spite of that, we decided to set the origin in the lower row. The reason is 20 

that the moving plate was located in the lower part of the concrete, while the upper part pushed 21 

against a pinned plate, so the pressure may not be uniform. Therefore, and in our opinion, the 22 

lower part was a more stable reference. Additionally, since we are representing averaged values, 23 

the noise is partially canceled, and the results are not very much affected. 24 
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 1 

Fig. 6: (a) Plot of the relative vertical displacement of each averaged row of local areas shown 2 

in figure 2. Peaks correspond to the load-unload cycles. (b) Color-coded map of the relative 3 

vertical displacement separated for each row.  4 

In Figure 7 we represent similar plots but for the horizontal movements, which represent the 5 

expansion due to the Poisson effect. In this case, the refence for distances is set in the middle 6 

column of the image, being the positive axis pointing to the right. Therefore, negative 7 

increments in the left of the image means that the concrete piece is expanding in that direction, 8 

while positive increment in the right side means that the piece is expanding towards that 9 

direction. In fact, as expected, the piece is expanding in both directions when the compression 10 

increases and coming back to the original size when the compression is released.  11 

  12 

Fig. 7: (a) Plot of the relative horizontal displacement of each averaged column of local areas 13 

shown in figure 2. Peaks correspond to the load-unload cycles. (b) Color-coded map of the 14 
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relative horizontal displacement separated for each column (the first and last columns have 1 

been removed to improve visualization) 2 

 3 

We would like to point here that the first column, depicted as the blue line with a decreasing 4 

trend in figure 7(a) showed an odd behavior during the process. Also, the last column presents 5 

a displacement which seems to be larger than it should, but the case is not as evident as the 6 

previous one. Since this behavior is limited to the first and last columns and does not seem to 7 

affect to the other columns, our hypothesis is that it may be due to border effects or to small 8 

cracks close to the concrete surface due to the shrinkage during the hardening process. In order 9 

to facilitate the visualization and interpretation of the results, in figure 7(b) we have represented 10 

the displacements in absolute value without these two columns. There, we can clearly see the 11 

effect of the loading-unloading cycles in the Poisson expansion of the concrete piece.  12 

Notice that results of displacements represented here clearly shows the subpixel nature of the 13 

method. In the case of vertical deformations, registered displacement is between 0 and 2.5 px 14 

while in the horizontal case, it hardly reaches 0.5 px, with a smooth variation during the cycles.  15 

We would like also to underline that the exact shape of the displacement cycles depends on the 16 

size of the local region. The larger is the region, the softer and smoother are the curves although 17 

the oscillation range remains the same.  18 

5. DISCUSSION 19 

In the results just shown, we presented the local displacements measured for a concrete cube 20 

under progressive loads. Although results are satisfying and show that the compression and the 21 

expansion suffered by the material under small applied loads can be determined from its natural 22 

texture, it is also true that, in order to validate the method, results must be compared with other 23 

methods in the literature. Traditionally, material deformation is not measured in terms of 24 
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absolute displacements but in relative deformations or strains. The local strain for local area, 𝑖, 1 

at a time, 𝑡, can be calculated from its position according to: 2 

𝜀𝑖(𝑡) =
𝑙𝑖(𝑡) − 𝑙𝑖(𝑡0)

𝑙𝑖(𝑡0)
 

(2) 

being 𝑙𝑖 the position of the center of the local area with respect to the reference row (or column). 3 

Therefore, our results must be transformed in order to obtain comparable results. As we did in 4 

the previous section for displacements, the first step now consists of determining the error of 5 

our procedure in order to measure the strain. To do so, we have converted the results obtained 6 

for the static sequence into microstrains. In figure 8, we represent the standard deviations of 7 

strains from the static sequence obtained for rows and columns, which are connected with 8 

vertical and horizontal displacements respectively. Equivalently to the case explained above, the 9 

expected strain is 0, so the error will be determined by the standard deviation. According to the 10 

values obtained, the error of our procedure can be stablished in 20 µε. This result coincides with 11 

that provided in [12] for a similar method, with comparable loads, but using a typical speckle 12 

texture instead of the natural texture of the material. 13 

  14 

Fig. 8: (a) Error-bar plot of the strain dispersion for a static sequence in the vertical direction. 15 

(b) Error-bar plot of the strain dispersion for a static sequence in the horizontal direction.  16 

 17 
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Regarding the experiment itself, in the following figures we show the deformation results. In 1 

figure 9, we depict the strains map in function of time for both vertical and horizontal directions. 2 

They correspond to the displacement fields represented in figures 6(b) and 7(b). One can see 3 

there that, contrary to what should be expected (vertical and horizontal uniform bands for 9(a) 4 

and 9(b), respectively), the camera registered different strain values for different locations in 5 

the concrete piece. This may happen because of two main reasons: the first one may be due to 6 

the border effects, which was commented before. The second reason is an effect of measure 7 

composition and error propagation. For those locations closer to the origin of distances, the 8 

error will be higher, due small distances to the reference point. This happens to lower part of 9 

the surface in vertical direction. For horizontal direction the main error is at the center, where 10 

displacements are small and also distance to the reference point; that makes almost 11 

imperceptible the horizontal strains in this area. 12 

 13 

  14 

Fig. 9: (a) Strain map obtained for the vertical direction (b) Strain map obtained for the 15 

horizontal direction 16 

In order to compare our results with those given by traditional devices, we have compared the 17 

strain results obtained with the camera with those measured with a strain gauge. In figure 10, 18 

we present the values obtained for the gauge together with those from the camera. In order to 19 

cancel out some noise from the procedure, avoid border effects and have a measurement closer 20 
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to that given by de gauges (with a length of 10 cm), in the vertical case (Figure 10(a)) we have 1 

obtained and represented the average value for the rows 3 to 13. In the horizontal case, depicted 2 

in figure 10(b), we have represented the mean value of the columns 3 and 13, thus avoiding the 3 

borders and the central region, which may produce higher errors. 4 

   5 

Fig. 10: (a) Comparison among strain values obtained with a gauge band and the method here 6 

proposed in the vertical direction. (b) Comparison among strain values obtained with a gauge 7 

band and the method here proposed in the horizontal direction. 8 

In Figures 9 and 10, one can see that the first cycle presents larger errors than the remaining 9 

three-ones, which can be appreciated in the first compressive stage. This may be due to small 10 

rotations of the concrete piece in the compression device due to adjustment to the plates, that 11 

remain invisible for the gauges. Counting from the first unload valley (t=180 s), we have 12 

determined that the mean errors obtained with our method is of 31183 µε and 5151 µε for 13 

the vertical and horizontal cases, respectively. These values are a bit higher than those obtained 14 

in [12] using a similar method. Nevertheless, we would like to recall that our texture and 15 

illumination was not optimized, so we consider that these differences are reasonable 16 

6. CONCLUSIONS 17 

Our aim in this paper was to demonstrate the possibility of measuring concrete displacements 18 

due to loading and unloading processes in natural conditions, i.e. without attaching or painting 19 
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a target or a particular texture and with natural illumination, which may imply non optimal 1 

contrast and uneven illumination. The test has been carried out in a laboratory, where the 2 

texture of a concrete cube surface was analyzed in order to obtain the changes due to applied 3 

load and unload cycles.  4 

With a digital camera and using local cross correlation, we have first determined both 5 

theoretically and experimentally the expected accuracy of the method, which has been 6 

established in 0.03 px or, equivalently, 1.7 µm.  7 

The approach to the local displacement was done by dividing the whole region of interest into 8 

small rectangular areas and finding the movement of each one of these areas through the time. 9 

The optimal size of the local regions has been determined by minimizing the local entropy 10 

dispersion. Then, the movement of each mosaic element was found by using normalized image 11 

cross-correlation between each mosaic element for the time considered and the corresponding 12 

element in the first image. To improve the accuracy of the measurement, a thin-plate splines 13 

interpolation was applied on the neighborhood of the correlation peak.  14 

The first noticeable result is that inefficient use of the luminance dynamic range decreases the 15 

expected accuracy of the method. This was already pointed out by the authors in [16] but we 16 

have demonstrated here the practical implications of this problem. It is worth to mention that, 17 

although in this experiment this problem appears in a region of the image, the final result will 18 

affect to the whole image, since results are combined in order to obtain the compression and 19 

dilation of the piece.  20 

Our results show that we are able to determine the local concrete deformation with reasonable 21 

accuracy even without the use of a painted pattern. Even accounting that the results of a camera 22 

are worse than those obtained with a strain gauge, the importance of our proposal relays in the 23 

possibility of measuring inaccessible structures or historical buildings where it is complicated or 24 

even impossible to paint a uniform speckle pattern in the surface. The adjustment of the 25 



21 
 

procedure to the particular quality and grain distribution of the image gives an additional 1 

advantage to the ad hoc implementation. Despite the experiment was implemented inside a lab, 2 

the conditions used are close to which can be found in the measurement of a real structure at 3 

its emplacement.  4 

 5 

 6 
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