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Society is changing,

one learning algorithm at a time.

Pedro Domingos.
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Abstract

With the emergence of new algorithms and the increase in computing power, ma-

chine learning techniques are gaining enormous importance in a variety of fields. An

important limitation of these systems is the need to have a very high amount of data

to train them.

Siamese networks are a special type of neural networks that have certain advantages

when dealing with problems where limited data is available. In this document, an

analysis of this type of networks is carried out, which provides an insight into its true

potential and its limitations. A comparison between existing architectures is presented

and possible improvements are introduced. In addition, its parameters are exposed

and the most appropriate configuration of them for each scenario is suggested.

The final objective of this project is to establish a reference that will help data

scientists to deal with problems that were difficult to address due to the reduced amount

of data available until now.
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Resumen

Con la aparición de nuevos algoritmos y el aumento de la potencia de computo, las

técnicas de aprendizaje automático están cobrando una importancia enorme en gran

variedad de campos. Una importante limitación de estos sistemas es la necesidad de

disponer de una cantidad de datos muy elevada para llevar a cabo el entrenamiento de

los mismos.

Las redes siamesas son un tipo especial de redes neuronales que presentan ciertas

ventajas a la hora de tratar con problemas en los que se dispone de pocos datos.

En este documento se llevará a cabo un análisis de este tipo de redes que permitirá

conocer su verdadero potencial y sus limitaciones. Se presenta una comparación entre

las arquitecturas ya existentes y propuestas de mejora para las mismas. Además, se

exponen sus parámetros y se indica qué configuración de los mismos es la más adecuada

para cada escenario.

Este proyecto tiene como objetivo establecer una referencia que ayude a futuros

cient́ıficos de datos a tratar problemas que eran dif́ıciles de abordar debido a la cantidad

reducida de datos disponibles hasta ahora.
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Chapter 1

Introduction

This document presents the research carried out at University of Alicante focused

on siamese networks. The project was led and supervised by professors Juan Ramón

Rico Juan and Antonio Javier Gallego Sánchez.

1.1 Motivation

Nowadays, due to important advances in machine learning techniques, companies

have realized about the importance of collecting all the information they generate for

further processing. Big Data is the field of study that takes care of this whole process,

and companies are being forced to invest in it if they do not want to be left behind.

Recently, neural networks are being used to address a wide variety of problems due to

their proven ability to deal with almost any type of data. The greater the amount of

available data, the greater the performance of this type of systems.

However, there are still multiple areas where the amount of information available

is not enough to use this type of techniques. An example of this is the recognition

of endangered animals; it is very difficult to obtain images that can be used to train

classification systems due to the extremely low number of specimens. The famous

data science portal, kaggle, held a competition in 2019 to identify species of humpback

whales using only images of their tail 1. The final objective of this competition was to

assist in conservation efforts by improving current classification techniques. Multiple

participants opted to create models based on siamese architectures.

1https://www.kaggle.com/c/humpback-whale-identification
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CHAPTER 1. INTRODUCTION

1.2 Objectives

The main objective of this project is to obtain a detailed analysis of siamese net-

works, a type of neural network with a particularly good performance in problems

with a limited data, applied to image classification following the few-shot approach.

Another important objective is to know the behaviour of non-conventional techniques

when used in embedded space classification.

In order to fulfil these objectives, the following tasks are required:

• Datasets selection: Datasets whose state of the art is well known will be used

to facilitate comparisons. Adaptations will be made to comply with a few-shot

approach. The potential and limitations of siamese networks will be determined

by the difference in complexity among datasets.

• Standard model implementation: A model will be developed and trained

according to the original architecture. It will be compared with traditional models

in terms of accuracy and training time.

• Hyperparameters tuning: All possible parameters will be tested to find those

that have the greatest impact on performance. The most appropiate configuration

of these values will be identified for each scenario.

• Research of alternatives: Documents that present variants of the standard ar-

chitecture will be searched. Models using these architectures will be implemented

and trained.

• Proposal for improvements: Possible modifications that improve some as-

pects of existing models will be explored.

• Model comparison: The results of the most promising models will be compared

to determine which one is the best among them.

• Classification: Different classification algorithms from embedded spaces will be

implemented and they will be compared in terms of speed and accuracy.

• Evaluation: The best performing techniques will be applied to a real-world

problem to verify the results.

2



1.3. DOCUMENT STRUCTURE

1.3 Document structure

For ease of reading, the content of this document is organized into chapters and

sections. Below is a description of the structure that will be followed.

• Chapter 1: Introduction ⇒ Covers the fundamentals of the project and

describes the objectives to be achieved.

• Chapter 2: State of the art ⇒ Provides a general theoretical basis of the

field in which the problem to be analyzed is found.

• Chapter 3: Technologies ⇒ Presents the main tools to use in order to effi-

ciently analyze the problem.

• Chapter 4: Methodology ⇒ Exposes the details of the process that will be

followed during the realization of the project.

• Chapter 5: Classical datasets experimentation ⇒ Provides the results of

the experiments carried out on datasets usually used in machine learning.

• Chapter 6: HISPAMUS dataset experimentation ⇒ Shows the results

of applying the best models obtained in the previous chapter to a real-world

problem.

• Chapter 7: Conclusions and future work ⇒ Presents conclusions about

the data obtained in the experiments and indicates possible future lines of re-

search.

3





Chapter 2

State of the art

Siamese networks were introduced in the early 1990s by researchers at AT&T Bell

Laboratories to solve the problem of signature verification (Bromley et al., 1994). They

created a system consisting of two twin sub-networks (figure 2.1) in charge of extracting

features and a joining neuron that computes the distance between them.

Figure 2.1: Architecture proposed in Bromley et al. (1994)

In recent years the popularity of siamese networks has increased due to their em-

bedding capabilities. Although their use is not as widespread as that of other machine

learning techniques, siamese networks can be found in multiple fields of computer vision

like face recognition (Chopra et al., 2005; Sun et al., 2014; Schroff et al., 2015), image

descriptors generation (Zagoruyko and Komodakis, 2015; Simo-Serra et al., 2015; Ku-

mar et al., 2016), object tracking (Tao et al., 2016; Bertinetto et al., 2016; Tompson

5



CHAPTER 2. STATE OF THE ART

et al., 2015), stereo matching (Luo et al., 2016) and image retrieval (Gordo et al., 2017).

Traditional neural networks learn to classify inputs by generating a probability

distribution over all the potential classes. The best results are obtained when there are

few possible classes and a large amount of data from each of them is available. They

have another important limitation: once a network is trained it cannot classify inputs

of new classes, to accomplish this it would be necessary to re-train the model.

On the other hand, siamese networks learn to determine how related are two or more

inputs. They distribute each of the inputs using a meaningful embedding space where

related items are placed close to each other. Siamese networks have been successfully

employed in zero/one/few shot learnings applications where there is not enough data,

the total number of classes is large and it changes over time. Both Koch et al. (2015)

and Ye and Guo (2018) use siamese networks to classify images of Omniglot (figure

2.2), a dataset of 1623 characters belonging to 50 different alphabets widely used in

one-shot experiments. Using siamese networks, better results are obtained than with

traditional techniques, reaching an accuracy of 92%, which is very close to human rates.

Figure 2.2: Omniglot examples
(Source: https://github.com/brendenlake/omniglot)

6
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Chapter 3

Technologies

Choosing which technologies would be used to carry out the experiments was one

of the most important objectives in the early phases of this project. In this chapter,

we will describe the tools that are employed, directly or indirectly, in the development

of this project disclosing the main motivations that have led us to choose them.

3.1 Software

All the experiments are implemented in Python along with the Keras library. We

use Git, an open source version control system, to manage the project. The repository

is accessible from any computer with internet access as it is hosted in Github. The code

is written using different text editors among which Visual Studio Code stands out for

its autocompletion and linting capabilities. Two online tools have been used to create

graphs and diagrams: http://alexlenail.me/NN-SVG (convolutional architectures) and

https://www.draw.io (siamese architectures).

3.1.1 Python

Python is an interpreted, high-level programming language. According

to the TIOBE Index1 for April 2019, Python is the fourth most popular

programming language and is seeing a steady rise. It can run on all

major operating systems: Ubuntu 18, Windows 10 and macOS Mojave.

Python is widely used in machine learning due to the large collection of libraries and

1https://www.tiobe.com/tiobe-index/
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CHAPTER 3. TECHNOLOGIES

frameworks available. These tools, in conjunction with the simplicity of the language,

reduce considerably the development time.

We use Python version 3.6.7 as it is compatible with most modern libraries. This

version of the language is distributed under Python Software Foundation License, an

open source license. To simplify the installation of the required libraries we use pip

version 19.0.3, the native package manager.

3.1.2 Keras

Keras is a Python neural network framework capable of running on top

of TensorFlow, CNTK, or Theano. According to their public statistics2

for 2018, it has over 250.000 users. It implements the most commonly

used neural network architectures and provides an intuitive API focused

on fast experimentation. It offers an acceptable trade-off between abstraction and

low-level detail.

We use Keras version 2.2.4, as it was the last release when the project started. This

version is distributed under Massachusetts Institute of Technology (MIT) License, an

open source license.

3.1.3 TensorFlow

TensorFlow is an open source library for machine learning developed by

Google. It is used as the backend of Keras because of its flexibility and

seamless integration3. It supports GPU acceleration using CUDA and

cuDNN, which significantly reduces the time needed for training.

We use TensorFlow version 1.12.0 along with CUDA Toolkit version 9.0.

3.1.4 Scikit-learn

Scikit-learn is an open source machine learning library for Python. It

includes the most common classification, regression and clustering algo-

rithms. The documentation is detailed and contains good examples.

We use Scikit-learn version 0.20.0, as it was the last release when the project started.

2https://keras.io/why-use-keras/
3https://www.tensorflow.org/guide/keras
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3.2. HARDWARE

3.1.5 NumPy

NumPy is an open source Python library that supports multidimensional

arrays operations and includes a large collection of high-level mathe-

matical functions. Large operations are executed more efficiently using

NumPy methods than built-in Python instructions. Most of the imple-

mentation of NumPy is written in C and wrapped in Python classes.

We use NumPy version 1.15.4, as it was the last release when the project started.

3.2 Hardware

Hardware is one of the most important parts when dealing with a large amount

of data. Traditional approaches consume most of the time in training and very little

time in evaluating results. However, in our experiments, the bottleneck was found in

the classification and evaluation stages, as we have to work with the complete set of

embeddings generated in the training phase.

3.2.1 Local

Most of the experimentation is carried out using a computer with the following

specifications:

• CPU: Intel Core i7 - 7700K

- Frequency: 4.20 GHz

- Cache: 8 MB

- Cores: 4

- Threads: 8

• GPU: Gigabyte GeForce GTX 970 G1

- Frequency: 1354 MHz

- Memory: 4 GB GDDR5

- CUDA cores: 1664

• RAM: 8 GB DDR4

9
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• SO: Ubuntu 18 (amd64)

Windows 10 (64-bit)

3.2.2 Google Colaboratory

Google Colaboratory, also know as Colab, is a free Jupyter notebook environment

that works in the cloud. It supports Python 3 code including all the libraries stated

in section 3.1. It offers the possibility of running any process as long as it does not

exceed 12 hours of uninterrupted executing time. We have used Google Colaboratory

at certain points when the local computer was not available for use.

The remote machine on which it runs has the following specifications:

• CPU: Intel Xeon

- Frequency: 2.30 GHz

- Cache: 45 MB

- Cores: 1

- Threads: 2

• GPU: Nvidia Tesla T4

- Frequency: 1582 MHz

- Memory: 16 GB GDDR6

- CUDA cores: 2560

• RAM: 12.6 GB

10



Chapter 4

Methodology

In this chapter, we will briefly introduce the experimentation methodology which

will be followed during the rest of this document. All implemented models will be

included in the following repository:

https://github.com/GuillerLT/siamese neural networks

4.1 Datasets

The choice of datasets was one of the first points addressed in the project. We

decided to use three classical datasets, as their state of the art is known in detail,

allowing for easy comparison of results. Most of these datasets have a large amount

of data for training, however, the experiments follow the few-shot approach, so it is

necessary to use a subsample of the available data. Once most of the experiments were

completed, the most successful techniques were applied to a real-world problem. The

available dataset is composed of unbalanced classes with a low number of examples.

4.1.1 MNIST

MNIST (LeCun, 1998) is a large dataset of handwritten digits (0-9) frequently used

in the field of machine learning. This dataset is natively supported by Keras, allowing

us to import it easily. It was created as a combination of two National Institute of

Standards and Technology (NIST) databases1:

1https://www.nist.gov/srd/shop/special-database-catalog
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• Special Database 1: Digits written by high school students.

• Special Database 3: Digits written by employees of the US Census Bureau.

The original data from NIST contains black and white images. In MNIST these

images are normalized to fit in 20x20 boxes and centred in 28x28 images by computing

the centre of mass of the pixels.

Digit
Samples

Examples
Train Test

0 5.923 980

1 6.742 1.135

2 5.985 1.032

3 6.131 1.010

4 5.842 982

5 5.421 892

6 5.918 958

7 6.265 1.028

8 5.881 974

9 5.949 1.009

Table 4.1: Data distribution of MNIST

Table 4.1 shows the number of samples for both training and test sets. Using all

available data, error rates lower than human levels have been achieved (Simard et al.,

1993). Table 4.2 shows some of the models that reach the best results.

Method Error % Reference
DropConnect 0.21 Wan et al. (2013)
Multi-column DNN 0.23 Cireşan et al. (2012)
Augmented Pattern Classification 0.23 Sato et al. (2015)
Maxout Network in Network 0.24 Chang and Chen (2015)
Pooling Functions in CNN 0.29 Lee et al. (2016)

Table 4.2: State of the art of MNIST
(Source: https://rodrigob.github.io/are we there yet/)

The amount of training data in the MNIST dataset (table 4.1) is too high for a

few-shot approach. To accommodate these restrictions, only the first 100 samples of

each class are selected for training. The dataset for testing remains unchanged.
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4.1.2 Fashion-MNIST

Fashion-MNIST (Xiao et al., 2017) is a large dataset of clothing articles from Za-

lando2. This dataset emerged as a response to the needs of data scientists. Traditional

MNIST is too easy for modern techniques and it is overused. Fashion-MNIST con-

tains 28x28 pixel grayscale images associated with one of the ten possible classes. This

dataset is also natively supported by Keras, so it can be easily imported.

Label Description
Samples

Examples
Train Test

0 Top 6.000 1.000

1 Trouser 6.000 1.000

2 Pullover 6.000 1.000

3 Dress 6.000 1.000

4 Coat 6.000 1.000

5 Sandal 6.000 1.000

6 Shirt 6.000 1.000

7 Sneaker 6.000 1.000

8 Bag 6.000 1.000

9 Boot 6.000 1.000

Table 4.3: Data distribution of Fashion-MNIST

As it is a more complex dataset than MNIST, the error rate of the best models are

slightly higher. Still, the results are close to human levels, as shown in table 4.4.

Method Error % Reference
FreezeOut 3.3 Brock et al. (2017)
Random Erasing Data Augmentation 3.7 Zhong et al. (2017)
DENSER 4.7 Assunçao et al. (2018)

Table 4.4: State of the art of Fashion-MNIST
(Source: https://github.com/zalandoresearch/fashion-MNIST)

2https://www.zalando.com
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The amount of training data in the Fashion-MNIST dataset (table 4.3) is too high

for a few-shot approach. To accommodate these restrictions, only the first 100 samples

of each class are selected for training. The dataset for testing remains unchanged.

4.1.3 CIFAR-10

CIFAR-10 (Krizhevsky and Hinton, 2009) is a commonly used dataset created by

the Canadian Institute For Advanced Research. It is a subset of the Visual Dictionary3,

a collection of 80 million images. CIFAR-10 contains 32x32 pixel color images in 10

different classes. This dataset is also natively supported by Keras, and thus it can be

imported to our project easily.

Label Description
Samples

Examples
Train Test

0 Airplane 5.000 1.000

1 Automobile 5.000 1.000

2 Bird 5.000 1.000

3 Cat 5.000 1.000

4 Deer 5.000 1.000

5 Dog 5.000 1.000

6 Frog 5.000 1.000

7 Horse 5.000 1.000

8 Ship 5.000 1.000

9 Truck 5.000 1.000

Table 4.5: Data distribution of CIFAR-10

CIFAR-10 is significantly more complex than MNIST and Fashion-MNIST. Initially

the results did not reach 80% of accuracy, but in recent years there has been progress,

3http://groups.csail.mit.edu/vision/TinyImages/
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as shown in table 4.6. This difficulty is a result of some inherent characteristics of the

dataset (Karpathy, 2011). The following aspects are some of the most problematic:

• Variety: The examples of a class are extremely diverse. For example, the dog

class has images of significantly different breeds.

• Perspective: Examples of the different classes are shown from varying angles and

magnifications.

• Occlusion: In some cases the examples are shown completely, while in others only

a certain part is visible.

Method Error % Reference
Fractional Max-Pooling 3.47 Graham (2015)
Convolutional Net 4.41 Springenberg et al. (2014)
LSUV initialization 5.84 Mishkin and Matas (2015)
Pooling Functions in CNN 6.05 Lee et al. (2016)
Spatially-sparse CNN 6.28 Graham (2014)

Table 4.6: State of the art of CIFAR-10
(Source: https://rodrigob.github.io/are we there yet/)

The amount of training data in the CIFAR-10 dataset (table 4.5) is too high for a

few-shot approach. To accommodate these restrictions, only the first 100 samples of

each class were selected for training. The dataset for testing remains unchanged.

4.1.4 HISPAMUS dataset

HISPAMUS (Iñesta et al., 2018) project aims to provide smart access to archival

manuscripts of music scores. Part of the used dataset has been extracted from Zaragoza

cathedrals musical archives (Calvo-Zaragoza et al., 2016; Rizo Valero et al., 2018).

Instead of using the complete dataset, we will select the images of the 5 less frequent

classes. The model achieved in the HISPAMUS project has an error rate of 100% when

classifying elements of these classes using K -nearest neighbors or convolutional neural

networks approaches.

The images used for the training have been pre-processed by cropping the musical

signs and converting them to grayscale. Since the images have different sizes, they have

been normalized by centring them in a white canvas of 200x200 pixels.
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Label Description Samples Examples

0 Double whole stem 17

1 Triple whole stem 11

2 Longa 6

3 Double whole 3

4 Quadruple whole stem 2

Table 4.7: Data distribution of the 5 less frequent classes of HISPAMUS dataset

Since the available data is limited, a resampling strategy is used. In particular, the

leave-one-out cross-validation4 (LOOCV) procedure is used as a method of evaluating

the model. This approach involves using one observation as the validation set and the

remaining observations as the training set. This is repeated for each of the elements of

the set and the accuracy of all the repetitions is averaged.

4.2 Model

A siamese network consists of two or more twin neural network, each of them re-

ceiving one of the inputs. Figure 4.1 shows the possible layers sharing configurations.

All experiments use full-share architectures because the paired samples always belong

to the same domain. For each dataset, a well-known network with the softmax layer

removed is used as a shared network. An implementation has been made as parame-

terized as possible to ease the testing of different parameter configurations.

The outputs from each subnetwork are used to calculate the similarity between

elements. Distance metric functions (D) are methods used to measure this similarity.

Two elements are considered to be closely related if the value returned by any D is

close to zero. These functions are characterized for satisfying the following properties5:

• Non-negativity: D(x, y) ≥ 0

• Identity of discernible: D(x, y) = 0 ⇐⇒ x = y

4https://academic.oup.com/bioinformatics/article/21/15/3301/195433
5http://slazebni.cs.illinois.edu/spring17/lec09 similarity.pdf
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• Symmetry D(x, y) = D(y, x)

• Triangle inequality: D(x, z) ≤ D(x, y) + D(y, z)

We will experiment with various distance metric functions to determine which of

them is most favourable for training the models.

(a) Full-share (b) Partial-share (c) No-share

Figure 4.1: Layer sharing configurations
(Source: http://conteudo.icmc.usp.br/)

4.3 Pairing

Siamese networks receive multiple inputs. According to the number of inputs, pairs

(two inputs) and triplets (three inputs) can be distinguished. Each element of the

dataset is composed of a single image, so it is necessary to carry out a pairing process

that creates the necessary sets.

Keras offers the possibility of creating custom data generators, which allow the

generation of batches on the fly. The first advantage of this tool lies in its memory

usage: it is not necessary to load all data at the same moment, at any particular time

only one batch is stored. The second advantage is given by the possibility of varying

the pairings in each epoch, which improves training.

Generators for pairs and triplets siamese networks follow slightly different strategies

motivated by the intrinsic characteristics of each architecture, but they share the same

basic principles: Positive pairs, those formed by elements of the same class, will have an

expected output of 0. In contrast, negative pairs, those formed by elements of a different
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class, will have an expected output of 1. In certain variants of siamese networks, the

data generator has been modified to include information on the class of each of the

elements. Network training is significantly affected by data distribution. Better results

are obtained when the number of elements of each class is equally distributed in a

batch. Implementation details for each generator are detailed in the following sections.

4.3.1 Pair pairing

Pair siamese networks receive two inputs, so each image must be paired with another

to form an element. Pairing is done randomly but some restrictions have been added

to improve results:

• A positive pair cannot be formed by an element and itself.

• If more than one positive pair is made, the same couple of elements cannot be

matched more than once.

• If more than one negative pair is performed, the elements with which it is paired

must belong to different classes.

4.3.2 Triplet pairing

Triplet siamese networks receive three inputs. One of them is called anchor and

is paired with two other elements, one positive and one negative. Both pairings are

made randomly but in the positive case, it is ensured that the anchor does not pair

with itself.

4.4 Classification

Natively, siamese networks return a similarity value between inputs. It would be

possible to determine a limit above which two inputs are considered to belong to the

same class. According to this premise, a new input could be compared with each of the

training elements and the percentage of belonging to each class could be determined.

The class with the highest percentage of belonging would be used as the output of the

classifier. This process is very time-consuming and the results are not very precise.
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In this project, the embedded spaces generated by the shared networks will be

stored so they do not have to be computed every time they are required. Various

techniques, such as random forest or k-nearest neighbours, will be applied to these

embedded spaces to classify new inputs in an efficient way.

In addition, t-Distributed Stochastic Neighbor Embedding (Maaten and Hinton,

2008) will be used to graphically represent embedded spaces despite their high dimen-

sionality. T-SNE6 is a manifold learning technique that converts similarities between

data points to joint probabilities and tries to minimize the Kullback-Leibler divergence

(Kullback and Leibler, 1951) between the joint probabilities of the low-dimensional em-

bedding and the high-dimensional data. Its function cost is not convex, which causes

different results depending on the initialization.

6https://scikit-learn.org/stable/modules/generated/sklearn.manifold.TSNE
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Chapter 5

Classical datasets experimentation

Before testing on a real-life problem, tests will be carried out on classic datasets

(MNIST, Fashion-MNIST and CIFAR-10) adapted to the few-shot approach according

to section 4.1. Besides using the original siamese architecture, some alternatives pro-

posed by us and others proposed by various authors will be used to see if they improve

the initial approach. All of the tables in this chapter use accuracy as a measure of

performance. Graphs showing the progress of the training phase are also included.

5.1 Baseline architecture

To estimate the performance of siamese networks it is necessary to know the accu-

racy of traditional approaches. There are many studies on these three datasets, but

none have been found that use only a portion of the training collection. Rather, they

all use all the available data in said collection.

5.1.1 Convolutional neural network

To establish a realistic baseline, three convolutional neural networks have been

implemented using the architecture shown in figure 5.1. Each model receives a single

input, applies a series of convolutions and emits an output using a softmax layer. The

loss is given by the categorical cross-entropy function.

Loss LCCNNI

Figure 5.1: Convolutional architecture
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After testing different models, the following ones have been selected for each dataset.

Their complexity is consistent with the complexity of the data they are meant to

classify. These models (without the softmax layer) will be used as shared networks for

the siamese approaches.

5.1.1.1 MNIST

The model shown in figure 5.2 is the simplest model, as MNIST is the easiest of the

three datasets. Using all available data of each class, this model achieves an accuracy

of 99.25% after 12 epochs 1.

Conv2D               Conv2D               MaxPooling              Flatten           Dense  Softmax

32@26x26

64@24x24 64@12x12 9216
128

10

Figure 5.2: Baseline model of MNIST

5.1.1.2 Fashion-MNIST

The model shown in figure 5.3 is slightly more complex than the previous one, as

it uses an extra max-pooling layer. Using all available data of each class, this model

achieves an accuracy of 94% after 25 epochs 2.

Conv2D                  MaxPooling      Conv2D    MaxPooling   Flatten   Dense  Softnax

64@28x28 64@14x14

32@14x14 32@7x7 1568
128 10

Figure 5.3: Baseline model of Fashion-MNIST

1https://github.com/keras-team/keras/blob/master/examples/mnist cnn.py
2https://www.pyimagesearch.com/2019/02/11/fashion-MNIST-with-keras-and-deep-learning/
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5.1.1.3 CIFAR-10

The model shown in figure 5.4 is the most complex model of the three. It alternates

between multiple convolutional layers and max-pooling. Using all available data of each

class, this model achieves an accuracy of 79% after 50 epochs 3.

Conv2D     Conv2D  MaxPooling  Conv2D     Conv2D   MaxPooling   Flatten  Dense Softmax

10

32@32x32 64@13x13 64@6x6 2304
51232@30x30 32@15x15

64@15x15

Figure 5.4: Baseline model of CIFAR-10

5.1.2 Results

The results of classifying each dataset with its corresponding model are shown in

table 5.1. These values will be used as a baseline for the rest of the comparisons in

this chapter.

Architecture MNIST Fashion-MNIST CIFAR-10
CNN 0.92 0.82 0.42

Table 5.1: Accuracy results of baseline

In the following subsections, the results of each dataset are presented in detail.

Special emphasis will be placed on the analysis of the impact on performance caused

by not using all available data.

5.1.2.1 MNIST

Training this model with the reduced dataset gives results relatively close to its

state of the art (section 4.1.1). Thanks to the simplicity of the architecture the training

process is very fast and it achieves good results after only ten epochs (figure 5.5). The

training and test losses evolve in parallel, so it can be said that the model is able to

generalize based on the data it receives. No significant improvements in accuracy are

achieved after 12 epochs.

3https://keras.io/examples/cifar10 cnn/
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Figure 5.5: Training of MNIST using convolutional neural network

5.1.2.2 Fashion-MNIST

The training of this model with the reduced dataset has a greater impact on pre-

cision, which makes a significant difference compared to the state of the art (section

4.1.2). However, both loss and precision evolve in parallel during training (figure 5.6),

which indicates that it is learning without excessive overfitting of the data it receives.

(a) Loss
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Figure 5.6: Training of Fashion-MNIST using convolutional neural network

5.1.2.3 CIFAR-10

The difference between this model, trained with a limited dataset, and the state of

the art is notable since the accuracy is reduced by half. As the training phase progresses

the test loss increases while the training loss decreases (figure 5.7) due to overfitting.

At the end of the training, the model is able to perfectly classify the images it already

has seen, but it has serious difficulties classifying new ones.
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Figure 5.7: Training of CIFAR-10 using convolutional neural network

5.2 Pair siamese architectures

Pair siamese networks have two inputs that are processed by each of the two shared

parts. In this section, we will analyze the results of the Keras implementation of

multiple models based on the original architecture and a variant of it. The shared part

of the network for each dataset is the same as the corresponding neural network of

section 5.1.1 (removing the softmax layer).

5.2.1 Pair siamese network

The networks in this section are directly inspired by the architecture originally

proposed in Bromley et al. (1994). Each model receives two different inputs which are

processed by the shared part of the network. As shown in figure 5.8, two embeddings

are generated after this process and one of the possible loss functions is applied to

them. If the two inputs belong to the same class the distance between the embeddings

is expected to be as close to zero as possible. On the other hand, if they belong to

different classes, the distance is expected to be greater than a certain margin.

Loss L

X2

X1CNN

CNN

I1

I2

Figure 5.8: Pair siamese architecture
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5.2.1.1 Parameters

In this section, each of the parameters will be analyzed to determine which is the

best global configuration. The selected parameters will be locked for the rest of the

experiments in this chapter.

5.2.1.1.1 Optimizer

Optimizers are functions created to change the parameters of the network in order

to obtain the best posible model. During training the optimizer updates the weights

of each neuron using the error given by the loss function as a guide. As this error is

minimized, accuracy of the model is expected to increase. Table 5.2 shows the results

of the performed experiments. Adam will be used as optimizer for the remaining

experiments, as it has been slightly superior in all three cases.

Optimizer MNIST Fashion-MNIST CIFAR-10
SGD 0.702 0.553 0.221
RMSprop 0.946 0.786 0.416
Adadelta 0.913 0.671 0.326
Adam 0.952 0.791 0.417
Nadam 0.950 0.790 0.405

Table 5.2: Optimizers accuracy comparison. The best optimizer is
highlighted in bold.

Details and references of each optimizer are given in the following subsections.

5.2.1.1.1.1 SGD

Stochastic gradient descent (SGD) is an iterative optimizer proposed in Robbins and

Monro (1951). It solves the problem of redundant information in batches by selecting

a random sample per iteration. A high number of iterations is required and the noise

affects the results excessively.

5.2.1.1.1.2 RMSprop

RMSprop is a good, fast and very popular optimizer proposed in Tieleman and

Hinton (2012). It uses an adaptive algorithm that computes the learning rate of a

weight according to the magnitudes of recent gradients for that weight.
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5.2.1.1.1.3 Adadelta

Adadelta, proposed in Zeiler (2012), is an extension of Adagrad that reduces its

aggressive decreasing learning rate. It accumulates the prior gradients and uses this

information to adapt the learning rate.

5.2.1.1.1.4 Adam

Adam was proposed in Kingma and Ba (2014) and has become one of the most

popular optimizers. It uses the past squared gradients to estimate the first and second

moments of the gradient. This information is used to adapt the learning rate of each

parameter.

5.2.1.1.1.5 Nadam

Nadam is presented in Dozat (2016) as a variant of Adam. Instead of using the

standard momentum to adapt the learning rate, it uses Nesterov accelerated gradient

(NAG) which is considered to be better for slope adaptation.

5.2.1.1.2 Embedding dimensionality

The number of neurons in the last layer of the shared part of the siamese network

determines the number of components of the resulting embedding, i.e. the dimension-

ality of the space. The higher this value, the more features can be reflected, but the

complexity of the training process for the model increases.

Dimensionality MNIST Fashion-MNIST CIFAR-10
2 0.545 0.591 0.296
4 0.729 0.677 0.322
8 0.856 0.744 0.383

16 0.900 0.768 0.387
32 0.919 0.765 0.390
64 0.949 0.767 0.384

128 0.953 0.777 0.393
256 0.949 0.788 0.402
512 0.952 0.791 0.405
1024 0.950 0.789 0.399

Table 5.3: Embedding dimensionalities accuracy comparison. The
best dimensionality configurations are highlighted in bold.

Table 5.3 shows how embedding dimensionality affects the results. A small number

of dimensions worsens the classification of embedded spaces. From 32 dimensions the
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results improve slowly until they stall in 512 dimensions. For this reason, embedded

spaces of 512 dimensions will be used in the rest of the experiments.

5.2.1.1.3 Pairing proportion

The proportion in which an element is paired with other elements of the same class

(positive pairs) and with other elements of different classes (negative pairs) is one of

the most relevant parameters of the training. The pairings are made randomly but

maintain the restrictions described in section 4.3.

Pairs
MNIST Fashion-MNIST CIFAR-10

Positive Negative
4 1 0.938 0.731 0.269
3 1 0.946 0.751 0.331
2 1 0.948 0.766 0.379
3 2 0.948 0.781 0.396
4 3 0.950 0.791 0.420
1 1 0.952 0.791 0.405
3 4 0.951 0.810 0.425
2 3 0.951 0.803 0.444
1 2 0.949 0.796 0.446
1 3 0.953 0.807 0.472
1 4 0.954 0.814 0.475

Table 5.4: Pairing proportions accuracy comparison. The best
pairing proportion is highlighted in bold.

The results are better when the number of negative pairs is greater than the number

of positive pairs, as shown in table 5.4. The best results are obtained when an element

is paired with only 1 element of the same class and with 4 elements of different classes.

This 1/4 proportion will be maintained in the rest of the experiments of the project.

5.2.1.1.4 Loss function

A loss function is a measure of how good a prediction model does in terms of being

able to predict the expected output. If the prediction approximates the expected result

the loss function will return a value close to zero. The optimizer (section 5.2.1.1.1) relies

on this value to properly modify the weights of the neurons.

Figure 5.9 shows the three proven loss functions. Variable y is the expected output:

0 when the two elements belong to the same class and 1 when they belong to a different

class. This variable cancels half of the equation according to its two possible values,
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leaving only the loss corresponding to each pair. The variable D is the set of euclidean

distances generated by the neural network, the first two functions use the average of

the distances and the third uses the sum of them. Variable m is the margin from

which it is considered that the distance between two elements of different classes is

sufficiently large. The following section will address in depth how this parameter

affects the training phase. Lastly, the variable N is the number of dimensions of the

embedded space. As discussed in section 5.2.1.1.2, 512-dimensional spaces are used.
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(b) Lb = (1− y) ·D2 + y ·max(0,m−D2)

0.0 0.3 0.6 0.9 1.2 1.5
Average distance

0.0

0.5

1.0

1.5

2.0

Lo
ss

Positive
Negative

(c) Lc = (1− y) · − log(−D
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Figure 5.9: Pair loss functions

Table 5.5 shows the results of the tests with the different loss functions. The first

two functions give similar results, but the first of them obtains better results in two of

the three datasets, so it will be used in the rest of the siamese network experiments.

Algorithm MNIST Fashion-MNIST CIFAR-10
Loss function (a) 0.954 0.814 0.475
Loss function (b) 0.955 0.801 0.409
Loss function (c) 0.647 0.532 0.180

Table 5.5: Loss functions accuracy comparison. The best loss
functions are highlighted in bold.
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5.2.1.1.5 Margin

The loss function chosen in the previous section has a parameter called margin that

determines from what distance two elements of different classes are considered to be

sufficiently spaced.

Margin MNIST Fashion-MNIST CIFAR-10
0.25 0.946 0.734 0.411
0.50 0.950 0.796 0.460
1.00 0.954 0.814 0.475
2.00 0.948 0.813 0.465
4.00 0.941 0.782 0.248
8.00 0.917 0.759 0.247

Table 5.6: Margins accuracy comparison. The best margin
configuration is highlighted in bold.

Tests performed with different margins are shown in table 5.6. Results worsen at

both ends, both when the margin is very small and when it is very large. For the

following experiments, the default margin of 1.0 will continue to be used.

5.2.2 Pair siamese with classification network

Several alternative architectures for pair siamese networks are presented in Bell and

Bala (2015). According to the document’s own notation, architecture (A) corresponds

to a traditional convolutional neural network (section 5.1) and architecture (B) corre-

sponds to pair siamese network (section 5.2). In this section, we analyze the results of

the implementation in keras of the architecture (C).

Loss

Loss

Loss

L
X2

X1

C2

C1
CNN

CNN

I1

I2

Figure 5.10: Pair siamese with classification architecture

The architecture shown in figure 5.10 has many points in common with the standard

architecture, as it has two inputs that are processed to obtain the embeddings that will

be used to calculate part of the loss. The main difference is that the classification of

both inputs is calculated from these embedded spaces by adding softmax layers. The
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categorical cross-entropy loss is calculated and added to the total loss as a greater or

lesser percentage.

Although the inputs are similar, the expected outputs differ, since it is necessary

to include information on the class to which both elements belong in addition to the

similarity. The default data generator (section 4.3) did not include this information so

some minors modifications are needed.

5.2.2.1 Parameters

All the parameters obtained empirically in section 5.2.1.1 can be used in these

experiments, since this alternative architecture shares many features with the original

architecture, as previously mentioned. However, due to the fact that in this architecture

the total loss is calculated from different losses, a new parameter appears, which is

studied below.

5.2.2.1.1 Loss contribution

This architecture has three outputs with its corresponding associated loss. The

first of them is the similarity between the embedded spaces of both inputs and uses

one of the loss functions described in section 5.2.1.1.4. The other output corresponds

to the predicted class and their loss is obtained through the categorical cross-entropy

function. The contribution of each output to the total loss can be easily adjusted via

the Keras interface 4.

Categorical output
contribution

MNIST Fashion-MNIST CIFAR-10

0.063 0.954 0.828 0.467
0.125 0.962 0.845 0.507
0.250 0.960 0.843 0.500
0.500 0.959 0.840 0.493
1.000 0.960 0.836 0.489
2.000 0.961 0.842 0.485
4.000 0.954 0.832 0.483

Table 5.7: Loss contribution configurations accuracy comparison.
The best loss contribution configuration is highlighted in bold.

The results of the tests with different contributions of the categorical outputs are

4https://keras.io/models/model/#compile
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shown in table 5.7. The differences between the tested configurations are very subtle.

The worst results are obtained at extreme values, when the contribution is too low

or too high. Since in the three datasets the best result has been obtained using a

weighting of 0.125, this value will be used in the rest of the experiments.

5.2.3 Results

The results of classifying each dataset with pair siamese neural networks are shown

in table 5.8. Both architectures slightly improve baseline performance. The alternative

architecture is more effective than the original according to the experiments. In the

following subsections, the progress during the training phase of this architecture will

be analyzed in detail for each dataset.

Architecture MNIST Fashion-MNIST CIFAR-10
Pair siamese 0.954 0.835 0.467
Pair siamese
with classification

0.962 0.846 0.505

Table 5.8: Pair siamese architectures comparison. The best
architecture is highlighted in bold.

5.2.3.1 MNIST

Although the margin for improvement with MNIST was low because the results

were very close to those obtained with the complete dataset, a model with a 4.6%

better accuracy has been achieved. The progress of the training is shown in figure

5.11. There is rapid learning, especially in the first ten epochs. The training and test

losses progress in parallel, which indicates that overfitting is not taking place.
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Figure 5.11: Training of MNIST using pair siamese with classification network
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The embedded space generated with this model is shown in figure 5.12. It is per-

fectly structured since there is no overlap between classes as the separation between

the areas they cover is high enough.
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Figure 5.12: Embedded space of MNIST using pair siamese with classification network

5.2.3.2 Fashion-MNIST

The progress of the training is shown in figure 5.13. The results are 3.2% better

than the baseline at the cost of a training that requires a slightly greater number of

epochs. In the first 30 epochs, it experiences fast and constant learning, then it slows

down. The difference between the loss of training and test is higher than in the baseline.
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Figure 5.13: Training of Fashion-MNIST using pair siamese with classification network

The embedded space generated with this model is shown in figure 5.14 (the class

associated with each label can be found in table 4.3). It is well structured, although

there is some overlapping between class 6 (shirts) and classes 2 (pullovers) and 4 (coats).
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Figure 5.14: Embedded space of Fashion-MNIST using pair
siamese with classification network

5.2.3.3 CIFAR-10

The progress of the training is shown in figure 5.15. In the first 60 epochs, slow

learning takes place, after that moment only the accuracy in the training data improves.

The difference between training and test losses is excessively high due to overfitting.

In spite of this, the model based on the pair siamese architecture is 20,2% more precise

than the baseline.
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Figure 5.15: Training of CIFAR-10 using pair siamese with classification network

The embedded space generated with this model is shown in figure 5.16 (the class

associated with each label can be found in table 4.5). It is completely unstructured,

as classes tend to concentrate on certain areas but there is excessive overlap between

most of them.
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Figure 5.16: Embedded space of CIFAR-10 using pair siamese
with classification network

5.3 Triplet siamese architecture

Triplet siamese networks are inspired by pair siamese architecture. They have

three inputs that are processed by each of the two shared parts. In this section, we

will analyze the results of the Keras implementation of the original model and two

other alternatives. The shared part of the network for each dataset is the same as the

corresponding neural network of section 5.1.1 (removing the softmax layer).

5.3.1 Triplet siamese network

The original triplet siamese architecture was proposed in Hoffer and Ailon (2015).

According to the authors, this architecture is strongly inspired by pair siamese net-

works. As shown in figure 5.17, the model receives three inputs, two of which belong to

the same class. One of these two inputs is used as an anchor and its embedded space

is compared with the embedded space of the other two to compute the distances.

The objective of the training is to maximize the distance between the anchor and

the element of different classes while minimizing the distance between the anchor and

the element of the same class. To achieve this, the following loss function is used:

Ld = max(0, D+ −D− + m)

As in section 5.2.1.1.4, m it is a margin whose value is arbitrarily chosen. The
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margin obtained empirically in section 5.2.1.1.5 is used in the following experiments.

D+ is the euclidean distance between the embedded spaces of the anchor and of the

element of the same class. In the same way, D− is the euclidean distance between the

embedded spaces of the anchor and of the element of a different class.
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X1CNN
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CNNI3 X3

Figure 5.17: Triplet siamese architecture

5.3.2 Triplet siamese with classification network

This architecture arises as an adaptation of the modification made in section 5.2.2

but applied to a triplet siamese network instead of a pair siamese network. The number

of inputs is the same but the class of each is predicted as well as comparing the embed-

ded spaces. As shown in figure 5.18, the overall loss is obtained from the aggregation

of several losses. The loss of class predictions is given by the categorical cross-entropy

function.
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Figure 5.18: Triplet siamese with classification architecture

Keras allows assigning a weighting to each of the losses of the model. In the

experiments of this architecture, the loss contribution obtained empirically in section

5.2.2.1.1 will be used. Since the default data generator (section 4.3) does not attach

information about the class of each of the three images, it is necessary to make a small

modification.
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5.3.3 Triplet siamese with external memory network

This subsection presents a new triplet siamese architecture that uses external mem-

ory to store an embedded space representative of each class, as shown in figure 5.19.

At the end of each epoch, this embedded space is readjusted according to the modi-

fications of the network. These adjustments are obtained as a weighting between the

stored point and the new point. This weighting initially favours the new point, allowing

the representative embedded space to be adapted as the network is trained. With each

epoch, this influence decreases, which forces the network to try to stick to the point

stored in memory.
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Figure 5.19: Triplet siamese with external memory architecture

5.3.4 Results

The results of classifying each dataset with triplet siamese neural networks are

shown in table 5.9. These three architectures do not improve the results of the best

pair siamese architecture despite their greater complexity. In the following subsections,

the progress during the training phase of this architecture will be analyzed in detail

for each dataset.

Architecture MNIST Fashion-MNIST CIFAR-10
Triplet siamese 0.948 0.825 0.460
Triplet siamese
with classification

0.935 0.830 0.468

Triplet siamese
with external memory

0.936 0.827 0.467

Table 5.9: Triplet siamese architectures comparison. The best
architectures are highlighted in bold.
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5.3.4.1 MNIST

The standard triplet model obtained is 3% better than the baseline, but the pair

siamese with classification model has even higher accuracy. The progress of the training

is shown in figure 5.20. This architecture is trained more quickly than the rest of them,

as it achieves very good results with only 6 epochs. In addition, overfitting does not

take place, as training and test losses are very close throughout the whole process.
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Figure 5.20: Training of MNIST using triplet siamese network

The embedded space generated with this model is shown in figure 5.21. The differ-

ences between this embedded space and the one generated by the pair siamese model

are minimal. Classes are concentrated in well-separated areas and there is no overlap

between them.
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Figure 5.21: Embedded space of MNIST using triplet siamese network
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5.3.4.2 Fashion-MNIST

The model obtained with the first alternative triplet siamese architecture is similar

to the baseline and slightly worse than the pair siamese model. The progress of the

training is shown in figure 5.22. The training phase is remarkably faster since the most

substantial advances are made in the first 30 epochs. From that point on, there is a

slight improvement until the process is finished. The difference between training and

test losses is slightly lower than with pair siamese architectures.
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Figure 5.22: Training of Fashion-MNIST using triplet siamese
with classification network

The embedded space generated with this model is shown in figure 5.23 (the class

associated with each label can be found in table 4.3). It is fairly structured, with class

6 (shirts) being the most problematic due to overlap.
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Figure 5.23: Embedded space of Fashion-MNIST using triplet
siamese with classification network
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5.3.4.3 CIFAR-10

Despite the greater complexity of the new architecture compared to the pair ones,

it does not achieve a sufficiently good classification of the CIFAR-10 dataset. The

progress of the training is shown in figure 5.24. Overfitting is even more evident in this

model, as the difference between training and test losses is noticeably greater.
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Figure 5.24: Training of CIFAR-10 using triplet siamese with classification network

The embedded space generated with this model is shown in figure 5.25. Some classes

tend to concentrate on certain areas, however, samples are still excessively dispersed

and overlapping takes place between most of them.
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Figure 5.25: Embedded space of CIFAR-10 using triplet siamese
with classification network
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5.4 Embedded spaces classification algorithm

As explained in section 4.4, siamese networks output whether two elements belong

to the same class or not. To obtain the classification of a single element it is necessary

to employ techniques that use the embedded space generated during training in the

shared part of the network. The following sub-sections present the most commonly

used algorithm followed by other proposed techniques.

5.4.1 Average class distance

Average class distance technique is based on computing the euclidean distance be-

tween the embedded space of the element to be classified and all the labelled embedded

spaces. A histogram is generated with the mean distances to each of the elements of

the class. The class whose average distance is lower is selected as the output class.

5.4.2 Support Vector Regression

Support vector regression algorithms5, based in Cortes and Vapnik (1995), create

non-probabilistic binary liner classifiers. They use kernel functions to map the input

into high-dimensional feature spaces in order to find an optimal boundary between

the possible outputs. Three of the most common kernels have been tested: linear,

polynomial and radial (RBF).

5.4.3 K -nearest neighbors

K -nearest neighbors6 is a non-parametric simple method introduced in Altman

(1992). The algorithm is based on obtaining the K elements whose embedded space is

closer to the embedded space of the element to be classified. Each of these elements

votes the class to which it belongs. The class that receives the most votes is used as

an output.

5https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVR
6https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier
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5.4.4 Random decision forest

Random decision forest7 is a flexible learning technique for classification proposed

in Ho (1995). The method operates by constructing a multitude of decision trees in the

training phase. When growing the threes, instead of searching for the most important

feature, it searches for the best feature among a random subset of them. The output

is estimated as the average prediction of the individual trees. This algorithm has been

widely used lately due to its good accuracy in classification and regression tasks with

high dimensionality data sets.

5.4.5 Results

The results of the experiments with the different classification algorithms are shown

in table 5.10. The methods that allow varying some parameter appear with the dif-

ferent tested configurations. The models with the highest accuracy (pair siamese with

classification, section 5.2.2) have been used to generate the embedded spaces.

Algorithm MNIST Fashion-MNIST CIFAR-10
Average class distance 0.962 0.846 0.505
Support vector regression
(kernel: linear)

0.795 0.780 0.101

Support vector regression
(kernel: polynomial)

0.058 0.069 0.001

Support vector regression
(kernel: radial)

0.405 0.399 0.007

1-nearest neighbors 0.961 0.841 0.508
5-nearest neighbors 0.962 0.844 0.516
15-nearest neighbors 0.960 0.845 0.518
25-nearest neighbors 0.960 0.845 0.517
Random decision forest
(Estimators: 25)

0.940 0.842 0.483

Random decision forest
(Estimators: 50)

0.948 0.844 0.480

Random decision forest
(Estimators: 75)

0.954 0.845 0.497

Random decision forest
(Estimators: 100)

0.956 0.846 0.497

Table 5.10: Classification algorithms accuracy comparison. The
best algorithms are highlighted in bold.

7https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier
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The average class distance algorithm, which is the method commonly used, works

well for all three datasets as expected. Strategies based on support vector regression

give a subpar performance. Of the three kernels tested, the only one that comes close

to the accuracy of the average class distance algorithm is the linear one. Random

decision forest gives good results, especially with MNIST and Fashion-MNIST. In the

case of CIFAR-10, the most complex dataset, the K -nearest neighbors algorithm gives

better results than other techniques, particularly when the value of K is large.

43





Chapter 6

HISPAMUS dataset

experimentation

This chapter shows the results of the experiments on the dataset used in the HISPA-

MUS (Iñesta et al., 2018) project. In order to follow a few-shot approach, only samples

of the 5 least frequent classes will be used as explained in section 4.1.4. Because the

number of available data is excessively low, the leave-one-out cross-validation strategy

will be used.

The most accurate architecture in previous experiments (pair siamese with classifi-

cation, section 5.2.2) will be tested in this chapter. It will be configured according to

the values of the parameters obtained empirically in sections 5.2.1.1 and 5.2.2.1. The

model used to classify the CIFAR-10 dataset (section 5.1.1.3) will be used as a shared

part of the siamese network.

Since the number of elements is so low, instead of using a random subset of the

possible pairs, as in previous experiments, all possible combinations will be used. In

addition, it is necessary to include information of the class of each of the elements of

the pair due to the chosen architecture. Since this dataset is not natively supported

in Keras, a procedure that reads images from memory and preprocesses them needs to

be implemented.

The K -nearest neighbors technique will be used for the classification of embedded

spaces, as it is more appropriate than the average class distance when the data is so

highly unbalanced and there are classes with such a low number of elements. Another

advantage of using this algorithm is that when an error occurs it is possible to identify
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which image is closest to the element being classified. The value of K can only be 1

since class 4 (Quadruple whole stem) has only two elements.

6.1 Results

When leave-one-out cross-validation is applied, errors occur in 6 of the 39 (15.4%)

images. Table 6.1 shows these errors indicating the original image and the closest image

that causes the classification failure. No error occurs with elements of classes 2 (longa)

and 3 (double whole). Classes 0 (double whole steam), 1 (triple whole stem) and 4

(quadruple whole stem) have an error rate of 11.8%, 18.2% and 100% respectively.

Image Real class
Closest
image

Predicted class

0
(double whole steam)

3
(double whole)

0
(double whole steam)

1
(triple whole steam)

1
(triple whole steam)

0
(double whole steam)

1
(triple whole steam)

0
(double whole steam)

4
(quadruple whole steam)

1
(triple whole steam)

4
(quadruple whole steam)

1
(triple whole steam)

Table 6.1: Errors of HISPAMUS leave-one-out cross-validation

The embedded space generated with the pair siamese with classification model in

the first of the 39 iterations is shown in figure 6.1. It is fairly structured with well-

differentiated areas for each of the classes. Although there is no overlap, the distance

between elements of the same class is quite high.

46



6.1. RESULTS

-150 -100 -50 0 50 100 150

-100

-50

0

50

100

150
0
1
2
3
4

Figure 6.1: HISPAMUS pair siamese with classification embedded space
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Chapter 7

Conclusions and future work

A detailed analysis of siamese neural networks applied to few-shot problems has

been presented in this bachelor’s degree thesis. This work can serve data scientists

who face a problem where the amount of data available is very limited or classes are

highly unbalanced. The experiments carried out prove the scope of this technology in

terms of precision.

Firstly, a baseline was established using the most commonly used models for solv-

ing image classification problems, convolutional neural networks. Once the siamese

architectures to be tested were selected, each one of the models was implemented, as

well as the corresponding pairing mechanisms. Even with default parameters, siamese

networks succeed in improving traditional approaches in all scenarios. Modifying these

parameters achieves more refined configurations that return better results. The con-

clusions obtained for each of the parameters are presented below:

• Optimizer: Less sophisticated optimizers negatively affect the training. How-

ever, the difference between the most commonly used optimizers (RMSprop,

Adam and Nadam) is minimal.

• Embedding dimensionality: Above 64 dimensions the exact value of this pa-

rameter has a trivial influence.

• Pairing proportion: It is one of the most influential parameters in the network.

The higher the proportion of negative pairs, the better the results.

• Loss function: The traditional loss function of these networks continues to be

the most effective.
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• Margin: Slight modifications to the default value have very little impact but

major changes worsen the results.

• Loss contribution: When the loss is obtained as the sum of several sources it

is better to maintain a high influence of the similarity between pairs losses.

When the dataset has a low or medium difficulty the reduction of elements available

for training has a smaller effect. On the other hand, when the dataset is complex, such

as CIFAR-10, reducing the number of samples has a critical impact on the overall per-

formance of the system. In both cases, the use of siamese networks over convolutional

networks has been proven to be beneficial in mitigating the effects of using limited data

at the cost of a slight increase in the complexity of the architecture.

The algorithm most commonly used for classification of embedded spaces gives

very good results but it has been proven that other non-conventional techniques, such

as random decision forests or K -nearest neighbors, also perform satisfactorily while

reducing compute time.

Due to the time constraints of this project, some possible improvements and ideas

were left out. Only 4 datasets with a relatively low number of classes have been

experimented with. It would be interesting to extend the tests to datasets with a large

number of classes. Although the proportion of pairings has been studied, they were

always created randomly. There is the possibility of creating pairs following different

strategies based on the current distance between the embedded spaces of the elements.

Aside from image classification, another possible line of work would be to use this type

of network in tasks such as language processing.
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Bromley, J., Guyon, I., LeCun, Y., Säckinger, E., and Shah, R. (1994). Signature

verification using a” siamese” time delay neural network. In Advances in neural

information processing systems, pages 737–744.

Calvo-Zaragoza, J., Rizo, D., and Quereda, J. M. I. (2016). Two (note) heads are

better than one: Pen-based multimodal interaction with music scores. In ISMIR,

pages 509–514.

Chang, J.-R. and Chen, Y.-S. (2015). Batch-normalized maxout network in network.

arXiv preprint arXiv:1511.02583.

Chopra, S., Hadsell, R., LeCun, Y., et al. (2005). Learning a similarity metric discrim-

inatively, with application to face verification. In CVPR (1), pages 539–546.

51



REFERENCES
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