No. of pages: 12 DTD 4.3.1 / SPS-N 2 3 4 5 6 7 8 9 10 11 Available online at www.sciencedirect.com Optics Communications xxx (2004) xxx-xxx OPTICS COMMUNICATIONS www.elsevier.com/locate/optcom Effect of a depth attenuated refractive index profile in the angular responses of the efficiency of higher orders in volume gratings recorded in a PVA/acrylamide photopolymer C. Neipp ^{a,*}, J.T. Sheridan ^b, S. Gallego ^c, M. Ortuño ^c, A. Márquez ^a, I. Pascual ^c, A. Beléndez ^a ^a Departamento de Física, Ingeniería de Sistemas y Teoría de la Señal, Universidad de Alicante, Ap. 99, E-03080 Alicante, Spain ^b Departament of Electronic and Electrical Engineering, University College Dublin, Belfield, Dublin 4, Ireland ^c Departamento Interuniversitario de Óptica, Universidad de Alicante, Apartado 99, E-03080 Alicante, Spain Received 1 July 2003; accepted 27 January 2004 # 12 Abstract 13 A great deal of research has been carried out recently in the field of volume gratings recorded in photopolymer 14 material. The existence of different models that predict the mechanism of hologram formation inside photopolymers, has increased the possibilities of an accurate understanding of the processes involved inside photopolymers during the exposure process. A great deal of experimental research has been done, in order to test the theoretical assumptions. 17 Nonetheless, there is little quantitative data available about higher harmonics components of the refractive index. This is due to the fact that, apart from a few works, Kogelnik's coupled wave theory has been used to fit the temporal 19 evolution of the diffraction efficiency of the first order. The use of this theory does not allow us to obtain information 20 about higher orders and consequently about the higher harmonics in the refractive index. In this paper we apply an 21 algorithm based in the rigorous coupled wave theory to reproduce the angular response curves of the different orders that propagate inside the hologram. This study will be done for attenuated in depth grating profiles. Experimental data 23 for the angular responses of the first and second orders, centered at first and second on Bragg angular replay conditions, will be examined. The experimental data provided will demonstrate that attenuation occurs inside the hologram during the recording step, most probably because of Beer's Law. The information provided in this work is significant, since 25 26 future theoretical models of grating formation in photopolymers should explain this behaviour. © 2004 Published by Elsevier B.V. - 27 © 2001 I donished by Elseviel B. v - 28 PACS: 42.40; 42.70.L; 42.40.E - 29 Keywords: Holography; Volume holograms; Holographic recording materials; Photopolymers; Diffraction gratings E-mail address: cristian@disc.ua.es (C. Neipp). $^{^*}$ Corresponding author. Tel.: +34-6-5903682/3651; fax: +34-6-5909750/3464. 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 114 115 46 47 50 51 52 53 54 55 56 57 59 60 61 62 64 65 66 67 68 69 70 71 74 C. Neipp et al. | Optics Communications xxx (2004) xxx-xxx #### 30 1. Introduction 31 The use of the rigorous coupled wave theory 32 (RCWT) to explain how the electromagnetic field propagates inside different periodic structures has 33 been an important topic in recent years. The 35 method was first described by Moharam and Gaylord [1] for use in modelling planar dielectric 36 37 gratings. However, since then, Moharam, Gaylord 38 and their co-workers [2-6] have applied the RCWT analysis to study many different types of 40 periodic structures. The RCWT has also been used 41 by Kamiya [7] to study practical volume holo-42 grams. In addition the RCWT has been successfully applied to the study of diffractive optical 44 elements [8] and also of photonic band structures 45 [9]. The first algorithm proposed by Moharam and Gaylord [1] encountered some numerical difficulties. The retention of high positive eigenvalues of the matrix of constant coefficients, describing the differential equations in the periodic structure, could lead to numerical instabilities. In addition, the original algorithm demonstrated poor convergent for TM polarization. This fact led to a series of papers with the aim of eliminating these difficulties. The same authors formulated a stable algorithm presenting no numerical instabilities [6]. This new formulation also allows results for high thickness to be calculated. As will be seen this is an important fact when applying the RCWT to photopolymer materials. Parallel to the improvements in the RCWT method, the application and models of photopolymer materials for the recording of high quality diffraction elements has also seen important developments. New theoretical models that permit a deeper understanding of the mechanism of hologram formation in photopolymer materials have been proposed. Since the polymerisation driven diffusion (PDD) model proposed by Zhao et al. [11] several new models have been presented which give a clearer understanding of the hologram formation mechanisms in photopolymers [11–19]. For example, the non-local polymerisation driven diffusion (NPDD) model proposed by Sheridan and co-workers, explains more experimental facts, such as the cut-off of diffraction efficiency for high spatial frequencies. All PDD models predict the existence of higher harmonics in the refractive index. Nonetheless, the usual method to check their validity has been the use of the first order two wave analytical formula derived by Kogelnik [20]. It has estimated in a recent paper by Wu and Glytsis [21] that the use of Kogelnik's theory can lead to worst case errors as high as 30% in the value of the first harmonic component of the refractive index, n_1 , compared to the RCWT method. In a previous paper [22] we have applied the RCWT method to predict the angular response curve of the efficiency of the second order, in this way the higher harmonics in the refractive index recorded in the photopolymer have been obtained. It is clear, therefore, that the use of electromagnetic models allowing for more than two orders, to obtain information of the mechanisms of hologram formation in photopolymers is necessary. In this work we implement an algorithm based on the stable formulation of the RCWT proposed by Moharam et al. [6] to examine the attenuation of the refractive index distribution inside photopolymer materials of high thickness. Apart from the work by Blaya et al. [23] none of the diffusion models consider this attenuation of the profile with thickness. This work incorporated the effects of the attenuation in the efficiency curves of the first order by using Uchida's first order two wave analytical expressions [24]. In this work we extend the study to higher orders and will present experimental data of angular responses of the efficiency of the second order to prove that an attenuated grating profile is stored in the holograms formed in PVA/acrylamide based photopolymers. # 2. Rigorous coupled wave method for periodic 113 attenuated profiles ## 2.1. Rigorous coupled wave equations In this section the differential equations that 116 govern the behavior of the different diffracted or-117 ders propagating inside a transmission diffraction 118 grating will be derived using the RCWT formalism [6]. A more general treatment for the analysis of 120 150 151 153 163 168 single cascaded anisotropic gratings can be foundin [25]. The profile of the dielectric permittivity will only be supposed to vary in the *x* and *z* directions, therefore a planar diffraction grating is studied. The study will also be restricted to the case of unslanted gratings so the dependence of dielectric permittivity with *x*, *z* will be assumed to be in the $$\varepsilon(x,z) = \sum_{h} \varepsilon_{h}(z) \exp[jhKx], \tag{1}$$ 131 K is the modulus of the grating vector, which is related to the period of the interference fringes, Λ , 133 as follows form 129 142 143 $$K = 2\pi/\Lambda. \tag{2}$$ 135 To include the effect of an attenuated grating 136 profile recorded in the photopolymer material each 137 Fourier component of the permittivity will be ex- 138 pressed as a function of z as $$\varepsilon_h(z) = \varepsilon_{h,0} \exp[-\alpha z],$$ (3) 140 where $\varepsilon_{h,0}$ are the initial values (at z = 0) of the harmonic components of the dielectric permittivity. In order to apply the RCWT to obtain the efficiency of the different orders we will study a periodic structure such as that in Fig. 1. All the periodic structure (medium 2), the hologram, is Fig. 1. Holographic grating structure. supposed to be embedded between two media, medium 1 and medium 3. The hologram will be divided in G different sub-gratings of thickness d_g each. The total thickness of the hologram, d, can be obtained as the sum of the thickness of the different sub-gratings $$d = \sum_{g=1}^{G} d_g, \tag{4}$$ where G is the number of gratings retained. Each sub-grating will be supposed to have a 154 periodic dielectric permittivity of the form 155 $$\varepsilon_g(x) = \sum_h \varepsilon_{g,h} \exp[jhKx], \tag{5}$$ $\varepsilon_{g,h}$ is the *h*th Fourier component of the relative permittivity in the grating region *g*, which can be expressed as 159 $$\varepsilon_{g,h} = \varepsilon_{0,h} \exp \left[-\alpha \sum_{g'=1}^{g} d_{g'} \right]. \tag{6}$$ We will also study the case of TE polarization, so the waves propagate in the xz plane, with the electric field polarized in the y direction. If a unit amplitude plane wave impinges onto the hologram from medium 1, the electric field in mediums 1 and 3 can be expressed as: 166 $$E_{1} = \exp[-j(k_{x0}x + k_{z0}z)] + \sum_{i} R_{i} \exp[-j(k_{xi}x - k_{zi1}z)],$$ (7) $$E_3 = \sum_{i} T_i \exp\{-j[k_{xi}x + k_{zi3}(z - d)]\},$$ (8) where $k_{x0} = k_0 \varepsilon_1^{1/2} \sin \theta$, $k_{z0} = k_0 \varepsilon_1^{1/2} \cos \theta$, $k_0 = 170$ $2\pi/\lambda_0$, θ is the angle of incidence in medium 1, λ_0 is 171 the free-space wavelength, ε_1 is the relative permittivity of medium 1, R_i is the amplitude of the 173 ith order backward-diffracted wave and T_i is the 174 amplitude of the ith order forward-diffracted 175 wave. k_{xi} is determined from the Floquet condition 176 $$k_{xi} = k_{x0} - iK, \tag{9}$$ where the z components of the propagation vectors for the ith orders are 178 $$k_{zil} = (k_0^2 \varepsilon_l - k_{xi}^2)^{1/2}, \quad l = 1, 3.$$ (10) 181 To calculate the electric and magnetic field inside 182 medium 2, Maxwell equations must be solved for 183 each sub-grating. If E_g and H_g stand for the 184 electric and magnetic field in the sub-grating g. 185 Maxwell equations in the sub-grating g are: $$\nabla \times \boldsymbol{E}_{g} = -\mathrm{j}\omega \mu_{0} \boldsymbol{H}_{g},\tag{11}$$ 187 $$\nabla \times \boldsymbol{H}_{g} = \mathrm{j}\omega\varepsilon_{0}\varepsilon_{g}(x,z)\boldsymbol{E}_{g}, \tag{12}$$ 189 ε_0 and μ_0 are the vacuum dielectric permittivity 190 and magnetic permeability, respectively and ω is 191 the angular optical frequency of the electromag- 192 netic wave in vacuum. 193 In sub-grating g, the tangential electric (y 194 component) and magnetic (x component) fields 195 may be expressed as: $$E_{g,y} = \sum_{i} S_{g,yi}(z) \exp(-jk_{xi}x), \qquad (13)$$ 197 $$H_{g,x} = -\mathrm{j}\left(\frac{\varepsilon_0}{\mu_0}\right)^{1/2} \sum_i U_{g,xi}(z) \exp(-\mathrm{j}k_{xi}x). \tag{14}$$ - 199 By substituting Eqs. (13) and (14) and Eq. (5) into - 200 Maxwell's equations the following set of coupled - 201 equations can be derived: $$\frac{\partial S_{g,yi}}{\partial z} = k_0 U_{g,xi},\tag{15}$$ 203 $$\frac{\partial U_{g,xi}}{\partial z} = {k_{xi}^2 \choose k_0} S_{g,yi} - k_0 \sum_{p} \varepsilon_{g,(i-p)} S_{g,yp}.$$ (16) - 205 The amplitudes $S_{g,yi}$ and $U_{g,xi}$, can be obtained af- - 206 ter solving Eqs. (15) and (16) by using the for- 207 malism in [6]. - Eqs. (15) and (16) can be reduced to a set of - 209 second order coupled wave equations, which in - 210 matrix form can be expressed as $$[\partial^2 S_{g,v}/\partial^2 (z')^2] = [A_g][S_{g,v}], \tag{17}$$ - 212 where $z' = k_0 z$. - 213 $S_{g,y}$ is a column vector with the *i*th row being - 214 $S_{g,yi}$ and A_g is a matrix which can be obtained in - 215 the form $$A_g = K_{g,x}^2 - E_g, (18)$$ - where E_g is the matrix formed by the permit- - 218 tivity harmonic components, with the i, p element being equal to $\varepsilon_{g,(i-p)}$ and $K_{g,x}$ is a diagonal matrix, with the *i*th diagonal elements being equal to $k_{g,xi}/k_0$. The solutions of Eq. (17) are expressed in terms of the eigenvalues and eigenvectors of matrix A_g : $$S_{g,yi}(z) = \sum_{m=1}^{n} w_{g,i,m} \left\{ c_{g,m}^{+} \exp\left[-k_{0} q_{g,m} \left(z - \sum_{g'=1}^{g-1} d_{g'} \right) \right] + c_{g,m}^{-} \exp\left[k_{0} q_{g,m} \left(z - \sum_{g'=1}^{g} d_{g'} \right) \right] \right\}, \quad (19)$$ $$U_{g,xi}(z) = \sum_{m=1}^{n} v_{g,i,m} \left\{ -c_{g,m}^{+} \exp\left[-k_{0} q_{g,m} \left(z - \sum_{g'=1}^{g-1} d_{g'} \right) \right] + c_{g,m}^{-} \exp\left[k_{0} q_{g,m} \left(z - \sum_{g'=1}^{g} d_{g'} \right) \right] \right\}.$$ (20) If W_g is the matrix composed of the eigenvectors of matrix A_g , Q_g is a diagonal matrix composed of the positive square root of the eigenvalues of the matrix A_g and V_g is the matrix $V_g = W_g Q_g$. The quantities $w_{g,i,m}$ and $v_{g,i,m}$ represent the *i*th row *m*th column elements of matrixes W_g and V_g , respectively, whereas $q_{g,m}$ is the *m*th element in the diagonal of matrix Q_g . In order to obtain the values of the $2 \times N$ arbitrary constants in each subgrating, where N is the number of orders retained, the boundary conditions for the electric and magnetic field must be imposed: be imposed: 239 1. At the first boundary between the first medium 240 and the first sub-grating; z = 0; Phase matching 241 tangential E gives 242 $$\delta_{i0} + R_i = \sum_{m=1}^{n} w_{g,i,m} \times [c_{1,m}^+ + c_{1,m}^- \exp(-k_0 q_{g,m} d_1)], \quad (21)$$ and for tangential *H*: 244 $$\mathrm{j}\delta_{i0}[k_{x0}-k_{1,zi}R_i]/k_0$$ $$= \sum_{m=1}^{n} v_{1,i,m} [c_{1,m}^{+} - c_{1,m}^{-} \exp(-k_0 q_{1,m} d_1)].$$ (22) 2. At the boundaries between two different subgratings (interface (g-1)-g), $z=\sum_{g'=1}^{g-1}d_{g'}$. 247 225 233 234 235 236 237 238 220 221 222 223 280 284 285 286 287 289 290 291 292 294 295 305 248 Tangential *E*: $$\sum_{m=1}^{n} w_{g-1,i,m} [c_{g-1,m}^{+} \exp(-k_{0}q_{g,m}d_{g-1}) + c_{g-1,m}^{-}]$$ $$= \sum_{m=1}^{n} w_{g,i,m} [c_{g,m}^{+} + c_{g,m}^{-} \exp(-k_{0}q_{g,m}d_{g-1})].$$ (23) 250 Tangential *H*: $$\sum_{m=1}^{n} v_{g-1,i,m} [c_{g-1,m}^{+} \exp(-k_{0}q_{g,m}d_{g-1}) - c_{g-1,m}^{-}]$$ $$= \sum_{m=1}^{n} v_{g,i,m} [c_{g,m}^{+} - c_{g,m}^{-} \exp(-k_{0}q_{g,m}d_{g-1})]. \tag{24}$$ 252 3. Finally phase matching E and H at the last boundary between the grating structure (medium 2) and medium 3; $z = \sum_{g'=1}^{G} d_{g'} = d$: $$\sum_{m=1}^{n} w_{G,i,m} [c_{G,m}^{+} \exp(-k_0 q_{G,m} d_G) + c_{G,m}^{-}] = T_i,$$ (25) 256 $$\sum_{m=1}^{n} v_{G,i,m} [c_{G,m}^{+} \exp(-k_0 q_{g,m} d_G) - c_{G,m}^{-}]$$ $$= j(k_{2,zi}/k_0) T_i.$$ (26) The diffraction efficiencies for the different orders are expressed as: $$DE_{ri} = R_i R_i^* \operatorname{Re}\left(\frac{k_{1,zi}}{k_{z0}}\right), \tag{27}$$ 261 $$DE_{ti} = T_i T_i^* \operatorname{Re}\left(\frac{k_{3zi}}{k_{z0}}\right). \tag{28}$$ - 263 Eqs. (21)–(26) form a set of equations with an - 264 equal number of unknowns. Therefore the values - 265 of coefficients $c_{g,m}^-$ and $c_{g,m}^+$ for each subgrating can - 266 be determined, and from Eq. (25) the values of the - 267 transmitted wave amplitudes in medium can also - 268 be calculated. Nonetheless, if typical inversion - 269 matrix algorithms are used to solve the set of Eqs. - 270 (21)–(26) of constant coefficients, numerical un- - 271 stabilities emerge as a consequence of zero ele- - 272 ments in the Eqs. (21)–(26) due to high positive 273 eigenvalues. Therefore, in the next section, we - 274 propose another method to solve the problem only - 275 taking into account the transmitted waves inside - 276 the periodic medium. 2.2. Method of solution based on transmitted waves through the grating structure 278 The basis of the method consists in supposing that each sub-grating can be studied independently, applying the RCWT method to each and neglecting all reflected orders, the transmitted waves generated after passing each sub-grating enter in the next sub-grating. Thus, the possible reflected waves coming back to a grating due to the next one are disregarded. It is important to notice that this is a quite good approximation for volume unslanted gratings assuming there are no abrupt changes of refractive index inside the grating, which is acceptable in the case we are studying. It should be said that the method proposed was tested with the RCWT method (no attenuation assumed) with three, five and seven orders, also 3, 5 and 7 layers were used, and the results were consistent. The electric field incident on subgrating *g* can 296 be expressed as 297 $$E_{g-1} = \sum_{i} T_{g-1,i} \exp \left\{ -j \left[k_{xi} x + k_{gzi} \left(z - \sum_{g'=1}^{g-1} d_{g'} \right) \right] \right\},$$ (29) while the electric field that emerges from grating g 299 is 300 $$E_{g} = \sum_{i} T_{g,i} \exp \left\{ -j \left[k_{xi} x + k_{gzi} \left(z - \sum_{g'=1}^{g} d_{g'} \right) \right] \right\}.$$ (30) Now matching the tangential components of the 302 electric field at $z = \sum_{g'=1}^{g-1} d_{g'}$ gives 303 $$T_{g-1,i} = \sum_{m=1}^{n} w_{g,i,m} \times [c_{g,m}^{+} + c_{g,m}^{-} \exp(-k_0 q_{g,m} d_{g-1})].$$ (31) At the interface $z = \sum_{g'=1}^{g} d_{g'}$ 306 Tangential **E**: 307 $$\sum_{m=1}^{n} w_{g,i,m} \left[c_{g,m}^{+} \exp(-k_0 q_{g,m} d_g) + c_{g,m}^{-} \right] = T_{g,i}.$$ (32) Tangential H: 309 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 374 376 377 378 379380 382 C. Neipp et al. | Optics Communications xxx (2004) xxx-xxx $$\sum_{m=1}^{n} v_{g,i,m} \left[c_{g,m}^{+} \exp(-k_0 q_{g,m} d_g) - c_{g,m}^{-} \right]$$ $$= j(k_{g+1,zi}/k_0) T_{g,i}, \tag{33}$$ 311 where 6 $$k_{g,zi} = (k_0^2 \varepsilon_{g,0} - k_{vi}^2)^{1/2}. (34)$$ - 313 The algorithm used will be described as follows: - 314 1. $c_{1,m}^-$ and $c_{1,m}^+$ are calculated in the first subgrating, g = 1: - 316 By eliminating R_i from Eqs. (21) and (22) the - following equation in terms of the $2 \times N$ unknown - 318 constants $c_{1,m}^-$ and $c_{1,m}^+$ in the first sub-grating can - 319 be obtained $$j\delta_{i0}[k_{x0} + k_{1,zi}]/k_{0} = \sum_{m=1}^{n} [v_{1,i,m} + j(k_{1,zi}/k_{0})w_{1,i,m}]c_{1,m}^{+} + [-v_{1,i,m} + j(k_{1,zi}/k_{0})w_{1,i,m}]c_{1,m}^{-} \times \exp(-k_{0}q_{1,m}d_{1})].$$ (35) 321 Also by eliminating $T_{1,i}$ from Eqs. (32) and (33) 322 the following equation can be obtained $$0 = \sum_{m=1}^{n} \left[-v_{1,i,m} + j(k_{1,zi}/k_0)w_{1,i,m} \right] c_{1,m}^{+} \exp(-k_0 q_{1,m} d_1)$$ $$+ \left[v_{1,i,m} + j(k_{1,zi}/k_0)w_{1,i,m} \right] c_{1,m}^{-} \right].$$ (36) - Eqs. (35) and (36) form a set of $2 \times N$ equations - 325 with $2 \times N$ unknowns and the values of $c_{1,m}^-$ and 326 $c_{1,m}^+$ are calculated. By using Eq. (32) the values of - 327 $T_{1,i}$ are calculated. - 328 2. Once the values of $T_{1,i}$ are known, these can be used in Eq. (31). With the aid of Eqs. (32) and (33) the values of $c_{2,m}^-$ and $c_{2,m}^+$ can also be calculated and finally with the aid of Eq. (32), the values of $T_{2,i}$ are calculated. - 333 3. The procedure of step 2 is repeated for the different subgratings and finally with the aid of Eq. (26) the values of T_i obtained. #### 336 3. Numerical results - In this section, numerical results for the angular responses of the different diffracted orders that - 220 responses of the different diffracted orders tha - 339 propagate in holograms with attenuated profiles - 340 are presented. To make the theoretical simulations a gratings with a spatial frequency of 500 lines/mm was studied. In order to make the theoretical simulations as realistic as possible the grating was assumed to be embedded between air and glass. The average refractive indices chosen for the theoretical simulations were: $n_a = 1$, $n_p = 1.59$ and $n_v = 1.53$ for air, polymer and glass, respectively. The wavelength used in the simulations was of 633 nm in air. Since we were interested in diffraction efficiencies measured in air the calculated diffraction efficiencies were multiplied by appropriated Fresnel coefficients in order to take into account the interface glass-air, so the diffraction efficiencies measured in air were finally calculated. The number of orders retained in the calculations was of 21: $0, \pm 1, \pm 2, \pm 3, \dots$, although it is important to say that there were no difference observed if only seven orders are used for the thickness used in the simulations, 80 µm. For such high thickness also the RCWT method for a grating without attenuation was proved to converge rapidly for a few orders assumed. The study was also done for the different Bragg conditions, and the angular responses of the efficiency of the different orders centered at each ith on-Bragg replay angular condition were calculated. In order to find the angles of the different orders the so called impact parameter, P, was used [26]. The impact parameter, P, describes whether the hologram is reconstructed in the first, second, third, etc., on-Bragg replay angle condition, P taking the values 1, 2, 3, etc. In the unslanted case the impact parameter is defined as $$P = \frac{2\beta}{\kappa} \sin(\theta'),\tag{37}$$ where β is the propagation constant inside the medium and θ' is the angle of the incidence wave inside the medium. It is common in holography to express the profile recorded in the grating in terms of the refractive index. For this study we suppose that a profile of the form $$n(z) = n_0 + n_1(z)\cos[Kx] + n_2(z)\cos[2Kx] + n_3(z)\cos[3Kx],$$ (38) was stored in the grating, where $$n_i(z) = n_{i,0} \exp(-\alpha z)$$ for $i = 1, 2, 3.$ (39) 402 403 404 405 406 407 408 409 410 384 It is easy to relate the harmonic components of 385 the refractive index to the Fourier components of 386 the dielectric permittivity of Eq. (1), provided that 387 $n_1 \ll n_0$. In this case $$\varepsilon_{\pm i} = n_0 n_i \quad \text{for } i = 1, 2, 3.$$ (40) 389 Fig. 2 shows the efficiencies of the *i*th orders for $i = 0, \pm 1, \pm 2$ and -3 as a function of the angle in air for different values of α and for an unslanted 391 392 transmission diffraction grating of spatial frequency 500 lines/mm. All the angular responses 393 394 are centered at the first on-Bragg replay angular condition (P = 1). The values used in the theoretical calculations were a thickness of 80 µm and the 396 397 amplitudes of the three harmonic components of 398 the refractive index were: $n_{1.0} = 0.004$, $n_{2.0} = n_{1.0}$ 8, $n_{3,0} = n_{1,0}/20$. These values were assumed for all the theoretical diffraction gratings studied presented here. The reason of using this value of $n_{2,0}$ was in that it has been recently estimated [22] that the ratio between the second and first harmonic components of the refractive index of $n_2n_1 \sim 7$ is stored in a PVA/acrylamide photopolymer. In all the cases it is clear that the effect of an attenuated profile is to decrease the efficiencies of the different orders propagating in the hologram. An attenuation of the lateral lobes to the main one is also observed in the case of the first and zero order. This can be observed more clearly in Fig. 3 where the efficiency of the first order as a function of the angle of incidence is presented, the efficiency is shown in logarithm scale. The effect of the atten- Fig. 2. Efficiency of orders: $0, \pm 1, \pm 2, -3$ as a function of the angle, centered at first on-Bragg angular replay condition for different values of the attenuation constant α : $0.00, 0.01, 0.02 \ \mu m^{-1}$, for a spatial frequency of 500 lines/mm. The number of layers was of 50. 417 419 421 422 423 424 425 426 427 Fig. 3. Efficiency of order -1, as a function of the angle, centered at first on-Bragg angular replay condition for different values of the attenuation constant α : 0.00, 0.01, 0.02 μm^{-1} , for a spatial frequency of 500 lines/mm. The number of layers was of 50. uation is to smooth the diffraction efficiency curve. This effect is well-known, Uchida for instance [24], explained it using analytical solutions of the diffraction efficiency of the first order obtained from 418 a two coupled wave method. Fig. 4 shows the efficiencies of the *i*th orders for 420 $i = 0, \pm 1, \pm 2, -3$ as a function of the angle in air for different values of α and for a transmission diffraction grating with a spatial frequency of 500 lines/mm. The angular responses centered at the second Bragg angular replay condition (P = 2). Fig. 5 shows the efficiency of the second order in logarithmic scale as a function of the angle of incidence. Again, the effect of the attenuation in the 428 Fig. 4. Efficiency of orders: $0, \pm 1, \pm 2, -3$ as a function of the angle, centered at second on-Bragg angular replay condition for different values of the attenuation constant α: 0.00, 0.01, 0.02 μm⁻¹, for a spatial frequency of 500 lines/mm. The number of layers was of 50. 431 432 434 435 437 438 439 440 442 Fig. 5. Efficiency of order -2, as a function of the angle, centered at second on-Bragg angular replay condition for different values of the attenuation constant α : 0.00, 0.01, 0.02 μ m⁻¹, for a spatial frequency of 500 lines/mm. The number of layers was of 50 different harmonic components of the refractive index was to smooth the off-Bragg curve. In Fig. 6 the efficiencies of the *i*th orders for $i=0, \pm 1, \pm 2, -3$ are represented as a function of the angle in air for different values of α and for a transmission diffraction grating with a spatial frequency of 500 lines/mm. The angular responses were centered at the third Bragg angular replay condition (P=3). Fig. 7 presents the efficiency of the third order in logarithm scale. Clearly the same effects observed in previous cases, is observed. Nonetheless, there exist a higher number of lateral lobes to the main one for the efficiency of the third order if compared to the efficiency of the first order. This is due to the fact that the angular selectivity is reduced whenever the angular responses Fig. 6. Efficiency of orders: $0, \pm 1, \pm 2, -3$ as a function of the angle, centered at third on-Bragg angular replay condition for different values of the attenuation constant α : $0.00, 0.01, 0.02 \ \mu m^{-1}$, for a spatial frequency of 500. The number of layers was of 50. 474 475 476 477 478 486 487 488 489 490 491 492 493 494 495 496 497 498 10 467 468 469 470 are centered at higher Bragg angular replay conditions. ## 447 4. Experimental results 448 In this section we will present the experimental 449 results observed in PVA/acrylamide based photo-450 polymers. The holograms were recorded in PVA/ acrylamide photopolymer material using an Argon 451 452 laser of wavelength 514 nm. The intensity was of 6 mW/cm². The beams impinged on the material symmetric to the normal to the recording material, 455 with a beam ratio of 1:1, so unslanted transmission 456 gratings were recorded with V = 1. The gratings 457 were recorded with two different spatial frequen-458 cies: 545 and 1125 lines/mm. The thickness of the holograms was varied, so as to observe the effects of the attenuation for varying thickness gratings. 461 To prepare the material a method similar to that described in other papers was used [27-29]. A 462 463 polymerisation solution was prepared using poly-464 vinylalcohol 18-88 (PVA) provided by Fluka as a 465 binder, acrylamide (AA) as monomer and yel-466 lowish eosin as dve. In order to obtain the attenuated refractive index profile we firstly obtained the refractive index modulation as if the grating did not have any attenuation, n_{leff} $$n_{\text{leff}} = \arcsin[(\eta_{\text{e}}/(\eta_{\text{e}} + t_{\text{e}}))^{1/2}] \frac{\lambda \cos \theta'}{\pi d}, \tag{41}$$ Fig. 7. Efficiency of order -3, as a function of the angle, centered at third on-Bragg angular replay condition for different values of the attenuation constant α : 0.00, 0.01, 0.02 μ m⁻¹, for a spatial frequency of 500 lines/mm. The number of layers was of 50. where η_e and t_e are the experimentally measured efficiencies of the first and zero order, respectively. The value of η_e was normalized by the sum ($\eta_e t_e$) in order to correct for losses during reconstruction. The first order of the refractive index obtained by this way can be considered as an average over the entire thickness as $$n_{\text{leff}} = \frac{1}{d} \int_0^d n_{1,0} \exp(-\alpha z) \, dz.$$ (42) So finally it is easy to obtain the value of $n_{1,0}$ 480 related to the values of α and the effective first 481 order of the refractive index $n_{1\text{eff}}$ 482 $$n_{1,0} = n_{\text{leff}} \frac{\alpha d}{1 - \exp(-\alpha d)}.$$ (43) Fig. 8 shows the efficiency of the first order as a function of the reconstruction angle, centered at the first on-Bragg angular replay condition for a transmission diffraction grating with a spatial frequency of 1125 lines/mm. The parameters used for the theoretical simulations of Figs. 8–11 are presented in Table 1. The dots represent the experimental data, whereas the continuous line represents the theoretical simulation. As noted in Section 3 the effect of an attenuated grating is to smooth the off-Bragg responses, in particular the adjacent lobes to the main one are slightly raised if compared to a typical simulation for the diffraction efficiency without attenuation in the refractive index profile. This effect is more critical in Fig. 9 Fig. 8. Efficiency of order +1 as a function of the angle, centered at first on-Bragg angular replay condition a transmission grating recorded on PVA/acrylamide photopolymer with a spatial frequency of 1125 lines/mm and a thickness of 68 μ m. The number of layers was of 50. 516 517 519 521 522 523 524 525 Fig. 9. Efficiency of order +1 as a function of the angle, centered at first on-Bragg angular replay condition a transmission grating recorded on PVA/acrylamide photopolymer with a spatial frequency of 1125 lines/mm and a thickness of 750 µm. The number of layers was of 70. Fig. 10. Efficiency of order +2 as a function of the angle, centered at first on-Bragg angular replay condition a transmission grating recorded on PVA/acrylamide photopolymer with a spatial frequency of 545 lines/mm and a thickness of 117 μm. The number of layers was of 50. 499 500 501 502 503 505 506 507 508 509 510 where the efficiency of the first order as a function of the reconstruction angle, centered at the first on-Bragg replay angle condition is presented. The grating presented in this figure has the same spatial frequency as that of Fig. 8, but a higher thickness. The thickness of this grating was of 750 μ m. The effect of an attenuated grating for this high thickness grating was a clear smoothing of the off-Bragg response curve, so the lateral sidelobe nulls (zeroes) have practically disappeared. Figs. 10 and 11 present the efficiency of the second order as a function of the reconstruction angle for two diffraction gratings recorded with a Fig. 11. Efficiency of order +2 as a function of the angle, centered at first on-Bragg angular replay condition a transmission grating recorded on PVA/acrylamide photopolymer with a spatial frequency of 545 lines/mm and a thickness of 160 μm. The number of layers was of 50. Table 1 Values of parameters α , $n_{1.0}$, $n_{2.0}$, d used in the theoretical simulations for transmission diffraction gratings recorded on PVA/acrylamide photopolymers | | Fig. 8 | Fig. 9 | Fig. 10 | Fig. 11 | |--------------------------|--------|--------|---------|---------| | $n_{1,0}$ | 0.0062 | 0.0013 | 0.0037 | 0.0031 | | $n_{2,0}$ | 0 | 0 | 0.0006 | 0.0006 | | <i>d</i> (μm) | 68 | 750 | 117 | 160 | | $\alpha \; (\mu m^{-1})$ | 0.020 | 0.005 | 0.018 | 0.016 | spatial frequency of 545 lines/mm. The angular 512 response was centered at the second on-Bragg replay angular condition. The gratings have different thickness, that of Fig. 10 presented a thickness of 117 µm, whereas the diffraction grating of Fig. 11 presented a higher thickness, 160 µm. In both cases there is good agreement between the theory and the experiment. It is also interesting to comment that in both cases a second harmonic component of the refractive index was stored in the hologram. The ratio of the second to the first harmonic component of the refractive index was found to be of $\sim 1/7$ in both cases. #### 5. Conclusions The effects of an attenuated grating profile on the angular responses of the efficiency of the dif- [29] S. Gallego, M. Ortuño, C. Neipp, C. García, A. Beléndez, I. Pascual, Opt. Exp. 11 (2003) 181. 600 555 1105. 556 [3] M.G. Moharam, T.K. Gaylord, J. Opt. Soc. Am. 73 (1983) | | ferent orders that propagate inside the hologram | [4] T.K. Gaylord, M.G. Moharam, Proc. IEE 73 (1985) 894. | 557 | |------------|-----------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|------------| | 529 | have been presented. In general the smoothing in | [5] M.G. Moharam, T.K. Gaylord, J. Opt. Soc. Am. A 3 (1986) 1780. | 558
559 | | 530 | the off-Bragg response curves demonstrated by | [6] M.G. Moharam, E.B. Grann, D.A. Pommet, T.K. Gay- | 560 | | 531 | Uchida for the first order has also found in the | lord, J. Opt. Soc. Am. A 12 (1995) 1068. | 561 | | 532 | higher orders. The experimental data presented for | [7] N. Kamiya, Appl. Opt. 37 (1998) 5843. | 562 | | 533 | the angular responses of the first and also of the | [8] N.Y. Chang, C.J. Juo, J. Opt. Soc. Am. A 18 (2001) | 563 | | 534 | second order centered at first and second on-Bragg | 2491. | 564 | | 535 | angular replay condition, demonstrated that an | [9] P. Dansas, N. Paraire, J. Opt. Soc. Am. A 15 (1998) | 565 | | | • | 1586. | 566 | | 536 | attenuated refractive index profile is stored in | [10] G. Zhao, P. Mouroulis, J. Mod. Opt. 41 (1994) 1929. | 567 | | 537 | volume gratings recorded in PVA/acrylamide | [11] S. Piazzolla, B. Jenkins, Opt. Lett. 21 (1996) 1075. | 568 | | 538 | photopolymer materials. This attenuation in the | [12] V.L. Colvin, R.G. Larson, A.L. Harris, M.L. Schilling, J. | 569 | | 539 | profile must be taken into account in models that | Appl. Phys. 81 (1997) 5913. | 570 | | 540 | attempt to explain the mechanism of hologram | [13] I. Aubrecht, M. Miler, I. Koudela, J. Mod. Opt. 45 (1998) | 571 | | 541 | formation in photopolymer materials. | 1465. [14] J.H. Kwon, H.C. Chang, K.C. Woo, J. Opt. Soc. Am. B 16 | 572
573 | | | | (1999) 1651. | 574 | | | | [15] G.M. Karpov, V.V. Obukhovsky, T.N. Smirnova, V.V. | 575 | | 542 | 6. Uncited reference | Lemeshko, Opt. Commum. 174 (2000) 391. | 576 | | 372 | o. Chefted reference | [16] J.T. Sheridan, J.R. Lawrence, J. Opt. Soc. Am. A 17 (2000) | 577 | | 5.42 | [10] | 1108. | 578 | | 543 | [10]. | [17] J.T. Sheridan, M. Downey, F.T. O'Neill, J. Opt. A: Pure | 579 | | | | Appl. Opt. 3 (2001) 477. | 580 | | | | [18] J.R. Lawrence, F.T. O'Neill, J.T. Sheridan, J. Opt. Soc. | 581 | | 544 | Acknowledgements | Am. B 19 (2002) 621. | 582 | | | | [19] C. Neipp, S. Gallego, M. Ortuño, A. Márquez, M. Álvarez, | 583
584 | | 545 | This work was supported by the Ministerio de | A. Beléndez, I. Pascual, J. Opt. Am. B 20 (2003) 2052. | 585 | | 546 | Ciencia y Tecnología, CICYT, Spain, under pro- | [20] H. Kogelnik, Bell Syst. Tech. J. 48 (1969) 2909.[21] S. Wu, E.N. Glytsis, J. Opt. Soc. Am. B 20 (2003) 1177. | 586 | | 547 | ject MAT2000-1361-C04-04. 04 and by the "Ofi- | [22] C. Neipp, A. Beléndez, S. Gallego, M. Ortuño, I. Pascual, | 587 | | 548 | cina de Ciencia y Tecnología" (Generalitat | J.T. Sheridan, Opt. Exp. 11 (2003) 1835. | 588 | | | • | [23] S. Blaya, L. Carretero, R.F. Madrigal, A. Fimia, Appl. | 589 | | 549 | Valenciana, Spain) under project GV01-130. | Phys. B 74 (2002) 243. | 590 | | | | [24] N. Uchida, J. Opt. Soc. Am 63 (1972) 280. | 591 | | | | [25] E.N. Glytsis, T.K. Gaylord, J. Opt. Soc. Am. | 592 | | 550 | References | [26] R.R.A. Syms, Practical Volume Holography, Clarendon | 593 | | | | Press, Oxford, 1990. | 594 | | 551 | [1] M.G. Moharam, T.K. Gaylord, J. Opt. Soc. Am. 71 (1981) | [27] S. Blaya, L. Carretero, R. Mallavia, A. Fimia, M. | 595
506 | | 552 | 811. | Ulibarrena, D. Levy, Appl. Opt. 37 (1998) 7604. | 596
597 | | 553 | [2] M.G. Moharam, T.K. Gaylord, J. Opt. Soc. Am. 73 (1983) | [28] C. García, A. Fimia, I. Pascual, Appl. Phys. B 72 (2001) 311. | 598 | | 554
555 | 451. [3] M.G. Moharam, T.K. Gaylord, J. Ont. Soc. Am. 73 (1983) | [29] S. Gallego, M. Ortuño, C. Neipp, C. García, A. Beléndez, | 599 | | | | | |