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Abstract: Snapshot imaging polarimeters are used in many different areas. Recently, division
of focal plane (DoFP) polarimeters have proved useful as snapshot polarimeters for dynamic
applications. For an optimal performance of polarimeters, different works dealing with the
error analysis of such devices are proposed in literature. In terms of noise amplification from
intensity measurements to the final polarization calculations, well-established quality metrics,
as in the condition number or the equally weighted variance criteria, are used. Other studies
analyze systematic errors due to deviations in the construction parameters. However, something
not considered so far is the effect produced by misalignment between the various pixelated
masks over the pixelated structure of the camera sensor, always occurring in experimental
implementations of DoFPs. In this work, we study the effect of such misalignments in DoFP
polarimeters and demonstrate how they lead to polarimetric systems composed of partially
depolarized analyzers. We calculate the combined degree of polarization related to different
amounts of misalignment and analyze the corresponding system performance. From this study,
we show how an imaging polarimeter based on partially polarized analyzers can still lead to a
robust and accurate polarimetric performance, and we also provide the misalignment limits in
which an acceptable performance is obtained. We evaluate both the monochromatic and the
polychromatic cases with special focus on the latter.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

The state of polarization (SOP) provides great deal of information about light-matter interactions.
There is a large interest in the use of polarimetric information in many applications including
biomedical physics [1–3], astronomy [4,5], polarizing sample characterization [6–8], among
others. Conventional optical imaging is typically restricted to the use of light field intensity
information. Spectroscopic systems also include the characteristic wavelength of light. However,
the use of polarimetric information is opening new possibilities in the various areas mentioned
before and in many others, which has prompted the proposal of different polarimetric imaging
cameras, i.e. imaging polarimeters. Some categories are considered in the literature [9], as
division of time polarimeters (DoTP), amplitude (DoAmP), aperture (DoAP), and focal-plane
(DoFP). Our main interest in the paper are focal-plane imaging polarimeters which offer serious
advantages, such as robust design, small size and dynamic acquisition [10–17], enabling for
snapshot polarimetry.

DoFPs can be divided in two categories depending on if they offer partial or complete Stokes
polarization information. In the former case, a micropolarizer array (MPA) [11–13] is usually
attached to the camera sensor and the pixels of both the MPA and the sensor are aligned. The first
three Stokes components are measured in the image, which is sufficient for some applications. In
the complete Stokes case, Kikuta et al. built a DoFP able to fully characterize light polarization
thanks to the inclusion of a birefringence microretarder based on subwavelength gratings [14].
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Since then various designs were proposed and/or implemented [10,15–17]. Hsu et al. [10]
fabricated a DoFP based on a patterned liquid crystal polymer (LCP) microretarder layer, an
isolation layer, and a uniform LCP polarizer. Zhao et al. [15] demonstrated a system based on
patterning a liquid-crystal (LC) layer on top of a visible-regime metal-wire-grid polarizer. Then,
Gu et al. [17] analyzed a design based on an encoded birefringent crystal and a MPA.
For a complete Stokes vector characterization a minimum of four independent polarization

analyzers are necessary, which produces a 4× 4 square measurement matrix [18] associated
with the polarimeter. The polarimeters noise amplification from intensity measurements to the
Stokes vector calculation is given by the condition number (CN) [19] of the particular polarimeter
measurement matrix, which considers how well defined is this matrix to inversion. In the case
of redundant measurements, i.e. more than four polarization analyzers, the equally weighted
variance (EWV) [18,19] is a more appropriate figure of merit. Related parameters are the
sensitivity of the Stokes parameters to noise, which can be used to assess if error amplification
depends on the specific SOP measured [18].

Systematic errors due to deviations in the construction parameters (retardation, orientation of
neutral lines, etc.) are also usually analyzed [10,15,17]. An analysis of the bandwidth tradeoffs,
error performance, and noise resiliency of full-Stokes micropolarizer array (MPA) designs
was also provided in Ref. [20]. However, something not considered is the effect produced by
misalignment between the various pixelated masks over the pixelated structure of the camera
sensor, always occurring in experimental implementations. This misalignment generates a
spatially incoherent sum of polarized light, which results in a finite degree of unpolarized light
incident onto the pixels of the camera sensor. The system is thus working as composed of a set
of partially depolarized analyzers, produced by this spatial averaging. Therefore, the question
that comes into play is: what is the performance of a Stokes polarimeter with polarization
analyzers partially depolarized?. Even knowing that it is never beneficial to use partially polarized
illumination or analysis for polarimetry [21], we want to study if DoFP based on partial polarized
analyzers, which arise from spatial misalignments, can still lead to polarimeters with acceptable
performance.
The outline of this work is as follows. In Section 2 we mathematically describe how spatial

misalignments increase the depolarization content of resulting polarization analyzers. In Section
3, the effect of these partial analyzers in the performance of the resultant polarimeter is thoroughly
studied through a series of simulations. The monochromatic and polychromatic cases are both
provided in Subsections 3.1 and 3.2, respectively. In addition, a robustness study to manufacturing
errors is also given in Subsection 3.3. Finally, the main conclusions of the work are given in
Section 4.

2. Misalignment effect on a DoFP polarimeter: partially polarized analyzers

Let us consider a specific model from which to build the analysis. The SOP of light can be
described by the Stokes vector ®S, consisting of four components (S0, S1, S2, S3). To obtain the
values for the four components a minimum of four independent measurements are necessary. In
DoFP imaging polarimeters, this means examining the intensity values of four neighboring pixels
of the camera sensor. This collection of four intensity measurements arises from the projection
of the local input polarization on the DoFP polarization analyzers basis, which is spatially and
periodically repeated all along the polarization state detector (PSD). In Fig. 1(a) we show the
basic scheme that we consider in this paper, which is very similar to the device developed by
Hsu et al. [10]. A pixelated retarder, the microretarder array (MRA), is stacked onto a polarizer
overlaid onto the pixelated structure of the sensor camera. The pixels of the MRA coincide with
the pixels of the sensor. We consider that the retardance is the same across the whole aperture and
the alignment of the retarder neutral lines spatially vary —note that this system is equivalent to a
polarimeter based on a rotating retarder [19] —, but without requiring mechanical movements. A



Research Article Vol. 2, No. 5 / 15 May 2019 / OSA Continuum 1567

macropixel composed of four pixels in the MRA (i.e., the polarization analyzer basis) is necessary
to obtain the Stokes vector of the fragment of light incident to the macropixel. Note that in DoFPs
we sacrifice spatial bandwidth to obtain snapshot measurements. In fact, the spatial resolution of
the polarimeter is limited by the 2× 2 analyzer macropixel aperture. Each of the four elements in
the macropixel is a different polarization analyzer so that only one measurement is produced on
each pixel sensor. When considering the values of the other 3 neighboring pixels, then we obtain
the full Stokes vector.

Fig. 1. (a) Scheme for a DoFP with theMRA. Black arrow shows a detail of four macropixels
(labeled by four different colors); (b) Scheme of the misalignment between the pixelation of
the microretarder (red) and the pixelation of the camera sensor (black).

Let us name ®A, ®B, ®C, ®D the Stokes vectors associated with the pixel apertures of the MRA for
the four analyzers composing the macropixel (red squares A, B, C, D in Fig. 1(b)). They are fully
polarized states. In accordance with Fig. 1(b), let us consider some misalignment between the
MRA pixels and the sensor pixels, across the horizontal ∆x and the vertical ∆y directions, and for
a sensor pixel size d. Then the four pixel apertures of the MRA have a partial overlap along each
of the camera sensor pixels. This defines a 2× 2 macropixel structure which repeats across the
sensor, which are the black squares A’, B’, C’, D’ in Fig. 1(b).
That is, the actual four Stokes analyzers of the analyzer basis can be written as a linear

combination of the Stokes analyzers for a system without misalignments, resulting in the
following four primed analyzers:

®A′ = p1®A + p2®B + p3 ®C + p4 ®D
®B′ = p2®A + p1®B + p4 ®C + p3 ®D
®C′ = p3®A + p4®B + p1 ®C + p2 ®D
®D′ = p4®A + p3®B + p2 ®C + p1 ®D

(1)

where the coefficients pi express the spatial contribution of the each of the four detector states as
follows,

p1 = (d − |∆x|)(d − |∆y|)

p2 = |∆x|(d − |∆y|)

p3 = (d − |∆x|)|∆y|

p4 = |∆x| |∆y|

(2)
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We note that the degree of the spatial contribution expressed by the coefficients pi does not
depend on the sense of the misalignment: that is why we express the displacements ∆x and ∆y
in absolute values. We consider maximum misalignments along X and Y of a 10% of the size
of the pixel, which are reasonable tolerances when constructing the detection system onto the
camera sensor.
The resultant intensity values on the sensor pixels are given by,

®I = W®S (3)

where W is the measurement matrix whose rows are given by the four actual analyzers (i.e., ®A′,
®B′, ®C′, ®D′), ®S is the column vector for the incident polarization state under measurement, and the
resultant intensity values are arranged as column vector ®I. Thus, by taking into account relations
in Eq. (1), we see how for values of ∆x or/and ∆y different than 0, matrix W in Eq. (3) will
describe a polarimeter based on partial polarized analyzers.
In experimental implementations, the measurement matrix W is calibrated by applying a

series of known incident polarization states. A 6 SOPs basis quite used for measurement matrix
calibration is: (1,1,0,0)T , (1,−1,0,0)T , (1,0,1,0)T , (1,0,−1,0)T , (1,0,0,1)T and (1,0,0,−1)T [18,22],
where T states for vector transpose. Once W matrix is calibrated, inversion of Eq. (3) then
provides the incident SOP as a function of the intensities measured for the four analyzers,

®S = W−1®I (4)

Due to the matrix inversion conducted in Eq. (4), for an optimum performance of polarimeters,
in terms of noise amplification, the polarization analyzers of the system must be selected to
determine a measurement matrix W as far as possible of singular matrices. This can be done by
choosing a polarization analyzer basis minimizing the condition number [18,19] of matrix W. For
a 4× 4 polarimetric matrix, the minimum value for the condition number is CNmin=

√
3 = 1.7321

[9,18,19], ensuring an excellent performance of polarimeters. However, most of polarimeters
proposed in literature present condition numbers within the range [1.73-4], so CNs smaller than
3 can be considered in general as acceptable values, and provide performances suitable for most
polarimetric applications.

3. Results and discussion

In this section, we provide different simulations to analyze the effect of the spatial misalignments
discussed in Section 2 on the performance of DoFP polarimeters. The study is conducted both
for the monochromatic (3.1) and polychromatic (3.2) cases. In addition, a robustness study to
manufacturing errors is also given in Subsection 3.3.

3.1. Monochromatic DoFP polarimeter

Let us proceed with the numerical simulations. First thing we need to do is to calculate the
system parameters (values for the common retardance Γ and the orientations φA, φB, φC, φD
of the four pixel apertures A, B, C, D in the MRA) that lead to an optimum performance of
the polarimeter. We assume an ideal linear polarizer with infinite extinction ratio. We first
consider monochromatic illumination. We run a non-linear iterative procedure where the figure
of merit to minimize is the CN for the measurement matrix W. The first simulation is conducted
when the detection system has no misalignments, and thus the CNmin must be achieved. Since
there are local minima producing CN values higher than CNmin, we launch the minimization
procedure with different starting values. We have verified that with less than ten tries we obtain
such CNmin. This optimum CN is obtained by solution sets where the retardance is Γ = 131.8◦
and the orientation of the fast axes of the microretarders with respect to the transmission axis
of the linear polarizer are ±15.1◦ and ±51.7◦ in coincidence with the discussion by Sabatke et
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al. [19]. In the following we have chosen the following solution set:Γ = 131.8◦, φA = −51.7◦,
φB = +51.7◦, φC = −15.1◦, φD = +15.1◦. This solution parameters is used to construct the
corresponding fully polarized ®A, ®B, ®C, and ®D Stokes analyzers that appear in Eq. (1), and lead to
the optimal instrumental matrix W (in terms of noise amplification). Note that this polarization
basis defines a regular tetrahedron if represented onto the Poincaré sphere, which corresponds to
an optimum polarimeter based on a basis of four polarimetric analyzers [19,23].
Afterwards, by setting a displacement between the pixelation of the CCD sensor and that of

the microretarder (i.e., for ∆x,0 and/or ∆y,0), Stokes analyzers ®A, ®B, ®C, and ®D are modified
to ®A′, ®B′, ®C′, and ®D′, according to Eqs. (1) and (4). This modification also transforms the
corresponding instrumental matrix W, which now includes partial polarized Stokes analyzers.
This leads to the simulated CN maps in Fig. 2 (monochromatic case). Figure 2(b) shows the
degree of polarization (DoP) as a function of the misalignment along the X and the Y directions
(for a maximum misalignment of 10%), averaged for the four polarization state detectors. As
logical, for no misalignment the polarization analyzers are fully polarized and the averaged DoP
is one (bottom-left corner). Conversely, the larger the misalignment, the smaller the DoP, with a
minimum value of 0.75 (upper-right corner). In Fig. 2(d) we show the plot corresponding to the
averaged DoP when there is only X-misalignment, ∆x. We see that the values decrease to about
0.87.

Fig. 2. (a) CN map obtained as a function of the X and Y misalignments; and (c) CN map
for the particular case where ∆y = 0. (b) Average DoP for the 4 analyzers as a function of
the X and Y misalignments; and (d) Average DoP for the particular case where ∆y = 0;
Monochromatic case.

In Fig. 2(a) we show the CN of the W analyzers matrix as a function of the X and Y
misalignments, where we see how the CN increases from the minimum possible value, 1.73
(bottom-left corner; when there is no misalignment), to a maximum value about 2.6 (upper-right
corner), for the range considered of 10% of the size of the pixel. As stated before, CN values
smaller than 3 are accurate enough for most applications, as the detection is still robust to noise
amplification. In Fig. 2(c) we show the cut along the X-misalignment when∆y = 0 and we see that
CN increases from 1.73 monotonically till about 2.2. Results in Fig. 2 show how misalignments
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between MRA pixels and sensor pixels lead to DoFP polarimeters based on partially polarized
analyzers (Figs. 2(b) and (d)). What is more, when these misalignments are smaller than 10%,
the performance of the resulting polarimeters are still acceptable, in terms of error amplification
(Figs. 2(a) and (c)).

Now we show the values for the equally weighted variance (EWV) [19] as a function of the X
and Y misalignments. Together with CN, this figure of merit is commonly used to assess the
noise amplification properties of polarimeters. In many instances it is more intuitive to interpret
since it is directly related with a statistical concept. In Fig. 3(a) we show the EWV map of the W
analyzers matrix as a function of the X and Y misalignments. We see an increase from 2.5 when
there is no misalignment to a maximum of 4.4 (upper-right corner). Figure 3(b) shows the cut
along the X-misalignment when ∆y = 0, with a monotonous increase from 2.5 till about 3.3.

Fig. 3. (a) EWV as a function of the X and Y misalignments; and in (b) for ∆y = 0.
Monochromatic case.

3.2. Polychormatic DoFP polarimeter

In the literature, imaging polarimeters tend to be optimized for monochromatic illumination.
However, there are many applications where it is interesting to obtain the polarimetric information
for a series of illumination wavelengths, such as in [3,24]. Therefore, we also consider the case
of polychromatic illumination, where various discrete wavelengths are applied sequentially. In
particular, we consider wavelengths 625, 590, 530 and 470 nm, which sample the whole visible
spectrum. In this case, our figure of merit is adapted to account for all the wavelengths tested. In
particular, it is calculated as the condition number resultant from the addition of the CN given
by each of the four wavelengths. We consider the following expression for the variation of the
retardance as a function of the wavelength,

Γ(λ) = (2π/λ)∆n(λ)e (5)

where e is the thickness of the MRA and ∆n is the birefringence, which varies with the wavelength
according to the dispersion function of the material composing the MRA.
For the purposes of this paper we approximate ∆n as a constant, because variations of ∆n as

a function of the wavelength, in materials commonly used for composing MRAs, are usually
small compared with the effect of the parameter λ in Γ. This does not reduce the generality of
the conclusions obtained.

Since the retardance for the various wavelengths is fixed through Eq. (5), in the minimization
procedure we have the same 5 degrees of freedom than in the monochromatic case. Once the
retardance at one wavelength is obtained, the values at the other ones are simply scaled as,

Γ(λ2) = (λ1/λ2)Γ(λ1). (6)

As in the monochromatic case, the minimization procedure needs to be launched from different
starting values to avoid stagnation in a local minimum, moving away from the optimum CN
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value. The optimum CN is produced by solution sets where the retardance at 625, 590, 530 and
470 nm is respectively 109.8°, 116.3°, 129.5° and 146.0°. In addition, the orientation of the fast
axes of the microretarders with respect to the transmission axis of the linear polarizer are ±15.1◦
and ±51.5◦. Note that the four above stated retardances obtained for the polychromatic case are
different from the ideal value of 131.8° obtained in the monochromatic case (see section 3.1). In
the same vein, the above shown orientations of the microretarders neutral lines, obtained for the
polychromatic case, are slightly different from those that were obtained in the monochromatic
case (i.e., ±15.1◦ and ±51.7◦; see section 3.1). These optimized values differences between
the monochromatic and polychromatic cases occur to compensate the polychromatic effect of
illumination.
From the multiple solution sets, we show the results for φA = −15.1◦, φB = +51.5◦,
φC = +15.1◦, φD = −51.5◦. In Fig. 4 we show the resultant polarization analyzer states on the
Poincaré sphere. The four colors represent the four wavelengths considered. In each case, the
corresponding tetrahedrons, whose vertices are defined by the 4 polarization analyzers, are also
plotted. We note that as opposed to the monochromatic case discussed before, now these values
do not represent the regular tetrahedron but a trade-off is found for the 4 wavelengths.

Fig. 4. Representation on the Poincaré sphere of the 4 optimal analyzers, where the 4
different colors indicates the 4 different wavelengths.

Now we show in Fig. 5(a)-(d) the contour plots for the DOP as a function of misalignment
respectively for the wavelengths 625, 590, 530 and 470 nm. Within the 10% range of misalignment
considered, the DOP values drop from 1 to about 0.75 in all the cases. When looked carefully,
we see that contour maps for 625 nm (Fig. 5(a)) and 470 nm (Fig. 5(d)) are slightly asymmetrical
with respect to X and Y misalignment. The retardance of the MRA at these wavelengths separates
more from the ideal 131.8°, therefore the analyzer departure from the regular tetrahedron is
responsible for this asymmetrical sensitivity to misalignment.
In Fig. 6(a)-(d) we show the CN as a function of misalignment and for the 4 wavelengths.

The CN maps have a different shape and range of values for the 4 wavelengths. As numerical
quantifiers of the polarimeter performance for those 4 wavelengths, we next provide, for each case,
the values for two limit situations: (1) when there are no misalignments between the pixelation of
the CCD sensor and that of the microretarder; and (2) for the maximum X-Y displacement. This
data is given into parentheses, where the first number refers to the ∆x=∆y= 0 situation and the
second number to the ∆x=∆y= 0.1d situation. In particular, the CNs for these two limits cases
are of (2.25; 2.87), (2.04; 2.65), (1.78; 2.62) and (2.32; 3.57), for the wavelengths 625, 590, 530
and 470 nm, respectively.
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Fig. 5. Average DoP for the 4 analyzers as a function of the X and Y misalignment for: (a)
625, (b) 590, (c) 530 and (d) 470 nm.

Fig. 6. CN for the 4 analyzers as a function of the X and Y misalignment for: (a) 625, (b)
590, (c) 530 and (d) 470 nm.



Research Article Vol. 2, No. 5 / 15 May 2019 / OSA Continuum 1573

In case we want to obtain better results for the 470 nm, we simply have to increase the weight
for this wavelength in the figure of merit for the minimization procedure. We checked this and
obtained that this comes at the cost of increased CN values for 625 nm. As discussed with
the DOP in Fig. 5, the CN maps shown in Fig. 6 lose in some cases the symmetry across the
diagonal of the map, which means that it is not equal to have misalignment in X and Y. As in the
monochromatic case, the partially polarized analyzers are very robust and within the 10% of
misalignment the system produces a good imaging polarimeter.
Similarly, as in the previous figure for CN, now in Fig. 7(a)-(d) we show the EWV maps as a

function of misalignment and for the 4 wavelengths. We see that the maps have a different range
of values for the 4 wavelengths. We use the same quantifiers already defined in Fig. 6, so the
EWV values we provide in parentheses correspond to the ∆x=∆y= 0 situation (first number), and
to the ∆x=∆y= 0.1d situation (second number). The EQW values for these two limiting cases
are of (3.09; 5.16), (2.79; 4.71), (2.51; 4.39) and (2.83; 5.38), for the wavelengths 625, 590, 530
and 470 nm, respectively.

Fig. 7. EWV for the 4 analyzers as a function of the X and Y misalignment for: (a) 625, (b)
590, (c) 530 and (d) 470 nm.

We want to note that the analysis of DoFP polarimeters performance presented in this
manuscript is limited to optimizing metrics that measure the noise amplification from intensity
measures at the CCD camera to the final polarimetric measurements. However, MPAs were
shown to be spatially-modulated channeled systems [20,25–27] and further analysis could be
performed in a future based on Fourier-domain processing in order to study some considerations
towards the effect of misalignment on the channeled nature of DoFP polarimeters.

3.3. Robustness to manufacturing errors

Now, we want to analyze robustness to manufacturing errors. Two main errors may be produced:
deviations in the thickness of the MRA, where a± 5%, i.e. about± 5°, is a reasonable tolerance,
and deviations in the orientation of the neutral lines, where± 1° is also a reasonable assumption.
In the simulations we obtained that deviation in the retardance is more important than in the
neutral lines. Let us show which are the best and worst values, i.e. the limiting cases, for the CN
and the EWV within the range of 10% of misalignments along the X and the Y directions. In
the case of positive deviations, +5% in the retardance and+ 1° in the neutral lines, then the best
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(worst) CN values are 2.08 (2.70), 1.92 (2.55), 1.84 (2.85) and 2.85 (4.37) respectively for the
wavelengths 625, 590, 530 and 470 nm. For the EWV the best (worst) values are 2.85 (4.80), 2.63
(4.49), 2.52 (4.52) and 3.40 (6.78) respectively for the wavelengths 625, 590, 530 and 470 nm.

In the case of negative deviations −5% in the retardance and −1° in the neutral lines, then
the best (worst) CN values are 2.46 (3.10), 2.21 (2.83), 1.88 (2.54) and 1.99 (3.07) respectively
for the wavelengths 625, 590, 530 and 470 nm. For the EWV the best (worst) values are 3.42
(5.67), 3.03 (5.06), 2.58 (4.44) and 2.58 (4.73) respectively for the wavelengths 625, 590, 530
and 470 nm. We see that in the case of positive deviations and negative deviations the most
degraded wavelengths are respectively the 470 nm and the 625 nm, but still acceptable. Basically
any combination of positive or negative deviations of the retardances produce CN and EWV
values comprised within these two situations.

There are some other origins for overlap between the MRA and the sensor pixelation that we
do not analyze in the paper but are worth mentioning: different size of the pixelation in both
structures, and relative rotation between them. In these cases, the DOP would vary across the
aperture of the MRA and CCD sensor and so would the CN and EWV do as well. In the present
paper we have restricted our attention to the case of spatially invariant DOP, CN and EWV.

4. Conclusions

Under certain scenarios, usually related to experimental implementations, the actual polarimeters
are based on partially polarized analyzers. This situation has been studied with a particular
polarimeter case, the so-called division of focal plane (DoFP) polarimeters. These polarimeters
are attracting high attention to polarimetric applications as they are snapshot polarimeters suitable
to dynamic imaging.
In DoFP polarimeters, the partial depolarization is produced by misalignment between the

pixelation of the CCD sensor and that of the microretarder (or the micropolarizer) array. We
have provided a mathematical description showing the relation between spatial misalignments
and the corresponding partial analyzers.
In addition, we studied the performance of DoFP polarimeters based on partial analyzers

through a series of simulations. We showed how this system provides enough CN and EWV
values to be considered for common polarimetric applications when misalignments between
MRA and CCD sensor are restricted to values lower than 10%.
There are many applications where it is interesting to obtain the polarimetric information for

a series of illumination wavelengths, and thus, the above-stated study was generalized to the
polychromatic case. We showed the dependence of the resulting CN and EWV as a function of
the wavelength, and how different performances are achieved by controlling the weight related to
each wavelength considered. What is more, the performance of the resulting polarimeters is still
acceptable under misalignments lower than 10%, for all the visible range.

Finally, to complete the error analysis, a discussion of the robustness to manufacturing errors
achieved by polychromatic DoFP polarimeters is also provided.
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