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Abstract: The nonlocal diffusion model proposed by Sheridan and 
coworkers has provided a useful interpretation of the nature of grating 
formation inside photopolymer materials. This model accounts for some 
important experimental facts, such as the cut-off of diffraction efficiency for 
high spatial frequencies. In this article we examine the predictions of the 
model in the case of a general dependence of the polymerisation rate with 
respect to the intensity pattern. The effects of this dependence on the 
different harmonic components of the polymerisation concentration will be 
investigated. The influence of the visibility on the different harmonic 
components will also be studied. These effects are compared to the effects 
of varying RD and σD. 
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1. Introduction 

Photopolymers are attractive materials for the production of high quality holograms [1-3]. 
Recently several models have been used to describe the mechanism of hologram formation 
inside photopolymer materials [4-14]. Since the first paper by Zhao and Mourolis [5] it has 
been clear that not only polymerization but also diffusion play an important role in the 
formation of the diffraction gratings. This first article proposed by Zhao et al. provides the 
basis for polymerization driven diffusion (PDD) models of hologram formation in 
photopolymers. The monomer concentration was expanded into its Fourier series and a set of 
coupled differential equations was solved for the different harmonic components of the 
monomer concentration. The different harmonic components of the polymer concentration 
were obtained by integrating with time the harmonic components of the monomer 
concentration. Finally, the harmonic components of the refractive index were assumed to be 
proportional to the harmonic components of the polymer concentration. The general 
procedure developed by Zhao et al. has been used by different authors, by introducing a 
Fick’s law diffusion term in the equation describing the variation with time of the monomer 
concentration. The use of a Fourier expansion of the monomer concentration has also been a 
feature several models proposed in the field. 

 Although the original model proposed by Zhao et al. was useful, there were some 
observed effects that the model did not include. For instance, although for high times of 
exposure the harmonic components of the monomer concentration tend to zero, these 
components have non-neglegible values for low times of exposure. Since the refractive index 
of the monomer is different to that of the polymer, the existence of monomer in the material 
for low exposure times influence the dynamical refractive index of the medium. Thus, for low 
exposure times the contribution of the monomer concentration to the refractive index should 
be included. This was studied by Aubrecht et al. [8], who proposed a modified version of 
Zhao’s model. This contribution was also later included in a first harmonic PDD model by 
Neipp et al. [14] 

 Another important fact that the Zhao models had failed to explain was the cut-off of 
the diffraction efficiency for high spatial frequencies. This was successfully achieved by 
Sheridan and co-workers, who implemented a non-local polymerization driven diffusion 
(NPDD) [11-13]. The main feature of this model is that it includes a non-local response 
function that takes into account the growth of polymer chains inside the photopolymer 
material. The model has also the particularity that for the limiting case in which the non-local 
effects are disregarded the model reduces exactly to the PDD proposed by Zhao et al. 

 Previous models assumed that the polymerization rate, that is the rate of conversion 
of monomer in polymer by photopolymerization, had a linear dependence to the intensity 
pattern stored in the photopolymer material. In an article by Kwon et al. [9] this assumption 
was modified and a dependence on the square root of the intereference pattern was proposed. 
For instance, Sheridan and co-workers modified their previous model to include a general 
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dependence [13] and in a very recent paper by S. Wu et al. [15],in which the non-local 
diffusion equation is solved by using a finite-difference method, a dependence of the 
polymerisation rate on the square root of the intensity pattern was assumed. 

 Zhao et al. also examined a more general dependence [16]: 

 [ ]γ)cos(1),( 0 KxVFtxF +=   (1) 

They studied the influence of γ on the different harmonic components of the polymer 
concentration. In this work we present a study of the effect of γ on the NPDD model proposed 
by Sheridan et al. The influence of the fringe visibility on the different harmonics of the 
polymerisation concentration will also be analysed and compared to the effect of RD and σD. 

2. The general non-local diffusion model 

The one-dimensional non-local response diffusion equation, which governs the change of 
monomer concentration, u(x,t), with time is [11]: 
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In this equation D(x,t) is the diffusion constant, G(x,x’) is the non-local response function 
and F(x’,t’) represents the rate of polymerisation at point x’ and time t’. 

The monomer concentration is assumed to be of the form: 
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while the non-local response function G(x,x’) will  be supposed to have a Gaussian form: 
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The square root of the variance σ  characterizes the length scale over which the non-
local effect is significant. 

In this work we will assume the following general dependence for the polymerization 
rate: 

 [ ]γ)cos(1),( 0 KxVFtxF +=  (5) 
where 

 F0=κI0
γ (6) 

And κ is a fixed constant. 
The rate of polymerization will now be supposed to have the following series expansion: 
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The diffusion constant will also be expanded in a Fourier series as: 

 ∑
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As it has been done in previous papers [5,11-13] we will initially only retained the first 
two harmonic components of the Fourier series. 
 )cos()()(),( 10 KxtDtDtxD +=  (9) 

To calculate the two harmonic components of this expansion we will determine the 
values of the maximum and minimum diffusion coefficients in the polymer, Dmax and Dmin 
respectively. Therefore D0 and D1 can be calculated as [5]:  
 D0=(Dmax+Dmin)/2 (10) 
 D0=(Dmax-Dmin)/2 (11) 

Since the diffusion coefficient will also be considered to decay with time it has the 
following dependence: 

(C) 2003 OSA 11 August 2003 / Vol. 11,  No. 16 / OPTICS EXPRESS  1878
#2693 - $15.00 US Received July 01, 2003; Revised July 26, 2003



 ])}cos(1{exp[),( 0

γα KxVtFDtxD +−=  (12) 
So 

 ])1(exp[ 0max

γα VtFDD −−=  (13) 
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By using Eqs. (13, 14) and (10, 11) the final expression of the diffusion coefficient can be 

calculated as: 

 [ ]{
[ ] })cos(2/})1()1{(sinh               

2/})1()1{(cosh     x          

]2/})1()1{(exp[),(

0

0

0

KxVVtF

VVtF

VVtFDtxD

γγ

γγ

γγ

α
α
α

+−+−
+−+
++−−=

 (15) 

If Eqs. (7) and (15) are substituted in Eq. (2) the more general NPDD model will be 
obtained. 

 3. Dimension-less equations 

As has been done in a previous paper by S. Wu et al. [15] it is interesting to set Eq. (2) in 
dimensional-less form.  

The same definitions as those in Ref. [15] will be taken: 
 xD=Kx (16) 
 tD=F0t (17) 
 RD=DK2/F0 (18) 

 σD=K2σ (19) 

RD is a parameter that measures the relative strength between the mechanisms of diffusion and 
polymerization. If we define τD as τD=1/DK2 and τP as 1/F0. τD and τP express the 
characteristic time of the mechanisms of diffusion and polymerization, respectively. Therefore 
for values of RD>1 diffusion dominates over polymerization, whereas for values of RD<1 
polymerization is the dominant process. On the other hand σD is a parameter that controls the 
non-locality effects in the dimensionless non-local response function GD(xD,xD’) defined as: 
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In dimension-less variables, Eq. (2) takes the form: 
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The non-dimensional polymerization rate is expressed as: 
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The non-dimensional diffusion constant now has the form: 
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Finally, by substituting the Fourier expansion of Eq. (22) in Eq. (21) and retaining only, 
the first four harmonic terms the following four dimensionless coupled monomer rate 
equations can be found as: 
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With the following definitions:  

 Ch[ Dt ]=exp[-α Dt {(1-V)γ+(1+V)γ)/2}]x cosh[α Dt {(1-V)γ+(1+V)γ)/2} (28) 

 Sh[ Dt ]=exp[-α Dt {(1-V)γ+(1+V)γ)/2}]x sinh[α Dt {(1-V)γ+(1+V)γ)/2} (29) 

 Si=exp(-i2σD/2) (30) 
The resulting concentration of polymerised monomer can be obtained as: 
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therefore the four orders of the polymerisation spatial-harmonic components are: 

 D

t

DDDDD dttuftuftuftuftN
D

∫ +++=
0

332211000 )}]()()({
2

1
)([)(  (32) 

 
( )[

( ) ( ) ] DDD

t

DDD

dttufftuff

tufftufStN
D

)(2/1)(2/1               

)(2/)()(

342231

0

1200111

++++

++= ∫  (33) 

 
( )

( ) ( ) DDD

t

DDD

dttufftuff

tufftufStN
D

)](2/1)(2/               

)(2/1)([)(

351240

0

1200222

++++

++= ∫  (34) 

 
( )[

( ) ( ) ] DDD

t

DDD

dttufftuff

tufftufStN
D

)(2/)(2/1              

)(2/1)()(

360251

0

1420333

++++

++= ∫  (35) 

Finally the refractive index of the polymeric material can be obtained by taking into 
account the contributions of the polymer and monomer concentrations in the following way: 
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4. Numerical results and discussion 

In this section, numerical results about the influence of the dimensionless variables on the 
polymerisation characteristics of the recorded holograms are presented. 
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  Figure 1 shows the first order of the polymer and monomer concentrations as functions 
of the dimensionless time, tD, for different values of the visibility, V, and γ. It can be seen that 
the effect of decreasing the values of γ is to diminish the value of the first harmonic 
components of the polymer and monomer concentration. This is due to the fact that for lower 
values of the parameter γ, the nonlinearity of the pattern stored in the hologram increases. 
This is more clearly seen in Fig. 2, where the second and third harmonic components of the 
polymer concentration are represented as a function of the dimension-less time tD for different 
values of the visibility, V, and γ. The importance of these terms increases as γ decreases. The 
effect of the visibility on the harmonics in the Fourier expansion of the polymer concentration 
is different. In general, a decrease in the visibility implies a decrease in the interference 
pattern stored in the hologram. Therefore, a decrease of V is accompanied by a decrease in the 
values of the harmonic components higher than zero of the polymerisation and monomer 
concentration. 
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Fig. 1. First harmonic components of the polymer, N1 and monomer, u1, concentrations as a 
function of the non-dimensional time, tD for different values of γ: 0.5, 0.6, 0.8, 1 and for 
different values of the visibility, V: 0.5, 0.6, 0.8, 1. 
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Fig. 2.  Second and third harmonic components of the polymer concentration, N1 as a function 
of the non-dimensional time, tD for different values of γ: 0.5, 0.6, 0.8,1 and for different values 
of the visibility, V: 0.5, 0.6, 0.8, 1. 

It is also interesting to study the final patterns stored in the holograms. To do this Eqs. (24)-
(27) and (32)-(35) were solved for a high value of the parameter tD to allow the steady states 
of all the harmonic components of the polymer and monomer concentration to be reached. 
From Figs. 1 and 2 it is reasonable that a value of tD=20 is sufficient for this purpose.  

Figure 3 shows the polymer distribution as a function of the normalized distance, xD, for 
different values of γ and RD. As can be seen in the figure, the effect of RD in the final pattern 
stored is clear. The higher the values of RD, the more the polymer distribution resembles a 
sinusoidal pattern. This result holds for the different values of γ, although the effect of a 
decreasing γ contributes to increase the nonlinearity of the pattern. It is noticeable that the 
influence of the parameter RD on the characteristics of the final pattern of polymer distribution 
inside the polymer is more critical than the effect of γ. To more clearly support this conclusion 
in Fig. 4 the absolute value of  ratio of the second to the first harmonic component of the 
polymer concentration as a function of RD is represented for different values of σD for a fixed 
value of γ=1. For high values of RD (RD>1) the influence of the second harmonic component 
of the polymer concentration decreases, which is in agreement with references [13,15]. It can 
also be appreciated that higher values of σD also imply that the nonlinearity is reduced, an 
effect which is also noted in [15]. The same effects may be observed if the absolute value of 
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the ratio of the third to the first harmonic component of the polymer concentration as a 
function of RD is represented, Fig. 5. Again, high values of RD are accompanied by very low 
values of the ratio N3/N1. And even for a value of the parameter σD=1 the value of the third 
harmonic component can be disregarded with respect to the value of N1. 
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Fig. 3. Polymer concentration as a function of the non-dimensional space, xD, for different 
values of the parameter RD: 0.1, 1, 10, 100 and for different values of γ: 0.5, 0.6, 0.8, 1. tD=20. 
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Fig. 4. Ratio of the second to the first harmonic components of the polymer concentration as a 
function of RD for three different values of σD: 0, 0.5, 0.1. γ=1, α=0. tD=20. 
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Fig. 5. Ratio of the third to the first harmonic components of the polymer concentration as a 
function of RD for three different values of σD: 0, 0.5, 0.1. γ=1, α=0. tD=20. 

The influence of γ on the ratios N2/N1 and N3/N1 has also been investigated. Figure 6 
shows the absolute value of ratio N2/N1 as a function of the parameter γ for different values of 
σD with a fixed value of RD=1. In this case, the dependence of the ratio N2/N1 resembles 
straight lines for all values of σD. Although it can be appreciated that for low values of the 
parameter γ, the nonlinearity is increased, the effect of varying γ in the range of 0.5≤γ≤1 is not 
as important as is the effect of RD in the range 0.01≤RD≤100, these ranges assumed for real 
materials [17]. This can also be seen in Fig. 7 where the absolute value of ratio N3/N1 is 
represented as a function of γ. Nonetheless, in this case, the slope of the curve corresponding 
to a value of σD =0 is higher than that of Fig. 6. For values of σD equal to 1 and 0.5 the value 
of N3 can be disregarded with respect to the value of N1.  
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Fig. 6. Ratio of the second to the first harmonic components of the polymer concentration as a 
function of γ for three different values of σD: 0, 0.5, 0.1. RD =1,  α=0. tD=20. 
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Fig. 7. Ratio of the third to the first harmonic components of the polymer concentration as a 
function of γ for three different values of σD: 0, 0.5, 0.1. RD =1,  α=0. tD=20. 

5. Conclusions 

The influence of the parameter γ, which quantifies the nonlinear dependence of the 
polymerisation rate on the exposure intensity, upon the harmonic components of the 
polymerisation and monomer concentration has been investigated. Furthemore the effect of 
the visibility on the different harmonic components of the polymer concentration has also 
been examined. The effect of decreasing the visibility is basically to reduce the pattern stored 
in the hologram, with a consequent diminution of the values of all the harmonic components 
of the polymer concentration higher than zero. It has also been demonstrated that a decreasing 
value of γ contributes to a decrease in the values of the first harmonic components of the 
polymer and monomer concentration. In addition the effect of RD on the distribution profiles 
of the final polymer concentration stored in the hologram has been examined. It was found 
that the higher the values of RD, the more the final polymer distribution resembles a sinusoidal 
pattern. 
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