
Application of the Ronchi test to
intraocular lenses: A comparison of theoretical
and measured results
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We studied the spherical aberration of an intraocular lens, using third-order theory, ray tracing, and
bench measurements by the Ronchi test. Good agreement was obtained for these three methods of
investigation. In particular we found that the Ronchi test is an accurate method for quantifying this
aberration.
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Introduction
Analysis of the image quality of any optical system
involves studying the aberrations that exist in the
system. This analysis is extremely important when
dealing with intraocular lenses (IOL's), because they
are implanted in cataract patients after their diseased
lenses have been removed. In monofocal IOL's the
spherical aberration is the most important type of
aberration, because these lenses are designed to work
with distant objects that are normally on-axis.

Much recent research has been dedicated to the
theoretical analysis of the aberrations that are pres-
ent in IOL's, and studies of both on-axis"2 and
off-axis3 performance have been done. Off-centering
has also been studied from both a theoretical and an
experimental approach.4 5 Holographic interferome-
try has been shown to be a useful tool for the analysis
of the aberration of wave fronts in IOL's.6

In this paper a comparative study of three methods
used to study the A coefficient of the spherical
aberration of an IOL is carried out. Two of the three
methods are theoretical, while the third is experimen-
tal and based on application of the Ronchi test.7 The
Ronchi test is an adequate nondestructive experimen-
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tal method, which makes it possible to quantify the
image quality of any optical system. This method is
particularly appropriate for the study of IOL's be-
cause of their size (- 7 mm in diameter) and their
great power (in air: 75 D). These characteristics
make it difficult to use other interferometric systems
to measure the aberrations and focal lengths.8

In this paper we show that with paraxial theory
equations it is also possible to measure the focal
length of the IOL with a Ronchi Test in air, thereby
obtaining the value of that focal length when it is
immersed in vitreous humor.

Comparison of Third-Order Theory and Exact
Ray Tracing

The wave-front aberration of an optical system in the
exit pupil can be written as7

W = A(x2 + y2)2 + By(x2 + y2 )

+ C(x2 + 3y2) + D(x2 + y2 ), (1)

where A, B, C, and D are the spherical aberration,
coma, astigmatism, and defocusingcoefficients, respec-
tively, and x, y are the coordinates of the eitpupil of
the optical system. From an optical-geomeoric point
of view, if we consider third-order theory and keep in
mind that an IOL is thin, the spherical aberration of
this kind of lens can be determined with the following
equation9.

h2= (gq 2 + pq + p2 + ), (2)
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where

n 2(p. + 2n) n(p + n)
8p(-n) 2 2p([-n)
31 + 2n I_2

ry = F8 I 8(R - n)2

r2 + r Z ' + ZO
r2 - r P=zi -z-

Parameter h is the height above the optical axis
where the light hits the lens, f is the focal length of
the lens, and p and q are the position parameter and
the bending factor, respectively, r and r2 are the
curvature radii of the first and second surfaces of the
lens, the object and image distances are denoted by z0
and zi', p. is the refractive index of the lens, and n is
the index of the medium that surrounds the lens.
To reproduce the experimental conditions that we
will subsequently use for the Ronchi test, we assumed
that the lens is surrounded by air, thereby making
n = 1.

Given that the A coefficient of the spherical aberra-
tion was measured experimentally, we must keep in
mind that this coefficient is related to S (the third-
order spherical aberration) as shown by the following
equation 7 :

S
A = .f2h2 (3)

We can use third-order theory to deduce that the A
coefficient depends on the geometric parameters of
the lens according to

1
A = 32f

[ + 2 4(fi + 1)
p(R- 1)2q + (R - 1)Pq

3A 2 + 2 1+ p2 + (4)
IJ. -. 1)2J 4

This equation was applied to an IOL that has one
flat and one convex surface. This means that, de-
pending on the side of the lens that the light hits, we
can assume that the lens is either plano-convex or
convexo-plane, that is, that the bending factor is -1
or 1, respectively.

Given that the lens was made in poly(methyl
methacrylate), we used the refraction index that
corresponded to that material for a wavelength of 633
nm with an He-Ne laser, , = 1.490, so that we could
reproduce the experimental conditions for the Ronchi
test and compare the results.

For this same reason the position parameter that
we used wasp = -1; in other words the object was at
infinity.

To calculate the A coefficient, both theoretically
and experimentally, we obtained the value of the focal
length of the IOL with the Ronchi test. To do so the
diffraction grating was placed next to the IOL (see

He-Ne laser

Spatial filter

Collimating lens

Diaphragm

Diffraction grating

Screen

Fig. 1. Experimental setup: x, y, coordinates in the exit pupil
plane; Xr, Yr, coordinates in the grating plane; x', y', coordinates in
the image plane; z, optical axis.

Fig. 1) and moved with a micrometric screw (with a
sensitivity of 10 pRm) until an interference figure
appeared on the screen that was fusiform in shape.
For the plano-convex orientation the distance of the
lens from the grating was the focal length of the IOL.
The experimental value of the focal length of the lens
obtained was

f = 13.15 0.02 mm.

To calculate the power of the IOL immersed in
vitreous humor, paraxial optics formulas are used:

ph _i F-nhv pa,
(L - 1) 

where Phv is the power of the lens in vitreous humor,
Pair is the power of the lens in air, and nhv is the
refraction index of vitreous humor. This relation-
ship, together with the coefficient of the spherical
aberration, permits us to evaluate the contribution of
the IOL to the overall spheric aberration of the
eye-lens system and thereby estimate the influence
that the IOL has on the quality of the final image.

When these data are substituted in the expression
for the A coefficient, the following values were ob-
tained in air:

for plano-convex orientation

A = (5.08 0.02) x 10-4 mm- 3 ,

for convexo-plane orientation

A = (1.333 0.006) - 10-4 mm- 3 .

A graphic tracing of the rays confirmed our results
above, and the Ronchi test was used to measure the A
coefficient experimentally.

Through graphic tracing we found that the image
position for an object in infinity given a certain height
h is the following:

plano-convex orientation:

1' ~~1
Sh' = h j nh~i1~~~ a 6

sin-'()]}
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convexo-plane orientation:

XhI =
(a - e)tan [3 + h

tan[sin-'(n sin )]

0.008-

0.006-

(7) S
- 0.004
4 

0.002Both distances were measured in relation to the
last surface of the lens (see Fig. 2) with h being the
height of incidence on the lens that varied from zero
(paraxial focal length) to the semidiameter of the lens,
when the diameter is 6.96 0.05 mm, e is the
thickness of the lens and has a value of 1.32 ± 0.01
mm, n is the refraction index, and r is the curvature
radius. Parameters a and 3 can be found by using

a = r - (r2 - h2)1/2,

h

0.002-

(8)

h
= sin-i: - sin .r nr

S
42 0001

(9)

The value of the A coefficient with this method is
obtained from adjustment by the least squares of the
line obtained by representing (S/4 fP) as a function of
h2 (see Fig. 3) where the value of S is obtained
through ray tracing by subtracting all the image posi-
tions for each height from the paraxial focal point.

Both the calculation of S and the numerical adjust-
ment were done on a personal computer using a
program designed for this purpose. The values ob-
tained in air were

plano-convex orientation:

A = (5.63 + 0.03) x 10-4 mm-3,

convexo-plane orientation:

A = (1.4 + 0.1) x 10-4 mm-3,

with the respective regression coefficients being 0.9991
and 0.9997.

IOL

(a)

....... ......... ..... ,...... ...... ,,'............ - (b)

IOL

Fig. 2. Ray-tracing scheme for (a) a plano-convex orientation and
(b) a convexo-plane orientation; h, ray height; Sh', back focal
segment for plano-convex orientation; Xh', back focal segment for
convex-plane orientation.
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Fig. 3. Function of incident height (S/4 f2) for (a) plano-convex
orientation and (b) convexo-plane orientation; h2, ray height.

Optical Bench Measurements: Ronchi Test

The Ronchi test was used to measure theA coefficient
of spherical aberration and the focal length of IOL's. 7

The experiment setup is shown in Fig. 1, where the
He-Ne laser has 10 mW of power and the collimating
lens has a focal length of 300 mm (white light) and a
diameter of 10 mm; that is, the aperture of the
collimating lens is 0.03. This ensures that the colli-
mating lens does not produce any aberrations because
the aperture is small compared with the aperture of
the IOL we studied, which was 0.5. The diffraction
grating frequency was 330 lines/mm.

This test consists of situating a diffraction grating
with the appropriate frequency near the image point
of an optical system. The light emerging from the
diffraction grating produces the different diffracted
orders, which interfere with one another and result in
real nonlocalized interference fringes that can be seen
on a screen (see Fig. 1).

When diffraction theory is applied,10 the intensity
distribution on the exit pupil is given by

I(x,y) - lBo 2 + lB1 12 + 2BoB,

x cos{ AW(x'Y) W(x + 0 Y (I)

where we have supposed that the grating has an
appropriate period d to produce interference patterns
of no more than zero-order and first-order diffraction.
Bo and B1 are the Fourier coefficients of the gratings,
x and y are the coordinates of the exit pupil, d is the
grating period, c is the radius of curvature of the wave
front, and X is the wavelength of the incident beam.

It can be seen from Eq. (10) that bright fringes
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appear whenever

w(x, y)-w(x + d Y) = -mX. (11)

If we now take the center point between the two
shears of the wave fronts as a new point organ, we
find that

cX

wx+2d'
CX

- - = -MX.

Fixing they variable, we can use

aw cX cX

axd - x2dXY
c-

-wx-2d' ,

and then we find that the fringes of the interferogram
are related to the aberration function of wave W(x, y)
according to

aw md-= - -(14
ax \ -J

where m is the order of interference.
For the interference fringes to be seen clearly, the

frequency v of the grating must allow only consecu-
tive diffracted orders to interfere, as we have men-
tioned, and the conditions that bring this about are

4Ax(x2 + y2 ) = md
C

(16)

The value of the interfringe distance is d =
0.002996 ± 0.000005 mm, c = 13.15 ± 0.02 mm for
the plano-convex orientation, and c = 12.82 0.02
mm for the convexo-plane orientation. A conse-
quence of the interference of the zero order with the
first order diffracted by the diffraction grating is an
interferential pattern appearing on the observation
screen at 650 mm from the grating. This is recorded
on a photographic plate because interferential phe-
nomena are extremely sensitive to external perturba-
tions. Once the plate is developed, we place a milli-
metered transparent sheet on it that permits us to
measure thex' andy' coordinates of each interference
fringe, which is at the same time characterized by the
diffraction order. Afterward the x' and y' coordi-
nates are transferred to the exit pupil plane x-y. For
the experimental setup we deduce the proportionality
relationship between (x', y') and (x, y):

x'c y'c
x = y Y= Df' (17)

where D' is the distance from the grating to the
screen. To obtain the A coefficient of the spherical

f 1A [C2 + ()] }

1.0

> V > {[c + (2 1 (15)

where is the diameter of the lens, is the wave-
length, and c is the distance from the lens to the
diffraction grating.

Considering that when one is working on-axis the
wave aberration can be only spherical, the experimen-
tal interferogram (see Fig. 4) is represented by Eqs.

Fig. 4. Experimental interferogram obtained with a plano-
convex lens.

Fig. 5. Theoretical interferogram (continuous line) and experimen-
tal digitalized interferogram (*) for (a) plano-convex orientation
and (b) convexo-plane orientation. Curves indicate Ow/Ox =
constant.
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aberration, a least-squares adjustment method was
used and the theoretical surface (see Fig. 6) was ad-
justed to the experimental surface formed by coordi-
nate points (xi, yi, mid/c) obtained from the interfero-
gram (see Fig. 5). To do this, we define the function

N

T = 
i=l

id _ 4AXi(Xi2 + y2)]

by using the minimum condition

aT
TA = 

We deduce that

N mid
I X,(X,2 + y,2)

N
4 I xi2 (x, 2

+ y, 2 )2

i=1

I
CZ,

�c

JZ

6

i
-1: Qs,..

(18)

To obtain the A coefficient, a program specially
designed for this purpose was used, and the results
we obtained in air are as follows:

plano-convex orientation:

A = (5.16 ± 0.07) x 10-4 mm-3 ,

convexo-plane orientation:

A = (1.54 ± 0.03) x 10-4 mm-3,

where the regression coefficients were 0.997 and
(19) 0.997, respectively.

Regarding Fig. 6, the differences between the two
representations are shown by experimental [Figs.
6(a)] and theoretical [Fig. 6(b)] results. The theoret-
ical representation is a continuous function, while the
experimental one was obtained by using discontinu-
ous points determined experimentally by the Ronchi

(20) test. Therefore the discrepancy between the two is
due mainly to our experimental errors. We must
also keep in mind that there are errors in curvature
(lack of constancy in the bending factor) in the
manufacturing process of the IOL surfaces and that
these affect the experimental interferogram that we
obtained. However, we do not know the magnitude
of these errors in curvature, even though we do know
that they exist. If a more complex and complete
measurement system were used, for example, a digi-
tal image analysis system, the experimental errors

(a) could be reduced, and the differences between the
a J theoretical and experimental representations would

be almost exclusively a result of the errors in curva-
ture on the surfaces of the lens, since it is virtually
impossible to make perfectly spherical lenses.

, '0

(b)

..s-~~~~.. '~'~ '0!

Fig. 6. Function of exit pupil coordinates (dW/dX): (a) experi-
mental surface; (b) theoretical surface.

Conclusions

The Ronchi test, third-order theory, and a ray-tracing
computer program were used to study the spherical
aberration in the IOL's. Taking into account that
third-order theory is an approximation and that there
is a 1% margin of error in experimental results when
the Ronchi test is used, the results we obtained with
each method match quite well, especially if we take
into account that the theoretical models are simpli-
fied, in other words, they are approximations. Nev-
ertheless their results are comparable with the exper-
imental results, which are rigorously accurate. We
should also keep in mind that the sources of error for
each of the three methods are different.

At the same time the results from the three meth-
ods used in this paper show the influence of the
bending factor on the quality of the image. One
thing that can be deduced from Eq. (4) and is clearly
shown in Refs. 11 and 12 is that the A coefficient of
the spherical aberration depends on its position pa-
rameter and its bending factor. For the position
parameter used we can see that the convexo-plane
orientation is the one that produces the best image
quality by obtaining the lowest value for coefficient A.
For other position parameters the bending factor that
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produces the best image quality might be different.
In addition to the influence of the IOL bending factor
on spherical aberrations, its influence on the final
image quality that could be achieved for a cataract
patient with an implanted IOL could also be ana-
lyzed.3

These results also show that the Ronchi test is an
excellent method for the nondestructive analysis of
IOL's, which, because of their size and high power,
create quite restrictive experimental conditions.

The analysis that was carried out here can be
continued by calculating off-axis wave aberrations,
astigmatism, and coma, thereby the total aberration
of the wave for each type of lens is obtained. These
results may be used to describe the optical properties
of lenses, or they may be used to monitor manufactur-
ing quality, since each primary aberration has an
interference figure that is characteristically different
and that may be recognized from the shape of the
fringes. The higher the number of aberrations a
system has, the more complex its interferogram will
be. 1 The method could also be used to develop other
IOL designs and to test their effect on off-axis perfor-
mance.
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