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ABSTRACT 

 

The first-order harmonic balance method via the first Fourier coefficient is used to 

construct two approximate frequency-amplitude relations for the relativistic oscillator for 

which the nonlinearity (anharmonicity) is a relativistic effect due to the time line dilation 

along the world line. Making a change of variable, a new nonlinear differential equation is 

obtained and two procedures are used to approximately solve this differential equation. In 

the first the differential equation is rewritten in a form that does not contain a square-root 

expression, while in the second the differential equation is solved directly. The 

approximate frequency obtained using the second procedure is more accurate than the 

frequency obtained with the first due to the fact that, in the second procedure, application 

of the harmonic balance method produces an infinite set of harmonics, while in the first 

procedure only two harmonics are produced. Both approximate frequencies are valid for 

the complete range of oscillation amplitudes, and excellent agreement of the approximate 

frequencies with the exact one are demonstrated and discussed. The discrepancy between 

the first-order approximate frequency obtained by means of the second procedure and the 

exact frequency never exceeds 1.6%. We also obtained the approximate frequency by 

applying the second order harmonic balance method and in this case the relative error is as 

low 0.31% for all the range of values of amplitude of oscillation A. 

 

 

Keywords: Nonlinear oscillations; Relativistic oscillator; Harmonic balance method; 

Approximate frequency. 
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1. Introduction 

 

The study of nonlinear oscillators is of great interest in engineering and physical 

sciences and many analytical techniques have been developed for solving the second order 

nonlinear differential equations that govern their motion [1]. It is difficult to solve 

nonlinear differential equations and, in general, it is often more difficult to get an analytic 

approximate than a numerical one of a given nonlinear oscillatory system [2]. There is a 

large variety of approximate methods for the determination of solutions of nonlinear 

second order dynamical systems including perturbation [3], standard and modified 

Lindstedt-Poincaré [4-6], variational [7], variational iteration [8], homotopy perturbation 

[9-12], harmonic balance [13-17] methods, etc. Surveys of the literature with numerous 

references and useful bibliography and a review of these methods can be found in detail in 

[2] and [18]. In this paper we apply the first-order harmonic balance method to obtain 

analytic approximate solutions for the relativistic oscillator. This is a procedure for 

determining analytical approximations to the periodic solutions of differential equations 

by using a truncated Fourier series representation. This method can be applied to nonlinear 

oscillatory systems where the nonlinear terms are not small and no perturbation parameter 

is required.  

When the energy of a simple harmonic oscillator is such that the velocities become 

relativistic, the simple harmonic motion (linear oscillations) at low energy becomes 

anharmonic (nonlinear oscillations) at high energy [19]. Due to this fact we have 

considered the parentheses around the “an” in the title of this paper. Then, the strength of 

the nonlinearity increases as the total relativistic energy increases, and at the non-

relativistic limit the oscillator becomes linear. Mickens [20] showed that all the solutions 

to the relativistic (an)harmonic oscillator are periodic and determined a method for 

calculating analytical approximations to its solutions. Mickens considered the first-order 

harmonic balance method, but he did not apply the technique correctly and the first 

analytical approximate frequency he obtained is not the correct one.  
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2.  Nonlinear differential equation for the relativistic oscillator 

 

The governing non-dimensional nonlinear differential equation of motion for the 

relativistic oscillator is [20]  
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where x and t are dimensionless variables. The even power term in Eq. (1),     

 

(dx / dt )2, acts 

like the powers of coordinates in that it does not cause a damping of the amplitude of 

oscillations with time. Therefore, Eq. (1) is an example of a generalized conservative 

system [1]. At the limit when     

 

(dx / dt )2
<< 1, Eq. (1) becomes     

 

(d2
x / dt

2 ) + x ! 0 the 

oscillator is linear and the proper time 

 

!  (    

 

d! = 1" (dx / dt )2 dt ) becomes equivalent to 

the coordinate time t to this order. 

Introducing the phase space variable (x,y), Eq. (1) can be written as follows 

 

 
  

 

dx

dt
= y ,       
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dt
= !(1! y

2
)
3/ 2
x  (2) 

 

and the trajectories in phase space are given by solutions to the first order, ordinary 

differential equation 

 
  

 

dy

dx
= !

(1! y
2
)
3/ 2
x

y
 (3) 

 

As Mickens pointed out, since the physical solutions of both Eq. (1) and Eq. (3) are real, 

the phase space has a “strip” structure [20], i.e.,  

 

 

 

!" < x < +"         and          

 

!1< y < +1 (4) 
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Then unlike the usual non-relativistic harmonic oscillator, the relativistic oscillator is 

bounded in the y variable. This is due to the fact that the nondimensional variable y is 

related with the relativistic relation 

 

! = v /c , where v is the velocity of the particle and c 

the velocity of light. In the relativistic case, the condition     

 

!c < v(t ) < +c   must be met, and 

so we obtain     

 

!1 < y(t ) < +1. Mickens proved that all the trajectories to Eq. (3) are closed 

in the open region of phase space given by Eq. (4) and then all the physical solutions to 

Eq. (1) are periodic. However, unlike the usual (non-relativistic) harmonic oscillator, the 

relativistic (an)harmonic oscillator contains higher-order multiples of the fundamental 

frequency.  

In order to apply the harmonic balance method, we make a change of variable, 

 

y! u, such that 

 

!" < u < +", as follows 

 

 

 

y =
u

1+ u
2

 (5) 

 

and the corresponding second order nonlinear differential equation for u is 

 

 
  

 

d
2
u

dt
2

+
u

1+ u
2

= 0  (6) 

 

We consider the following initial conditions in Eq. (7) 

 

 
  

 

u(0) = B and
du

dt
(0) = 0 (7) 

 

Eq. (6) is an example of conservative nonlinear oscillatory system having irrational 

form for the restoring force. This is a conservative nonlinear oscillatory system and all the 

motions corresponding to Eq. (6) are periodic [20], the system will oscillate symmetric 

bounds [-B, B], and the angular frequency and corresponding periodic solution of the 

nonlinear oscillator are dependent on the amplitude B. 
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The main objective of this paper is to solve Eq. (6) by applying the first-order 

harmonic balance method and to compare the approximate frequency obtained with the 

exact one and with another approximate frequency obtained by applying the method of 

harmonic balance to the same oscillatory system but rewriting Eq. (6) in a way suggested 

previously by Mickens [20]. Comparing with the approximate solution obtained by this 

last procedure, the approximate frequency derived here is more accurate with respect to 

exact solution. The errors of the resulting frequency are reduced and the maximum relative 

error is less than 1.6% for the complete range of oscillation amplitudes, including the 

limiting cases of amplitude approaching zero and infinity. 

 

 

3. Solution method 

 

3.1.- First adaptation of harmonic balance method 

Eq. (6) is not amenable to exact treatment and, therefore, approximate techniques 

must be resorted to. Eq. (6) can be rewritten in a form that does not contain the square-root 

expression 

 
  

 

(1+ u
2
)

d
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2
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2

= u
2  (8) 

 

It is possible to solve Eq. (8) by applying the method of harmonic balance. 

Following the lowest order harmonic balance method, a reasonable and simple initial 

approximation satisfying conditions in Eq. (7) can be taken as 

 

     

 

u(t ) = Bcos!t  (9) 

 
The angular frequency of the oscillator is ω, which is unknown to be further determined. 

The corresponding period of the nonlinear oscillation is given by T = 2π/ω. Both the 

periodic solution u(t) and frequency ω (thus period T) depends on B. Substitution of Eq. 
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(9) into Eq. (8), and expanding and simplifying the resulting expression gives 
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and setting the coefficient of the resulting term 

 

cos(0! t) (the lowest harmonic) equal to 

zero gives the first analytical approximate frequency 
  

 

!
a1

 as a function of B 
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which is valid for the whole range of values of B. By applying the first order homotopy 

perturbation method to Eq. (8) the same approximate frequency is obtained [21] and this is 

due to the fact that in both methods the first Fourier coefficient is obtained. We can 

conclude that this is a general result for conservative oscillators. The approximate 

frequency in Eq. (11) is the correct one when the harmonic balance method is applied to 

Eq. (8), and not the frequency obtained in Ref. [20]. 

 

3.2.- Second adaptation of harmonic balance method 

As we pointed out previously, the main objective of this paper is to solve Eq. (6) 

instead of Eq. (8) by applying the harmonic balance method. Substitution of Eq. (9) into 

Eq. (6) gives 

 

 
    

 

!B"
2

cos"t +
Bcos"t

1+ cos
2
"t

= 0    (12) 

 

The power-series expansion of     

 

u / 1+ u
2  is 
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2
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22n!1
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# u
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Substituting Eq. (13) into Eq. (12) and taking into account Eq. (9) gives 

 

    
    

 

(!"2
+ 1)cos"t + (!1)n (2n !1)!

22n!1
n!(n !1)!n=1

#

$ B
2n cos2n+1

"t = 0 (14) 

 
The formula that allows us to obtain the odd power of the cosine is 
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 (15) 

 
Substituting Eq. (15) into Eq. (16) gives 

 

 
    

 

!"2
+ c2n+1

n=0

#

$ B
2n

% 

& 
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' 

( 
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* 

* 
cos"t + (higher ! order harmonics) = 0  (16) 

 
where the coefficients c2n+1 are given by 

 
 

    

 

c1 = 1  (17) 

and 

 
    

 

c2n+1 = (!1)n (2n !1)!(2n + 1)!

24n!1(n!)2(n !1)!(n + 1)!
        for n ≥ 1 (18) 

 

For the lowest order harmonic to be equal to zero, it is necessary to set the 

coefficient of cosωt equal to zero in Eq. (16), then 
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In order to obtain the value of 
    

 

c2n+1

n=0

!

" B
2n  in Eq. (19) we consider the following relations 
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n
 ,         

    

 

(2n + 1)!

22n
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= 3/ 2( )
n
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(n + 1)!= (2)
n
 (20) 

 
where (a)n is the Pochhammer symbol [22] 

 
 

      

 

(a)
n

= a(a + 1)…(a + n !1)  (21) 

 

Taking into account Eqs. (17), (20) and (21) it is possible to write 
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where 

    

 

2 F1 a , b;c; z( )  is the hypergeometric function [22] 
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Substituting Eq. (22) into Eq. (19) gives 
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which is the angular frequency obtained applying the low-order harmonic balance method 

directly to Eq. (6). By the software MATHEMATICA, we can readily obtain the following 

relation  
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To obtain Eq. (25), the command “FunctionExpand” has been applied to 
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2
F

1
1/2,3/2;2;!B

2( ) . K(m) and E(m) are the complete elliptic integrals of the first and 

second kind, respectively, defined as follows [23] 

 

 
  

 

K(m) =
d!

1"mcos2!
0

# /2
$  (26) 

 

 
  

 

E(m) = 1!mcos2" d"
0

# /2
$  (27)

  

By applying the first order homotopy perturbation method to Eq. (6), the same 

approximate frequency is obtained [24].  

The corresponding approximation to y is obtained from Eqs. (5) and (9) 

 

 
    

 

y(t ) =
u(t )

1+ u
2(t )

=
Bcos!t

1+ B
2 cos2

!t
 (28) 

 

Likewise,     

 

x(t )  can be calculated by integrating equation   

 

y = dx /dt  subject to the 

restrictions  

 
    

 

x(0) = 0, y(0) =
B

1+ B
2

 (29) 

 

which can be easily obtained from Eqs. (5) and (7). This integration gives 
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1

! j (B)
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sin[! j(B)t]
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However, we should not forget what we are really looking for is an approximate analytical 

solution to Eq. (1), that is, x(t). Moreover, it is convenient to express the approximate 

angular frequency and the solution in terms of oscillation amplitude A rather than as a 
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function of B.  It is now necessary to find a relation between oscillation amplitude A and 

parameter B used to solve Eqs. (6) and (8) approximately. From Eq. (3) we get 

 

 
    

 

1

(1! y
2 )1/2

+
1

2
x

2
= C  (31) 

 

where C is a constant to be determined as a function of initial conditions. From Eq. (28) 

we can easily obtain 

 

C = (1+ B
2
)
1/ 2  and Eq. (31) can be written as follows 
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2
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2
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In addition, when x = A, the velocity   

 

y = dx /dt  is zero. Taking this into account in 

Eq. (32), we obtain the following relation between amplitude A and parameter B  
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From the above equation we can easily find that the solution for B is 
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Substituting Eq. (34) into Eqs. (11), (26) and (29), the first analytical approximate 

periodic solutions for the relativistic oscillator as a function of the oscillation amplitude A 

are given by 
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3.3.- Results and discussion 

In this section we illustrate the accuracy of the proposed approach by comparing 

the approximate frequencies ωa1(B) and ωb1(B) obtained in this paper with the exact 

frequency ωex(A). The exact angular frequency is calculated as follows. Substituting Eq. 

(34) into Eq. (32), we obtain 
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The exact frequency can then be derived as follows 
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which can be written in terms of elliptical integrals as follows 
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where K(m) and E(m) are the complete elliptic integrals of the first and second kind, 

respectively, defined in Eqs. (26) and (27). 

For small values of the amplitude A it is possible to take into account the following 

approximation, 
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!
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( A) "1#
3
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A

2
+
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A

4
#
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16384
A

6
+ … (41) 

   

For small values of A it is also possible to do the power-series expansion of the 

approximate angular frequencies ωa1 (Eq. (35)) and ωb1 (Eq. (36)). In this way the 

following equations can be obtained 
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2
+

42

1024
A

4
#

90

16384
A

6
+ …  (42) 

 

 
    

 

!
b1
(A) "1#

3

16
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2
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4
#
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16384
A

6
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These series expansions were carried out using MATHEMATICA. As can be seen, 

in the expansions of the angular frequencies, ωa1 (Eq. (42)) and ωb1 (Eq. (43)), the first two 

terms are the same as the first two terms of the equation obtained in the power-series 

expansion of the exact angular frequency, ωex (Eq. (41)). By comparing the third terms in 

Eqs. (42) and (43) with the third term in the series expansion of the exact frequency ωex 

(Eq. (41)), we can see that the third term in the series expansions of ωb1 (Eq. (43)) is more 

accurate than the third term in the expansion of ωa1 (Eq. (42)).  

Now we are going to obtain an asymptotic representation for large amplitudes. For 

very large values of the amplitude A it is possible to take into account the following power 

series expansions 
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!
b1
(A) "

8

#

1

A
+ … =

1.59577

A
+ … (46) 

 

Once again we can also see than the frequency 
  

 

!
b1
(A)  is more accurate than 

  

 

!
a1
(A)  and 

can provide excellent approximations to the exact frequency     

 

!
ex

( A)  for very large values 

of oscillation amplitude. Now, the relative errors of the first term of series expansions of 

  

 

!
a1
(A)  and 

  

 

!
b1
(A)  are 3.3% and 1.6%, respectively. These results confirm the fact that 

ωb1 is a better approximation to the exact frequency ωex than the approximate frequency 

ωa1, not only for small amplitudes but also for large values of the amplitude of oscillation.  

The exact periodic solutions x(t) achieved by numerically integrating Eq. (1), and 

the proposed normalized first-order approximate periodic solutions x1(t) and x2(t) in Eq. 

(37), respectively, for one complete cycle are plotted in Figures 1 and 2 for A = 1 and 10, 

respectively. In these figures parameter h is defined as follows 

 

 
    

 

h = T
ex

( A)t =
2!t

"
ex

( A)
 (48) 

 

As the dimensionless variable y is equal to v/c, where v and c are the velocity of the 

particle and the velocity of light, respectively, 

 

 
    

 

!0 =
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c
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B

1+ B
2

=
4 A

2
+ A

4

4 + 4 A
2

+ A
4

 (49) 

 

Figures 1 and 2 show that Eq. (37) provides a good approximation to the exact 

periodic solution and it is adequate to obtain the approximate analytical expression of x(t). 

As we can see, for small values of A (Figure 1) x(t) is very close to the sine function form 

of nonrelativistic simple harmonic motion. For higher values of A (Figure 2) the curvature 

becomes more concentrated at the turning points 

 

(x = ±A). For these values of A, x(t) 

becomes markedly anharmonic and is almost straight between the turning points. Only in 

the vicinity of the turning points, where the magnitude of the Hooke’s law force is 
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maximum and the velocity becomes relativistic, is the force effective in changing the 

velocity [19]. Figure 2 is typical example of the motion in the ultrarelativistic region 

where 

 

!
0
"1. 

At this point it is necessary to answer the following questions: (a) why does 

substitution of Eq. (9) into Eq. (6) not give the same result as substitution of Eq. (9) into 

Eq. (8)?, and (b) why does application of the first-order harmonic balance method to Eq. 

(6) give a more accurate frequency than application of the method to Eq. (8)? These 

questions have been analyzed in detail in reference [24] and here we are going only to 

summarize the results. If we substitute Eq. (9) into Eq. (8) and we divide the resulting 

equation by cosωt we obtain an equation that includes only two odd powers of cosωt, 

cosωt and cos3ωt, and then there are only two contributions to the coefficient of the first 

harmonic cosωt, which are 1 from cosωt and 3/4 from cos3ωt.  Therefore, substituting Eq. 

(9) into Eq. (8) produces only the first harmonic, cosωt, and the third harmonic, cos3ωt,  
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4
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- 
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1

4
! 4

B
2

cos3!t = 0 (50) 

 

However, Eq. (14) includes all odd powers of cosωt, which are cos2n+1ωt  with n = 

0, 1, 2, …,  ∞, and then there are infinite contributions to the coefficient of the first 

harmonic cosωt, that is, 1 from cosωt, 3/4 from cos3ωt, 5/8 from cos5ωτ, …, 
    

 

2
!2n 2n + 1

n

" 

# 
$ 

% 

& 
'  

from     

 

cos
2n+1

!t , and so on. Therefore, substituting Eq. (9) into Eq. (6) produces the 

infinite set of higher harmonics, cosωt, cos3ωt, …, cos[(2n+1)ωt], and so on. Similar 

phenomenon occurred in [10] and [15] for the Duffing-harmonic oscillator. 

It can be seen that Eqs. (11) and (25) have the form 

 
 

  

 

! j (B)= f j (B)[ ] "1/ 4 ,     j = a1, b1 (51) 

 

which allows the approximate frequency ω to be determined in terms of the oscillation 



 
 
 
 

 
 
 
 

16 

amplitude B. From this equation we can conclude that application of the first-order 

harmonic balance method to Eqs. (6) and (8) gives the same functional form for the 

approximate frequency ω. The difference between these approximate frequencies is the 

function f(B) 
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   and    
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 and    
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 (53) 

 

If we do the power-series expansion of 
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1
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 we have 
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4
+

13
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6
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( 

"1/ 4

 (54) 

 
As can be seen, in this equation the first two terms in the brackets are identical to the two 

terms in brackets in Eq. (52); whereas powers B4, B6,…  are due to the infinite set of 

higher harmonics in Eq. (14). Applying the harmonic balance method to Eqs. (6) and (9) 

with higher harmonics, the two procedures will give more accurate results. In the limit in 

which we include all the harmonics, they must give us exactly the same solution, since Eq. 

(9) is equivalent to Eq. (6). 

 

4. Higher order approximation 

 

As the application of the first-order harmonic balance method to Eq. (6) give a 

more accurate frequency than application of the method to Eq. (8), we have obtain the 

second order approximation for Eq. (6). The next level of harmonic balance uses the form 

[16] 
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u2(t ) = u1(t ) + !u1(t ) (55) 

 

where 
  

 

u
1
(t) = Bcos!t  (Eq. (9)) and     

 

!u1(t )  is the correction part. Substituting Eq. (55) 

into Eq. (6) and linearizing the resulting equation with respect to the correction     

 

!u1(t )  at 

 

u(t) = u1(t) leads to 

 
  

 

d
2
u

1

dt
2

+
d

2
!u

1

dt
2

+
u

1

1+ u
1

2
+

!u
1

(1+ u
1

2
)

3 /2
= 0  (56) 

and 

 
    

 

!u1(0) = 0,
d!u1

dt
(0) = 0 (57) 

 

To obtain the second approximation to the exact solution,     

 

!u1(t )  in Eq. (55), 

which must satisfy the initial conditions in Eq. (57), takes the form 

 

     

 

!u1 = c1(cos"t # cos3"t ) (58) 

 

where 
    

 

c
1
 is a constant to be determined. Substituting Eqs. (9), (55) and (58) into Eq. (56), 

expanding the expression in a trigonometric series and setting the coefficients of the 

resulting items 

 

cos!t  and   

 

cos3!t  equal to zero, respectively, yield 

 

   

 

!(B + c
1
)B

4
"

2
# 4(B

3
# 8c

1
)E(#B

2
) + 4(B

3
# 8c

1
# 4c

1
B

2
)K(#B

2
) = 0  (59) 

and 

 
  

 

27!c
1
B

6
"

2
# 4(8B

3
+ B

5
#128c

1
# 88c

1
B

2
)E(#B

2
)

+ 4[(B
3
(8 + 5B

2
) # 4(32 + 38B

2
+ 9B

4
)c

1
]K(#B

2
) = 0

 (60) 

 

From Eq. (29) we can obtain the second analytical approximate frequency 
  

 

!
b2

 as 

follows  
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!
b2
(B) =

4(B
3 " 8c

1
)E("B2

) " 4(B
3 " 8c

1
" 4c

1
B

2
)K("B2

)

#(c
1

+ B)B
4

$ 

% 

& 

' 

( 

) 

1/2

 (61) 

 

Substituting Eq. (61) into Eq. (60) and solving for 
  

 

c
1
, we obtain 

 

 
  

 

c
1

=
B

5
[(8 + B

2
)E(!B

2
) ! (8 + 5B

2
)K(!B

2
)]

("
1

+ "
2
)
1/2
B

2
+ (64B

2
+ 40B

4
+ 13B

6
)E(!B

2
) ! (64B

2
+ 72B

4
+ 29B

6
)K(!B

2
)

 

  (61) 

where 

 

  

 

!
1

= [("64 " 48B
2

+ 13B
4
)E("B

2
) + (64 + 80B

2
+ 7B

4
)K("B

2
)]

2  (62) 
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2

= "432B
4
["(4 + 5B

2
)E

2
("B

2
) " 2(4 + 5B

2
+ B

4
)E("B

2
)K("B

2
) " (4 + 5B

2
+ B

4
)K

2
("B

2
)]

 

  (63) 

 

For small values of the amplitude A it is possible to take into account the following 

power series expansion of the second order approximate angular frequency 

 

 
    

 

!
b2
(A) "1#

3

16
A

2
+

51

1024
A

4
#

238.25

16384
A

6
+ … (64) 

 

where we have taken into account Eq. (34). As can be seen, in the expansion of the 

angular frequency 
  

 

!
b2
(A) , the first three terms are the same as the first three terms of the 

equation obtained in the power-series expansion of the exact angular frequency,     

 

!
ex

( A)  

(Eq. (41)). For very large values of the amplitude A it is possible to take into account the 

following power series expansion  

 



 
 
 
 

 
 
 
 

19 

 
    

 

!
b2
(A) "

1.5659

A
+ … (65) 

 

Once again we can see than 
  

 

!
b2
(A)  provides excellent approximations to the exact 

frequency     

 

!
ex

( A)  for very large values of oscillation amplitude and the relative error for 

  

 

!
2b
(A)  is lower than 0.31% for all the range of values of amplitude of oscillation A. 

 

 

6. Conclusions 

 

The first order harmonic balance method was used to obtain two approximate frequencies 

for the relativistic oscillator in which the restoring force has an irrational form. An 

approximate frequency, ωa1, was obtained by rewriting the nonlinear differential equation 

in a form that does not contain an irrational expression; while the second one, ωb1, was 

obtained by solving the nonlinear differential equation containing a square-root expression 

approximately. We can conclude that formulas (35) and (36) are valid for the complete 

range of oscillation amplitude, including the limiting cases of amplitude approaching zero 

and infinity. Excellent agreement of the approximate frequencies with the exact one was 

demonstrated and discussed and the discrepancy between the first order approximate 

frequency, ωb1, and the exact one never exceeds 1.6%. The first order approximate 

frequency, ωb1, derived here is the best frequency that can be obtained using the first-order 

harmonic balance method, and the maximum relative error was significantly reduced as 

compared with the first approximate frequency, ωa1. We have also shown that applying the 

first order harmonic balance method to Eqs. (6) and (8) we obtain the same results that 

those obtained by applying the first order homotopy perturbation method to Eqs. (6) and 

(8). We can conclude that this is a general result for conservative oscillators. Some 

examples have been presented to illustrate excellent accuracy of the approximate 

analytical solutions. We discussed the reason why the accuracy of the approximate 

frequency, ωb1, is better than that of the frequency, ωa1. This reason is related to the 

number of harmonics that application of the first-order harmonic balance method produces 
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for each differential equation solved, two harmonics for the first case and the infinite set of 

harmonics for the second one. We also obtained the approximate frequency 
  

 

!
2b
(A)  by 

applying the second order harmonic balance method to Eq. (6) and we obtained that the 

relative error for 
  

 

!
2b
(A)  is lower than 0.31% for all the range of values of amplitude of 

oscillation A. 

  Finally, we can see that the method considered here is very simple in its principle, 

and is very easy to apply. 
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FIGURE CAPTIONS 

 

Figure 1.- Comparison of the analytical approximate solutions 
    

 

x
1
 (black circles) and 

    

 

x
2
 

(white circles) with the exact solution (continuous line) for A = 1  

    

 

(!0 = v0 / c = 0.74536). 

 

Figure 2.- Comparison of the analytical approximate solutions 
    

 

x
1
 (black circles) and 

    

 

x
2
 

(white circles) with the exact solution (continuous line) for A = 10  

    

 

(!0 = v0 / c = 0.99981). 
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FIGURE  1 
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FIGURE  2 

 

 

 

 
 

 


