
The Journal of Supercomputing manuscript No.
(will be inserted by the editor)

Multipopulation based multi-level parallel enhanced

Jaya algorithms

H. Migallón · A. Jimeno-Morenilla · J.L.

Sánchez-Romero · H. Rico · R. V. Rao

Received: date / Accepted: date

Abstract To solve optimization problems, in the field of engineering opti-
mization, an optimal value of a specific function must be found, in a limited
time, within a constrained or unconstrained domain. Metaheuristic methods
are useful for a wide range of scientific and engineering applications, which
accelerate being able to achieve optimal or near-optimal solutions. The meta-
heuristic method called Jaya has generated growing interest because of its sim-
plicity and efficiency. We present Jaya-based parallel algorithms to efficiently
exploit cluster computing platforms (heterogeneous memory platforms). We
propose a multilevel parallel algorithm, in which, to exploit distributed me-
mory architectures (or multiprocessors), the outermost layer of the Jaya algo-
rithm is parallelized. Moreover, in internal layers, we exploit shared memory
architectures (or multicores) by adding two more levels of parallelization. This

This research was supported by the Spanish Ministry of Economy and Competitiveness
under Grant TIN2015-66972-C5-4-R and Grant TIN2017-89266-R, co-financed by FEDER
funds.(MINECO/FEDER/UE)

H. Migallón
Department of Physics and Computer Architecture. Miguel Hernández University, E-03202
Elche, Spain.
Tel.: +34-966658390
Fax: +34-966658814
E-mail: hmigallon@umh.es

A. Jimeno-Morenilla
Department of Computer Technology, University of Alicante, E-03071, Alicante, Spain.

J.L. Sánchez-Romero
Department of Computer Technology, University of Alicante, E-03071, Alicante, Spain.

H. Rico
Department of Computer Technology, University of Alicante, E-03071, Alicante, Spain.

R. V. Rao
Sardar Vallabhbhai National Institute of Technology, Surat-395 007, Gujarat State, India.

Usuario
Texto escrito a máquina
This is a previous version of the article published in The Journal of Supercomputing. 2019, 75(3): 1697-1716. doi:10.1007/s11227-019-02759-z

https://doi.org/10.1007/s11227-019-02759-z

2 H. Migallón et al.

two-level internal parallel algorithm is based on both a multipopulation struc-
ture and an improved heuristic search path relative to the search path of the
sequential algorithm. The multilevel parallel algorithm obtains average effi-
ciency values of 84% using up to 120 and 135 processes, and slightly accelerates
the convergence with respect to the sequential Jaya algorithm.

Keywords Jaya, optimization, metaheuristic, multipopulation, parallelism,
MPI/OpenMP

1 Introduction

Deterministic approaches to solving optimization problems take advantage of
the problems’ analytical properties to generate a sequence of points that moves,
or attempts to move, towards a global optimal solution. These methods are
commonly based on the computation of the gradient of the response variables.
Deterministic approaches can provide general tools for solving optimization
problems to obtain a global or an approximate global optimum (see [12]).
Nonetheless, due to the complexity of the problems, deterministic methods
may not be able to easily derive a globally optimal solution within a reasonable
time frame, and, moreover, these approaches do not guarantee an optimal
solution. This may be due to some of these functions having local minima, so
finding an absolute value can prove to be very difficult.

Metaheuristic methods are able to both avoid local minima and acceler-
ate convergence, and avoid restrictions in the functions being optimized. Such
methods employ guided (random) search techniques to satisfactorily solve the
problem, although its adequacy with respect to the target problem cannot be
formally proven. In fact, metaheuristic methods are capable of achieving the
global or almost global solution without having all the information about the
problems that need solving. Metaheuristic algorithms do not use the gradient
of the function, which means that the function does not need to be differ-
entiable, as required by classic deterministic optimization, such as gradient
descent or quasi-newton methods.

Some of the well-known metaheuristic optimization algorithms are Ge-
netic Algorithms (GA) and its variants, Differential Evolution (DE) and its
variants, Particle Swarm Optimization (PSO) and its variants, Simulated An-
nealing (SA) algorithm, Tabu Search (TS) algorithm, Evolutionary Strategy
(ES), Evolutionary Programming (EP), Genetic Programming (GP), Artificial
Bee Colony (ABC), Shuffled Frog Leaping (SFL), Ant Colony Optimization
(ACO), and the Fire Fly (FF) algorithm. Some algorithms based on phenom-
ena in nature worthy mentioning are Harmony Search (HS), Lion Search (LS),
the Gravitational Search Algorithm (GSA), Biogeography-Based Optimization
(BBO), and the Grenade Explosion Method (GEM).

Most of these algorithms’ success is greatly conditioned by their specific
parameters. For example, GA needs crossover probability, mutation probabil-
ity, selection operator, etc. to be set correctly; SA algorithm needs the initial

Jaya optimization algorithm with GPU-acceleration 3

annealing temperature and cooling schedule to be tuned; PSO’s specific para-
meters are inertia weight and social and cognitive parameters; HSA needs the
harmony memory consideration rate, number of improvisations, etc. to be set
correctly; and the immigration rate, emigration rate, etc., need to be tuned
for BBO.

Two optimization methods were recently proposed, namely Teacher-Learner
Based Optimization (TLBO) [24] and Jaya [19,21], to overcome the problem of
tuning algorithm-specific parameters. Both optimization algorithms only need
general parameters to be set, such as the number of iterations and population
size. Interest in the Jaya algorithm is growing in many scientific and engi-
neering fields because of its simplicity and efficiency (see [1,5,8,10,11,14,16,
26,29,30], among others, for example). Elitist-Jaya [23], self-Jaya [22] and the
quasi-oppositional-based Jaya [20] algorithms are modifications of the Jaya al-
gorithm meaning that it can be applied to more scientific fields. In particular,
the self-Jaya algorithm uses the multipopulation technique, which is employed
in our parallel proposal. Multipopulation optimization methods are used to
improve search diversity by splitting the entire population into groups (sub-
populations) and allocating these throughout the search space so that problem
changes can be detected effectively.

Some parallel proposals for metaheuristic optimization algorithms can be
found in the literature. For example, the authors of [28] implemented the
TLBO algorithm on a multicore processor; the OpenMP strategy emulated
the sequential TLBO algorithm exactly. A set of ten test functions were eva-
luated when running the algorithm on a single core architecture, and were
then compared in multiprocessors ranging from two to 32 cores. They ob-
tained average speed-up values of 4.9x and 6.4x with 16 and 32 processors,
respectively.

The Parallel Dual Population Genetic Algorithm, presented in [27], is based
on the original GA, but the Dual Algorithm adds a reserve population to ensure
that premature convergence proper to this kind of algorithm is avoided. The
average speed-up values obtained are equal to 1.64x using both 16 and 32
processors.

In [2] and [3], a maximum speed-up of almost 2.5x was reached using
Message Passing Interface (MPI), OpenMP, and hybrid MPI and OpenMP
implementations of population-based metaheuristics. [6] presents a parallel
implementation of the Ant Colony Optimisation (ABC) algorithm to solve
an industrial scheduling problem in an aluminium-casting centre., Maximum
speed-up was obtained using eight processors, however, speed-up decreased as
the number of processors further increased. The maximum speed-up achieved
was equal to 5.94x using eight processors, which dropped to 5.45x with 16
processors.

In Section 2, the recent Jaya optimization algorithm is presented; in Sec-
tion 3, the multi-level parallel algorithms and the improvement included in the
optimization procedure for the parallel algorithms are described; in Section 4,
we analyse the latter, both in terms of parallel performance and optimization
behaviour, and some conclusions are drawn in Section 5.

4 H. Migallón et al.

2 The Jaya algorithm

The Jaya algorithm is based on the fact that the optimal solution for a given
problem can be obtained by moving towards the best solution while avoid-
ing the worst individual of the set of individuals in the current population.
As aforementioned Jaya is an algorithm-specific parameter-less algorithm, i.e.
only population size (number of different individuals) and generations (num-
ber of iterations) should be configured. Compared with other optimization
methods, such as GA, ABC, DE, PSO and TLBO, Jaya obtained better re-
sults in terms of best, mean and worst values of different constrained and
unconstrained benchmark functions [25].

The Jaya algorithm can be described as follows: let f(x) be the objective
function to be minimised (or maximised), where x is a vector with a dimension
n, which depends on the particular function being optimized. Each element of
vector x is a design variable of function f(x). At any k iteration, there are n

design variables (i.e. j = 1, 2, . . . n) corresponding to the function in question,
and m candidate solutions (i.e. population size, i = 1, 2, . . .m). Therefore,
the whole population can be considered a matrix of dimension (m,n). The
best candidate obtains the best value of f(x) (i.e. f(x)best) out of all candi-
date solutions, and the worst candidate obtains the worst value of f(x) (i.e.
f(x)worst) out of all candidate solutions. If Xj,k,i is the value of the jth vari-
able for the kth candidate during the ith iteration, then this value is modified
by the following equation:

X
′

j,k,i = Xj,k,i + r1,j,i (Xj,best,i − |Xj,k,i|)− r2,j,i (Xj,worst,i − |Xj,k,i|) , (1)

where Xj,best,i is the value of the j variable for the best candidate, and
Xj,worst,i is the value of the j variable for the worst candidate. In Equation (1),

X
′

j,k,i is the updated value of Xj,k,i, and r1,j,i and r2,j,i are two random num-
bers, uniformly distributed in the range [0, 1], for the jth variable computed
in the ith iteration.

Algorithm 1 shows the skeleton of sequential Jaya algorithm implementa-
tion. The “Runs” parameter corresponds to the number of independent exe-
cutions performed, therefore, in line 26 of Algorithm 1, the different “Runs”
solutions should be evaluated. A more detailed description can be found, for
example, in in [13], [19] or [21], which describe “Create New Population” and
“Update Population” functions in detail.

3 Multi-level parallel Jaya algorithms

To efficiently exploit the maximum number of processors in a computing clus-
ter we developed a multi-level algorithm, which will be described in this sec-
tion. Two of these levels are developed to exploit shared memory architectures,
being the most external level of these two levels applied to the concept of sub-
populations. The strategy developed is similar to the structure developed in

Jaya optimization algorithm with GPU-acceleration 5

Algorithm 1 Sequential Jaya algorithm
1: Define function to minimize
2: Set Runs, Iterations and PopulationSize parameters
3: for l = 1 to Runs do

4: Create New Population:

5: {
6: for i = 1 to PopulationSize do

7: for j = 1 to m do

8: Obtain 2 random numbers
9: Compute the design variable of the new member Memberij {using Equa-

tion (1)}
10: if Memberij < MinV alue then

11: Memberij = MinV alue

12: end if

13: if Memberij > MaxV alue then

14: Memberij = MaxV alue

15: end if

16: end for

17: Compute and store F (Memberij) {Function evaluation}
18: end for

19: }
20: for l = 1 to Iterations do

21: Update Population
22: end for

23: Store Solution
24: Delete Population
25: end for

26: Obtain Best Solution and Statistical Data

[18], in which the whole, initially created population (lines 4 to 19 of Algo-
rithm 1) is divided into sub-populations. However, in contrast to the sequential
proposal presented in [18], the sub-populations are static, i.e. no population
migrations are allowed. Note that, the sub-population structure is performed
to parallelise the sequential algorithm.

The first parallel level developed (or outer level), which is suitable for
shared-memory platforms, exploits a multipopulation structure, so that each
sub-population is assigned to one shared-memory thread (OpenMP process).
In this outer shared-memory parallel level, we will analyse two parallel options,
the first one considers that the sub-populations share the best and the worst
current solution, which we call “PMPS Jaya” (Parallel MultiPopulation Sin-
gle). In the second one, each process stores its own best and worst solutions,
which we call “PMPM Jaya” (Parallel MultiPopulation Multiple). Attending
to the parallel performance, the first proposal involves memory contentions
to access the global memory where the best and worst solutions are stored,
while the latter proposal avoids synchronization processes, meaning that al-
most all processing tasks are performed in private memory, improving parallel
behaviour.

The second level developed to exploit shared memory architectures, is lo-
cated in processes more internal than the previous level. The main goal of
this second level is to be able to increase the optimal number of processes in

6 H. Migallón et al.

shared memory architectures. This second shared-memory parallel level (or in-
ner level), is based on the parallel proposal presented in [13], i.e. parallelisation
focuses on the “Update Population” function (line 21 of Algorithm 1), which
is usually executed thousands, tens of thousands, or hundreds of thousands of
times, depending on the value of the “Iterations” parameter (lines 20 to 22 of
Algorithm 1). At this level of computation, there are already several threads
(OpenMP processes) in execution, and as such, nested parallelism [4] needs to
be used. Therefore, each outer parallel level thread have to spawn a group of
threads to distribute the computational load associated to each population,
i.e. each outer thread creates an inner parallel region. The maximum number
of inner parallel region threads depends on the number of outer threads (i.e.
the number of populations in the multipopulation algorithm) and the number
of available cores in the shared-memory platforms, or the maximum number
of threads if hyper-threading is enabled.

Figure 1 shows the two levels of parallelism implemented for a shared
memory platforms. The number of processes in the outer level P is equal
to the number of populations in the multipopulation structure. As described
previously, the maximum number of processes spawned in each inner level is
equal to the number of available cores divided by P .

In the parallel algorithm presented in [13], the size of the population should
be increased to obtain good parallel efficiencies. Thanks to the double level
of parallelism implemented in the current study, the maximum number of
processes working in a single population is limited to a small number, and,
therefore, it is possible to work efficiently with smaller populations.

Finally, the third level of parallelism is the outest level (or highest level),
designed to exploit distributed-memory platforms. This third level, developed
using MPI, is shown in Algorithm 2. Said algorithm exploits the fact that
all iterations from line 3 in Algorithm 1 are actually independent executions.
Therefore, the total number of executions (“Runs”) to be performed is divided
among the available distributed memory processes. The dispatcher process al-
lows not to distribute the workload statically; a load-balancing procedure is
intrinsically included in Algorithm 1. Moreover, the dispatcher process is exe-
cuted in combination with to a worker process in a single core, as no significant
overhead is introduced in the overall parallel algorithm performance. Since a
multi-level algorithm has been developed, in practice all or only some of these
levels can be exploited.

3.1 Optimization procedure improvement for the parallel algorithms

As described above, the Jaya algorithm is based on the concept that the solu-
tion obtained for a given problem should move towards the best solution and
avoid the worst solution. Following Equation (1), where Xj,best,i is the value of
the j variable for the best candidate, andXj,worst,i is the value of the j variable

for the worst candidate,X
′

j,k,i is the updated value of Xj,k,i, and r1,j,i and r2,j,i
are two random numbers, uniformly distributed in the range [0, 1], for the jth

Jaya optimization algorithm with GPU-acceleration 7

Figure 1 Multipopulation two-level parallel Jaya algorithm.

variable computed in the ith iteration. The term r1,j,i (xj,best,i − |Xj,k,i|) des-
ignates the tendency (or intensity) of the algorithm to move closer to the best
solution, whereas the term −r2,j,i (xj,worst,i − |Xj,k,i|) designates the tendency
(or intensity) of the algorithm to avoid the worst solution. The new candidate
(X

′

j,k,i) is accepted only if it gives a better function evaluation.

In our enhanced algorithm, we propose that both intensities are not ran-
dom, instead only one of the intensities will be random and the other one
depends on the previous process performed in each variable of each individ-
ual. To this end, in our proposal, when we compute a particular design variable

8 H. Migallón et al.

Algorithm 2 High level parallel algorithm
1: Define function to minimize
2: Set Runs, Iterations and PopulationSize parameters
3: Worker processes:

4: {
5: while true do

6: Request job to the dispatcher process
7: if No remaining work then

8: Send Solutions
9: Break while
10: else

11: Obtain the number of populations (or number of outer processes) P

12: Compute the size of nested parallel regions
13: Compute 1 run of two level parallel Jaya algorithm
14: Store Solution
15: end if

16: end while

17: }
18: Dispatcher process:

19: {
20: for l = 1 to Runs do

21: Receive work request
22: Send processing order message
23: end for

24: for l = 1 to P do

25: Receive work request
26: Send No remaining work message
27: Receive Solutions
28: end for

29: Obtain Best Solution and Statistical Data
30: }

of the individual, we obtain one random number to set the intensity used to
move closer to the best solution, but the intensity used to avoid the worst
solution is equal to the intensity that was used in the previous step to move
closer to the best solution. The new computation of one design variable (line 9
in Algorithm 1) is shown in Algorithm 3. This change in the search path aims,
on the one hand, to improve the speed of convergence and, on the other hand,
to accelerate the parallel algorithms, both effects will be analyzed in Section 4.

4 Numerical experiments

In this section, we analyse the enhanced multi-level parallel Jaya algorithms
based on the multipopulations presented in Section 3. We examine the paral-
lel behaviour and the optimization performance of the parallel proposals. To
perform the tests, we developed the reference algorithm (presented in [19]) in
C language to implement the parallel algorithms and we used the GCC v.4.8.5
compiler [9]. We choose MPI v2.2 [15] for the high-level parallel approach and
OpenMP API v3.1 [17] for the shared-memory parallel algorithms. The paral-
lel platform used was a cluster composed of HP ProLiant SL390 G7 computing

Jaya optimization algorithm with GPU-acceleration 9

Algorithm 3 Enhanced computing of the design variables
1: for i = 1 to PopulationSize do

2: Matrix allocation and initialization with i ∗ j random numbers (MtR)
3: for j = 1 to m do

4: Obtain a random number r1
5: Obtain r2 = MtR[i, j]
6: Compute the design variable of the new member Memberij as:

7: NewMemberij = Memberij + r1

(

MemberBestij −
∣

∣

∣
Memberij

∣

∣

∣

)

8: −r2

(

MemberWorstij −
∣

∣

∣
Memberij

∣

∣

∣

)

9: Store MtR[i, j] = r1
10: end for

11: end for

nodes, where each node was equipped with two Intel Xeon X5660 processors.
Each X5660 includes six processing cores at 2.8 GHz, i.e. 12 cores per node
with no hyper-threading enabled. Quadruple Data Rate Infiniband was used
as the communication network.

Performance was analysed using 30 unconstrained functions (employed as
benchmark in [19]), which are listed and described in tables 4 and 4.

Table 1: Benchmark functions.

Id. Function

F1 f =
V
∑

i=1

x2
i

F2 f =

V
∑

i=1

ix2
i

F3 f = (1.5− x1 + x1x2)
2 + (2.25− x1 + x1x

2
2)

2

+(2.625− x1 + x1x
3
2)

2

F4 f = − cos(x1) cos(x2) exp
(

−(x1 − π)2 − (x2 − π)2
)

F5 f = 0.26(x2
1 + x2

2)− 0.48x1x2

F6 f = 100(x2
1 − x2)

2 + (x1 − 1)2 + (x3 − 1)2 + 90(x2
3 − x4)

2

+10.1
(

(x2 − 1)2 + (x4 − 1)2
)

+ 19.8(x2 − 1)(x4 − 1)

F7
F8

f =

V
∑

i=1

(xi − 1)2 −

V
∑

i=2

xixi−1

F9 f =
V
∑

i=1

x2
i +

(

V
∑

i=1

0.5ixi

)2

+

(

V
∑

i=1

0.5ixi

)4

F10 f =

V
∑

i=1





i
∑

j=1

xj





2

F11 f =

V−1
∑

i=1

(

100(xi+1 − x2
i)

2 + (xi − 1)2
)

10 H. Migallón et al.

F12 f = (x1 − 1)2 +

V
∑

i=2

i
(

2x2
i − xi−1

)2

F13 f =













1

500
+

25
∑

j=1

1

j +

2
∑

i=1

(xi − aij)
6













−1

F14 f =
(

x2 −
5.1
4π2x

2
1 +

5

π
x1 − 6

)2
+ 10

(

1− 1

8π

)

cosx1 + 10
F15 f = x2

1 + 2x2
2 − 0.3 cos(3πx1)− 0.4 cos(4πx2) + 0.7

F16 f = (x1 − 2x2 − 7)2 + (2x1 + x2 − 5)2

F17
F18

f = −
V
∑

i=1

sinxi

(

sin

(

ix2
i

π

))20

F19 f = x2
1 + 2x2

2 − 0.3 cos(3πx1) cos(4πx2) + 0.3
F20 f = x2

1 + 2x2
2 − 0.3 cos(3πx1 + 4πx2) + 0.3

F21 f =
[

1 + (x1 + x2 + 1)2(19− 14x1 + 3x2
1 − 14x2 + 6x1x2 + 3x2

2)
]

[

30 + (2x1 − 3x2)
2(18− 32x1 + 12x2

1 + 48x2 − 36x1x2 + 27x2
2)
]

F22 f =

V
∑

j=1

[

i
∑

i=1

(ij + β)

(

(xi

i

)j

− 1

)

]2

F23 f = −
4
∑

i=1

ci exp



−
3
∑

j=1

aij(xj − pij)
2





F24 f = −20 exp



−0.2

√

√

√

√
1

V

V
∑

i=1

x2
i



− exp

(

1

V

V
∑

i=1

cos(2πxi)

)

+ 20 + e

F25 f = 0.1{sin2(3πx1) +

V−1
∑

i=1

(xi − 1)2
[

1 + sin2(3πxi+1)
]

+(xV − 1)2
[

1 + sin2(2πxV)
]

}+

V
∑

i=1

u(xi, 5, 100, 4),

u(xi, a, k,m) =
k(xi − a)m, xi > a; 0,−a ≤ xi ≤ a; k(−xi − a)m, xi < −a.

F26
F27
F28

f = −
5
∑

i=1

ci



exp



−
1

π

V
∑

j=1

(xj − aij)
2



 cos



π

V
∑

j=1

(xj − aij)
2









F29
F30

f = −

V
∑

i=1

ci (Ai −Bi)
2
;

Ai = −

V
∑

j=1

(aij sinαj + bij cosαj) ,

Bi = −

V
∑

j=1

(aij sinxj + bij cosxj)

Jaya optimization algorithm with GPU-acceleration 11

Table 2: Benchmark functions.

Id. Name Dim. (V) Domain (Min,Max)

F1 Sphere 30 −100, 100
F2 SumSquares 30 −10, 10
F3 Beale 2 −4.5, 4.5
F4 Easom 2 −100, 100
F5 Matyas 2 −10, 10
F6 Colville 4 −10, 10
F7 Trid 6 6 −V 2, V 2

F8 Trid 10 10 −V 2, V 2

F9 Zakharov 10 −5, 10
F10 Schwefel 1.2 30 −100, 100
F11 Rosenbrock 30 −30, 30
F12 Dixon-Price 30 −10, 10
F13 Foxholes 2 −216, 216

F14 Branin 2 x1 : −5, 10;x2 : 0, 15
F15 Bohachevsky 1 2 −100, 100
F16 Booth 2 −10, 10
F17 Michalewicz 2 2 0, π
F18 Michalewicz 5 5 0, π
F19 Bohachevsky 2 2 −100, 100
F20 Bohachevsky 3 2 −100, 100
F21 GoldStein-Price 2 −2, 2
F22 Perm 4 −V, V

F23 Hartman 3 3 0, 1
F24 Ackley 30 −32, 32
F25 Penalized 2 30 −50, 50
F26 Langermann 2 2 0, 10
F27 Langermann 5 5 0, 10
F28 Langermann 10 10 0, 10
F29 Fletcher-Powell 5 5 xi, αi : −π, π; aij , bij : −100, 100
F30 Fletcher-Powell 10 10 xi, αi : −π, π; aij , bij : −100, 100

The parallel algorithm presented in [13] needs work with medium and large
populations in order to obtain good parallel efficiencies. In some cases, the use
of large populations can increase the number of function evaluations performed
to approach the optimum. Table 3 shows the number of function evaluations
needed to reach an error less than 10−3. As can be observed, working with
small population sizes is preferable in most cases. Furthermore, with regard
to the results presented in Table 3 and the rest of experiments performed, we
can conclude that populations should not be extremely small.

As explained in Section 3, the outer level of the parallel algorithm devel-
oped for shared memory platforms is applied to the concept of subpopulations.
We have developed two different versions of this level, both versions divide the

12 H. Migallón et al.

Table 3 Function Evaluations ǫ < 10−3.

Pop. Size F1 F5 F10 F15 F20 F25 F30

10 13083 198 12804 520 557 15774 29151
12 10366 405 10791 596 682 25000 35552
14 10724 361 9817 705 788 32402 47568
16 11134 535 10373 879 981 35985 101240
32 24934 708 24007 1908 1696 25877 164324
48 45789 1250 43296 2858 2922 45378 183197
64 69376 1297 66583 3964 3255 69617 331307
80 97152 2021 91512 4600 5155 98899 296339
96 126246 1616 119293 6102 4963 134602 462411
112 158125 2315 147866 7183 6321 168052 436411
128 189871 2615 178278 7966 7727 208563 432267

whole population into sub-populations, but one of them uses the best and
worst global individuals (“PMPS Jaya”), while the other one uses local best
and worst individuals for each population of the multipopulation structure
(“PMPM Jaya”). Therefore, the first one emulates the sequential Jaya algo-
rithm almost exactly. If we were to fix the size of the sub-populations instead
of the size of the whole population for the latter parallel algorithm, the whole
population size would be equal to“Sub-population Size x Number of outer pro-

cesses”. Table 4 shows the number of iterations performed to reach an error
less than 10−3, only using the outer parallel algorithm and setting the sub-
population size to 14. Considering that the number of iterations is not reduced
as the number of processes increases and the expected parallel performance
improvement, the number of outer OpenMP processes should be set to a small
value.

The number of OpenMP processes must be able to be increased to exploit
parallel platforms with a greater number of cores. To this end, we developed
the multi-level parallel algorithm in which each outer process spawn an inner
parallel region. In our experiments, the outer parallel algorithm is executed
with two, three or four OpenMP threads, and the inner parallel regions will
spawn two or three inner threads.

Table 4 Number of Iterations ǫ < 10−3.

Subpop. Num. F1 F5 F10 F15 F20 F25 F30
Size proc.

14 1 760 29 716 54 55 755 3934
14 2 746 28 700 57 61 396 3636
14 3 879 26 841 60 60 441 4298
14 4 1018 26 965 60 53 291 4287
14 5 1143 22 1073 64 56 419 3786
14 6 1242 18 1180 63 55 328 4383
14 7 1325 21 1250 63 54 303 4522
14 8 1403 24 1329 60 52 368 3593

Jaya optimization algorithm with GPU-acceleration 13

Tables 5 and 6 show the speed-up obtained for both “PMPM Jaya” and
“PMPS Jaya” algorithms, respectively. As can be observed, “PMPM Jaya’s”
parallel behaviour outperforms “PMPS Jaya’s” parallel performance in most
cases, as expected.

Table 5 Speed-up for algorithm PMPS Jaya.

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10

2 pr. 1.69 1.69 1.83 1.73 1.70 1.63 1.76 1.94 1.84 1.77
3 pr. 2.43 2.37 2.50 2.24 2.01 2.09 2.51 2.60 2.48 2.46
4 pr. 3.02 3.06 3.27 2.81 2.39 2.98 3.24 3.30 3.36 3.22

F11 F12 F13 F14 F15 F16 F17 F18 F19 F20

2 pr. 1.98 1.89 1.98 1.67 1.64 1.13 1.84 1.84 1.48 1.59
3 pr. 2.57 2.57 2.74 2.49 1.92 1.53 1.65 1.63 1.57 2.05
4 pr. 3.18 3.18 3.51 3.14 2.50 2.34 1.21 1.50 2.00 2.70

F21 F22 F23 F24 F25 F26 F27 F28 F29 F30

2 pr. 1.50 1.83 1.78 1.45 1.83 1.78 1.79 1.76 1.89 1.89
3 pr. 2.20 2.67 2.69 1.95 3.17 2.64 2.71 2.72 2.28 2.27
4 pr. 2.88 3.49 3.36 2.22 3.69 3.56 3.63 3.25 2.76 3.20

Table 6 Speed-up for algorithm PMPM Jaya.

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10

2 pr. 1.87 1.90 1.84 1.61 1.60 1.65 1.76 1.94 1.83 1.87
3 pr. 2.65 2.79 2.76 2.47 2.06 2.46 2.65 2.90 2.66 2.65
4 pr. 3.43 3.43 3.61 3.25 2.43 3.20 3.39 3.62 3.36 3.45

F11 F12 F13 F14 F15 F16 F17 F18 F19 F20

2 pr. 1.85 1.83 1.73 1.75 1.64 1.25 1.85 1.74 1.42 1.57
3 pr. 2.66 2.65 2.61 2.47 2.39 1.80 2.76 2.74 2.04 2.32
4 pr. 3.41 3.48 3.42 3.13 3.17 2.39 3.42 3.50 2.58 3.07

F21 F22 F23 F24 F25 F26 F27 F28 F29 F30

2 pr. 1.49 1.77 1.78 1.14 2.27 1.81 1.80 1.76 1.79 1.90
3 pr. 2.08 2.63 2.70 1.68 3.13 2.63 2.66 2.64 2.68 2.72
4 pr. 2.94 3.51 3.29 2.05 3.70 3.51 3.54 3.48 3.47 3.53

When applying the enhanced search path explained in Section 3.1 to the
multipopulation-based “PMPM Jaya” algorithm, improvements were expected
in both parallel behaviour and optimization performance for the new algorithm
named “E PMPM Jaya” (Enhanced search path PMPM Jaya). Table 7 shows
the improvement in the “E PMPM Jaya” algorithm’s parallel behaviour with
respect to the sequential Jaya, obtaining, in some cases, super speed-ups (i.e.
speed-ups greater than the number of processes). Note that the sequential al-

14 H. Migallón et al.

gorithm Jaya does not include the enhanced search path strategy. For the rest
of the functions, the results are similar to those obtained with “PMPM Jaya”
algorithm.

Table 7 Speed-up for algorithm E PMPM Jaya.

F1 F2 F8 F9 F10 F11 F12 F28 F29 F30

2 pr. 3.03 3.02 2.92 2.35 2.23 2.96 2.92 1.76 1.85 1.91
3 pr. 4.19 4.17 3.69 3.20 3.16 4.17 4.11 2.64 2.64 2.86
4 pr. 4.67 4.64 3.94 3.54 3.96 5.06 4.79 3.65 3.44 3.62

Table 8 shows the efficiency for the higher computational cost functions,
when the two-level algorithm for shared-memory platforms is used, when using
“E PMPM Jaya” as the inner algorithm. The efficiencies obtained are, on
average, greater than 85%, which is a good value, especially considering that
both the population size, equal to 14, and the number of iterations, equal to
10000, are small values.

Table 8 Efficiency for two level algorithm, (E PMPM Jaya included).

Outer Inner F3 F13 F22 F25 F26 F27 F28 F29 F30
proc. proc.

2 pr. 4 pr. 83% 85% 85% 100% 82% 85% 87% 85% 84%
3 pr. 3 pr. 81% 85% 85% 93% 80% 85% 86% 84% 82%
4 pr. 2 pr. 85% 85% 85% 85% 82% 87% 86% 91% 83%

The results shown in Table 9 analyse the multilevel algorithm. Said re-
sults show the good parallel behaviour of the algorithm that exploits the
parallelism of cluster computing platforms (distributed and shared memory
platforms) including the third level of parallelism added, note that this third
level is developed to exploit distributed memory platforms. Table 9 shows re-
sults corresponding to Table 8, where “Runs” equal to 30 and the number
of distributed processes (MPI processes) equal to 15, being, on average, the
efficiency equal to 85%, using between 120 and 135 processes.

Table 9 Efficiency for multilevel algorithm. 15 MPI processes.

Outer Inner F3 F13 F22 F25 F26 F27 F28 F29 F30
proc. proc.

2 pr. 4 pr. 85% 84% 87% 99% 85% 85% 86% 82% 84%
3 pr. 3 pr. 85% 83% 82% 92% 81% 84% 87% 79% 80%
4 pr. 2 pr. 80% 84% 85% 88% 80% 84% 86% 90% 85%

Jaya optimization algorithm with GPU-acceleration 15

Finally we will analyze the effect of the change in the optimization pro-
cedure explained in Section 3.1. In order to analyse the improvement in the
random search path, we analysed the “E PMPM Jaya” algorithm and com-
pared it to the original Jaya by conducting the Friedman’s rank test [7]. This
test’s output includes the “p-value”, a scalar value in the range [0, 1], which
is less than 0.05 when the results are statistically relevant, and χ2 which is
like a variance over the mean ranks. Mean and best values obtained for the
benchmark test shown in tables 4 and 4 are considered for the test. Table 10
shows the results of the Friedman’s rank test using a population size equal
to 14, 1000 iterations and 30 “Runs”, for the sequential algorithm. Further-
more, for the parallel algorithm, both the sub-population size and the number
of function evaluations remain unchanged, i.e. the computational effort con-
tinues to be the same. We would like to comment that the “E PMPM Jaya”
method obtains the best, statistically relevant results, when compared to the
original Jaya results, and they improve as the number of processes increases,
even improving the statistical relevance of said results. Worthy to note that
the Jaya algorithm has been thoroughly analyzed and compared with the main
reference algorithms, for example, in [1] Jaya is compared to GA and ICA (Im-
perialist Competitive Algorithm; in [10] it is compared to Cuckoo, PSO and
TLBO; in [14] respect to GEM and TLBO; in [16] respect to BF (Brute Force);
in [26] respect to PSO, DE and NMS (Nelder-Mead Simplex); in [29] respect
to GA, PSO, GPS (Genetic Pattern Search), BBO, ABC and FA; and in [30]
respect to TLBO, GOTLBO (Generalized Oppositional TLBO), LBSA (Learn-
ing Backtracking Search Algorithm), PSO, CLPSO (Comprehensive Learning
PSO) and hybrid DE/BBO.

Table 10 Friedman rank’s test comparing E PMPM Jaya and Jaya .

Number of Best value Mean value
parallel processes Rank p-value χ2 Rank p-value χ2

1 process 1.367 3.25E-02 4.57 1.267 1.70E-03 9.80
2 processes 1.250 3.00E-04 13.24 1.250 6.00E-04 11.84
3 processes 1.217 2.00E-04 13.76 1.167 2.01E-05 18.18
4 processes 1.150 2.66E-05 17.64 1.100 2.52E-05 22.15

5 Conclusions

In this study, we presented multi-level parallel Jaya algorithms, a recent op-
timization algorithm which is free of tuning parameters. We described the
three levels of the parallel algorithms developed; two of which were for shared-
memory platforms and the other one for distributed-memory platforms. We
also proposed a modification in the random search path, which is proven ef-
fective, as demonstrated by Friedman’s rank test, and moreover, means that

16 H. Migallón et al.

parallel efficiency can be improved, especially for small populations. Both op-
timization and parallel performance were analysed using a benchmark of 30
unconstrained functions. Taking into account that engineering problems are
usually complicated and have a large number of design variables, i.e. they are
problems of high computational cost, the algorithms proposed could efficiently
speed up resolving engineering optimization problems using supercomputing
platforms or low-power computing platforms, also improving optimization per-
formance.

References

1. Abhishek, K., Kumar, V.R., Datta, S., Mahapatra, S.S.: Application of jaya algorithm
for the optimization of machining performance characteristics during the turning of cfrp
(epoxy) composites: comparison with tlbo, ga, and ica. Engineering with Computers
pp. 1–19 (2016). DOI 10.1007/s00366-016-0484-8

2. Baños, R., Ortega, J., Gil, C.: Comparing multicore implementations of evolutionary
meta-heuristics for transportation problems. Annals of Multicore and GPU Program-
ming 1(1), 9–17 (2014)

3. Baños, R., Ortega, J., Gil, C.: Hybrid mpi/openmp parallel evolutionary algorithms
for vehicle routing problems. In: A.I. Esparcia-Alcázar, A.M. Mora (eds.) Applica-
tions of Evolutionary Computation: 17th European Conference, EvoApplications 2014,
Granada, Spain, April 23-25, 2014, Revised Selected Papers, pp. 653–664. Springer
Berlin Heidelberg, Berlin, Heidelberg (2014)

4. Blikberg, R., Srevik, T.: Load balancing and openmp implementation of nested paral-
lelism. Parallel Computing 31(10), 984 – 998 (2005). DOI 10.1016/j.parco.2005.03.018.
OpenMP

5. Choudhary, A., Kumar, M., Unune, D.R.: Investigating effects of resistance wire heat-
ing on aisi 1023 weldment characteristics during asaw. Materials and Manufacturing
Processes 33(7), 759–769 (2018). DOI 10.1080/10426914.2017.1415441

6. Delisle, P., Krajecki, M., Gravel, M., Gagné, C.: Parallel implementation of an ant
colony optimization metaheuristic with openmp. In: Proceedings of the 3rd European
Workshop on OpenMP. Springer Berlin Heidelberg (2001)

7. Derrac, J., Garca, S., Molina, D., Herrera, F.: A practical tutorial on the use of non-
parametric statistical tests as a methodology for comparing evolutionary and swarm
intelligence algorithms. Swarm and Evolutionary Computation 1(1), 3 – 18 (2011).
DOI 10.1016/j.swevo.2011.02.002

8. Dinh-Cong, D., Dang-Trung, H., Nguyen-Thoi, T.: An efficient approach for optimal sen-
sor placement and damage identification in laminated composite structures. Advances
in Engineering Software 119, 48 – 59 (2018). DOI 10.1016/j.advengsoft.2018.02.005

9. Free Software Foundation, Inc.: GCC, the gnu compiler collection.
https://www.gnu.org/software/gcc/index.html

10. Gambhir, M., Gupta, S.: Advanced optimization algorithms for grating based sensors:
A comparative analysis. Optik 164, 567 – 574 (2018). DOI 10.1016/j.ijleo.2018.03.062

11. Ghavidel, S., Azizivahed, A., Li, L.: A hybrid Jaya algorithm for reliability-redundancy
allocation problems. Engineering Optimization 50(4), 698–715 (2018). DOI
10.1080/0305215X.2017.1337755

12. Lin, M.H., Tsai, J.F., Yu, C.S.: A review of deterministic optimization methods in
engineering and management. Mathematical Problems in Engineering 2012(Article ID
756023), 15 (2012). DOI 10.1155/2012/756023

13. Migallón, H., Jimeno-Morenilla, A., Sánchez-Romero, J.L.: Parallel improvements of the
jaya optimization algorithm. Applied Sciences 8(5) (2018). DOI 10.3390/app8050819

14. Mishra, S., Ray, P.K.: Power quality improvement using photovoltaic fed dstatcom based
on jaya optimization. IEEE Transactions on Sustainable Energy 7(4), 1672–1680 (2016).
DOI 10.1109/TSTE.2016.2570256

Jaya optimization algorithm with GPU-acceleration 17

15. MPI Forum: MPI: A Message-Passing Interface Standard. Version 2.2 (2009). Available
at: http://www.mpi-forum.org

16. Ocloń, P., Cisek, P., Rerak, M., Taler, D., Rao, R.V., Vallati, A., Pilarczyk, M.: Thermal
performance optimization of the underground power cable system by using a modified
jaya algorithm. International Journal of Thermal Sciences 123, 162 – 180 (2018). DOI
j.ijthermalsci.2017.09.015

17. OpenMP Architecture Review Board: OpenMP Application Program Interface, version
3.1. http://www.openmp.org (2011)

18. Rao, R., More, K.: Design optimization and analysis of selected thermal devices using
self-adaptive Jaya algorithm. Energy Conversion and Management 140, 24–35 (2017).
DOI 10.1016/j.enconman.2017.02.068

19. Rao, R.V.: Jaya: A simple and new optimization algorithm for solving constrained and
unconstrained optimization problems. International Journal of Industrial Engineering
Computations 7, 19–34 (2016). DOI 10.5267/j.ijiec.2015.8.004

20. Rao, R.V., Rai, D.P.: Optimisation of welding processes using quasi-oppositional-based
Jaya algorithm. Journal of Experimental & Theoretical Artificial Intelligence 29(5),
1099–1117 (2017). DOI 10.1080/0952813X.2017.1309692

21. Rao, R.V., Rai, D.P., Balic, J.: A multi-objective algorithm for optimization of modern
machining processes. Engineering Applications of Artificial Intelligence 61, 103–125
(2017). DOI 10.1016/j.engappai.2017.03.001

22. Rao, R.V., Saroj, A.: A self-adaptive multi-population based Jaya algorithm for engi-
neering optimization. Swarm and Evolutionary Computation 37, 1 – 26 (2017). DOI
10.1016/j.swevo.2017.04.008

23. Rao, R.V., Saroj, A.: Constrained economic optimization of shell-and-tube heat
exchangers using elitist-Jaya algorithm. Energy 128, 785–800 (2017). DOI
10.1016/j.energy.2017.04.059

24. Rao, R.V., Savsani, V., Vakharia, D.: Teaching-learning-based optimization: A novel
method for constrained mechanical design optimization problems. Computer-Aided
Design 43(3), 303–315 (2011). DOI 10.1016/j.cad.2010.12.015

25. Rao, R.V., Waghmare, G.: A new optimization algorithm for solving complex con-
strained design optimization problems. Engineering Optimization 49(1), 60–83 (2017).
DOI 10.1080/0305215X.2016.1164855

26. Singh, S.P., Prakash, T., Singh, V., Babu, M.G.: Analytic hierarchy process based au-
tomatic generation control of multi-area interconnected power system using Jaya al-
gorithm. Engineering Applications of Artificial Intelligence 60, 35–44 (2017). DOI
10.1016/j.engappai.2017.01.008

27. Umbarkar, A.J., Joshi, M.S., Sheth, P.D.: Openmp dual population genetic algorithm
for solving constrained optimization problems. International Journal of Information
Engineering and Electronic Business 1, 59–65 (2015). DOI 10.5815/ijieeb.2015.01.08

28. Umbarkar, A.J., Rothe, N.M., Sathe, A.: OpenMP Teaching-Learning Based Optimiza-
tion Algorithm over Multi-Core System. International Journal of Intelligent Systems
and Applications 7, 19–34 (2015). DOI 10.5815/ijisa.2015.07.08

29. Wang, S.H., Phillips, P., Dong, Z.C., Zhang, Y.D.: Intelligent facial emotion recognition
based on stationary wavelet entropy and jaya algorithm. Neurocomputing 272, 668 –
676 (2018). DOI 10.1016/j.neucom.2017.08.015

30. Yu, K., Liang, J., Qu, B., Chen, X., Wang, H.: Parameters identification of photo-
voltaic models using an improved jaya optimization algorithm. Energy Conversion and
Management 150, 742 – 753 (2017). DOI 10.1016/j.enconman.2017.08.063

