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Abstract 
To face up the threat of global climate change, governments and regulatory agencies are 

implementing policies to reduce the greenhouse gas emissions. A common climate change policy 

is to cap CO2 emissions and establishing a price through trading. The idea behind this cap-and-

trading scheme is to set a price on carbon emissions and in consequence, a financial incentive to 

decrease them. After a cap is fixed on emissions, companies are allowed to buy or sell from each 

other the allowances to emit CO2. Firms exceeding their emissions cap must buy extra credits to 

cover the excess. Meanwhile, those that do not use all their allowances can sell them, providing 

the least-polluting firms with an extra revenue. It is expected that the CO2 emissions allowances 

price increases with time forcing company towards more sustainable technologies. Hence, the key 

parameter for a successful result is the evolution of that price with time, which is difficult to 

predict due to the uncertainty associated to it. One approach to predict that trend is to assume that 

the emissions allowance price exhibits a similar behavior to a share in the stock market. In this 

work, we analyze the forecasting performance of the autoregressive integrated moving average 

(ARIMA) and artificial neural networks by comparing with CO2 European Emission Allowances 

prices reported for previous year. To illustrate the usefulness of this methodology, we design a 

petrochemical supply chain under uncertainty in the emission allowances price. 
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1. INTRODUCTION 
Several research studies on stock predictions have been conducted with various solution 

techniques proposed over the years  [1]. The prominent techniques fall into two broad categories, 

namely, statistical and soft computing techniques. Statistical techniques include, among others, 

exponential smoothing and autoregressive integrated moving average (ARIMA) [1]. The ARIMA 

model, also known as the Box-Jenkins model or methodology, is commonly used in analysis and 

forecasting. It is widely regarded as the most efficient forecasting technique in social science and 

is used extensively for time series. The use of ARIMA for forecasting time series is essential with 

uncertainty as it does not assume knowledge of any underlying model or relationships as in some 

other methods. ARIMA essentially relies on past values of the series as well as previous error 

terms for forecasting. However, ARIMA models are relatively more robust and efficient than 

more complex structural models in relation to short-run forecasting [1].  

  

Predicting the return of financial times series using traditional technical analysis and widely used 

economic models, has proven to be difficult. Machine learning is a subfield of computer science, 

a concept that is frequently being used within different domains and recurrently delivers 

successful results. Artificial neural network is a product from the field of machine learning, a 

black box model that if properly designed processes data, learns its dynamic and subsequently 

provides an informative output. Artificial neural networks (ANNs) as a soft computing technique 

are the most accurate and widely used as forecasting models in many areas including social, 

engineering, economic, business, finance, foreign exchange, and stock problems [2].  

 

The EU Emissions Trading System (EU ETS) has been the cornerstone of the EU's strategy for 

reducing greenhouse gas (GHG) emissions from industry and the power sector since 2005. It 

contributes significantly to the achievement of the EU's target of cutting GHG emissions by 20% 

from 1990 levels by 2020. The EU ETS operates in the 31 countries of the European Economic 

Area (EEA). It limits emissions from nearly 11,000 power plants and manufacturing installations. 

It covers around 45% of the EU's GHG emissions. The emission reduction target has into account 

the number of allowances put in circulation over a trading period. The 2013 cap for emissions 

from stationary installations was set at 2 084 301 856 allowances. This cap decreases each year 

by a linear reduction factor of 1.74% of the average total quantity of allowances issued annually 

in 2008-2012, thus ensuring that the number of allowances that can be used by stationary 

installations will be 21% lower in 2020 than in 2005 [3]. 

In this scenario, the opportunity to manage the CO2 emissions effectively depends on the capacity 

of companies to have a global view of its responsibilities and associated cost. Limiting greenhouse 

gas emissions and establishing a price to trade with them is the essential foundation for Carbon 

Trading climate change policy. The idea underlying this scheme becomes the reduction of 

CO2 emissions in an economic incentive, since it is a limit on emissions, companies can buy or 

sell among them rights to emit greenhouse gases [4].  

 

The objective of this work is to develop ARIMA and Artificial Neural Networks models that 

predict CO2 European Emission Allowances [5] taking into account that exhibit a similar behavior 

to a share in the stock market. This prediction will be used later in order to design a petrochemical 

supply chain using a stochastic optimization model with emission allowances price as an uncertain 

parameter.  
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2. PROBLEM STATEMENT 
In this work, the problem of forecasting the CO2 European Emission Allowances price and design 

a petrochemical supply chain with the predicted values were addressed in two different sections.  

2.1 Forecasting 
The study used the published CO2 European Emission Allowances price [5] on ARIMA and ANN 

models developed. MATLAB Econometrics Toolbox and Neural Network Toolbox were used for 

developing ARIMA and ANNs models, respectively. The data considered here are exclusively 

the closing prices available from November 26th 2009 until September 28th 2018. These historical 

prices are shown in Figure 1.  

 

Figure 1. Historical prices 𝐶𝑂2 emission allowances in Europe (€/ton 𝐶𝑂2).  

 

2.1 Application of the predicted values in the design of a petrochemical supply 

chain  
Any design depends on the parameters used to achieve the final solution. In the design process of 

a supply chain or a chemical plant, there is always uncertainty in the data given. For this reason, 

an accurate forecast model to predict the values of the uncertainty parameters is required in order 

to design a reliable system; in this work, a petrochemical supply chain. In particular, this supply 

chain is a generic three-echelon SC (production-storage-market) as the one depicted in Figure 2. 

This network includes: a set of plants with a set of available technologies, where products are 

manufactured; a set of warehouses where products are stored before being shipped to final 

markets; and a set of markets where products become available to customers. The case study is 

better detailed below.  

 

. 
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Figure 2.  Superstructure of the three-echelon SC taken as reference.  

 

 

3. THEORICAL FRAMEWORK 
This section presents relevant theory regarding the objective of this work. It is divided into three 

parts: Economic theory, Time Series and Artificial Neural Networks.  

3.1 Economic theory 
To understand the domain of the forecast models, this section aims to introduce relevant economic 

theory that will aid the ARIMA model and the Artificial Neural Network models. 

 

3.1.1 Efficient Market Hypothesis (EMH) 

The EMH is a theory that stems from Fama (1970), which implies that prices on liquid capital 

markets fully reflect all available information, and that new information instantly will be 

incorporated in the price. An implication of EMH is that it is impossible to beat the market, since 

all available information already is incorporated in the price, and the results by any attempts to 

do so is subject to the domain of chance. 

 

There exists three common forms of the EMH, namely the weak form, semi-strong form and 

strong form of EMH. 

 

 Weak form: The weak form of EMH suggests that the prices on capital markets 

fully reflect all past prices and volumes, and as such implies that the market cannot 

be beaten using technical analysis. 
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 Semi-strong form: The semi-strong form of EMH suggests that the prices on 

capital markets fully reflect all public information. A consequence of this 

hypothesis is that neither technical nor fundamental analysis can be used to beat 

the market. 
 

 Strong form: The strong form of EMH suggests that prices on capital markets 

fully reflect all public and private information. This means that consistent excess 

returns of the market is impossible to achieve consistently, regardless of whether 

the investor has insider information or not. 

 

3.2 Time series 
In order to approach time series analysis and forecasting, it must first be answered the question 

regarding what constitutes time series data. A time series is a sequence of data points, typically 

consisting of successive measurements made over a time interval. Examples of time series are 

solar activity, ocean tides, stock market behavior, and the spread of disease. Time series data are 

found in any domain of applied science and engineering which involves time-based 

measurements. In time series, data are a collection of ordered observations recorded at a specific 

time, for instance, hours, months, or years (like Figure 1 shown previously).  

 

Most often, the observations are made at regular time intervals. Time series analysis accounts for 

the fact that data points taken over time may have an internal structure, such as autocorrelation, 

trend or seasonal variation. 

 

3.2.1 Time series analysis 

Time series analysis comprises methods for analyzing time series data to extract meaningful 

statistics and other characteristics of time series data.  It focuses on comparing values of a single 

time series or multiple dependent time series at different points in time. 

3.2.2 Time series analysis forecasting 

Time series forecasting is the use of a time series model to predict future values based on 

previously observed values in the series. It is used for many applications where pertinent time 

series data can be collected, such as: Budget Analysis, Financial Market Analysis, Economic 

Forecasting, Marketing and Sales Forecasting, Workload Projections. 

There are two main goals of time series analysis. First, identifying the nature of the phenomenon 

represented by the sequence of observations in the data. Second, using the data to forecast or 

predict future values of the time series variable. Both of these goals require that we identify the 

pattern of observed time series data and more or less formally describe it. Once the pattern is 

established, it can be interpreted and integrated with other data (i.e., use it in our theory of the 

investigated phenomenon, seasonal commodity prices). Regardless of the depth of our 

understanding and the validity of our interpretation of the phenomenon, we can extrapolate the 

identified pattern to predict future events with this caveat: the further out in time we try to predict, 

the less accurate is the forecast. 
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3.2.3 Techniques used in time series analysis 

The fitting of time series models can be an ambitious matter. It requires much more data 

preparation than the usual statistical models applied to other ordinary models (e.g., standard linear 

regression). Two important characteristics in time series data are that data are not necessarily 

independent and not necessarily identically distributed.  

There are a number of different methods for modeling time series data including the following: 

 Box-Jenkins ARIMA models 

 Box-Jenkins Multivariate Models 

 Holt-Winters Exponential Smoothing (single, double, triple) 

 Unobserved Components Model 

In our particular case, Box-Jenkins ARIMA is the used model due to the fact that we only used 

univariate data and it is a very robust model [6], which includes other models mentioned as it 

will be seen below.    

3.2.4 Box-Jenkins ARIMA model 

ARIMA models (Autoregressive Integrated Moving Average) are a kind of time series models 

that relate the present value of a series to past values and past prediction errors. It can be 

decomposed in three different components:  

 The AR part of ARIMA.  This first component AR indicates that ARIMA models are 

Autorregressive. That is to say, the evolving variable of interest is regressed on its own 

lagged (i.e., prior) values. For example:  

Yt̂ = 𝛼𝑌𝑡−1  

(1) 

where, 

 Yt̂ is the forecasted value of the model at the time t 

 𝛼 is a parameter of the autorregressive part of the model  

 Yt−1 is a past data of Y, at time t − 1 

 

 

 The MA part of ARIMA. It means moving average (MA). This second component 

indicates that the regression error is actually a linear combination of error terms whose 

values occurred contemporaneously and at various times in the past. For example:  

Yt̂ = 𝛽𝑒𝑡−1 = 𝛽(𝑌𝑡−1 − �̂�𝑡−1) 

(2) 

where, 

 Yt̂ is the forecasted value of the model at the time t 

 𝛽 is a parameter of the MA part of the model 

 𝑒𝑡−1 error of the past forecasted values, at t − 1 

 𝑌𝑡−1  is a past data of Y, at time t − 1 

https://en.wikipedia.org/wiki/Linear_regression
https://en.wikipedia.org/wiki/Errors_and_residuals_in_statistics
https://en.wikipedia.org/wiki/Linear_combination
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 �̂�𝑡−1 is the forecasted value of the model at the time t − 1 

 

 The I part of ARIMA. This component is called integrated (I). It indicates that the data 

values have been replaced with the difference between their values and the previous 

values (and this differencing process may have been performed more than once). For 

example:  

Yt − Yt−1 = μ → Yt = μ + Yt−1 

(3) 

where,  

 𝑌𝑡 is the value of the model at the time t 

 𝑌𝑡−1  is a past data of Y, at time t − 1 

 μ is the average value of the data set 

 

It is extremely important and worth emphasizing that the first step in applying ARIMA 

methodology is to check for stationarity. "Stationarity" implies that the series remains at a fairly 

constant level over time. If a trend exists, as in most economic or business applications, then data 

is not stationary. The data should also show a constant variance in its fluctuations over time. This 

is easily seen with a series that is heavily seasonal and growing at a faster rate. In such a case, the 

ups and downs in the seasonality will become more dramatic over time. Without these stationarity 

conditions being met, many of the calculations associated with the process cannot be computed. 

A data set can be converted into stationary taking into account this integrated part of ARIMA 

model, that it to say, differencing the series, subtracting the observation in the current period from 

the previous one. 

 

Equations (1), (2) and (3) are just simple examples that illustrate the three components of ARIMA 

models. However, ARIMA models are linear combinations of these three parts, where there are 

different degrees. Non-seasonal ARIMA models are generally denoted ARIMA(p,d,q) 

where parameters p, d, and q are non-negative integers:  

 p is the order (number of time lags) of the autoregressive model (AR). 

 d is the degree of differencing, the number of times the data have had past values 

subtracted (I) 

 q is the order of the moving-average model (MA).  

A general equation of an ARIMA model is shown below: 

�̂�𝑡 = 𝜇 + 𝛼1𝑦𝑡−1 + 𝛼2𝑦𝑡−2 + ⋯ + 𝛼𝑝𝑦𝑡−𝑝 − 𝛽1𝑒𝑡−1 − 𝛽2𝑒𝑡−2 − ⋯ − 𝛽𝑞𝑒𝑡−𝑞 

(4) 

where, 

https://en.wikipedia.org/wiki/Parameter
https://en.wikipedia.org/wiki/Autoregressive_model
https://en.wikipedia.org/wiki/Moving-average_model
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 The autoregressive term (AR):  

 𝛼1, 𝛼2, … , 𝛼𝑝 are the parameters of autorregresive terms (there are as many 

parameters as the order of p) 

 𝑦𝑡−1, 𝑦𝑡−2, … , 𝑦𝑡−𝑝 are past auxiliary variables of Y, at time t − 1, 𝑡 − 2, … , 𝑡 − 𝑝 

(there are as many terms as the order of p). These auxiliary variables depend on 

the order of differencing (d) as shown in Table 1 below.  

 The moving average term (MA):  

 𝛽1, 𝛽2, … , 𝛽𝑞 are the parameters of moving average terms (there are as many 

parameters as the order of q). 

 𝑒𝑡−1, 𝑒𝑡−2, … , 𝑒𝑡−𝑞 are the errors of the past forecasted values (there are as many 

terms as the order of q). These errors are equivalent to the terms in Table 2. 

 

 The integrated term (I): 

 �̂�𝑡 is an auxiliary forecasted variable that can be changed depending on the degree 

of differencing as shown in Table 3. 

 𝜇 is the average value of the data set 

 

 

Table 1. Auxiliary variable 𝑦 as a function of 𝑑𝑡ℎdifference (AR). 

dth order of Y Error of the past forecasted 

𝑑 = 0 𝑦𝑡 = 𝑌𝑡 

𝑑 = 1 𝑦𝑡 = 𝑌𝑡  
− 𝑌𝑡−1 

𝑑 = 2 𝑦𝑡 = (𝑌𝑡 − 𝑌𝑡−1) − (𝑌𝑡−1 − 𝑌𝑡−2) 

𝑦𝑡 = 𝑌𝑡 − 2𝑌𝑡−1 + 𝑌𝑡−2 

 

Table 2. Errors of the past forecasted values (MA).  

qth order of MA  Error of the past forecasted 

𝑞 = 0 𝑒𝑡 = 0 

𝑞 = 1 𝑒𝑡−1 = 𝑌𝑡−1 − �̂�𝑡−1 

𝑞 = 2 𝑒𝑡−2 = 𝑌𝑡−2 − �̂�𝑡−2 

 

Table 3. Auxiliary forecasted variable as function of 𝑑𝑡ℎdiference (I). 

dth difference of Y Auxiliary forecasted value �̂�𝑡 

𝑑 = 0 �̂�𝑡 = �̂�𝑡 

𝑑 = 1 �̂�𝑡 = �̂�𝑡 − 𝑌𝑡−1 

𝑑 = 2 �̂�𝑡 = (�̂�𝑡 − 𝑌𝑡−1) − (𝑌𝑡−1 − 𝑌𝑡−2) 

�̂�𝑡 = �̂�𝑡 − 2𝑌𝑡−1 − 𝑌𝑡−2 
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3.2.5 Examples of ARIMA models 

Some types of ARIMA models that are commonly encountered are shown below. 

 ARIMA(1,0,0) = First-order autoregressive model 

�̂�𝑡 = 𝜇 + 𝛼1𝑌𝑡−1 

(5) 

The series is predicted as a multiple of its own previous value, plus a constant. 

 

 ARIMA(0,1,0) = random walk 

 

�̂�𝑡 − 𝑌𝑡−1 = 𝜇 

(6) 

Or equivalently:  

�̂�𝑡 = 𝜇 + 𝑌𝑡−1 

(7) 

If the series Y is not stationary, the simplest possible model for it is a random walk model. 

 

 

 ARIMA(1,1,0) = differenced first-order autoregressive model 

 

�̂�𝑡 − 𝑌𝑡−1 = 𝜇 + 𝛼1(𝑌𝑡−1 − 𝑌𝑡−2) 

(8) 

Equivalent to:  

�̂�𝑡 = 𝜇 + 𝑌𝑡−1 + 𝛼1(𝑌𝑡−1 − 𝑌𝑡−2) 

(9) 

If the errors of a random walk model are autocorrelated, perhaps the problem can be fixed by 

adding one lag of the dependent variable to the prediction equation. 

 

 ARIMA(0,1,1) without constant = simple exponential smoothing  

 

�̂�𝑡−𝑌𝑡−1 = −𝛽1𝑒𝑡−1 
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(10) 

That expanding and leaving  �̂�𝑡 alone: 

�̂�𝑡 = 𝑌𝑡−1−𝛽1(𝑌𝑡−1 − �̂�𝑡−1) 

(11) 

It is a strategy for correcting autocorrelated errors in a random walk model. Ones that exhibit 

noisy fluctuations around a slowly-varying mean, the random walk model does not perform as 

well as a moving average of past values. It is better to use an average of the last few observations 

in order to filter out the noise and more accurately estimate the local mean. 

 

 

 ARIMA(0,1,1) with constant = simple exponential smoothing with growth 

 

�̂�𝑡 = 𝜇 + 𝑌𝑡−1−𝛽1(𝑌𝑡−1 − �̂�𝑡−1) 

(12) 

There is the option of including a constant term in the ARIMA model if the trajectory of the long-

term forecasts is typically a sloping line (whose slope is equal to 𝜇) rather than a horizontal line. 

 

 ARIMA(0,2,2) without constant = linear exponential smoothing 

�̂�𝑡 − 2𝑌𝑡−1 + 𝑌𝑡−2 = −𝛽1𝑒𝑡−1−𝛽2𝑒𝑡−2 

(13) 

It uses two nonseasonal differences in conjunction with MA terms. This is a general linear 

exponential smoothing model, essentially the same as Holt’s model, and Brown’s model 

mentioned above.  

 

 ARIMA(1,1,2) without constant = damped-trend linear exponential smoothing 

�̂�𝑡−𝑌𝑡−1 = 𝛼1(𝑌𝑡−1 − 𝑌𝑡−2)−𝛽1𝑒𝑡−1−𝛽2𝑒𝑡−2 

(14) 

It extrapolates the local trend at the end of the series but flattens it out at longer forecast horizons. 

 

A few references to further information on such techniques can be found in [6] and [7].  
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What has been explained so far, there are three parts to the model, the AR, I and MA. In order to 

predict future values from the time series there are a number of requirements on the time series 

data. It must be stationary, that is to say, have the following properties: 

1. Constant variance. 

2. Void of seasonality. 

3. No trend. 

 

These properties can be achieved by differencing to remove the trend and seasonality and logs 

can be taken to flatten the variance. 

Once that our data has been transform into a "white noise" signal (an stationarize the series) it can 

be performed a prediction. Before doing so, it must be determined the order of the AR 

(autoregressive) and MA (moving average) components in order to make an accurate prediction. 

These orders can be determined by taking the ACF (autocorrelation function) and PACF (partial 

autocorrelation function) of the "white noise" data, which are described in the next section. 

 

3.2.6 Autocorrelation (ACF) and Partial Autocorrelation (PACF) 

To determine the order of the AR (autoregressive) and MA (moving average) components, it is 

usual to build a time series basic diagnostics chart with the autocorrelation (ACF) and partial 

autocorrelation functions (PACF). Autocorrelations are numerical values that indicate how a data 

series is related to itself over time. More precisely, it measures how strongly data values at a 

specified number of periods apart are correlated to each other over time. The number of periods 

apart is usually called the lag. For example, an autocorrelation at lag 1 measures how values 1 

period apart are correlated to one another throughout the series. An autocorrelation at lag 2 

measures how the data two periods apart are correlated throughout the series. 

The autocorrelation for the 𝑘𝑡ℎ lag, is calculated as follows:  

𝑟𝑘 =
𝑐𝑘

𝑐0
 

(15) 

with, 

𝑐𝑘 =
1

𝑁
∑ (𝑌𝑡 − �̅�)(𝑌𝑡−𝑘 −

𝑁

𝑡=𝑘+1

�̅�) 

(16) 

𝑐0 = ∑(𝑌𝑡 − �̅�)2

𝑁

𝑡=1

 

(17) 

where, 
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 𝑘 is the number of lags 

 𝑟𝑘 is the autocorrelation value for the 𝑘𝑡ℎ lag 

 �̅� is the mean of the N points in the time series 

 𝑌𝑡 is the value for each time t 

On the other hand, the partial autocorrelation measures the linear dependence of one variable after 

removing the effect of other variable(s) that affect  both variables. For example, the partial 

autocorrelation of order 2 measures the effect (linear dependence) of 𝑦𝑡−2  on 𝑦𝑡 after removing 

the effect of 𝑦𝑡−1on both 𝑦𝑡 and 𝑦𝑡−2  (the amount of correlation between a variable and a lag of 

itself that is not explained by correlations at all lower-order-lags). Another simpler example to 

clarify this concept would be regressing a variable Y on other variables 𝑋1, 𝑋2, and 𝑋3. The partial 

correlation between Y and 𝑋3 is the amount of correlation between Y and 𝑋3 that is not explained 

by their common correlations with 𝑋1 and 𝑋2. The sample partial autocorrelations are computed 

by solving the following system for each order k: 
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(18) 

where  

 𝑝1, 𝑝2, … , 𝑝𝑘 are the sample autocorrelations 

These autocorrelations and partial autocorrelations values are normally graphically depicted by a 

bars chart as shown in Figure 3. The blue lines indicate when an autocorrelation or partial 

autocorrelation sample is significant, calculating the p-value (statistical parameter that takes into 

account the statistical significance of evidence).  

Once the ACF and PACF have been built, it can be determined AR and MA terms needed. In 

Appendix (section 7.1.1), it is explained how to carry out this step. Moreover,  

Figure 4 shows the steps to be followed in order to build an ARIMA model capable of modelling 

the time series data.  

 

 

https://en.wikipedia.org/wiki/Statistical_significance
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Figure 3. Example of Autocorrelation and Partial Autocorrelation Function.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Steps to build an ARIMA model.  
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3.3 Artificial Neural Networks 
Among others highlights, neural networks have the property of managing non stationarity 

between data. The neural networks have been shown to be universal approximators of 

mathematical functions. They are model-free, which means that the functional relationship will 

take the form that fits best to the data without explicitly defining the function beforehand. 

 
The highest and simplest abstract representation of a neural network, can be presented as a black 

box with 2 methods, learn and predict as Figure 5 shows. 

 

  

 

 

 

 

 

Figure 5. Basic concept of neural network.  

The learning process takes the inputs and the desired outputs and updates its internal state 

accordingly, so the calculated output gets as close as possible from the desired output. The predict 

process takes input and generate, using the internal state, the most likely output according to its 

past training experience. It just like a kind of sophisticated fitting model.  

 

3.3.1 Artificial Neural Networks components 

Basically, any neural network is built on three different layers: 

1. Input Layer. All the inputs are fed in the model through this layer. 

2. Hidden Layers. There can be more than one hidden layer. They are used for processing the 

inputs received from the input layer. 

3. Output Layer. The data after processing is made available at the output layer. 

 

All these layers are subdivided in nodes which are interconnected with nodes of other layers. In 

Figure 6 an example of interconnection between nodes is shown.  

1𝑠𝑡𝑆𝑡𝑒𝑝 

2𝑛𝑑𝑆𝑡𝑒𝑝 
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Figure 6. Interconnection between nodes of different layers in an ANN.  

 Once a general understanding of artificial neural networks is provided, it is appropriate to explore 

them in greater detail. Instead of describing the internal element of each node, which can be 

abstract, an illustrative example is shown to easily understand the concepts.  Figure 7 shows an 

example of a NN made in an Excel file once the neural network has been trained (after learning, at 

second step).  

As  can be seen, in Figure 7 there are:  

 3 inputs(X1, X2 , X3). 

 4 nodes in the hidden layer (A1, A2, A3, A4).   

 1 output (Y). 

 At each line that connects nodes, there are also parameters (a total of 16). 12 input 

parameters to the hidden layer (3 input parameters for each hidden node) and 4 parameters 

to the output. These parameters are called weights in terms of machine learning.  

 4 parameters for each node of the hidden layer and 1 parameter for the output. These 

parameters are called bias in terms of machine learning. 

 

With this NN model, it is possible to predict the output value (𝑌) as a function of the input values 

(X1, X2 , X3), These inputs and output are related by very complex mathematical relationships that 

take into account the different connections between nodes. The final model implemented is shown 

below in its mathematical formulation.   
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Figure 7. Example of a Neural Network after training.  

 

The output value (Y) is computed as:  

Y = 𝛾1𝐴1 + 𝛾2𝐴2 + 𝛾3𝐴3 + 𝛾4𝐴4 + 𝜃𝑦 

(19) 

where, 

 𝛾1, 𝛾2, 𝛾3, 𝛾4 are weights (the output parameters from hidden layer to the output).  

 𝜃𝑦 is the output bias 

In particular,  

𝛾1 = 2.767,  𝛾2 = −1.047,  𝛾3 = −3.042,  𝛾4 = 0.928 

 

𝜃𝑦 = 1.234 

 

 

 

Neuronal Network

-1.683

0.067099

-2.26

3.628 2.767 Y=f(X1,X2,X3)

X1 1500

0.128

1.184

0.485091 -1.047 Y

-2.23 391.4401

X2 0.2

1.266 -3.042

2.775

X3 172 -5.488

0.934866 0.928

-0.825

-1.116

-0.021

BIAS -1.303 -0.673 1.089 -0.951 BIAS 1.234

0.17885

A1

A2

A4

A3

INPUTS OUTPUT

HIDDEN LAYER
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The nodes of the hidden layers are calculated as following:  

𝐴1 =  tanh (𝛿1
1𝑋1̂ + 𝛿2

1𝑋2̂ + 𝛿3
1𝑋3̂ + 𝜃1) 

𝐴2 =  tanh (𝛿1
2𝑋1̂ + 𝛿2

2𝑋2̂ + 𝛿3
2𝑋3̂ + 𝜃2) 

𝐴3 =  tanh (𝛿1
3𝑋1̂ + 𝛿2

3𝑋2̂ + 𝛿3
3𝑋3̂ + 𝜃3) 

𝐴4 =  tanh (𝛿1
4𝑋1̂ + 𝛿2

4𝑋2̂ + 𝛿3
4𝑋3̂ + 𝜃4) 

(20) 

where,  

 𝛿𝑖
𝑗
 are the input parameters from each input variable 𝑗 (X1, X2, X3)   to each node 𝑖 in the 

hidden layer.  

In particular,  

𝛿1
1 = −1.683,  𝛿2

1 = −2.26, 𝛿3
1 = 3.626 

𝛿1
2 = 0.128,  𝛿2

2 = 1.184, 𝛿3
2 = −2.23 

𝛿1
3 = 1.266,  𝛿2

3 = 2.775, 𝛿3
3 = −5.488 

𝛿1
4 = −0.825,  𝛿2

4 = −1.116, 𝛿3
4 = −0.021 

 

 𝑋1̂, 𝑋2̂, 𝑋3̂  are the normalized input variables 

 

This 𝑡𝑎𝑛ℎ is what is called in machine learning as activation functions. It is equivalent to 

calculate:  

tanh (𝑥) =
1

1 + 𝑒−𝑥
 

(21) 

It is the most typical function used due to the fact that  it has a behavior similar to a computer 

chip circuit, which  can be "ON" (1) or "OFF" (0), depending on the input. This is not the only 

function used, hyperbolic tangent and rectified linear functions are used as well. See Figure 8.  

https://en.wikipedia.org/wiki/Integrated_circuit
https://en.wikipedia.org/wiki/Integrated_circuit
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Figure 8. Examples of activation functions.  

 

Up to now, it is known how a neural network works. It can predict a final output value (𝑌) using 

a very complex NN model, whose structure has been seen in the example above (equations (19) 

and (20)). However, the model presented uses parameters (weights and bias) that have been 

calculated as first step, the training step.  

 

The process of training a neural network (the first step according to Figure 5) involves tuning the 

values of the weights and biases of the network to optimize network performance. The default 

performance function for feedforward networks is mean square error (MSE), the average squared 

error between the network outputs and the target outputs.  

𝑀𝑖𝑛 𝑀𝑆𝐸 =
1

𝑁
∑(𝑌𝑖 − 𝑌𝑖

𝑡𝑎𝑟𝑔𝑒𝑡
)

2
𝑚

𝑖=1

 

(22) 

Subject to equations (19) and (20) presented above, with bias and weights as free variables. The 

gradient descent is usually used as learning algorithm.  
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3.3.2 Artificial Neural Networks used in Time Series.  

Dynamic recurrent neural network like the nonlinear autoregressive (NAR) are neural network 

structures that can be useful in Time Series forecasting. It is a non-linear autoregressive neural 

networks (NAR), which is able to forecast samples framed in a one-dimensional time series. Due 

to the data set available (1868 samples of CO2 closing prices), NAR is the indicated neural 

network to use. The main characteristic of these Neural Networks is that they can accept dynamic 

inputs represented by time series sets. They used as time series forecasters feed-forward networks 

which employ a sliding window over the input sequence. In this technique, the N-tuple input 

slides over the full training set. Figure 9 gives the basic idea of NAR.  

 

 

  

Figure 9. The standard method of performing time series prediction using a sliding window of, in this 

case, three time steps. 

 

This technique can be seen as an extension of auto-regressive time series modelling, in which the 

function is assumed to be a linear combination of a fixed number of previous series values. Such 

a restriction does not apply with the non-linear neural network approach as such networks are 

general function approximators. 

 

3.3.3 Nonlinear autoregressive neural network (NAR) 
 

In the majority of cases, time series applications are characterized by high variations and fleeting 

transient periods. This fact makes it difficult to model time series using a liner model, therefore a 

nonlinear approach should be suggested. NAR models uses the past values of the time series to 

predict future values. Equation (23) describes the mathematic relations that occur between the 

data of subsequent levels.  

 

𝑦(𝑡) = 𝑓(𝑦(𝑡 − 1), 𝑦(𝑡 − 2), 𝑦(𝑡 − 3), … , 𝑦(𝑡 − 𝑝))+∈ (𝑡) 

(23) 

 

Where 𝑦(𝑡) is the model output that depends on the p temporally previous values of the output 

signal. Besides, the function 𝑓 is unknown in advance, and the training of the neural network aims 

to approximate the function by means of the optimization of the network weights and neuron bias, 
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as it was explained above. Finally, the term ∈ (𝑡) stands for the error of the approximation of the 

series y at time t. 

 

The topology of a NAR network is shown in Figure 10. The p features  
𝑦(𝑡 − 1), 𝑦(𝑡 − 2), . . . , 𝑦(𝑡 − 𝑝) 

 

 

are called feedback delays. The number of hidden layers and neurons per layer are completely 

flexible, and can be optimized through a trial-and-error procedure to obtain the network topology 

that can provide the best performance. Nevertheless, it is important to bear in mind that increasing 

the number of neurons makes the system more complex, while a low number of neurons may 

restrict the generalization capabilities and computing power of the network. 

 

 

 

Figure 10. Basic non-linear autoregressive (NAR) network.  

 

 

3.3.4 Mathematical NAR formulation 
 

In the world of neural network, the function 𝑓 presented in equation (23) can be achieved by 

means of the weights and bias optimizations. Given the importance and the widespread use of the 

backpropagation algorithm, let see what it is based upon and its development in order to better 

understand how the network is learning in each iteration (see section 7.1.2.1 of Appendix). 

 

The internal structure of the NAR network is divided into layers as showing in  

Figure 11. The first layer defines the delay line that is, the number of previous samples used in 

the model, which are linked to the input layer. Each neuron has 𝑝 inputs associated with a weight 

parameter, 𝑤, plus the bias, 𝑏. Also, each neuron has an activation function, 𝑔(𝑢𝑘), which acts on 

the sums of the inputs and weight parameters, 

𝑢𝑘 = 𝑏𝑘 ∑ 𝑤𝑖,𝑘 · 𝑣𝑖

𝑝

𝑖

 

(24) 
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where, 𝑘 is the number of the neuron in the hidden layer; 𝑔 is a non-linear function in the case of 

neurons in the hidden layer, 𝑔(𝑢𝑘)  =  𝑡𝑎𝑛ℎ (𝑢𝑘), and it is a linear function in the case of the 

output neuron, 𝑔 (𝑢𝑘)  =  𝑢𝑘 . 

 

Training is a cyclic process, where internal weights w and b are modified following a rule that 

makes the network behave in a specific manner. The rule considers an error signal that is 

generated by the difference between the actual output of the network and the expected output (i.e., 

the desired signal). In the case of the NAR network, the set-up consists in training with the 

feedback loop open (no feedback) and comparing the output 𝑦(𝑡 +  1) with the same training 

signal with a shift (see section 7.1.2.1 of Appendix as was said before). Once the error reaches a 

certain minimum value the training process ends.  Once the error reaches a certain minimum value 

the training process ends. With the trained network, it is possible to forecast multiple future values 

by closing the loop, allowing the network to feed back its own predictions [10]. 

 

 

Figure 11. a) Nonlinear autoregressive network architecture. Feedback loop is open for training and 

closed for predictions; b) Tapped delay line. 

 

 

 

a) b) 
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4. OPTIMIZATION MODEL REFORMULATION 
Given a set of technologies to manufacture different products, their demand and prices, the 

investment and operating costs of the network and the emissions, wastes and feedstock 

requirements, the objective of the model is obtain an optimal supply chain taking into account the 

economic and environmental impact (which is considered as a monetized constraint) under 

uncertainty .  Therefore, the optimization problem is formulated as:  

𝑀𝑎𝑥 {𝐸[𝑁𝑃𝑉]} 

𝑠. 𝑡 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 
 

That is to say, maximize the expected value (E[NPV]) of the net present value (NPV) for a 

petrochemical supply chain subject to capacity, mass balance, raw material availability and 

product demand constraints, taking into account the environmental impact assessed by the Global 

Warming Potential ( 𝐺𝑊𝑃) through is monetization by a carbon trading system. Here is where 

uncertainty comes into play, due to the need to forecast the carbon emissions rights price for the 

network horizon time. 

Taking into account all the characteristics of the supply chain presented in section 2.1, the most 

important equations of the model are presented below. The complete model can be found in 

section 7.2 of Appendixes. The sets make reference to: the process technologies (𝑖), the 

production plants (𝑗), the warehouses (𝑘), the markets (𝑙), the chemicals products (𝑝), the 

scenarios (𝑠) and the time periods (𝑡).  

 

max 𝐸[𝑁𝑃𝑉] = ∑ 𝑝𝑟𝑜𝑏𝑠𝑁𝑃𝑉𝑠𝑠      (M1) 

 

 

 

 

 

 

 

 

 

 

 

 

 

𝐺𝑊𝑃𝑡𝑜𝑡𝑎𝑙 ≤ 휀𝑝   (M2) 

휀 ≤ 휀𝑝 ≤ 휀  (M3) 

𝑃𝑈𝑗,𝑝,𝑡,𝑠 + ∑ 𝑊𝑖,𝑗,𝑝,𝑡,𝑠 = ∑ 𝑄𝑗,𝑘,𝑝,𝑡,𝑠
𝑃𝐿

𝑘 + ∑ 𝑊𝑖,𝑗,𝑝,𝑡,𝑠 ∀𝑗, 𝑝, 𝑡, 𝑠𝑖∈𝑂𝐼𝑁(𝑝)𝑖∈𝑂𝑈𝑇(𝑝)     (M4) 

𝐶𝐸𝑖,𝑗,𝑡
𝑃𝐿 𝑋𝑖,𝑗,𝑡

𝑃𝐿 ≥ 𝐶𝐸𝑖,𝑗,𝑡
𝑃𝐿 ≤ 𝐶𝐸𝑖,𝑗,𝑡

𝑃𝐿 𝑋𝑖,𝑗,𝑡
𝑃𝐿  ∀i, j, t     (M5) 

𝐶𝐸𝑘,𝑡
𝑊𝐻𝑋𝑘,𝑡

𝑊𝐻 ≤ 𝐶𝐸𝑘,𝑡
𝑊𝐻 ≤ 𝐶𝐸𝑘,𝑡

𝑊𝐻𝑋𝑘,𝑡
𝑊𝐻   ∀𝑘, 𝑡      (M6) 

𝑄𝑗,𝑘,𝑡,𝑠
𝑃𝐿 𝑌𝑗,𝑘,𝑡

𝑃𝐿 ≤ ∑ 𝑄𝑗,𝑘,𝑝,𝑡,𝑠
𝑃𝐿 ≤ 𝑄𝑗,𝑘,𝑝,𝑡,𝑠

𝑃𝐿
𝑝 𝑌𝑗,𝑘,𝑡

𝑃𝐿    ∀𝑗, 𝑘, 𝑡, 𝑠   (M7) 

. (M8) 

 

𝑆𝑎𝑙𝑒𝑠𝑡,𝑠
𝐶𝑂2 + 𝐺𝑊𝑃𝑡,𝑠 =  𝑀𝑎𝑥𝑡

𝐶𝑂2 + 𝐵𝑢𝑦𝑡,𝑠
𝐶𝑂2      ∀𝑡, 𝑠    (M9) 

𝑁𝑒𝑡𝑡,𝑠
𝐶𝑂2 = 𝑃𝑟𝑖𝑐𝑒𝑡,𝑠

𝐶𝑂2 𝑆𝑎𝑙𝑒𝑠𝑡,𝑠
𝐶𝑂2 − 𝐶𝑜𝑠𝑡𝑡,𝑠

𝐶𝑂2𝐵𝑢𝑦𝑡,𝑠
𝐶𝑂2     ∀𝑡, 𝑠     (M10) 

s.t 
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At the end of the time horizon, different NPV values are obtained for scenario considered and the 

model maximizes the expected value (𝐸 [𝑁𝑃𝑉]) of the 𝑁𝑃𝑉𝑠 distribution. The probability of 

occurrence of scenario s (equation (M1)) is denoted by 𝑝𝑟𝑜𝑏𝑠 . On the other hand, to measure the 

environmental performance of the supply chain, the GWP 100a indicator is used (equation (M2)). 

It is a parameter based on the principles of Life Cycle Analysis. The Life Cycle Analysis is a tool 

used to quantify the potential environmental impact derived from the use of a certain industrial 

technology throughout the study system.  

  

The mass balance (equation (M4)) must be satisfied for each node embedded in the network. 

Thus, the purchases (PUj,p,t,s) made and the amount produced (∑ 𝑊𝑖,𝑗,𝑝,𝑡,𝑠𝑖∈𝑂𝑈𝑇(𝑝)  ) must 

equal the amount transported from the plant to the warehouses (𝑄𝑃𝐿𝑗,𝑘,𝑝,𝑡,𝑠
𝑃𝐿 ) plus the amount 

consumed ∑ 𝑊𝑖,𝑗,𝑝,𝑡,𝑠𝑖∈𝑂𝐼𝑁(𝑝) ). The model also includes capability constraints of the 

different plants and warehouses, where there is possibility of increasing the actual capacity 

(equations (M5) and (M6)). In equation (M5), 𝐶𝐸𝑖,𝑗,𝑡
𝑃𝐿  and 𝐶𝐸𝑖,𝑗,𝑡

𝑃𝐿  are the upper and lower bounds 

of the plant capacity expansions. The binary variable 𝑋𝑖,𝑗,𝑡
𝑃𝐿  indicates the occurrence of the capacity 

expansion. In equation (M6),  𝐶𝐸𝑘,𝑡
𝑊𝐻 and 𝐶𝐸𝑘,𝑡

𝑊𝐻 are the upper and lower bounds of warehouse 

capacity expansion. This constraint makes use of the binary variable 𝑋𝑘,𝑡
𝑊𝐻 . Equation (M7) defines 

a transportation link between plant j and warehouse k in period t and scenario s, which existence 

is represented by the binary variable 𝑌𝑗,𝑘,𝑡
𝑃𝐿   (). 𝑄𝑗,𝑘,𝑝,𝑡,𝑠

𝑃𝐿  and 𝑄𝑗,𝑘,𝑡,𝑠
𝑃𝐿  are the upper and lower bounds 

for the amount of product p transported from warehouse k to market l in period t and scenario s.  

Besides, the GWP 100a indicator (equation (M8)) takes into account the main emission sources, 

which are the consumption of raw materials, 
RM

sGWP , the energy consumed in the auxiliary 

facilities 𝐺𝑊𝑃𝐸𝑁, and the transport of products between the nodes of the supply chain 𝐺𝑊𝑃𝑇𝑅 . 

Finally, in order not to exceed the imposed emission limit, the ,t sGWP  index is included in the 

balance of CO2 emissions (equation (M9)), which states that, the emission rights that are sold plus 

the CO2 that is emitted, equals the emission limit ( 2CO

tMax ) plus the rights that are bought.  

To optimize the objective function (𝐸 [𝑁𝑃𝑉]) taking into account 𝐺𝑊𝑃𝑡𝑜𝑡𝑎𝑙, the CO2  emissions 

must be monetized, which is done through the emissions trading equation (equation (M10)). Thus, 

the income related to trade with CO2 emissions (𝑁𝑒𝑡𝑡,𝑠
𝐶𝑂2) must be equal to the sale of emissions 

minus the purchase of emissions. It is important to mention that the uncertainty in the model 

comes from the price of CO2 allowances (𝑃𝑟𝑖𝑐𝑒𝑡,𝑠
𝐶𝑂2 𝑎𝑛𝑑 𝐶𝑜𝑠𝑡𝑡,𝑠

𝐶𝑂2), which is going to be 

forecasted using the ARIMA and ANN explained above.  
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5. RESULTS 

5.1 CO2 allowances price data statistical analysis 
First of all, it is presented the 𝐶𝑂2 allowance price in Figure 12  [5]. With the data in the graph, 

the initial statistical analysis presented below is carried out.  

Figure 12. Initial data of 𝐶𝑂2 allowance Price (€/ton). 

 

As can be seen in Figure 12, CO2 allowance price has changed along years. At the beginning of 

2009, prices were around 14 €/ton. In 2010, prices rose to a maximum of 16.42 €/ton and at the 

end of 2011 they decreased until a minimum amount of 6.46 €/ton. The price along 2012, 2013, 

2014, 2015, 2016 and 2017 is ranging between 9.52 €/ton to 1.9 €/ton. Finally, on 2018 

CO2 allowances prices rose to a record levels with a maximum of 24.85 €/ton. Table 4 shows 

some statistical data about the total data set, and in Figure 13 the distribution of prices is shown.  

 

Table 4. Statistical data of 𝐶𝑂2 allowance Price data set.  

Average 9,065 

Standard desviation 4,189 

Standard error 0,098 

Upper end of the 95% CI for the mean 9,257 

Lower end of the 95% CI for the mean 8,872 

Number of data points 1822 
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Figure 13. Distribution of 𝐶𝑂2 allowance Price (€/ton). 

 

As can be seen, most of the prices are between 5 €/ton to 9 €/ton. These prices correspond to years 

2012-2017, where the prices were relatively cheap. the price distribution of each year can be seen 

in Table 5. in year 2013, the prices were the cheapest, while in 2018 prices are been the highest 

ever.  

 

 
 

Table 5. Distribution of 𝐶𝑂2 allowances prices by years.  

 maximum       quartile median quartile     minimum 

Year 100.00% 99.50% 97.50% 90.00% 75.00% 50.00% 25.00% 10.00% 2.50% 0.50% 0.00% 

2009 14.720 14.720 14.708 14.506 14.340 13.685 13.088 12.671 12.478 12.460 12.460 

2010 16.420 16.406 15.867 15.594 15.198 14.515 13.333 12.966 12.716 12.414 12.400 

2011 17.400 17.387 17.252 16.970 16.260 13.180 10.700 8.376 7.228 6.546 6.460 

2012 9.520 9.499 9.074 8.360 8.010 7.460 6.910 6.608 6.349 5.787 5.730 

2013 6.650 6.650 6.371 5.614 5.105 4.650 4.010 3.476 3.006 1.900 1.900 

2014 7.190 7.190 7.090 6.862 6.500 6.070 5.505 5.100 4.729 4.590 4.590 

2015 8.720 8.720 8.660 8.574 8.360 8.070 7.530 7.216 6.844 6.720 6.720 

2016 8.070 8.070 7.588 6.340 5.983 5.650 4.998 4.800 4.309 4.150 4.150 

2017 7.910 7.910 7.700 7.430 6.920 5.260 4.960 4.702 4.412 4.261 4.260 

2018 24.850 24.850 22.536 20.505 16.903 14.570 10.913 8.925 7.790 7.680 7.680 

 

 

100.0% maximum 24,850 

99.5%  21,278 

97.5%  17,204 

90.0%  15,344 

75.0% quartile 12,993 

50.0% median 7,555 

25.0% quartile 5,760 

10.0%  4,860 

2.5%  4,000 

0.5%  3,100 

0.0% minimum 1,900 

𝐶𝑂2 allowances Price (€/ton) 
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5.2 Forecasting CO2 allowance prices 
A forecasting of CO2 allowance prices is carried out with MATLAB Econometric Toolbox used 

to build the ARIMA model  and Neuronal Toolboox used to build the neural network as follows. 

These models will be used to generate the 𝐶𝑂2 parameters in the optimization model.  

5.2.1 ARIMA model for forecasting CO2 allowance prices  

Following the structure given by Figure 14 the first step is differencing in order to get a stationary 

data set. As can be seen in Figure 12, the time series is clearly non-stationary. Applying a 

difference of order d equal to 1, the data set becomes stationary as shown in Figure 14 .  

 

Figure 14. Result of differencing 𝐶𝑂2 allowance price data set.  

 

In Figure 15, the ACF and PACF of the difference function are represented. This graph gives 

some idea about the p and q coefficients of the ARIMA model. According to the ACF and PACF 

theory (section 7.1.1 of Appendix), an AR(4) should be applied. Significance (blue line) is 0.0469 

and -0.0469 for ACF and PACF. The correlation at lag 1 is not significant, but it is positive, so 

AR terms should be added. From lag 2, the ACF and PACF are negative (see Table 6) and 

significant until lag 4. Therefore, an ARIMA(4,1,0) would be a good combination of parameters 

as first approach.  
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Figure 15. ACF and PACF for ARIMA(0,1,0).  

 

Table 6. ACF, PACF values for ARIMA(0,1,0).  

Lag ACF Parcial   Significance 

0 1.0000 1.0000   Significance 

1 0.0078 0.0078    

2 -0.0666  -0.0667   Significance 

3 -0.0598  -0.0589   Significance 

4 -0.0751  -0.0795   Significance 

5 -0.0346  -0.0427    

6 0.0599 0.0463   Significance 

7 0.0769 0.0636   Significance 

8 0.0751 0.0742   Significance 

9 0.0145 0.0263    

10 -0.0270  -0.0019    

11 -0.0286  -0.0040    

12 -0.0481  -0.0371    

13 -0.0051  -0.0102    

14 0.0235 0.0015    

15 0.0068  -0.0147    

16 -0.0046  -0.0173    

17 -0.0275  -0.0305    

18 -0.0447  -0.0384    

19 0.0022 0.0065    

20 0.0093 0.0059    
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Then, an ARIMA(4,1,0) is built, as well as different variations of ARIMA(p,d,q) models which 

ensure that the best ARIMA model is used. To explore this issue, this work evaluated the 

performance of the two commonly used model selection criteria, Akaike information criteria 

(AIC) and Bayesian information criteria (BIC). In Table 7 the AlC, SBC results, as well as, Rsqr, 

the log-2likelihood (−2𝑙𝑜𝑔LH), weigh comparison between models, the mean absolute 

percentage error (MAPE) and the mean absolute error (MAE) are collected. It can be found further 

information about all the parameters in Appendix (section 7.1.3) and [17].  

 

  
Table 7. ARIMA models comparison.  

Model Variance AIC SBC Rsquare -2LogLH Weigh MAPE MAE 

ARIMA(4, 1, 2)   0,087 721,100 759,650 0,995 707,100 0,341 2,457 0,191 

ARIMA(2, 1, 4)   0,087 721,441 759,991 0,995 707,441 0,288 2,456 0,191 

ARIMA(4, 1, 3)   0,087 723,073 767,130 0,995 707,073 0,127 2,457 0,191 

ARIMA(3, 1, 4)   0,087 723,235 767,292 0,995 707,235 0,117 2,456 0,191 

ARIMA(4, 1, 4)   0,087 725,052 774,616 0,995 707,052 0,047 2,457 0,191 

ARIMA(3, 1, 2)   0,087 725,266 758,309 0,995 713,266 0,042 2,459 0,191 

ARIMA(8, 1, 4)   0,087 725,561 797,154 0,995 699,561 0,037 2,459 0,191 

ARI(4, 1)   0,088 747,825 775,361 0,995 737,825 0,000 2,443 0,190 

ARIMA(4, 1, 1)   0,088 748,524 781,567 0,995 736,524 0,000 2,443 0,190 

IMA(1, 4)   0,088 752,681 780,217 0,995 742,681 0,000 2,438 0,190 

ARIMA(1, 1, 5)   0,088 754,309 792,859 0,995 740,309 0,000 2,438 0,190 

ARIMA(1, 1, 4)   0,088 754,533 787,575 0,995 742,533 0,000 2,438 0,190 

ARIMA(1, 1, 2)   0,088 755,034 777,063 0,995 747,034 0,000 2,432 0,190 

IMA(1, 2)   0,089 760,893 777,414 0,995 754,893 0,000 2,429 0,190 

I(1)   0,089 766,394 771,901 0,995 764,394 0,000 2,440 0,190 

 

 

The models are sorted by the AIC and SBC statistic, in decreasing order. As mentioned in 

Appendix, a lower number of AIC and SBC indicates a better model. Therefore, an ARIMA 

model including moving average terms improve the final result. That is to say, an ARIMA(4,1,2) 

is a better model than an ARIMA(4,1,0). Once, ARIMA(4,1,2) model has been decided as 

appropriate model to forecast future CO2 allowance prices, it is developed a simulation taking 

into account this model. Besides, it is also developed a simulation of the ARIMA(4,1,2) as a 

MMSE (minimum mean square error) forecast. A Monte Carlo simulation (that has into account 

this ARIMA(4,1,2) ) is also developed in order to compare results (see sections 7.1.4 of Appendix 

or [18] and [19] for further information). Monte Carlo simulation generates different scenarios in 

which each one has the same probability of occurrence. On the other hand, MMSEE generates a 

mean scenario with de confident intervals. Monte Carlo simulation would be used to generate the 

scenarios, but first it is convenient compared both predictions in order to ensure the result is the 

same.  

 



29 
 

Figure 16 shows the forecast prediction of CO2 allowance price with MMSE method. The 

mean price tends to increase slightly. The probability interval of future values of the 

process is also given. It has been forecasted 500 path forward, from September 30th 2018 

to March 9th 2021. The first forecast value predicts 20.727 €/ton on 30th September 2018. This 

quantity increases until 22.766 €/ton on March 9th 2021. That is to say, ARIMA(4,1,2) predicts 

that in 2,34 years the price will increase a mean of 2.039 €/ton.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 16. 𝐶𝑂2 allowance Price (€/ton) obtained with MMSE : a) Without zoom ; b) With zoom.   

a) 

b) 
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Figure 17. 𝐶𝑂2 allowance Price (€/ton) obtained with Monte Carlo simulation. a) Without zoom ; b) With 

zoom.   

Figure 17 shows the prediction given by a Monte Carlo simulation. Repeating the forecast with 

another method ensures a safer prediction. As can be seen, the trend followed by the 𝐶𝑂2 

a) 

b) 
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allowance price seems to be very similar with respect to MMSE. In fact, if it is represented both 

predictions, they are practically equal. In Figure 18 can be seen a comparison between MMSE 

and Monte Carlo simulation.  

Figure 18. Comparison of ARIMA(4,1,2) and Monte Carlo Forecasts.  

The final forecasted solution presents the distribution showed in Figure 19. Along these 2.34 

years predicted, if we have into account the confidence interval, the most repeated price will be 

21.5 €/ton, that could vary between a maximum of 33.9 €/ton and a minimum of 11.78 €/ton 

within a confidence interval of 95%.   

Figure 19. Distribution of 𝐶𝑂2 allowance prices forecasted.  
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5.2.2 Neural Network for forecasting CO2 allowance prices   

Our neural network was developed using MATLAB software’s neural network toolbox 

package dynamic feedback nonlinear autoregressive neural network (NARNET). Testing 

different combinations of feedback delays and number of neurons in hidden layer resulted in 

some findings: 

 From the model predictions, it is obtained a good match between the real and 

predicted values. However, looking in more detail, the metrics and model evaluation 

can be very misleading. 

 The CO2 historical allowance prices data is a completely stochastic process. Due to 

this fact, the idea of using historical data as a training set in order to learn the behavior 

and predict future outcomes is simply not possible. 

 Time series data tend to be correlated in time and exhibit a significant autocorrelation. 

In this case, that means that the index at time "t+1" is quite likely close to the index 

at time "t". What the model is actually doing is that when predicting the value at time 

"t+1", it simply uses the value at time "t" as its prediction. 

 Defining the model to predict the difference in values between time steps rather than 

the value itself, is a much stronger test of the model predictive powers. In that case, 

it cannot simply use the data that has a strong autocorrelation and use the value at 

time "t" as the prediction for "t+1". This check provides a better test of the model and 

if it has learnt anything useful from the training phase, and whether analyzing 

historical data can actually help the model predict future changes. The results indicate 

that the model is not able to predict future changes based on historical events, which 

is the expected result in this case, since the data is generated using a completely 

stochastic random walk process. 

 

The equations presented in sections 7.1.3.1 and 7.1.3.2 of Appendix for AIC and BIC have the 

disadvantage of calculating the maximum log-likelihood. When it is analyzed the performance of 

different NN architectures, AIC and BIC can be also computed as follows [20]:   

𝐴𝐼𝐶 = 𝑁𝑙𝑛 (
𝑆𝑆𝐸

𝑁
) + 2𝑘 

𝐵𝐼𝐶 = 𝑁𝑙𝑛 (
𝑆𝑆𝐸

𝑁
) + 𝑘𝑙𝑛(𝑁) 

where  

 k is the number of parameters 

 SSE is the sum of square errors 

 N is the number of data points (observations). 

 

Table 8 shows the performance of the different architectures checked. There are combination of 

3, 5 and 10 hidden neurons with a number of delays from 2 to 8. The red numbers are the best 

values of the architectures according with AIC, BIC, MAE and MAPE criterion. The rest of values 

in each architecture are also marked.  
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Table 8. Comparison of different architectures.  

  Hidden Neurons 

  3 5 10 

  AIC BIC Rsq MAE MAPE AIC BIC Rsq MAE MAPE AIC BIC Rsq MAE MAPE 

N
u

m
b

er
 o

f 
d

el
a

y
s 

2 -4464 -4392 0.998 0.189 2.435 -4417 -4301 0.998 0.193 2.482 -4533 -4307 0.998 0.186 2.412 

3 -4179 -4091 0.997 0.213 2.910 -4483 -4339 0.998 0.192 2.486 -4478 -4197 0.998 0.191 2.459 

4 -4442 -4337 0.998 0.189 2.430 -4544 -4373 0.998 0.189 2.447 -4498 -4162 0.998 0.186 2.425 

5 -4542 -4421 0.998 0.189 2.446 -4437 -4239 0.998 0.193 2.493 -4381 -3990 0.998 0.193 2.504 

6 -4431 -4294 0.998 0.191 2.448 -4386 -4160 0.998 0.196 2.563 -4425 -3979 0.998 0.189 2.475 

7 -3468 -3313 0.996 0.192 2.464 -4567 -4314 0.998 0.192 2.472 -4276 -3775 0.998 0.193 2.465 

8 -4546 -4375 0.998 0.188 2.431 -4460 -4179 0.998 0.189 2.441 -4430 -3873 0.998 0.188 2.439 

 

According to the criteria chosen (AIC, BIC or MAE/MAPE criteria) there are different models 

that could be selected. NN(1:5,3) has the better BIC, while NN(1:7,5) has the better AIC and 

NN(1:2,10) has a smallest error (Section 7.1.3 explains why this models are better according with 

the parameter criteria) . When, the predicted values are represented, they tend to a constant value 

that is different in each architecture, as shown in Figure 20.  

 

Figure 20. Neural Network Times Series ahead prediction of different architectures.  
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The different constant value predictions make one suspect that, from this data set, patterns for 

predicting future values cannot be extracted. Despite these results, futher work should be done to 

ensure that this model can be discarded.   

Following the procedure stated above, if we consider AIC as criteria, the best architecture is 

NN(1:7,5).  In Figure 21 the response of output and error of NN(1:7,5) is shown.  

Figure 21. NN(1:7,5) response and error.  

 

 Table 9  presents a comparison between the performance of the ARIMA and NN best models 

according to AIC criteria. It is important to mention that SSE and log-likelihood are different 

statistic methods. Therefore, in order to compare the AIC and BIC values of ARIMA model with 

respect to NN ones, they must be computed using the same criteria. It was computed the value of 

AIC and BIC taking into account the sum of square errors.   

Table 9. Comparison of ARIMA and NN performance.  

 AIC BIC Rsq MAE MAPE SSE 

ARIMA(4,1,2) -4450.51 -4411.96 0.995 0.191 2.457 157.174 

NN(1:2,10) -4566.8 -4313.5 0.998 0.192 2.472 141.274 

 

As can be seen in Table 9, ARIMA(4,1,2) has a better value of BIC and MAE or MAPE, while 

NN(1:7,5) gives a better performance in AIC. Based on the results, ARIMA(4,1,2) predicts safer 

forecasting values. It offers a more realistic trend, that shows a possible increase in 𝐶𝑂2 allowance 

prices with its confidence intervals. Meanwhile, NN(1:7,5) does not offer a significant trend. Like 
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all other NN models, it arrives at a steady state constant value that varies in a significant manner 

in function of the architecture chosen.  

Despite the parameters obtained, it is very important to be very careful when evaluating the model 

performance in terms of prediction accuracy. As can be seen in  

Figure 22, time series data tends to be correlated in time and exhibit a significant autocorrelation 

("t+1" is quite likely close to the index at time "t"). This indicates that the value at time "t+1" 

simply uses the value at time "t" as its prediction 

Figure 22. Time delayed predictions autocorrelated.  

 

On the other hand, being able to predict the time-differenced data, rather than the data directly, is 

a much stronger indication of the predictive power of the model.  

 

 

 

 

 

 

 

 

 

[C
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Figure 23 indicates that the model is not able to predict future changes based on historical events, 

which is the expected result in this case, since the data is generated using a completely stochastic 

random walk process. In other words, the time series is non-stationary and making it stationary 

shows no obviously learnable structure in the data. This can be concluded once the output and 

target of the differenced data has such poor correlation.  

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 23. Time differenced output vs target.  

 

As can be seen, the fit of the data is very poor and with this test is finally confirmed that artificial 

neural network is not capable of learning a patron in the 𝐶𝑂2 data as it is totally stochastic, and 

therefore, these predictions are not going to be used as parameters under uncertainty in the design 

of the petrochemical supply chain.  
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5.3 Supply chain results 

The models described in the previous sections have been applied to the design of a SC 

with two plants, located in Neratovice and Tarragona, which produce 6 main products: 

acetaldehyde, acetone, acrylonitrile, cumene, isopropanol and phenol which sell in the 

following European cities: Leuna (Germany), Neratovice (Czech Republic), Sines 

(Portugal) and Tarragona as shown in Figure 24.  

 

 

Figure 24. Supply chain studied.  

 

 

5.3.1 Deterministic supply chain results 

Uncertainty appears in all systems, in this case, it is due to parameters that represent information 

about the future. All this kind of problems could be solved by ignoring the inherent uncertainty 

of each of them, but it could constitute a violation in reality and it may design a supply chain far 

away from the one needed. In order to discuss the use of stochastic optimization, the risk curve 

of the deterministic solution is presented together with other stochastic solutions (see  

5). In deterministic optimization the problem parameters are supposed to be known with certainty. 

To solve the presented deterministic model, it is used the mean forecasted CO2 allowance prices 

as parameters (given in Figure 18). Note that the deterministic model can be easily obtained from 

the stochastic one (Eqs. (61)-(89) of section 7.2.1.2) by defining only one single scenario which 

corresponds to this mean value mentioned. 



38 
 

 

Figure 24.  Deterministic solution vs stochastic solution.  

 

 

As can be seen, the deterministic solution (scenario 1) is always worse than the stochastic 

solutions. It is clear that if someone had to choose between the represented lines, the blue line, 

that is to say, the deterministic solution will be always excluded since, for the same NPV value, 

it has a greater risk, and in the same way, for a same risk value the NPV is always lower.  Apart 

from this, it is also important to mention that solving the stochastic problem ensures a more robust 

solution that takes into account the possible fluctuation of parameters. For these reason, stochastic 

optimization is a better guarantee to find better and more robust solutions.  

 

5.3.2 Stochastic supply chain results 

As it has been said above, the problem under study is stochastic (depends on chance), since it has 

an uncertain parameter (the 𝐶𝑂2 emission rights price). For this reason, it cannot be solved for a 

single price scenario, but it has to be solved for a set of possible price scenarios that will have a 

certain probability of occurrence associated (it is considered that each scenario has exactly the 

same probability of occurrence). In this way, a robust model will be obtained and that includes 

the source of uncertainty.  

This work follows the two-stage stochastic programming approach with discretization of the 

uncertainty 𝐶𝑂2 emissions rights price by ARIMA model estimations (see section 7.1.5 and [22]). 

Once it has been demonstrated that ANN are not capable of forecasting the future 𝐶𝑂2 allowance 

prices, ARIMA(4,1,2) will compute them in order to formulate the scenarios. shows the evolution 

of prices generated when 100 scenarios are considered.  Figure 26 shows the evolution of prices 

generated when 100 scenarios are considered.  
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Figure 26. Generation of scenarios with ARIMA(4,1,2): a) Price evolution ; b) Price related with time 

period.  

 

The difference between Figure 26 a) and b) is the number of data points considered. Figure 26 a) 

shows all the forecasted data points obtained with the ARIMA(4,1,2) model (almost a CO2 

allowance price each day) and Figure 26 b) only shows the CO2 allowance price at the end of each 

year, when it has to be decided whether rights must be bought or sold. The optimization model 

only takes into account the data in Figure 26 b).  

b) 

a) 
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5.3.2.1 Objective function results 

Taking into account the price of each scenario for the year end period (September 29th), it is solved 

the stochastic problem iteratively for an increasing number of scenarios. It has been established 

100 scenarios as a good quantity, due to the fact that results have changed comparing with less 

scenarios. 

The set of risk curves generated at the end of the solution process includes a number of curves 

equal to the number of scenarios explored, although some of them are dominated by others. For 

this reason, it is necessary to filter the risk curves (see section 7.2.2.4). Besides, in order to find 

the best risk curves, some financial metrics are used (see section 7.1.6 and [21] and [23]). 

In Table 10 the most interesting scenarios according to the different metrics explained 

below are presented. It has been recollected the greatest values of opportunity value (OV) 

in absolute value, as well as in relative value, opportunity value differenced (OVD), the 

maximum expected NPV (E[NPV]), the scenario with greater value at risk (VaR) and 

worst case (WC). Moreover, it has been collected the scenario with lower downside risk 

(DSR) and value at risk difference (VaRD).  

 

Table 10. Interesting scenarios after filtering solutions.  

OV ($) WC ($) VaR ($) DSR ($) OVD ($)  VaRD ($) E[NPV] ($) 

s30, s38, s55, s99 s51, s57, s61 s72 s82 s30  s30 s53, s80 

 

 

Each metric gives a different perspective to evaluate risk. In this work, it is presented all these 

metrics that allow management of financial risk according to the decision maker’s preference. In 

this way, the propose to use the concept of minimum downside risk (DSR) and value at risk 

difference (VaRD) to measure the recourse cost variability and obtain solutions appealing to a 

risk-averse investor. However, a risk-taking attitude would be to focus in the maximum values of 

opportunity values (OV) and opportunity value differenced (OVD), which would be interesting 

for a slightly more conservative risk-taker who wants to make sure that the average behavior is 

acceptable (good E[NPV]).  

 

As can be seen in Table 10, the most repeated scenario is s30. It appears in three of the measures. 

Table 11 shows the different results obtained.  
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Table 11. Risk metrics results from interesting scenarios.  

Scenario OV ($) WC ($) VaR ($) DSR ($) OVD ($) VaRD ($) E[NPV] ($) 

Determ. 8.084· 108 -2.867· 108 -1.031· 108 3.750· 108 2.724· 108 5.360· 108 5.360· 108 

s30 9.811· 108 -6.122· 107 3.666· 106 8.796· 107 5.596· 108 4.178· 108 4.215· 108 

s38 9.811· 108 -6.122· 107 3.666· 106 8.796· 107 4.336· 108 5.439· 108 5.476· 108 

s51 9.671· 108 -6.048· 107 -1.043· 107 1.008· 108 4.871· 108 4.904· 108 4.800· 108 

s53 9.811· 108 -6.122· 107 3.666· 106 8.796· 107 4.054· 108 5.721· 108 5.758· 108 

S57 9.671· 108 -6.048· 107 -1.043· 107 1.008· 108 4.820· 108 4.955· 108 4.851· 108 

s61 9.671· 108 -6.048· 107 -1.043· 107 1.008· 108 4.169· 108 5.606· 108 5.502· 108 

s72 9.675· 108 -7.358· 107 4.839· 106 9.527· 107 4.173· 108 5.454· 108 5.503· 108 

s80 9.785· 108 -6.391· 107 9.814· 105 7.969· 107 3.882· 108 5.893· 108 5.902· 108 

s82 9.802· 108 -6.216· 107 2.731· 106 7.785· 107 4.044· 108 5.730· 108 5.758· 108 

s99 9.811· 108 -6.122· 107 3.666· 106 8.796· 107 4.182· 108 5.593· 108 5.629· 108 

 

As can be seen above, the variation in the metrics seems to be relatively low for OV, however, 

the difference between scenarios (max (𝑂𝑉𝑠) − 𝑂𝑉𝑠) ranges from 1.360 ∙ 107 to 1.404 ∙ 107$, 

which are large amounts of money. The maximum variation occurs with VaR, especially in s51, 

s57 and s61, which have different orders of magnitude, even there are negative values. When it is 

compared the relative metric OVD, the variation between scenarios is more significative than OV. 

Comparing Table 10 and Table 11 it can be found the maximum and minimum values of each 

scenario according to the measure, however, the results could be presented much more visually 

as a whole. Table 12 shows the normalized values with colors, which gives a better perspective 

about what is happening.  

Strong color cells are related with the greater values and light color with the lower values. The 

numbers have been normalized for each financial metric and they vary from 0 to 1 (being 0 the 

minimum value among scenarios and 1 the maximum value among scenarios). Selecting a 

scenario, it can be seen the most important information of each risk curve and it can also be 

compared with different scenarios.  

 

Table 12. Normalized data from interesting scenarios.   

Scenario OV ($) WC ($) VaR ($) DSR ($) OVD ($) VaRD ($) E[NPV] ($) 

s30 1,000 0,944 0,923 0,441 1,000 0,000 0,000 

s38 1,000 0,944 0,923 0,441 0,265 0,735 0,747 

s51 0,000 1,000 0,000 1,000 0,577 0,423 0,347 

s55 1,000 0,944 0,923 0,441 0,100 0,900 0,914 

s57 0,000 1,000 0,000 1,000 0,547 0,453 0,377 

s61 0,000 1,000 0,000 1,000 0,167 0,833 0,763 

s72 0,031 0,000 1,000 0,760 0,169 0,744 0,763 

s80 0,809 0,739 0,747 0,080 0,000 1,000 1,000 

s82 0,933 0,872 0,862 0,000 0,095 0,905 0,914 

s99 1,000 0,944 0,923 0,441 0,175 0,825 0,838 
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For example, scenario s30 is clearly for risk-takers. It has great values of OV, which means it 

could be obtained a greater quantity of NPV than in scenarios s51, s57, s61, s72, s80 and s82 

(difference of 1.36 − 1.40 ∙ 107$ more that could be earned). Besides, in the worst-case scenario 

the NPV would not lose as much as in others. The great value of VaR indicates that at 5% of 

cumulative probability, the NPV quantity would be good. This happens especially since other 

scenarios still would not have positive NPV (s51, s57, s61). Apart from this, downside risk shows 

a value below 0.5, which means there is a relatively low risk in order to get the target value 

imposed of 1.592 ∙ 108$. Moreover, OVD is the greatest of all scenarios, what means that there 

is a great distance between the E[NPV] (which in fact is the lowest) and the opportunity value 

that could be obtained (the greatest in relative and absolute terms). Finally, the VaRD indicates 

that the distance between the E[NPV] and NPV at 5% is the lowest of all scenarios. In conclusion, 

scenario s30 could obtain the greatest NPV of all scenarios. However, the risk taken is also high 

since the difference between the expected value and the opportunity value is large. It would be 

more likely to earn 3.666∙ 106$ than 9.811∙ 108 $ due to VaRD is nearer to the E[NPV] than OVD 

is.  

 

Taking into account the criterion shown with scenario 30 and Table 12, it can be identified among 

the different scenarios the best ones. Figure 27  shows a classification of scenarios according to 

risk-taker and risk-averse decision makers, which, in turn, divides the different scenarios 

considering the risk metrics. Looking at this hierarchical classification, it is clear that a risk-taker, 

which wants to earn the maximum amount of money, would choose scenario 99, since it may be 

earned the same quantity that scenarios 30, 38 and 55, however, scenario 99 has a lower value of 

OVD which ensures lower risk to obtain the opportunity value of 9.811 · 108 $. On the other 

hand, a risk- averse decision maker that only wants to ensure a good NPV without taking too 

many risks, will look only at the best VaR and would choose scenario 72.  
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Figure 27.  Classification of scenarios.  

 

Looking at the entire curve is important because, even when one is a risk-averse decision maker, 

and, consequently, concerned with the profit distribution at low profit expectations, one can also 

assess the effect of risk-related decisions in the downside region of the profit distribution on the 

loss of profit potential at the other end of the spectrum. For this reason, the risk curves of all 

filtered scenarios are presented.  Figure 28, Figure 29 and Figure 30 show these risk curves. It seems 

that they are very similar, however, the difference between metrics are remarkable.  
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Figure 28. Risk curve of scenarios: a) 30; b) 38; c) 51; d) 55.  
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R
is

k
 

Target 

Target 

Target 

Target 

𝑂𝑉 = 9.811 · 108 $ 

𝑂𝑉 = 9.811 · 108 $ 

𝑂𝑉 = 9.67 · 108 $ 

𝑂𝑉 = 9.811 · 108 $ 

𝐸[𝑁𝑃𝑉] = 4.215 · 108 $ 

𝑉𝑎𝑅 = 3.666 · 106 $ 

𝑉𝑎𝑅 = 3.666 · 106 $ 

𝐸[𝑁𝑃𝑉] = 5.476 · 108 $ 

𝐸[𝑁𝑃𝑉] = 4.800 · 108 $ 

𝑉𝑎𝑅 = −1.043 · 107$ 

𝐸[𝑁𝑃𝑉] = 5.758 · 108 $ 

𝑉𝑎𝑅 = 3.666 · 106$ 
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Figure 29. Risk curves of scenarios: a) 57; b) 61; c) 72; d) 80. 
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𝑂𝑉 = 9.671 · 108 $ 

𝑂𝑉 = 9.671 · 108 $ 

𝑂𝑉 = 9.675 · 108 $ 

𝑂𝑉 = 9.785 · 108 $ 

𝐸[𝑁𝑃𝑉] = 4.851 · 108 $ 

𝑉𝑎𝑅 = −1.043 · 107$ 

𝐸[𝑁𝑃𝑉] = 5.552 · 108 $ 

𝑉𝑎𝑅 = −1.043 · 107$ 

𝐸[𝑁𝑃𝑉] = 5.503 · 108 $ 

𝑉𝑎𝑅 = 4.839 · 106$ 

𝐸[𝑁𝑃𝑉] = 5.902 · 108 $ 

𝑉𝑎𝑅 = 9.814 · 105$ 
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Figure 30. Risk curves of scenarios: a) 82; b) 99.  

 

 

5.3.2.2 Structural variables results 

Apart from presenting the objective function of our stochastic problem, it is even more important 

to present the structural variables determined, the variables that do not depend on the scenario. 

The variables that depend on the scenario are only used to solve the model and determine the 

structural variables. These structural variables would be used to design the supply chain. They are 

basically capacities of process and warehouses, as well as, its expansions in the different time 

periods. Table 13 and Table 14 show the results obtained. 
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Target 

Target 

NPV ($) 

NPV ($) 

𝑂𝑉 = 9.802 · 108 $ 

𝑂𝑉 = 9.811 · 108 $ 

𝐸[𝑁𝑃𝑉] = 5.758 · 108 $ 

𝑉𝑎𝑅 = 2.731 · 106$ 

𝑉𝑎𝑅 = 3.666 · 106$ 

𝐸[𝑁𝑃𝑉] = 5.629 · 108 $ 
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Table 13. Capacity of process in all time periods at plants. 

 Scenario Technology Plant (tons) 

 Neratovice Tarragona 

Deterministic Tech. 1 10000 100000 

Tech. 2  100000 

Tech. 3 10000 100000 

Tech. 4 10000 100000 

Tech. 5 10960 100000 

Tech. 6 10000 100000 

30 Tech. 1 17983 100000 

Tech. 2  100000 

Tech. 3 23978 100000 

Tech. 4 11989 100000 

Tech. 5 49822 100000 

Tech. 6 23585 100000 

38 Tech. 1 17983 100000 

Tech. 2  100000 

Tech. 3 23978 100000 

Tech. 4 11989 100000 

Tech. 5 49822 100000 

Tech. 6 23585 100000 

51 Tech. 1 14027 100000 

Tech. 2  100000 

Tech. 3 18703 100000 

Tech. 4 10000 100000 

Tech. 5 38863 100000 

Tech. 6 18397 100000 

55 Tech. 1 17983 100000 

 Tech. 2  100000 

 Tech. 3 23978 100000 

 Tech. 4 11989 100000 

 Tech. 5 49822 100000 

 Tech. 6 23585 100000 

57 Tech. 1 14027 100000 

Tech. 2  100000 

Tech. 3 18703 100000 

Tech. 4 10000 100000 

Tech. 5 38863 100000 

Tech. 6 18397 100000 
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Scenario Technology Plant (tons) 

 Neratovice Tarragona 

61 Tech. 1 14027 100000 

Tech. 2  100000 

Tech. 3 18703 100000 

Tech. 4 10000 100000 

Tech. 5 38863 100000 

Tech. 6 18397 100000 

72 Tech. 1 11445 100000 

Tech. 2  100000 

Tech. 3 15260 100000 

Tech. 4 10000 100000 

Tech. 5 31709 100000 

Tech. 6 15010 100000 

80 Tech. 1 32074 100000 

Tech. 2  100000 

Tech. 3 42765 100000 

Tech. 4 21382 100000 

Tech. 5 88860 100000 

Tech. 6 42064 100000 

82 Tech. 1 22890 100000 

Tech. 2  100000 

Tech. 3 30520 100000 

Tech. 4 15260 100000 

Tech. 5 63417 100000 

Tech. 6 30020 100000 

99 Tech. 1 17983 100000 

Tech. 2  100000 

Tech. 3 23978 100000 

Tech. 4 11989 100000 

Tech. 5 49822 100000 

Tech. 6 23585 100000 

 

 

The capacity of process at plants remains constant along all time periods. The results show that 

only the Tarragona plant capacity remains constant in all scenarios and technologies at a value of 

100000 ton of each product. On the other hand, the capacity in Neratovice depends on the scenario 

as well as the technology used. It is also important to mention that the risk-taker scenarios 

(scenarios 30, 38, 55, 80, 82 and 99) present greater capacity in their plants that the averse 

scenarios (scenarios 51, 57, 61 and 72), which is logical as risk-taker scenarios try to earn extra-

money taking more risks.  
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Table 14. Capacity of warehouse in time period t.  

Scenario Warehouse (tons) 

Neratovice Tarragona 

Deterministic 5000 100000 

30 84444.82 100000 

38 84444.82 100000 

51 61764.41 100000 

55 84444.82 100000 

57 61764.41 100000 

58 22680.42 100000 

61 61764.41 100000 

72 80423.64 100000 

80 169268.79 100000 

82 115118.82 100000 

99 84444.82 100000 

 

The capacity of warehouses does not change along the Tarragona warehouse scenarios, as shown 

in Table 14. Equally as it happens with the capacity of process, the capacity of Neratovice 

warehouse is greater for the risk-taker scenarios and lower with the risk-averse scenarios. By 

increasing the production capacity, the warehouse capacity also needs to increase.  

 

By way of example, the final result obtained with scenarios 52 (risk-averse) and 99 (risk-taker) 

shows in Figure 31. As was mentioned before, structural variables are related with the capacities 

of plant and warehouses, in which decision maker has the opportunity to choose the most 

appropriate configuration according to their risk criteria. However, it is important to mention that 

the links between plants, warehouses and markets are not structural variables, they are operational 

(they depends on the scenario) and all possible links have to be considered.  
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Figure 31. Structural variable results for scenarios: a) 52 (risk-averse); b) 99 (risk-taker). 

 

5.3.2.3 Operational variables results 

The operational variables are related to planning decisions and they are affected by the uncertainty 

in the price of CO2 emission rights. In the following sections, it is shown what happens along the 

different scenarios, where some trends are observed. However, it is important to emphasise that 

there is no reason why the predicted trend happens, any scenario is possible individually.    

5.3.2.3.1 Economic results 

It is interesting to observe the probability distribution of the variables that depend on the scenario. 

As an example, Figure 32 shows the probability distribution of cumene sales in the different 

markets during the first and last years.  

  

 

a) 

b) 
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Figure 24. Probability distribution for all the scenarios for the cumene sales in the different markets 

during: a) the first year; b) the last year.  

 

 

Figure 32. Probability distribution for all the scenarios for the cumene sales in the different markets 

during: a) the first year; b) the last year.  

 

During the first year the sales are constant in every scenario, regardless there are a total of 100 

scenarios, what shows that it is clear how to act at the beginning of the time horizon considered. 

Cumene sales at Neratovice market in period t=1 are the greatest, with a mean value of 1875 tons, 

followed by the Leuna market with a mean of 675 tons, Sines market with 600 tons and Tarragona 

market with 375 tons. The standard deviation in all cases is 0, however, at time period 10 

dispersion appears in Neratovice and Leuna markets. In these cases, the cumene sales are 1246 

and 3461 tons for Neratovice and Leuna, respectively. Cumene sales at Sines and Tarragona 

markets are 930.80 and 581.75 tons respectively, without dispersion.  presents the sales of all 

chemicals at the different markets. In all cases the amount tends to be increased at the last time 

period.   

 

 

 

 

 

 

 

 

a) 

b) 
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Table 15. Sales at markets of chemicals in first and last period with its respective standard deviation. 

 

 

 

5.3.2.3.1 Environmental results 

Carbon trading is also analyzed taking into account the trends forecasted by scenarios. In order to 

optimize the model, CO2 emissions were monetized, which is done through the emissions trading 

equation (M10) or (89). This equation is presented again:  

𝑁𝑒𝑡𝑡,𝑠
𝐶𝑂2 = 𝑃𝑟𝑖𝑐𝑒𝑡,𝑠

𝐶𝑂2𝑆𝑎𝑙𝑒𝑠𝑡,𝑠
𝐶𝑂2 − 𝐶𝑜𝑠𝑡𝑡,𝑠

𝐶𝑂2𝐵𝑢𝑦𝑡,𝑠
𝐶𝑂2     ∀𝑡, 𝑠 

Thus, net incomes related to trade with CO2 emissions are equal to the sale of emissions minus 

the purchase of emissions. Each of these terms are analyzed below. Figure 33  shows the CO2 

allowance prices of each scenario at each time period. It is also represented the price trend with 

dashed line. As can be seen, it is expected that price increases with time. The average price 

changes from 21.69 €/ton in the first year to 29.64 €/ton in the last year. The maximum price used 

is located in the last time period with a value of 58.55 €/ton and the minimum price used is 6.08 

€/ton in scenario 34 in time period 9.   

In Figure 34 the GWP of each scenario and in each time period is represented. The average GWP 

changes from 7.27 · 107 kg CO2 − eq in first year to 6.29 · 107 kg CO2 − eq in last year. That is 

to say, it is expected an average reduction of 9.85 · 106kg CO2 − eq,  a considerable reduction of 

GWP (a 36.65% increase of CO2 prices caused a 13.48% decrease of GWP). Therefore, it is clear 

that, the increase of CO2 allowance prices produces a reduction in GWP. 

  
Acetaldehyde Acetona Acrylonitrile Cumene Isopropanol Phenol 

 

Markets 

(tons) Mean 

St. 

desv Mean 

St. 

desv Mean 

St. 

desv Mean 

St. 

desv Mean 

St. 

desv Mean 

St.  

desv 

𝑡1 

Leuna 675,00 0,00 540,00 0,00 900,00 0,00 675,00 0,00 450,00 0,00 630,00 0,00 

Neratovice 1875,00 0,00 1500,00 0,00 2500,00 0,00 1875,00 0,00 1250,00 0,00 3047,54 685,57 

Sines 600,00 0,00 480,00 0,00 800,00 0,00 600,00 0,00 400,00 0,00 568,72 87,22 

Tarragona 375,00 0,00 300,00 0,00 500,00 0,00 375,00 0,00 250,00 0,00 1007,82 962,07 

𝑡10 

Leuna 1246,10 1989,58 996,88 1591,66 1661,47 2652,77 1246,10 1989,58 830,74 1326,39 1163,03 1856,94 

Neratovice 3461,40 5526,61 2769,12 4421,29 4615,20 7368,81 3461,40 5526,61 2307,60 3684,40 4239,29 5100,75 

Sines 1107,65 1768,51 744,64 0,00 1476,86 2358,02 930,80 0,00 738,43 1179,01 988,15 1194,03 

Tarragona 692,28 1105,32 465,40 0,00 923,04 1473,76 581,75 0,00 461,52 736,88 886,14 281,61 
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 Figure 33. 𝐶𝑂2 allowance prices (€/ton) of each scenario during the different time periods.   

 

 

Figure 34. GWP of each scenario in each time period.  

 



54 
 

aFigure 35. Amount of emissions extra rights sold (𝑘𝑔 𝐶𝑂2) in each period. 

As can be seen in Figure 35, the amount of emissions extra rights sold is expected to be reduced 

with time. It is explained mainly because of the fact that it is important not to exceed the emission 

limit, however, the demand increase year after year, which causes a decrease in sold emissions 

and an average increase in bought.   

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 36. Amount of emissions extra rights bought in each time period.  
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Moreover, as can be seen in Figure 36 from time period 1 to 10 the amount of emission right 

bought can be very small, as well as very great, especially in time periods 1 to 9, while in the last 

time period (time period 10) the bought amount seems to be very homogeneous in comparison 

with the other ones. Finally, the average quantity bought increases at the final time period 

(although it increases and falls along the different time periods). As a result, the extra rights that 

have to be bought increase. It goes from an average of  8.3 · 106 ton in first year to 5.55 · 107 ton 

in last year. Finally, the net income due to emissions trading is found to be really important. See 

Figure 37.  

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 37. a) Net earnings; b) Net income due to emission trading.  

 

As can be seen, the total net income due to emissions trading follows the same trend that the total 

net earnings. The values have the same order and direction, which is an indication of the great 

importance of emission trading in the total net income. Then, it can be concluded that imposing 

an increase in 𝐶𝑂2 emissions right price will probably cause losses in our supply chain (in most 

of the scenarios). Demands in markets increase on a par with the emission cost. The demand must 

be satisfied and prices in products do not increase enough to offset the increase in 𝐶𝑂2 emission 

prices, what finally cause losses in most of the scenarios. That means that companies would be 

forced to adapt their technologies to other more sustainable in order not to lost money year after 

year.  

a) 

b) 
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6. CONCLUSIONS 
This work has addressed the forecasting of future CO2 allowance prices and the design and 

planning of chemical SC under uncertainty, taking into account the CO2 prices as uncertain 

parameter. The problem was mathematically formulated as a stochastic MILP that accounts for 

the maximization of the expected NPV. Results show that the stochastic design improves the 

deterministic one and therefore, it should be the preferred choice in practice (see Figure 25).  

ARIMA and artificial neural networks were tried to make a forecast for the CO2  allowance prices 

in the along the future 2 years.  Based on the results of this work, estimating emission prices with 

artificial neural networks cannot be drawn, as the model shows no evidence of a good 

performance. As it has been proven, for a completely random process, where predicting future 

outcomes is by definition impossible, time series is not a good tool. By simply defining a model, 

making some predictions and calculating common accuracy metrics, one could seemingly have a 

good model and decide to put it into production. In reality, the model might have no predictive 

power whatsoever. On the other hand, the results obtained with ARIMA model demonstrated a 

satisfactory prediction. Through this work, it was explained the process of building and selecting 

the appropriate ARIMA model, which finally proved to be an ARIMA(4,1,2). This ARIMA(4,1,2) 

was the tool used to introduce uncertainty in the design of the supply chain since it has been 

proven to be appropriated since the price of CO2 emission rights with ARIMA was suitable. 

As it was presented in the results, solving the stochastic model gives as a result a great quantity 

of possible solutions. Among all these solutions, the decision maker has the opportunity to choose 

the most appropriate configuration according to their risk criteria. During this work, the best 

scenarios have been divided into risk-averse and risk-taking scenarios in order to provide a easier 

way to choose a final decision. Moreover, among the solutions for the operational variables, it is 

important to emphasize that it has been found that an increase of CO2 allowance prices involves 

a reduction in GWP (a 36.65% increase of CO2 prices caused a 13.48% decrease of GWP), which 

is in fact the final objective of the risen in emission prices. However, it also has been demonstrated 

that increase these CO2 allowance prices will probably cause in long term huge losses. This is due 

to the greater demand generated along years that must be satisfied, at the same time that products 

prices remain constant and CO2 allowance prices increase. The designed supply chain has to 

produce and transport the products to a greater extent of consumers, while the transporting and 

producing cost due to CO2 emission prices increase damage competitiveness of the supply chain. 

As a result, most of the scenarios predict negative net earnings, which would force to companies 

to adapt technologies to other more sustainable in order not to lost money year after year.   

 

 

 

 

 

 

 



57 
 

References 
[1] Adebiyi, A. A. (2014). Comparison of ARIMA and artificial neural. Journal of Applied 

Mathematics Article ID 614342. 

[2] Guoqiang Zhang, B. E. (1998). Forecasting with artificial neural networks: The state of the 

art. 

[3] Report on the functioning of the European carbon market. Brussels, (2017): EUROPEAN 

COMMISSION. 

[4] STERN, N. (2006;). Stern review on the economics of climate change. London, UK: HM 

Treasury. 

[5] CO2 EUROPEAN EMISSION ALLOWANCES. (n.d.). Retrieved from 

https://markets.businessinsider.com/commodities/co2-emissionsrechte 

[6] Robert H. Shumway, D. S. (n.d.). Time Series Analysis and Its Applications. Springer Texts 

in Statistics. 

[7] STERN, N. (2006;). Stern review on the economics of climate change. London, UK: HM 

Treasury. 

[8] Luis Gonzaga Baca Ruiz, M. P.-F. (2016). An Application of Non-Linear Autoregressive 

Neural Networks to Predict Energy Consumption in Public Buildings. Granada: Department of 

Computer Science and Artificial Intelligence, University of Granada. 

[9] Valeri Mladenov, C. J. (September 5-7, 2014). Engineering Applications of Neural Networks 

. Bulgaria: Lazaros Iliadis. 

[10] Erik Molino-Minero-Re, J. G.-M.-F.-A.-C. (2014). Comparison of artificial neural networks 

and harmonic analysis for sea level forecasting. 

[11] GUILLÉN-GOSÁLBEZ, G. and GROSSMANN, I.E. Optimal design and planning of 

sustainable chemical supply chains under uncertainty. University Rovira i Virgili and Carnegie 

Mellon University, 2008. 

[12] Shapiro, J. F. Modeling the Supply Chain. Duxbury, 2001.  

 

[13] AZAPAGIC, A. and CLIFT, R. Life cycle assessment and multiobjective 

optimization.Journal of Cleaner Production. 135-143. 1999.  

 

[14] QI, Y. and CHEN, X. Improved Life Cycle Assessment of Recycling Organic Wastes for 

Practice. Journal of Cleaner Production. August 2017.  

 
[15] Frischknecht, R., Jungbluth, N., Althaus, H.-J., Doka, G., Dones, R., Heck, T., Hellweg, S., 

Hischier, R., Nemecek, T., Rebitzer, G., Spielmann, M., 2005. The ecoinvent database: overview 

and methodological framework (7 pp). Int. J. Life Cycle Assess. 10, 3–9. 

 

[16] R. Ruiz-Femenia, G.-G. L. (2013). Multi-objective optimization of environmentally 

conscious chemical supply chains under demand uncertainty. ELSEVIER. 



58 
 

[17] Acquah, H. d.-G. (2009). Comparison of Akaike information criterion (AIC) and Bayesian 

information criterion (BIC) in selection of an asymmetric price relationship. 

[18] Sokolowski, J.A. (2010) Monte Carlo Simulation. In: Sokolowski, J.A. and Banks, C.M., 

Eds., Modelling and Simulation Fundamentals: Theoretical Underpinnings and Practical 

Domains, Wiley & Sons Inc., New Jersey, 131-145. 

http://dx.doi.org/10.1002/9780470590621.ch5 

 

[19] Box, G. E. P., G. M. Jenkins, and G. C. Reinsel. Time Series Analysis: Forecasting and 

Control. 3rd ed. Englewood Cliffs, NJ: Prentice Hall, 1994 

[20] Acquah, H. d.-G. (2009). Comparison of Akaike information criterion (AIC) and Bayesian 

information criterion (BIC) in selection of an asymmetric price relationship. 

[21] Bagajewicz, A. B. (May 2004). Managing Financial Risk in Planning under Uncertainty. 

AIChE Journal, Wiley InterScience, School of Chemical Engineering and Materials Science, 

University of Oklahoma, Norman, OK 73019. 

[22] Sergio Medina-González, C. P.-G. (2017). Using Pareto filters to support risk management 

in optimization under uncertainty: Application to the strategic planning of chemical supply 

chains. 

[23] Ahmed Aseeri, M. J. (2004). New measures and procedures to manage financial risk with 

applications to the planning of gas commercialization in Asia. Elsevier, Computers & Chemical 

Engineering. 

 

 

 

 

 

 

 

 

 

 

 

 

 



59 
 

7. APPENDIXES 

7.1 Complementary theory 

7.1.1 Identifying the order of ARIMA model  

As it was said before, the first (and most important) step in fitting an ARIMA model is the 

determination of the order of differencing needed to stationarize the series. Normally, the correct 

amount of differencing is the lowest order of differencing that yields a time series which fluctuates 

around a well-defined mean value.  

The next step in fitting an ARIMA model is to determine whether AR or MA terms are needed to 

correct any autocorrelation that remains in the differenced series. It could just be tried some 

different combinations of terms and see what works best. But there is a more systematic way to 

do this. By looking at the autocorrelation function (ACF) and partial autocorrelation (PACF) plots 

explained previously of the differenced series, you can tentatively identify the numbers of AR 

and/or MA terms that are needed. 

Here it is presented an illustrative example (see Figure 38) to explain the functioning. Figure 39 

and Figure 40 shows the autocorrelation function (ACF) of the series, before any differencing is 

performed.  

 

 

Figure 38. Example of nonseasonal time series.  
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Figure 39. ACF without differencing.  

 

The autocorrelations are significant for a large number of lags (spikes exceed the red line). 

However, it could be thought that perhaps the autocorrelations at lags 2 and above are merely due 

to the propagation of the autocorrelation at lag 1. This is confirmed by the PACF plot in Figure 

40. 

 

Figure 40. PACF wihout differencing.  

 

Note that the PACF plot has a significant spike only at lag 1, meaning that all the higher-order 

autocorrelations are effectively explained by the lag-1 autocorrelation. By mere inspection of the 
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PACF you can determine how many AR terms you need to use to explain the autocorrelation 

pattern in a time series: if the partial autocorrelation is significant at lag k and not significant at 

any higher order lags (i.e., if the PACF cuts off at lag k). Then this suggests that you should try 

fitting an autoregressive model of order k. In this particular case of Figure 40 there is very large 

spike at lag 1 and no other significant spikes, indicating that in the absence of differencing an 

AR(1) model should be used.  

AR(1) or ARIMA(1,0,0) is equivalent to equation (5).  

�̂�𝑡 = 𝜇 + 𝛼1𝑌𝑡−1 

If 𝛼1 = 1, then  

�̂�𝑡 = 𝜇 + 𝑌𝑡−1 

what is equivalent to predicting that the first difference, an ARIMA(0,1,0) (random walk). See 

equation (7). That is to say, PACF is showing that this series needs an order of differencing to 

be stationarized. That is something it should be known with only look at Figure 40. It can be 

seen the differenced data in Figure 45. 

Once we perform the difference, two cases are possible:  

 Case 1. If the PACF of the differenced series displays a sharp cutoff and/or the lag-1 

autocorrelation is positive (i.e., if the series appears slightly "underdifferenced"), then 

consider adding an AR term to the model. The lag at which the PACF cuts off is the 

indicated number of AR terms. Figure 41 shows a theoretical graphical example. 

 

 

 

 

 

 

 

 

Figure 41.  Cutoff in PACF (Case 1, adding AR terms): a) ACF; b) PACF.  

 

 Case 2. If the ACF of the differenced series displays a sharp cutoff and/or the lag-1 

autocorrelation is negative (i.e., if the series appears slightly "overdifferenced"), then 

b) a) 
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consider adding an MA term to the model. The lag at which the ACF cuts off is the 

indicated number of MA terms. 2 shows a theoretical graphical example.  

  

 

 

 

 

 

 

 

 

Figure 42. Cutoff in ACF (Case 2, adding MA terms) a) ACF; b) PACF. 

Continuing with the same example of Figure 41 and Figure 42. After taking one nonseasonal 

difference, or in other words, fitting an ARIMA(0,1,0) model with constant, the ACF and PACF 

plots look like in Figure 44 below. 

 

 

Figure 43.  Example of:  a) ACF after differencing ; b) PACF.after differencing.  

 

Notice that, on the one hand, the correlation at lag 1 is significant and positive, and on the another 

hand, the PACF shows a sharper "cutoff" than the ACF. In particular, the PACF has only two 

significant spikes, while the ACF has four. Therefore, Figure 43  match case 1. According to above 

a) b) 

a) b) 
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definition, the differenced series displays an AR(2) signature (ARIMA(2,1,0) model).  In Figure 

44, the ACF and PACF of ARIMA(2,1,0) model is shown.  

 

 

 

 

 

 

 

 

 

 

 

Figure 44.  ARIMA(2,1,0). Example of  a) ACF after differencing ; b) PACF.after differencing. 

 

The autocorrelation at the crucial lags, lags 1 and 2, has been eliminated, and there is no 

discernible pattern in higher-order lags. Considering the difference, the final model should fit the 

time series showed in Figure 45.   

 

Figure 45. Time series plot after differencing that ARIMA(2,1,0) model could fit.  

 

 

a) 

b) a) 
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7.1.2 Additional information of nonlinear autoregressive neural network (NAR) 

7.1.2.1 Network training function (NAR)  

The most common learning rule for the NAR network is the Levenberg-Marquardt 

backpropagation procedure (LMBP). This training function is often the fastest backpropagation-

type algorithm. The LMBP algorithm was designed to approximate the second-order derivative 

with no need to compute the Hessian matrix, therefore increasing the training speed. When the 

performance function has the form of a sum of squares (frequently in feedforward network 

training), then the Hessian matrix can be approximated as shown in Equation (25) and the gradient 

can be computed as described in Equation (26). 

 

H = JTJ 

(25) 

g = JTe 

(26) 

In Equations (25) and (26), J is the Jacobian matrix which contains the first derivatives of the 

network errors with respect to the weights and biases, and e is a vector of network errors in all 

training samples. To estimate the Jacobian matrix, it is used a standard backpropagation algorithm 

to approximate the Hessian matrix. This approach is simpler than computing the Hessian matrix 

[8]. The LMBP algorithm uses this approach in the Newton-like update described in Equation 

(27). 

xk+1 = xk − [ JTJ + μI ]−1JTe 

(27) 

It should be noted that this method uses the Jacobian matrix for calculations, assuming that the 

performance function is the mean of the sum of the squared errors. Hence, networks must use 

either the mean square error (MSE) or error sum of squares (SSE). Like it was show in Equation 

(22).  

 

 

In general, there are two different architecture options for NAR. Both these architectures include 

a time delay line. 

 Serial architecture: lacks any feedback property.  

 Parallel architecture:  includes a feedback loop that sends the data form the output directly 

back to the input. 
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Figure 46.  .Architecture of the open (a) and closed loop (b) of nonlinear autoregressive neural network 

given by MATLAB.  

 

7.1.2.2 Network architecture  

The main difference between these two options relates to the training procedure. The accuracy of 

the training is higher in the second case, because through the serial feed-forward architecture the 

network is fed only with real data. On the contrary the parallel NAR combines both feedback and 

real data. This often has a negative effect at the network training accuracy as long as the output 

data are already processed. Another advantage of the serial model over the parallel one is its 

simplicity. The serial architecture produces more responsive models that are easier to implement 

and train faster. This is considered as a very significant feature when the NAR model is meant to 

be used in real time applications [9]. In general, feedback loop is open for training and closed for 

predictions. 

 It is important to adjust the delay parameters of the ANN for, in order to obtain an accurate 

prediction model. Delay parameters concern the number of days the model is going to use to 

perform the prediction. In other words, the model is trained with the last p days as delays. To find 

the best delay, it must be set all parameters to a fixed value and modified the delay in a trial-and-

error procedure to find the value that could provide the network with the best performance. Once 

the delays have been set, the next step is to adjust the number of neurons needed to train the NAR 

network. In this case, the delay parameters have been set to a fixed value, obtained from the best 

MSE.  
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7.1.3  Model selection  

7.1.3.1 Akaike information criterion (AIC) 

The Akaike information criterion (AIC) is an estimator of the relative quality of statistical 

models for a given set of data. Given a collection of models for the data, AIC estimates the quality 

of each model, relative to each of the other models. Thus, AIC provides a means for model 

selection. When a statistical model is used to represent the process that generated the data, the 

model will almost never be exact; so some information will be lost by using the model to represent 

the process. AIC estimates the relative information lost by a given model: the less information a 

model loses, the higher the quality of that model.  

 

Suppose that we have a statistical model of some data. Let k be the number of 

estimated parameters in the model and �̂� the maximum value of the likelihood function for the 

model. Then the AIC value of the model is the following:  

𝐴𝐼𝐶 = 2𝑘 − 2ln (�̂�) 

(28) 

Given a set of candidate models for the data, the preferred model is the one with the minimum 

AIC value. 

 

7.1.3.2 Bayesian information criterion (BIC) 

The formula for the Bayesian information criterion (BIC) is similar to the formula for AIC, but 

with a different penalty for the number of parameters. As well as AIC, the model with the lowest 

BIC is preferred. When fitting models, it is possible to increase the likelihood by adding 

parameters, but doing so may result in overfitting. Both BIC and AIC attempt to resolve this 

problem by introducing a penalty term for the number of parameters in the model; the penalty 

term is larger in BIC than in AIC. 

𝐵𝐼𝐶 = ln(𝑛) 𝑘 − 2ln  (�̂�) 

(29) 

where, 

 �̂� is the maximized value of the likelihood function of the model 

 𝑛 is the number of data points, the number of observations 

 𝑘 is the number of parameters estimated by the model 

 

https://en.wikipedia.org/wiki/Estimator
https://en.wikipedia.org/wiki/Statistical_model
https://en.wikipedia.org/wiki/Statistical_model
https://en.wikipedia.org/wiki/Model_selection
https://en.wikipedia.org/wiki/Model_selection
https://en.wikipedia.org/wiki/Statistical_model
https://en.wikipedia.org/wiki/Statistical_parameter
https://en.wikipedia.org/wiki/Likelihood_function
https://en.wikipedia.org/wiki/Bayesian_information_criterion
https://en.wikipedia.org/wiki/Overfitting
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7.1.3.3 Likelihood (-2LogLH) 

Many statistical models are fit using a technique called maximum likelihood. Rather than 

maximize the likelihood function, it is more convenient to work with the negative of the natural 

logarithm of the likelihood function, −𝐿𝑜𝑔 𝐿(𝛽). The problem of maximizing 𝐿(𝛽) is 

reformulated as a minimization problem where you seek to minimize the negative log-likelihood:  

 

-𝐿𝑜𝑔𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 =  − 𝐿𝑜𝑔 𝐿(𝛽) 

(30) 

 Therefore, smaller values of the negative log-likelihood or twice the negative log-likelihood  

indicate better model fits. 

 

7.1.3.4 Rsquare 

RSquare is computed as follows: 

𝑅2 = 1 −
𝑆𝑆𝐸

𝑆𝑆𝑇
 

𝑆𝑆𝑇 = ∑(𝑦𝑖 − 𝑦�̅�)
2

𝑁

𝐼=1

 

 

𝑆𝑆𝐸 = ∑(𝑦𝑖 − 𝑦�̂�)
2

𝑁

𝐼=1

 

(31) 

where, 

 𝑦�̅� are the mean 𝑦𝑖 

 𝑦�̂� are the one-step-ahead forecast 

 

If the model does not fit the series well, the model error sum of squares, SSE, might be larger than 

the total sum of squares, SST. As a result, 𝑅2 can be negative. 

 

7.1.3.5 Weights 

In Table 7 appears a parameter called weight. It is a parameter that is used for model comparison. 

This fit statistic is the normalized AIC Weight. The AIC Weight for a model is calculated as 

follows: 

𝑊𝑒𝑖𝑔ℎ𝑡 =
exp[−0.5(𝐴𝐼𝐶 − 𝐵𝑒𝑠𝑡𝐴𝐼𝐶)]

∑ exp[−0.5(𝐴𝐼𝐶𝑘 − 𝐵𝑒𝑠𝑡𝐴𝐼𝐶)]  𝐾
𝑘=1

 

(32) 
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7.1.3.6 MAPE  

The mean absolute percentage error is computed as follows:  

𝑀𝐴𝑃𝐸 =
100

𝑛
∑ |

𝑦𝑖 − 𝑦�̂�

𝑦𝑖
|

𝑛

𝑖=1

 

(33) 

7.1.3.7 MAE  

The mean absolute error is computed as follows:  

𝑀𝐴𝐸 =
1

𝑛
∑|𝑦𝑖 − 𝑦�̂�|

𝑛

𝑖=1

 

(34) 

7.1.4 Simulation 

7.1.4.1 MMSE Forecast (ARIMA Time Series Models) 

The primary objective of ARIMA modeling is to forecast future values. There are two types of 

forecast:  

 In sample (prediction): The expected value of the in-sample, given the estimates of the 

parameters. 

 Out of sample (forecasting): The value of a future that is not observed by the sample 

 

Minimum squared error (MMSE) forecast is a method for obtain the second type of forecast, 

which considers the following. Given a time series data set 𝐼𝑇 = {𝑌1, 𝑌2, … , 𝑌𝑇}, the forecast for 

𝑇 + 𝑙 made at time 𝑇 can be written as: 

�̂�𝑇+𝑙 or �̂�𝑇+𝑙|𝑇 or �̂�𝑇(𝑙) 

(35) 

On the other hand, the forecast error at 𝑇 + 𝑙: 
𝑒𝑇+𝑙 = 𝑌𝑇+𝑙 − �̂�𝑇+𝑙 

(36) 

And the mean squared error (MSE):  

𝑀𝑆𝐸(𝑒𝑇+𝑙) = 𝐸[𝑒𝑇+𝑙
2 ] = 𝐸 [(𝑌𝑇+𝑙 − �̂�𝑇+𝑙)

2
  ] 

(37) 

To get a point estimate, �̂�𝑇+𝑙, it is needed a cost function to judge various alternatives. This cost 

function is call loss function. Since it is a forecast, it is worked with an expected loss function. A 

popular loss functions is the MSE, which is quadratic and symmetric. This MSE is wanted to be 

minimized:  

min 𝐸[𝑒𝑇+𝑙
2 ] = 𝐸[(𝑌𝑇+𝑙 − �̂�𝑇+𝑙)

2] = 𝐸 [𝑌𝑇+𝑙
2 − 2𝑌𝑇+𝑙�̂�𝑇+𝑙 + �̂�𝑇+𝑙

2
] 

(38) 

Differentitating �̂�𝑇+𝑙  to obtain the minimum value:  
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𝐸[−2𝑌𝑇+𝑙 + 2�̂�𝑇+𝑙] = 0 → 𝐸[2𝑌𝑇+𝑙] = 𝐸[2�̂�𝑇+𝑙] 

(39) 

What implies:  

𝐸[𝑌𝑇+𝑙] = �̂�𝑇+𝑙 

(40) 

That is to say, the optimal point forecast under MSE is the (conditional) mean: 

�̂�𝑇(𝑙) = 𝐸[𝑌𝑇+𝑙|𝐼𝑇] = 𝐸[𝑌𝑇+𝑙|𝑌1, 𝑌2, … , 𝑌𝑇] 

(41) 

The ARIMA model for 𝑌𝑇+𝑙 is given by:  

𝑌𝑇+𝑙 = 𝜇 + 𝛼1𝑌𝑇+𝑙−1 + ⋯ + 𝛼𝑝𝑌𝑇+𝑙−𝑝 + 휀𝑇+𝑙 − 𝛽1𝑒𝑇+𝑙−1 − ⋯ − 𝛽𝑞𝑒𝑇+𝑙−𝑞 

(42) 

This can be also represented with other notation as:  

𝑌𝑇+𝑙 = 𝜇 + 𝜓(𝐵)휀𝑇 = 𝜇 +
𝛽𝑞(𝐵)

𝛼𝑝(𝐵)
휀𝑇 

𝑌𝑇+𝑙 = 𝜇 + 휀𝑇+𝑙 + 𝜓1휀𝑇+𝑙−1 + 𝜓2휀𝑇+𝑙−2 + ⋯ + 𝜓𝑙휀𝑇 + ⋯ 

(43) 

Taking the expectation of 𝑌𝑇+𝑙:  

�̂�𝑇(𝑙) = 𝐸(𝑌𝑇+𝑙|𝑌𝑇 , 𝑌𝑇−1, … , 𝑌1) = 𝜓𝑙휀𝑇 + 𝜓𝑙+1휀𝑇−1 + ⋯  

(44) 

Where 

𝐸(휀𝑇+𝑗|𝑌𝑇 , … , 𝑌1) = {
0,          𝑗 > 0
휀𝑇+𝑗,   𝑗 ≤ 0  

(45) 

Then, the forecast error:  

𝑒𝑇(𝑙) = 𝑌𝑇+𝑙 − �̂�𝑇(𝑙) = 휀𝑇+𝑙 + 𝜓1휀𝑇+𝑙−1 + ⋯ + 𝜓𝑙−1휀𝑇+1 = ∑ 𝜓𝑖

𝑙−1

𝑖=0

휀𝑇+𝑙−𝑖 

(46) 

The variance of the forecast error:  
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𝑉𝑎𝑟(𝑒𝑇(𝑙)) = 𝑉𝑎𝑟 (∑ 𝜓𝑖

𝑙−1

𝑖=0

휀𝑇+𝑙−𝑖) = 𝜎2 ∑ 𝜓𝑖
2

𝑙−1

𝑖=0

  

(47) 

Therefore, one-step ahead (𝑙 = 1) the forecast is given by:  

𝑌𝑇+1 = 𝜇 + 휀𝑇+1 + 𝜓1휀𝑇 + 𝜓2휀𝑇−1 + ⋯ 

�̂�𝑇(1) = 𝜇 + 𝜓1휀𝑇 + 𝜓2휀𝑇−1 + ⋯ 

휀𝑇(1) = 𝑌𝑇+1 − �̂�𝑇(1) = 휀𝑇+1 

𝑉𝑎𝑟(𝑒𝑇(1)) = 𝜎2 

(48) 

When the time horizon is 2 (𝑙 = 2):  

𝑌𝑇+2 = 𝜇 + 휀𝑇+2 + 𝜓1휀𝑇+1 + 𝜓2휀𝑇 + ⋯ 

�̂�𝑇(2) = 𝜇 + 𝜓2휀𝑇 + ⋯ 

휀𝑇(2) = 𝑌𝑇+2 − �̂�𝑇(2) = 휀𝑇+2 + 𝜓1휀𝑇+1 

𝑉𝑎𝑟(𝑒𝑇(2)) = 𝜎2(1 + 𝜓1
2) 

(49) 

The confidence interval ( 100(1 − 𝛿)% ) 𝑙 −steps ahead is given by:  

�̂�𝑇(𝑙)  ± 𝑧𝛿/2 √𝑉𝑎𝑟(𝑒𝑇(𝑙))  

�̂�𝑇(𝑙)  ± 𝑧𝛿/2 √𝜎2 ∑ 𝜓𝑖
2

𝑙−1

𝑖=0

  

(50) 

 

7.1.4.2 Monte Carlo Forecast (ARIMA Time Series Models) 

Monte Carlo technique consists of repeating many times a random experiment, through the 

generation of pseudo-random numbers that later will be used to compute statistics measurements 

(based on results) that allow adopted conclusions to make decision.  

When simulating time series models, one draw (or realization) is an entire sample path of 

specified length 𝑁, 𝑦1, 𝑦2, . . . , 𝑦𝑁. When you generate a large number of draws, say 𝑀, you 

generate 𝑀 sample paths, each of length 𝑁. In other words, it is a way of forecasting future events 

and estimating the probability of future events. 
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The method simulates the behaviour of a system by taking repeated sets of random numbers from 

the underlying probability distribution of the process under investigation 

 

For example, consider simulating N responses from the model ARMA(2,1):  

�̂�𝑡 = 𝛼1𝑌𝑡−1 + 𝛼2𝑌𝑡−2 − 𝛽1𝑒𝑡−1 + 𝜖𝑡 

(51) 

The Monte Carlo simulation takes into account the ARMA(2,1) model and a random variable as 

a future predictor:  

𝑢𝑡 = �̂� + 𝑋𝑡𝜎 

(52) 

Generate N independent innovations from the Gaussian distribution: 

{∈̂1, ∈̂2, … , ∈̂𝑁} 

(53) 

Filter the innovations recursively to obtain the unconditional disturbances:  

�̂�1 = 𝛼1𝑌0 + 𝛼2𝑌−1 +∈̂1+ 𝜖0 

�̂�2 = 𝛼1𝑌1 + 𝛼2𝑌0 +∈̂2+∈̂1 

�̂�3 = 𝛼1𝑌2 + 𝛼2𝑌1 +∈̂3+∈̂2 

⋮ 

�̂�𝑁 = 𝛼1𝑌𝑁−1 + 𝛼2𝑌𝑁−2 +∈̂𝑁+∈̂𝑁−1 

(54) 

 

 

7.1.5 Resolution method: Sample Average Approximation 

The resolution of the MILP model (Mixed Integer Linear Programming) previously described in 

section 7.2.1.2, is carried out following a decomposition strategy based on the Sample Average 

Approximation algorithm. This is based on obtaining a deterministic version of the stochastic 

model when considering a single scenario in a first stage. After the optimization of this first 

deterministic problem, the values of the first stage variables (structural decisions) are obtained, 

which will be fixed and the model will be solved again but now considering all the scenarios (see 

Figure 47). This process is repeated iteratively changing the values assigned to the uncertain 

parameters by those corresponding to the scenario that defines the deterministic problem (step 1). 

Finally, we will eliminate repeated or sub-optimal solutions (dominated) by applying a filtering 

based on the elimination of solutions. 
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Figure 47. Sample Average Algorithm (SAA).  

 

 

 

 

 

 

 

 

 

 

Step 2: Fix the supply chain 

obtained for scenario s and solve 

the stochastic model that includes 

all the scenarios 

iter = number of scenarios? 

Step 3: Filter the risk curves 

iter = iter+1 

Configuration of 

the supply chain for 

the scenario s 

Risk curve for 

scenario s 

Step 0: Fix the number of 

iterations (iter) equal to 1 

Step 1: Solve the deterministic 

model for scenario s whose 

ordinality is equal to iter 

Yes 

No 
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7.1.6 Financial Risk metrics 

There are different methodologies used in financial risk management in the framework of two-

stage stochastic programming under uncertainty. These methodologies use a well-known 

definition of risk based on cumulative probability distributions. This section introduces several 

definitions of the metrics used in this work.  

 

7.1.6.1 Downside Risk (DRisk) 

To present the concept of downside risk, let us first define 𝛿(𝑥, 𝛺) as the positive deviation from 

a profit target 𝛺 for design x and scenario s, that is 

 

𝛿(𝑥, 𝛺) {
𝛺 − 𝑃𝑟𝑜𝑓𝑖𝑡(𝑥)     If Profit(x) < Ω

0                      otherwise 
        ∀ 𝑠 ∈ 𝑆 

(55) 

Because the scenarios are probabilistically independent, the downside risk can be expressed as 

the following linear function of 𝛿 

 

𝐷𝑅𝑖𝑠𝑘(𝑥, Ω) = ∑ 𝑝𝑠𝛿𝑠(𝑥,

𝑠∈𝑆

Ω) 

(56) 

Downside risk graphically represented is given by the blue area given by the cumulative 

probability distribution as shown in Figure 48. 

 

Figure 48.  Expected downside risk representation.  

 

 

7.1.6.2 Value at Risk (VaR) 

It is defined as the profit value corresponding to the 𝛼 −quantile 

𝑉𝑎𝑅(𝑥, 𝛼) = 𝑃𝑟𝑜𝑓𝑖𝑡𝑠𝛼
(𝑥)   where   𝑠𝛼 = {𝑠| ∑ 𝑝𝑘 = 𝛼𝑠

𝑘=1 } 

(57) 
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That is to say, it is computed by sorting the scenarios in ascending profit order and taking the 

profit value of the scenario for which the cumulative probability equals the specified confidence 

level. Figure 49 shows a graphical representation of VaR.  

 

 

Figure 49. Value at Risk representation.  

 

7.1.6.3 Opportunity value (OV) 

The opportunity value is defined in a similar way to VaR but at the other end of the risk curve 

with a quantile of (1−p). That is translated into the profit obtained in scenario s when the 

cumulative probability curve is at 0.95 (typical value).  

 

7.1.6.4 Worst Case (WC) 

It is also used the Worst Case metric to control the occurrence of unfavorable scenarios. Its 

formulation is very simple and requires few computational resources: 

𝑊𝐶(𝑥) ≤ 𝑃𝑟𝑜𝑓𝑖𝑡𝑤(𝑥)  ∀𝑤 ∈ 𝛺 

(58) 

In other words, worst case is represented by first point of each scenario s.  

 

7.1.6.5 Value at Risk difference (VaRD) and Opportunity value difference (OVD) 

It is also interesting to compute the difference between the VaR and OV defined previously with 

respect the net expected value. In the case of OVD, it is calculated as the difference between the 

net present value corresponding to a risk of (1−p) and the expected value. 

𝑂𝑉𝐷(𝑥, 𝛼) = 𝑂𝑉(𝑥, 𝛼) − 𝐸[𝑁𝑃𝑉(𝑥)] 

(59) 
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This modification is exactly the same for VaR: 

𝑉𝑎𝑅𝐷(𝑥, 𝛼) = 𝐸[𝑁𝑃𝑉(𝑥)] − 𝑉𝑎𝑅(𝑥, 𝛼) 

(60) 

 

Figure 50. OVD and VaRD representation.  
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7.2 Additional optimization model information 

 7.2.1 Optimization model reformulation 

7.2.1.1 Notation 

Sets 

i Process technologies 

j Production Plants 

k Warehouses 

l Markets 

p Chemical products 

s Scenarios 

t Time periods 

 

Subsets 

IN(p) Set of process technologies that consume 𝑝 

𝑀𝑃(𝑖) Set of main products 𝑝 of technology 𝑖 

OUT(p) Set of process technologies that produce 𝑝 

 

 

Parameters 

𝐶𝐸𝑙,𝑗,𝑡 
𝑃𝐿  Upper bound on the capacity expansion of manufacturing technology i at plant j in time period t  

𝐶𝐸𝑙,𝑗,𝑡 
𝑃𝐿     Lower bound on the capacity expansion of manufacturing technology i at plant j in time period t 

𝐶𝐸𝑘,𝑡 
𝑊𝐻     Upper bound on the capacity expansion of warehouse k in time t 

𝐶𝐸𝑘,𝑡 
𝑊𝐻     Lower bound on the capacity expansion of warehouse k in time t 

𝐷𝑙,𝑝,𝑡
𝑀𝐾     Upper bound on the demand of product p sold at market l of product p in time period t 

𝐷𝑙,𝑝,𝑡
𝑀𝐾     Lower bound on the demand of product p sold at market l of product p in time period t 

𝐼𝑀𝑃𝐸𝑁   Cumulative LCIA result for the GWP indicator associated with the consumption of 1 MJ of 

energy in Kg CO2-eq / MJ   

𝐼𝑀𝑃𝑃
𝑅𝑀  Cumulative LCIA result for the GWP indicator associated with the consumption of 1 kg of raw 

material p in Kg CO2-eq / Kg 
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𝐼𝑀𝑃𝑇𝑅    Accumulated LCIA result for the GWP indicator associated with the transport of 1 km of a ton 

of product p in Kg CO2-eq / Tn Km 

𝑖𝑟     Interest rate 

𝐹𝐶𝐼         Upper bound of total capital invested 

𝑛𝑒𝑥𝑝𝑖,𝑗
𝑃𝐿    Maximum number of expansions of the capacity of the technology i available in the plant j 

𝑛𝑒𝑥𝑝𝑘
𝑊𝐻   Maximum number of capacity expansions of the warehouse k 

𝑁𝑇 Number of time periods 

𝑃𝑈𝑗,𝑝,𝑡         upper bound on the purchases of product p at plant j in period t 

𝑃𝑈𝑗,𝑝,𝑡    lower bound on the purchases of product p at plant j in period t 

𝑄𝑗,𝑘,𝑝,𝑡
𝑃𝐿  Upper bound on product p transported from plant j to warehouse k in period t and scenario s 

𝑄𝑗,𝑘,𝑝,𝑡
𝑃𝐿     Lower bound on product p transported from plant j to warehouse k in period t and scenario s 

𝑄𝑘,𝑙,𝑝,𝑡
𝑊𝐻  Upper bound on product p transported from warehouse k to market l in period t and scenario s 

𝑄𝑘,𝑙,𝑝,𝑡
𝑊𝐻  Upper bound on product p transported from warehouse k to market l in period t and scenario s 

𝑠𝑣 Salvage value fraction of the network 

𝑡𝑜𝑟𝑘 turnover ratio of warehouse k 

𝜇𝑖,𝑝 Coefficient of mass balance associated with technology i and product p 

𝜑 Tax rate 

𝛾𝑙,𝑝,𝑡
𝐹𝑃  Price of final product p sold at market l in time period t 

𝛾𝑗,𝑝,𝑡
𝑅𝑀  Price of raw material p purchased at plant j in time period t 

𝑣𝑖,𝑗,𝑝,𝑡 Production cost per unit of main product p manufactured with technology i at plant j in period t 

𝜋𝑝,𝑘,𝑡 Inventory cost per unit of product stored p in warehouse k during period t 

𝜔𝑗,𝑘,𝑝,𝑡
𝑃𝐿  Unit cost of transportation of product p from plant j to warehouse k in period t 

𝜔𝑘,𝑙,𝑝,𝑡
𝑊𝐻  Unit cost of transportation of product p from warehouse k to market l in period t 

𝛼𝑖,𝑗,𝑡
𝑃𝐿  Variable investment term associated with technology i and plant j in period t in $ year/ton 

𝛽𝑖,𝑗,𝑡
𝑃𝐿  Fixed investment term associated with technology i and plant j in period t in k$ 

𝛼𝑘,𝑡
𝑊𝐻 Variable investment term associated with warehouse k in period t 



78 
 

𝛽𝑘,𝑡
𝑊𝐻 Fixed investment term associated with warehouse k in period t 

𝛽𝑗,𝑘,𝑡
𝑇𝑃𝐿 Fixed investment term associated with the establishment of a transport connection between plant 

j and warehouse k in period t 

𝛽𝑘,𝑙,𝑡
𝑇𝑊𝐻 Fixed investment term associated with the establishment of a transport connection between 

warehouse k and market l in period t 

𝜂𝑖,𝑝
𝐸𝑁 Energy consumption per unit of manufactured product p with technology i in TFOE / Tn 

𝜆𝑗,𝑘
𝑃𝐿  Distance between plant j and warehouse k in Km 

𝜆𝑘,𝑙
𝑊𝐻 Distance between the warehouse k and the market l in Km 

𝜏 The minimum desired percentage of the available installed capacity that should be used 

 

 

Variables 

𝐵𝑢𝑦𝑡,𝑠
𝐶𝑂2 Emission allowance purchased [$] 

𝐶𝑖,𝑗,𝑡
𝑃𝐿  Capacity of manufacturing technology i at plant j in time period t [tons] 

𝐶𝐸𝑖,𝑗,𝑡
𝑃𝐿  Expansion capacity of technology i in plant j in period t [tons] 

𝐶𝑘,𝑡
𝑊𝐻 Capacity of warehouse k in time period t [tons] 

𝐶𝐸𝑘,𝑡
𝑊𝐻 Capacity expansion of manufacturing technology i at plant j in time period t 

[tons] 

𝐶𝐹𝑡,𝑠 Cash flow in period t in scenario s [$] 

𝐶𝑜𝑠𝑡𝑡,𝑠
𝐶𝑂2 𝐶𝑂2 emission allowance cost [$] 

𝐷𝐸𝑃𝑡,𝑠 Depreciation term in period t [$] 

𝐹𝐶𝐼 Total fixed capital investment [$] 

𝐹𝑇𝐷𝐶𝑡,𝑠 Fraction of the total depreciable capital tha tmust be paid in period t [$] 

𝐸[𝑁𝑃𝑉] Expected value of the distribution of net present values 

EN

sGWP   Contribution to the total GWP due to the energy consumed by the utilities in 

scenario s [kg CO2-Eq] 

total

sGWP   Global Warming Potential for the whole horizon time in scenario s. 
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𝐺𝑊𝑃𝑇𝑅 Contribution to the total GWP due to the transportation of the materials 

between the nodes of the SC 

𝐺𝑊𝑃𝑡,𝑠 Total CO2 emissions that take place in the supply chain in period t and 

scenario s 

𝐼𝐿𝑘,𝑡 Average inventory level at warehouse k in time period t [tons] 

𝐼𝑁𝑉𝑘,𝑝,𝑡,𝑠 Inventory of product p kept at warehouse k in period t in scenario s [tons] 

𝑀𝑎𝑥𝑡
𝐶𝑂2 Limit of Free- CO2 emissions in period t 

𝑁𝑒𝑡,𝑠 Net earnings in period t and scenario s (profit after taxes) [$] 

𝑁𝑒𝑡𝑡,𝑠
𝐶𝑂2 Net income obtained by trading emissions [$] 

𝑁𝑃𝑉𝑠 Net present value in scenario s [$] 

𝑃𝑟𝑖𝑐𝑒𝑡,𝑠
𝐶𝑂2 CO2  emission rights price [$] 

𝑝𝑟𝑜𝑏𝑠 Probability of scenario s occurrence 

𝑃𝑈𝑗,𝑝,𝑡,𝑠 Purchases of product p made by plant j in period t in scenario s [tons] 

𝑄𝑗,𝑘,𝑝,𝑡,𝑠
𝑃𝐿  Flow of product p sent from plant j to warehouse k in period t in scenario s 

[tons] 

𝑄𝑘,𝑙,𝑝,𝑡,𝑠
𝑊𝐻  Flow of product p sent from warehouse k to market l in period t in scenario s 

[tons] 

𝑆𝐴𝑙,𝑝,𝑡,𝑠 Sales of product p at market l in time period t in scenario s [tons] 

𝑊𝑖,𝑗,𝑝,𝑡,𝑠 Input/output flow of product p associated with technology i at plant j in 

period t in scenario s [tons] 

𝑋𝑖,𝑗,𝑡
𝑃𝐿  binary variable(1ifthecapacityofmanufacturing technology i at plant j is 

expanded in time period t, 0 otherwise) [dimensionless] 

𝑋𝑘,𝑡
𝑊𝐻 Binary variable (1 if the capacity of warehouse k is expanded in time period t 

, 0 otherwise) [dimensionless] 

𝑌𝑗,𝑘,𝑡
𝑃𝐿  Binary variable (1 if a transportation link between plant j and warehouse k is 

established in time period t, 0 otherwise) [dimensionless] 

 

7.2.1.2 Complete optimization model 

The general structure of the mathematical model is based on that presented by Guillén-Gosálbez 

and Grossmann [11]. The model has been formulated as a linear mixed integer program (MILP) 

taking into account all the characteristics of the supply chain explained previously. 

The model can be divided into two blocks, the first block would include the structural variables 

(they are not affected by uncertainty), and they are related to strategic or structural decisions. The 
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second block consist of the operational variables (they can be affected by uncertainty). These ones 

are related to planning decisions. 

The model equations are classified into three main blocks: mass balance equations, capacity 

constraints and objective function equations. 

7.2.1.2.1  Mass balance constraints 

The mass balance must be satisfied for each node embedded in the network. Thus, for each plant 

j and chemical p the purchases (PUjpts) made during period t plus the amount produced must 

equal the amount transported from the plant to the ware houses (QPLjkpts
PL ) plus the amount 

consumed in every scenario s: 

 

𝑃𝑈𝑗,𝑝,𝑡,𝑠 + ∑ 𝑊𝑖,𝑗,𝑝,𝑡,𝑠 = ∑ 𝑄𝑗,𝑘,𝑝,𝑡,𝑠
𝑃𝐿

𝑘

+ ∑ 𝑊𝑖,𝑗,𝑝,𝑡,𝑠 ∀𝑗, 𝑝, 𝑡, 𝑠

𝑖∈𝑂𝐼𝑁(𝑝)𝑖∈𝑂𝑈𝑇(𝑝)

 

(61) 

In equation (61), 𝑃𝑈𝑗,𝑝,𝑡,𝑠 represents the quantity of product p purchased by plant j in time period 

t and scenario s, 𝑊𝑖,𝑗,𝑝,𝑡,𝑠 denotes the input / output flow of p associated with the technology i in 

the plant j in the time period t and scenario s; and finally, 𝑄𝑗,𝑘,𝑝,𝑡,𝑠
𝑃𝐿  is the amount of p transported 

between plant j and warehouse k in the period of time t and scenario s. As for the purchases of 

products, it can be said that they can be raw materials or final products; and for each product, the 

total purchases are restricted between a minimum value (𝑃𝑈𝑗,𝑝,𝑡) and a maximum value (𝑃𝑈𝑗,𝑝,𝑡), 

which are given by their availability in the market: 

𝑃𝑈𝑗,𝑝,𝑡
≤ 𝑃𝑈𝑗,𝑝,𝑡,𝑠 ≤ 𝑃𝑈𝑗,𝑝,𝑡      ∀𝑗, 𝑝, 𝑡, 𝑠   

(62) 

In addition, a material balance must be conformed for each technology i exploited in plant j, which 

is represented by equation (63). 

𝑊𝑖,𝑗,𝑝,𝑡,𝑠 = 𝜇𝑖,𝑝𝑊𝑖,𝑗,𝑝′,𝑡,𝑠 ∀𝑗, 𝑝, 𝑡, 𝑠 ∀𝑝′ ∈ 𝑀𝑃(𝑖)  

 
(63) 

Where the material balance coefficient 𝜇𝑖, for the technology i and the product p is indicated, 

while MP(𝑖) is the set of products that corresponds to each technology. 

Eq. (64) represents the mass balance for the warehouses. 

𝐼𝑁𝑉𝑘,𝑝,𝑡−1,𝑠 + ∑ 𝑄𝑗,𝑘,𝑝,𝑡,𝑠
𝑃𝐿 =

𝑗

∑ 𝑄𝑘,𝑙,𝑝,𝑡,𝑠
𝑊𝐻

𝑙

 ∀ k, p, t > 1, s 

(64) 
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Where the initial inventory 𝐼𝑁𝑉𝑘,𝑝,𝑡−1,𝑠, 𝑠 plus the amount of product transported from the plants 

j to the warehouse k should be equal to the material flow transported from the warehouses to the 

markets (𝑄𝑘,𝑙,𝑝,𝑡,𝑠
𝑊𝐻 ) plus the final inventory at time period t.  

Products sales at the markets (𝑆𝐴𝑙,𝑝,𝑡,𝑠) are determines the sales of products in each market as can 

be seen in equation (65). 

𝑆𝐴𝑙,𝑝,𝑡,𝑠 = ∑ 𝑄𝑘,𝑙,𝑝,𝑡,𝑠
𝑊𝐻

𝑘

∀𝑝, 𝑙, 𝑡, 𝑠 

(65) 

Finally, the constraint in equation (66) forces total sales of product p on the market l in the period 

of time t to be greater than the objective of minimum demand target level (𝐷𝑙,𝑝,𝑡,𝑠) and lower 

than the maximum demand (𝐷𝑙,𝑝,𝑡,𝑠). 

𝐷𝑙,𝑝,𝑡,𝑠 ≤ 𝑆𝐴𝑙,𝑝,𝑡,𝑠 ≤ 𝐷𝑙,𝑝,𝑡,𝑠  ∀𝑝, 𝑙, 𝑡, 𝑠 

(66) 

 

7.2.1.2.2  Capacity constraints 

The production rate of each technology i in plant j, for each time period t and scenario s, must be 

lower than the existing capacity, 𝐶𝑖,𝑗,𝑡
𝑃𝐿   , and higher than a minimum desired percentage, t, of this 

existing capacity. 

𝜏𝐶𝑖,𝑗,𝑡
𝑃𝐿 ≤ 𝑊𝑖,𝑗,𝑝,𝑡,𝑠 ≤ 𝐶𝑖,𝑗,𝑡

𝑃𝐿   ∀i, j, t, s   ∀p ∈ MPi  

(67) 

The capacity of plant j in time period t is calculated from the existing capacity at the end of the 

previous period plus the expansion in capacity carried out in t, 𝐶𝐸𝑖,𝑗,𝑡
𝑃𝐿 :  

𝐶𝑖,𝑗,𝑡
𝑃𝐿 = 𝐶𝑖,𝑗,𝑡−1

𝑃𝐿 + 𝐶𝐸𝑖,𝑗,𝑡
𝑃𝐿   ∀i, j, t 

(68) 

The capacity expansions are constrained within lower and upper bounds, which are denoted by: 

𝐶𝐸𝑖,𝑗,𝑡
𝑃𝐿 𝑋𝑖,𝑗,𝑡

𝑃𝐿 ≥ 𝐶𝐸𝑖,𝑗,𝑡
𝑃𝐿 ≤ 𝐶𝐸𝑖,𝑗,𝑡

𝑃𝐿 𝑋𝑖,𝑗,𝑡
𝑃𝐿  ∀i, j, t 

(69) 

In equation. (69), binary variable 𝑋𝑖,𝑗,𝑡
𝑃𝐿  indicates the occurrence of the capacity expansion. This 

variable takes the value of 1 if technology i at plant j is expanded in capacity in time period t, and 

0 otherwise. 
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Similarly, as with the plants, we define a continuous variable to represent the capacity of the 

warehouses, 𝐶𝑘,𝑡
𝑊𝐻. Equation (70) forces the total inventory kept at warehouse k at the end of time 

period t in each scenario s (𝐼𝑁𝑉𝑘,𝑝,𝑡,𝑠) to be less than or equal to the available capacity: 

∑ 𝐼𝑁𝑉𝑘,𝑝,𝑡,𝑠 ≤ 𝐶𝑘,𝑡
𝑊𝐻

𝑝

  ∀𝑘, 𝑡, 𝑠 

(70) 

In order to cope with fluctuations in demand, the storage capacity  (𝐶𝑘,𝑡
𝑊𝐻) must be twice the 

summation of the average storage inventory level kept at the ware house in each scenario s 

(𝐼𝐿𝑘,𝑡,𝑠): 

2𝐼𝐿𝑘,𝑡,𝑠 ≤ 𝐶𝑘,𝑡
𝑊𝐻 ∀𝑘, 𝑡 

(71) 

The value of 𝐼𝐿𝑘,𝑡,𝑠 is calculated from the output flow of materials and the turnover ratio of the 

warehouse (𝑡𝑜𝑟𝑘), which represents the number of times that the stock is completely replaced per 

time period:   

𝐼𝐿𝑘,𝑡,𝑠 =
∑ ∑ 𝑄𝑘,𝑙,𝑝,𝑡,𝑠

𝑊𝐻
𝑝𝑙

𝑡𝑜𝑟𝑘
   ∀𝑘, 𝑡, 𝑠 

(72) 

The capacity of the warehouse at any time period is determined from the previous one and the 

expansion in capacity executed in the same period: 

𝐶𝑘,𝑡
𝑊𝐻 = 𝐶𝑘,𝑡−1

𝑊𝐻 + 𝐶𝐸𝑘,𝑡
𝑊𝐻 ∀𝑘, 𝑡 

(73) 

The capacity expansion is also bounded within lower and upper bounds. 

𝐶𝐸𝑘,𝑡
𝑊𝐻𝑋𝑘,𝑡

𝑊𝐻 ≤ 𝐶𝐸𝑘,𝑡
𝑊𝐻 ≤ 𝐶𝐸𝑘,𝑡

𝑊𝐻𝑋𝑘,𝑡
𝑊𝐻   ∀𝑘, 𝑡  

(74) 

This constraint makes use of the binary variable 𝑋𝑘,𝑡
𝑊𝐻 , which equals 1 if an expansion in the 

capacity of warehouse k takes place in time period t and 0 otherwise. 

The existence of a transportation link between plant j and warehouse k in period t and scenario s 

is represented by the binary variable 𝑌𝑗,𝑘,𝑡
𝑃𝐿 . A zero value of this variable prevents the flow of 

materials form taking place, whereas a value of 1 allows it within some lower and upper bounds:  

𝑄𝑗,𝑘,𝑡,𝑠
𝑃𝐿 𝑌𝑗,𝑘,𝑡

𝑃𝐿 ≤ ∑ 𝑄𝑗,𝑘,𝑝,𝑡,𝑠
𝑃𝐿 ≤ 𝑄𝑗,𝑘,𝑝,𝑡,𝑠

𝑃𝐿

𝑝

𝑌𝑗,𝑘,𝑡
𝑃𝐿    ∀𝑗, 𝑘, 𝑡, 𝑠 

(75) 
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7.2.1.2.3  Objective functions 

The designed model has been built to optimize the supply chain described above, in which the 

objective is maximize the economic performance, measured through the economic indicator NPV 

(Net Present Value). That is to say, the objective of the mathematical model is maximize the 

average value of the resulting NPV distribution. Moreover, the GWP 100 (Global Warming 

Potential) indicator, based on the principles of Life Cycle Assessment (LCA), is implement to 

measure the environmental performance. The calculation of each of these metrics is described in 

detail below. 

1. Expected NPV 

At the end of the time horizon, different NPV values are obtained for each scenario, NPVs, once 

the demand uncertainty is resolved. The expected value of the resulting distribution is determined 

from these values as follows: 

𝐸[𝑁𝑃𝑉] = ∑ 𝑝𝑟𝑜𝑏𝑠𝑁𝑃𝑉𝑠

𝑠

 

(76) 

where 𝑝𝑟𝑜𝑏𝑠 is the probability of scenario s. 

The NPVs is calculated as the summation of the discounted cash flows (CFts) generated in each 

of the time periods t in which the time horizon is divided: 

𝑁𝑃𝑉𝑠 = ∑
𝐶𝐹𝑡,𝑠

(1 + 𝑖𝑟)𝑡−1
   ∀𝑠

𝑡

 

(77) 

In this equation, 𝑖𝑟 represents the interest rate. The cash flow in each time period is determined 

from the net earnings (i.e., profit after taxes), and the fraction of the total depreciable capital 

(𝐹𝑇𝐷𝐶𝑡) that corresponds to the period: 

CFt,s = 𝑁𝐸𝑡,𝑠 − 𝐹𝑇𝐷𝐶𝑡     𝑡 = 1, … , 𝑁𝑇 − 1, ∀s  

(78) 

 

In Eq. (79), we consider that in the cash flow of the last time period (𝑡 = 𝑁𝑇), part of the total 

fixed capital investment (FCI) will be recovered. This amount, which represents the salvage value 

of the network, may vary from one type of industry to another. 

𝐶𝐹𝑡,𝑠 = 𝑁𝐸𝑡,𝑠 − 𝐹𝑇𝐷𝐶𝑡 + 𝑠𝑣𝐹𝐶𝐼   𝑡 = 𝑁𝑇, ∀𝑠 

(79) 

where 𝑠𝑣 is the salvage value fraction of the network. 
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The net earnings are obtained by subtracting costs and taxes from total incomes. Taxes accrued 

in period t are determined from the tax rate (𝜑) and gross profit (i.e., difference between incomes, 

total cost and depreciation, 𝐷𝐸𝑃𝑡):  

𝑁𝐸𝑡,𝑠 = 𝑖𝑛𝑐𝑜𝑚𝑒𝑠 − 𝑐𝑜𝑠𝑡𝑠 − 𝜑(𝑖𝑛𝑐𝑜𝑚𝑒𝑠 − (𝑐𝑜𝑠𝑡𝑠 + 𝐷𝐸𝑃𝑡))  ∀𝑡, 𝑠 

(80) 

The total cost accounts for purchases of raw materials, operating cost, inventory costs, and 

transportation cost, as shown in equation (81):  

𝑁𝐸𝑡,𝑠 = (1 −  𝜑) [∑ ∑ 𝛾𝑙,𝑝,𝑡
𝐹𝑃 𝑆𝐴𝑙,𝑝,𝑡,𝑠

𝑝

− ∑ ∑ 𝛾𝑗,𝑝,𝑡
𝑅𝑀 𝑃𝑈𝑗,𝑝,𝑡,𝑠 ∑ ∑ ∑ 𝑣𝑖,𝑗,𝑝,𝑡𝑊𝑖,𝑗,𝑝,𝑡,𝑠

𝑝∈𝑀𝑃(𝑖)𝑗𝑖𝑝𝑗𝑙

− ∑ 𝜋𝑘,𝑡𝐼𝐿𝑘,𝑡,𝑠 +

𝑘

  ∑ ∑ ∑ ψ
𝑗,𝑘,𝑝,𝑡

𝜆𝑗,𝑘

𝑃𝐿
𝑄

𝑗,𝑘,𝑝,𝑡,𝑠

𝑃𝐿
−

𝑝𝑘𝑗

  ∑ ∑ ∑ ψ
𝑘,𝑙,𝑝,𝑡

𝜆𝑘,𝑙

𝑊𝐻
𝑄

𝑘,𝑙,𝑝,𝑡,𝑠

𝑊𝐻

𝑝𝑙𝑘

] + 𝜑𝐷𝐸𝑃𝑡 

∀𝑡, 𝑠 

(81) 

 

In this equation, 𝛾𝑙,𝑝,𝑡
𝐹𝑃  and 𝛾𝑗,𝑝,𝑡

𝑅𝑀  denote the prices of final products and raw materials, respectively. 

Furthermore, 𝑣𝑖,𝑗,𝑝,𝑡 denotes the production cost per unit of main product p manufactured with 

technology i at plant j in period t, 𝜋𝑘,𝑡 represents the inventory cost per unit of product stored in 

warehouse k during period t, and ψ𝑗,𝑘,𝑝,𝑡 and ψ𝑘,𝑙,𝑝,𝑡 are the unitary transports cost. The 

depreciation term is calculated with the straight-line method.  

𝐷𝐸𝑃𝑡 =
(1 − 𝑠𝑣)𝐹𝐶𝐼

𝑁𝑇
   ∀𝑡 

(82) 

where the total fixed cost investment (FCI) is determined from the capacity expansions made in 

plants and warehouses as well as the establishment of transportation links during the entire time 

horizon as follows: 

𝐹𝐶𝐼 = ∑ ∑ ∑ αi,j,t

𝑃𝐿
𝐶𝐸𝑖,𝑗,𝑡

𝑃𝐿
+ 𝛽

𝑖,𝑗,𝑡

𝑃𝐿
𝑋𝑖,𝑗,𝑡

𝑃𝐿
+ ∑ ∑ αk,t

𝑊𝐻
𝐶𝐸𝑘,𝑡

𝑊𝐻
𝛽

𝑘,𝑡

𝑊𝐻
𝑋𝑘,𝑡

𝑊𝐻
+

𝑡𝑘𝑘𝑗𝑖

∑ ∑ ∑ 𝛽
𝑖,𝑘,𝑡

𝑇𝑅
𝑌𝑗,𝑘,𝑡

𝑃𝐿

𝑡𝑘𝑗

 

 

𝐹𝐶𝐼 = ∑ ∑ ∑ αi,j,t

𝑃𝐿
𝐶𝐸𝑖,𝑗,𝑡

𝑃𝐿
+ 𝛽

𝑖,𝑗,𝑡

𝑃𝐿
𝑋𝑖,𝑗,𝑡

𝑃𝐿
+ ∑ ∑ αk,t

𝑊𝐻
𝐶𝐸𝑘,𝑡

𝑊𝐻
+ 𝛽

𝑘,𝑡

𝑊𝐻
𝑋𝑘,𝑡

𝑊𝐻
+

𝑡𝑘𝑘𝑗𝑖

∑ ∑ ∑ 𝛽
𝑖,𝑘,𝑡

𝑇𝑅
𝑌𝑗,𝑘,𝑡

𝑃𝐿

𝑡𝑘𝑗

 

(83) 
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Here, parameters αi,j,t
𝑃𝐿  , 𝛽𝑖,𝑗,𝑡

𝑃𝐿  and αk,t
𝑊𝐻, 𝛽𝑘,𝑡

𝑊𝐻 are the variable and fixed investment terms 

corresponding to plants and warehouses, respectively. 𝛽𝑖,𝑘,𝑡
𝑇𝑅  is the fixed investment term 

associated with the establishment of transportation links between plants and warehouses.  

The total capital investment is constrained to be lower than an upper bound, as stated in equation 

(84):  

𝐹𝐶𝐼 ≤ 𝐹𝐶𝐼 

(84) 

Finally, the model assumes that the payments of the fixed capital investment are divided into 

equal amounts distributed over the entire planning horizon. Hence, variable 𝐹𝑇𝐷𝐶𝑡 is calculated 

as follows:  

𝐹𝑇𝐷𝐶𝑡 =
𝐹𝐶𝐼

𝑁𝑇
   ∀𝑡 

(85) 

 

2. Environmental impacts assessment 

To evaluate the environmental performance of the supply chain, an approach is used that 

combines the Life Cycle Assessment (LCA) with the principles of mathematical programming 

[12]. 

 

The Life Cycle analysis is a quantitative tool to measure the potential environmental impact 

derived from the use of a certain industrial technology [13]. This tool is characterized by mass 

and energy balances applied to the entire system under study, instead of applying it only to the 

process of interest [14]. 

In this work, it is measured the environmental impact of the supply chain with the GWP100 

indicator, as described in the IPCC 2013 (The Intergovernmental Panel on Climate Change). The 

GWP 100a (Global Warming Potential) indicator is an index that is used to estimate the relative 

contribution to global warming by the emission of 1 kg of a particular greenhouse gas compared 

to the emission of 1 kg of carbon dioxide in a 100 year period. The unit of measurement for this 

indicator is the kg CO2-eq or kilograms of carbon dioxide equivalents. 

To determine the total amount of greenhouse gases emitted into the atmosphere during the entire 

life of the supply chain, a life cycle analysis is carried out, which takes into account three main 

emission sources that contribute to warming global, and therefore, to the GWP indicator: the 

consumption of raw materials (𝐺𝑊𝑃𝑠
𝑅𝑀), the energy requirements (𝐺𝑊𝑃𝑠

𝑇𝑅). Hence, the total 

GWP for each scenario(𝐺𝑊𝑃𝑠
𝑡𝑜𝑡𝑎𝑙) is determined as follows:  

𝐺𝑊𝑃𝑠
𝑡𝑜𝑡𝑎𝑙 = 𝐺𝑊𝑃𝑠

𝑅𝑀 + 𝐺𝑊𝑃𝑠
𝐸𝑁 + 𝐺𝑊𝑃𝑠

𝑇𝑅     ∀𝑠 

(86) 
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Mathematically, the impact is determined from the purchases of raw materials 

(𝑃𝑈𝑗,𝑝,𝑡,𝑠), production rates at the manufacturing plants (𝑊𝑖,𝑗,𝑝,𝑡,𝑠) and transport flows (𝑄𝑗,𝑘,𝑝,𝑡,𝑠
𝑃𝐿  

and 𝑄𝑘,𝑙,𝑝,𝑡,𝑠
𝑊𝐻 ), as stated in equation (87).  

𝐺𝑊𝑃𝑠
𝑡𝑜𝑡𝑎𝑙 = ∑ ∑ ∑ 𝐼𝑀𝑃𝑝

𝑅𝑀
𝑃𝑈𝑗,𝑝,𝑡,𝑠

𝑡𝑝𝑖

 

+ ∑ ∑ ∑ ∑ 𝐼𝑀𝑃𝐸𝑁η
𝑖,𝑗,𝑝
𝐸𝑁 𝑊𝑖,𝑗,𝑝,𝑡,𝑠 +

𝑡𝑝∈𝑀𝑃(𝑖)𝑗𝑖

∑ ∑ ∑ ∑ 𝐼𝑀𝑃𝐸𝑁η
𝑖,𝑗,𝑝
𝐸𝑁 𝑊𝑖,𝑗,𝑝,𝑡,𝑠

𝑡𝑝𝑘𝑗

+  ∑ ∑ ∑ ∑ 𝐼𝑀𝑃𝑇𝑅𝜆𝑗,𝑘
𝑃𝐿𝑄

𝑗,𝑘,𝑝,𝑡,𝑠
𝑃𝐿 + ∑ ∑ ∑ ∑ 𝐼𝑀𝑃𝑇𝑅𝜆𝑘,𝑙

𝑊𝐻𝑄
𝑘,𝑙,𝑝,𝑡
𝑊𝐻

𝑡

    ∀𝑠

𝑝𝑙𝑘𝑡𝑝𝑘𝑗

 

(87) 

In this equation, 𝐼𝑀𝑃𝑝
𝑅𝑀 , 𝐼𝑀𝑃𝐸𝑁, 𝐼𝑀𝑃𝑇𝑅 denote the cumulative life cycle impact assessment 

(LCIA) results associated with the consumption of 1 kg of raw material p, 1 MJ of energy, and 

transportation of 1 ton 1 km of distance, respectively. These LCIA values are available in 

environmental database such as Ecoinvent [15]. In equation (87), λ𝑗,𝑘
𝑃𝐿 and λ𝑘,𝑙

𝑊𝐻 denote the distance 

between plants and warehouses and warehouses and markets, respectively. Finally, 

η𝑖,𝑗,𝑝
𝐸𝑁  represents the consumption of energy per unit of product p manufactured with technology i 

at plant j. This includes utilities such as electricity, steam, fuel, and cooling water.  

 

Finally, the trade of CO2 emissions in the model is introduced through equation (88).  

𝑆𝑎𝑙𝑒𝑠𝑡,𝑠
𝐶𝑂2 + 𝐺𝑊𝑃𝑡,𝑠 = 𝑀𝑎𝑥𝑡

𝐶𝑂2 + 𝐵𝑢𝑦𝑡,𝑠
𝐶𝑂2    ∀𝑡, 𝑠 

(88) 

Thus, according to equation (88), the total CO2 emissions that take place in the supply chain in 

period t and scenario s must be equal to the limit of free CO2 emissions (𝑀𝑎𝑥𝑡
𝐶𝑂2) plus the extra 

emission rights purchased (𝐵𝑢𝑦𝑡,𝑠
𝐶𝑂2  ) minus the emission rights sold (𝑆𝑎𝑙𝑒𝑠𝑡,𝑠

𝐶𝑂2) in the  period of 

time t and scenario s. 

 

Therefore, the net income (𝑁𝑒𝑡𝑡,𝑠
𝐶𝑂2) obtained through emissions trading is calculated with 

equation (89). 

𝑁𝑒𝑡𝑡,𝑠
𝐶𝑂2 = 𝑃𝑟𝑖𝑐𝑒𝑡,𝑠

𝐶𝑂2𝑆𝑎𝑙𝑒𝑠𝑡,𝑠
𝐶𝑂2 − 𝐶𝑜𝑠𝑡𝑡,𝑠

𝐶𝑂2𝐵𝑢𝑦𝑡,𝑠
𝐶𝑂2     ∀𝑡, 𝑠 

(89) 

Where 𝐶𝑜𝑠𝑡𝑡,𝑠
𝐶𝑂2 and 𝑃𝑟𝑖𝑐𝑒𝑡,𝑠

𝐶𝑂2 represents the cost and price of CO2 emission rights, respectively. 

7.2.1.3 Case study 

The case study that is used to illustrate the application of the mathematical model proposed in 

Section 7.2.1.2 has been taken from the work presented by Guillén-Gosálbez and Grossmann [11] 

and it is included in the European Union Emission Trading Scheme or EU ETS.  
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The superstructure of this case study is shown in Figure 51. The SC under study comprises 1 plant 

and 1 warehouse that are both located in Tarragona (Spain), and 4 final markets that are located 

in the following European cities: Leuna (Germany), Neratovice (Czech Republic), Sines 

(Portugal) and Tarragona. There are 6 different technologies available to manufacture 6 main 

products: acetaldehyde, acetone, acrylonitrile, cumene, isopropanol and phenol from 9 potential 

raw materials: oxygen, ethylene, hydrogen cyanide, hydrochloric acid, ammonium, sulfuric acid, 

propylene and benzene. (Figure 52).  

 

 

Figure 51. Superstructure of the case study.  
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Figure 52. Avaliable technologies at each plant. 

 

The production capacity of the existing plant (Tarragona) is 100000 Tn/year for each of the 

available technologies, and the capacity of the existing warehouse, also in Tarragona, is 100000 

Tn. The expansion capacity of the plants should be between 50000 and 400000 Tn/year, and the 

capacity of expansion of the warehouses between 50000 and 400000 Tn. The products transported 

between the different nodes of the supply chain are bounded by 5000 tons/year and 500000 

tons/year. In addition, it is considered that the initial inventory of the warehouses is zero. 

The interest rate, the redemption value and the tax rate are equal to 10%, 20% and 30% 

respectively. Besides, the unit transport cost, a low value of 0.4 cent/Tn Km is assumed. The fixed 

costs associated with the establishment of transport connections are considered zero. 

The emission inventories used to illustrate the case study were obtained from the Ecoinvent 

database. Direct emissions associated with process technologies have not been taken into account. 

As it is indicated in Equation (87), transport costs between each node of the supply chain can be 

calculated directly from the transport unit cost (𝜔𝑗,𝑘,𝑝,𝑡
𝑃𝐿  and 𝜔𝑘,𝑙,𝑝,𝑡

𝑊𝐻 ) and the distances between 

the different nodes showed in Table 16.  
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Table 16. Distances between the different locations of the supply chain. 

 𝜆𝑗,𝑘
𝑃𝐿/𝜆𝑘,𝑙

𝑊𝐻 (𝐾𝑚)   

Product/Market Leuna Neratovice Sines Tarragona 

Neratovice 295.45 0 2970.72 1855.47 

Tarragona 1781.36 1855.47 1212.82 0 

 

 

The raw materials costs of each process plant are shown in Table 17. 

 

Table 17 Raw materials costs of each process plant. 

 𝜆𝑗,𝑝,𝑡
𝑅𝑀  ($/𝑇𝑛)  

Product/Plant Neratovice Tarragona 

Ammonium 140.54 148.81 

Benzene 200.51 212.30 

Ethylene 233.68 247.42 

Hydrochloric acid 116.18 123.02 

Hydrogen cyanide 468.47 496.03 

Oxygen 29.98 31.75 

Propylene 159.28 168.65 

Sodium hydroxide 140.54 148.81 

Sulfuric acid 42.16 44.64 

 

The variable and fixed investment costs associated with the 6 process technologies are shown in 

Table 18. 

 

Table 18. Variable and fixed investment costs associated with process technologies 

 𝛼𝑖,𝑗,𝑡
𝑃𝐿  ($ 𝑦𝑒𝑎𝑟/𝑇𝑛)   𝛽𝑖,𝑗,𝑡

𝑃𝐿  (𝑘$)  

Technology/Plant Neratovice Tarragona Neratovice Tarragona 

T1 91.28 109.53 8306.45 9967.74 

T2 93.43 112.12 8502.82 10203.38 

T3 235.81 282.97 21459.49 25751.38 

T4 104.73 125.68 9530.80 11436.97 

T5 46.34 55.60 4216.72 5060.06 

T6 165.59 198.70 15069.01 18082.81 

 

 



90 
 

The demand for final products in each markets is shown in Table 19. 

 

Table 19. Final products demand in each market. 

  𝐷𝑙,𝑝,𝑡
𝑀𝐾  (𝑇𝑛/𝑦𝑒𝑎𝑟) 

Product/Market Leuna Neratovice Sines Tarragona 

Acetaldehyde 13500 37500 12000 7500 

Acetone 10800 30000 9600 6000 

Acrylonitrile 18000 50000 16000 10000 

Cumene 13500 37500 12000 7500 

Isopropanol 9000 25000 8000 5000 

Phenol 12600 35000 11200 7000 

 

 

Table 20 shows the price of the final products in each of the markets in which they are sold in 

$/Tn. 

 

Table 20. Final products price. 

 𝛾𝑙,𝑝,𝑡
𝐹𝑃  ($/𝑇𝑛)  

Product/Market Leuna Neratovice Sines Tarragona 

Acetaldehyde 509.26 487.43 491.07 500.17 

Acetone 432.87 414.32 417.41 425.14 

Acrylonitrile 36.40 34.84 35.10 35.75 

Cumene 401.23 384.04 386.90 394.07 

Isopropanol 401.23 384.04 386.90 394.07 

Phenol 709.88 679.45 684.52 697.20 

 

The energy consumption of each technology is expressed in TFOE per ton produced, and its 

values are shown in Table 21. 

Table 21. Energy consumption associated with each technology, 

Technology  𝜂𝑖,𝑝
𝐸𝑁 (𝐹𝑂𝐸𝑇/𝑇𝑛) 

T1 0.22 

T2 0.60 

T3 0.15 

T4 0.38 

T5 0.06 

T6 0.38 
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Finally, Table 22 shows the LCIA results according to the IPCC 2013 associated with the raw 

materials processed, the energy consumed by the facilities and the transport in Kg CO2-eq / Kg; 

Kg CO2-eq / MJ and Kg CO2-eq / Tn Km. 

 

Table 22. LCIA results for the GWP according to the 2013 IPCC. 

Environmental 

Aspect 

Raw 

Material 

LCIA 

Value 
Units 

Name of the data set 

according to the database 

of Ecoinvent 

Raw Material 

consumption 

(𝐼𝑀𝑃𝑝
𝑅𝑀) 

Ammonium 2.9424 

Kg CO2-

eq/Kg 

Ammonia, partial oxidation, 

liquid, at plant 

Oxygen 0.7040 Oxygen, liquid, at plant 

Sulfuric 

acid 
0.1066 

Sulphuric acid, liquid, at 

plant 

Hydrogen 

cyanide 
7.7834 Hydrogen cyanide, at plant 

Ethylene 1.4547 Ethylene, average, at plant 

Propylene 1.4967 Propylene, at plant 

Hydrocloric 

acid 
1.1562 

Hydrochloric acid, from the 

reaction of hydrogen with 

chlorine, at plant 

Benzene 18563 Benzene, at plant 

Sodium 

hydroxide 
0.9582 

Sodium hydroxide, 50% in 

H2O, production mix, at 

plant 

Energy 

consumption 

(𝐼𝑀𝑃𝐸𝑁) 

  0.0882 
Kg CO2-

eq/MJ 

Heavy fuel oil, burned in 

refinery furnace 

Transport 

(𝐼𝑀𝑃𝑇𝑅) 
  0.092 

Kg CO2-

eq/Tn Km 

Transport, lorry >32t, 

EURO3 
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7.2.2 Code implementation 

7.2.2.4  Pseudo-code risk curve filter 

Once the process has been solved, the solution includes a set of curves equal to the number of 

scenarios. Each curve also consists of a number of points equal to the number of scenarios with a 

probability of occurrence. This leads to a great quantity of solutions. For this reason, it is 

appropriate exclude the sub-optimal solutions, that is to say, those curves that are dominated by 

other.   

The filtering process discards those curves that are dominated by at least one other curve. A 

solution A is dominated by another solution B when its risk curve is entirely above B. This implies 

that, for any level of probability, solution A will always lead to lower benefits than solution B. In 

other words, Solution B will be better considering the entire range of probability levels. 

The implemented pseudo-code to identify the dominated curves is shown below. Further 

information can be found in [21].  

 

Input: NPV risk curves which consist on a matrix of s’ points and scenario s (𝑁𝑃𝑉𝑠′,𝑠)  

Output: Dominated scenarios s 

1: Initializate scenarios s to 1 

2: while scenario s is less than or equal to the total number of scenarios s  

3:      𝐸𝑥𝑖𝑡𝑠𝑠 ← 0 and 𝑠𝑠 ← 𝑠 + 1 

4:           while ss is less than or equal to the total number of scenarios s        

5:                   if all s’ points of 𝑁𝑃𝑉𝑠,𝑠′ are greater than or equal to 𝑁𝑃𝑉𝑠𝑠,𝑠′ 

6:                         add the scenario s as dominated 

7:                  elseif all s’ points of 𝑁𝑃𝑉𝑠,𝑠′ are lower than or equal to 𝑁𝑃𝑉𝑠𝑠,𝑠′ 

8:                         add the scenario ss as dominated 

9:                 end if 

10:               Compute 𝑠𝑠 ← 𝑠𝑠 + 1 

11:          end while 

12: Compute 𝑠 ← 𝑠 + 1 

13: end while 
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7.3 Additional Results 
Table 23 shows the forecasted CO2 allowance prices that are obtained with ARIMA(4,1,2) model during 

the first 3 years.  

 

Table 23. Forecast 𝐶𝑂2 allowance prices given by ARIMA(4,1,2) during 3 first years. .  

Date Y Date Y Date Y Date Y Date Y 

'30-Sep-2018' 20.727 '24-Nov-2018' 21.246 '14-Jan-2019' 21.062 '06-Mar-2019' 21.176 '28-Apr-2019' 21.355 

'02-Oct-2018' 21.251 '25-Nov-2018' 21.046 '15-Jan-2019' 20.996 '08-Mar-2019' 21.214 '29-Apr-2019' 21.376 

'03-Oct-2018' 21.506 '27-Nov-2018' 20.822 '17-Jan-2019' 21.021 '10-Mar-2019' 21.266 '01-May-2019' 21.381 

'05-Oct-2018' 21.297 '28-Nov-2018' 20.740 '19-Jan-2019' 21.117 '11-Mar-2019' 21.297 '03-May-2019' 21.369 

'09-Oct-2018' 20.396 '30-Nov-2018' 20.854 '20-Jan-2019' 21.214 '12-Mar-2019' 21.288 '04-May-2019' 21.353 

'10-Oct-2018' 20.367 '02-Dec-2018' 21.075 '21-Jan-2019' 21.246 '14-Mar-2019' 21.251 '06-May-2019' 21.347 

'12-Oct-2018' 20.720 '04-Dec-2018' 21.241 '23-Jan-2019' 21.196 '15-Mar-2019' 21.216 '08-May-2019' 21.358 

'14-Oct-2018' 21.184 '05-Dec-2018' 21.240 '25-Jan-2019' 21.106 '17-Mar-2019' 21.212 '10-May-2019' 21.380 

'16-Oct-2018' 21.424 '06-Dec-2018' 21.083 '26-Jan-2019' 21.047 '19-Mar-2019' 21.242 '12-May-2019' 21.399 

'18-Oct-2018' 21.282 '08-Dec-2018' 20.894 '28-Jan-2019' 21.061 '21-Mar-2019' 21.286 '14-May-2019' 21.405 

'20-Oct-2018' 20.882 '09-Dec-2018' 20.814 '29-Jan-2019' 21.138 '23-Mar-2019' 21.314 '16-May-2019' 21.397 

'22-Oct-2018' 20.528 '11-Dec-2018' 20.896 '30-Jan-2019' 21.222 '25-Mar-2019' 21.310 '17-May-2019' 21.384 

'23-Oct-2018' 20.474 '13-Dec-2018' 21.076 '01-Feb-2019' 21.255 '27-Mar-2019' 21.282 '19-May-2019' 21.379 

'25-Oct-2018' 20.745 '15-Dec-2018' 21.223 '03-Feb-2019' 21.219 '28-Mar-2019' 21.253 '21-May-2019' 21.387 

'27-Oct-2018' 21.134 '17-Dec-2018' 21.236 '05-Feb-2019' 21.146 '30-Mar-2019' 21.247 '23-May-2019' 21.406 

'29-Oct-2018' 21.358 '19-Dec-2018' 21.116 '06-Feb-2019' 21.094 '01-Apr-2019' 21.271 '25-May-2019' 21.423 

'31-Oct-2018' 21.268 '21-Dec-2018' 20.957 '08-Feb-2019' 21.101 '03-Apr-2019' 21.308 '27-May-2019' 21.430 

'02-Nov-2018' 20.948 '22-Dec-2018' 20.880 '10-Feb-2019' 21.162 '05-Apr-2019' 21.334 '29-May-2019' 21.424 

'04-Nov-2018' 20.642 '24-Dec-2018' 20.937 '12-Feb-2019' 21.233 '07-Apr-2019' 21.334 '30-May-2019' 21.414 

'05-Nov-2018' 20.571 '26-Dec-2018' 21.085 '14-Feb-2019' 21.267 '09-Apr-2019' 21.312 '01-Jun-2019' 21.410 

'07-Nov-2018' 20.778 '28-Dec-2018' 21.214 '16-Feb-2019' 21.242 '10-Apr-2019' 21.287 '03-Jun-2019' 21.417 

'09-Nov-2018' 21.101 '30-Dec-2018' 21.236 '18-Feb-2019' 21.184 '12-Apr-2019' 21.281 '05-Jun-2019' 21.432 

'11-Nov-2018' 21.307 '01-Jan-2019' 21.145 '19-Feb-2019' 21.137 '14-Apr-2019' 21.300 '07-Jun-2019' 21.448 

'13-Nov-2018' 21.256 '03-Jan-2019' 21.013 '21-Feb-2019' 21.139 '15-Apr-2019' 21.331 '09-Jun-2019' 21.455 

'14-Nov-2018' 21.001 '04-Jan-2019' 20.941 '23-Feb-2019' 21.187 '17-Apr-2019' 21.355 '11-Jun-2019' 21.452 

'16-Nov-2018' 20.739 '06-Jan-2019' 20.979 '25-Feb-2019' 21.249 '19-Apr-2019' 21.357 '12-Jun-2019' 21.444 

'17-Nov-2018' 20.660 '08-Jan-2019' 21.098 '27-Feb-2019' 21.281 '21-Apr-2019' 21.341 '14-Jun-2019' 21.440 

'19-Nov-2018' 20.815 '09-Jan-2019' 21.211 '01-Mar-2019' 21.265 '22-Apr-2019' 21.321 '16-Jun-2019' 21.446 

'21-Nov-2018' 21.082 '10-Jan-2019' 21.240 '03-Mar-2019' 21.218 '24-Apr-2019' 21.315 '18-Jun-2019' 21.459 

'23-Nov-2018' 21.268 '12-Jan-2019' 21.171 '04-Mar-2019' 21.178 '26-Apr-2019' 21.329 '19-Jun-2019' 21.473 
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Date Y Date Y Date Y Date Y Date Y 

'21-Jun-2019' 21.480 '13-Aug-2019' 21.587 '05-Oct-2019' 21.703 '30-Nov-2019' 21.823 '25-Jan-2020' 21.942 

'23-Jun-2019' 21.479 '15-Aug-2019' 21.587 '07-Oct-2019' 21.707 '02-Dec-2019' 21.828 '26-Jan-2020' 21.946 

'24-Jun-2019' 21.473 '17-Aug-2019' 21.590 '09-Oct-2019' 21.713 '04-Dec-2019' 21.832 '28-Jan-2020' 21.950 

'26-Jun-2019' 21.470 '19-Aug-2019' 21.596 '11-Oct-2019' 21.719 '05-Dec-2019' 21.836 '30-Jan-2020' 21.953 

'28-Jun-2019' 21.475 '21-Aug-2019' 21.604 '13-Oct-2019' 21.723 '07-Dec-2019' 21.839 '01-Feb-2020' 21.957 

'30-Jun-2019' 21.486 '23-Aug-2019' 21.611 '14-Oct-2019' 21.726 '09-Dec-2019' 21.842 '03-Feb-2020' 21.961 

'01-Jul-2019' 21.498 '25-Aug-2019' 21.614 '16-Oct-2019' 21.728 '11-Dec-2019' 21.846 '05-Feb-2020' 21.965 

'03-Jul-2019' 21.506 '26-Aug-2019' 21.615 '18-Oct-2019' 21.731 '13-Dec-2019' 21.851 '07-Feb-2020' 21.969 

'05-Jul-2019' 21.506 '28-Aug-2019' 21.615 '20-Oct-2019' 21.735 '15-Dec-2019' 21.855 '08-Feb-2020' 21.973 

'06-Jul-2019' 21.502 '30-Aug-2019' 21.618 '22-Oct-2019' 21.740 '17-Dec-2019' 21.860 '10-Feb-2020' 21.977 

'08-Jul-2019' 21.500 '01-Sep-2019' 21.624 '24-Oct-2019' 21.746 '18-Dec-2019' 21.863 '12-Feb-2020' 21.981 

'10-Jul-2019' 21.504 '03-Sep-2019' 21.631 '26-Oct-2019' 21.750 '20-Dec-2019' 21.867 '14-Feb-2020' 21.985 

'12-Jul-2019' 21.513 '04-Sep-2019' 21.638 '27-Oct-2019' 21.753 '22-Dec-2019' 21.870 '16-Feb-2020' 21.989 

'14-Jul-2019' 21.524 '06-Sep-2019' 21.641 '29-Oct-2019' 21.756 '24-Dec-2019' 21.874 '17-Feb-2020' 21.993 

'15-Jul-2019' 21.532 '07-Sep-2019' 21.643 '31-Oct-2019' 21.759 '26-Dec-2019' 21.878 '19-Feb-2020' 21.997 

'17-Jul-2019' 21.533 '09-Sep-2019' 21.644 '02-Nov-2019' 21.763 '28-Dec-2019' 21.883 '20-Feb-2020' 22.001 

'18-Jul-2019' 21.531 '11-Sep-2019' 21.646 '04-Nov-2019' 21.768 '30-Dec-2019' 21.887 '22-Feb-2020' 22.005 

'20-Jul-2019' 21.529 '12-Sep-2019' 21.652 '06-Nov-2019' 21.773 '31-Dec-2019' 21.891 '24-Feb-2020' 22.008 

'22-Jul-2019' 21.532 '13-Sep-2019' 21.658 '08-Nov-2019' 21.777 '02-Jan-2020' 21.894 '26-Feb-2020' 22.012 

'24-Jul-2019' 21.541 '15-Sep-2019' 21.664 '09-Nov-2019' 21.781 '04-Jan-2020' 21.898 '28-Feb-2020' 22.016 

'26-Jul-2019' 21.551 '17-Sep-2019' 21.668 '11-Nov-2019' 21.783 '06-Jan-2020' 21.902 '01-Mar-2020' 22.020 

'28-Jul-2019' 21.558 '18-Sep-2019' 21.670 '13-Nov-2019' 21.787 '08-Jan-2020' 21.906 '03-Mar-2020' 22.025 

'30-Jul-2019' 21.560 '20-Sep-2019' 21.672 '15-Nov-2019' 21.791 '10-Jan-2020' 21.910 '04-Mar-2020' 22.029 

'31-Jul-2019' 21.559 '22-Sep-2019' 21.675 '17-Nov-2019' 21.795 '12-Jan-2020' 21.914 '06-Mar-2020' 22.032 

'02-Aug-2019' 21.558 '24-Sep-2019' 21.679 '19-Nov-2019' 21.800 '13-Jan-2020' 21.918 '08-Mar-2020' 22.036 

'04-Aug-2019' 21.561 '26-Sep-2019' 21.686 '21-Nov-2019' 21.805 '15-Jan-2020' 21.922 '10-Mar-2020' 22.040 

'06-Aug-2019' 21.568 '28-Sep-2019' 21.691 '22-Nov-2019' 21.808 '17-Jan-2020' 21.925 '12-Mar-2020' 22.044 

'08-Aug-2019' 21.577 '30-Sep-2019' 21.696 '24-Nov-2019' 21.811 '19-Jan-2020' 21.929 '14-Mar-2020' 22.048 

'10-Aug-2019' 21.584 '01-Oct-2019' 21.698 '26-Nov-2019' 21.814 '21-Jan-2020' 21.933 '16-Mar-2020' 22.052 

'12-Aug-2019' 21.587 '03-Oct-2019' 21.700 '28-Nov-2019' 21.818 '23-Jan-2020' 21.938 '17-Mar-2020' 22.056 

 

 

 

 

 

 

 

 

 



95 
 

Date Y Date Y Date Y Date Y Date Y 

'19-Mar-2020' 22.060 '14-May-2020' 22.178 '09-Jul-2020' 22.296 '01-Sep-2020' 22.415 '27-Oct-2020' 22.533 

'21-Mar-2020' 22.064 '16-May-2020' 22.182 '11-Jul-2020' 22.300 '03-Sep-2020' 22.419 '29-Oct-2020' 22.537 

'23-Mar-2020' 22.068 '18-May-2020' 22.186 '12-Jul-2020' 22.304 '05-Sep-2020' 22.423 '31-Oct-2020' 22.541 

'25-Mar-2020' 22.071 '20-May-2020' 22.190 '14-Jul-2020' 22.308 '07-Sep-2020' 22.427 '02-Nov-2020' 22.545 

'27-Mar-2020' 22.076 '21-May-2020' 22.194 '16-Jul-2020' 22.312 '09-Sep-2020' 22.430 '04-Nov-2020' 22.549 

'29-Mar-2020' 22.080 '23-May-2020' 22.198 '18-Jul-2020' 22.316 '11-Sep-2020' 22.434 '05-Nov-2020' 22.553 

'30-Mar-2020' 22.084 '25-May-2020' 22.202 '20-Jul-2020' 22.320 '13-Sep-2020' 22.438 '07-Nov-2020' 22.557 

'01-Apr-2020' 22.088 '27-May-2020' 22.206 '22-Jul-2020' 22.324 '14-Sep-2020' 22.442 '09-Nov-2020' 22.561 

'03-Apr-2020' 22.091 '29-May-2020' 22.210 '24-Jul-2020' 22.328 '16-Sep-2020' 22.446 '11-Nov-2020' 22.565 

'05-Apr-2020' 22.095 '31-May-2020' 22.214 '25-Jul-2020' 22.332 '18-Sep-2020' 22.450 '13-Nov-2020' 22.568 

'07-Apr-2020' 22.099 '02-Jun-2020' 22.218 '27-Jul-2020' 22.336 '20-Sep-2020' 22.454 '15-Nov-2020' 22.572 

'09-Apr-2020' 22.103 '03-Jun-2020' 22.222 '29-Jul-2020' 22.340 '22-Sep-2020' 22.458 '17-Nov-2020' 22.576 

'11-Apr-2020' 22.107 '05-Jun-2020' 22.225 '31-Jul-2020' 22.344 '24-Sep-2020' 22.462 '18-Nov-2020' 22.580 

'12-Apr-2020' 22.111 '07-Jun-2020' 22.229 '02-Aug-2020' 22.348 '26-Sep-2020' 22.466 '20-Nov-2020' 22.584 

'14-Apr-2020' 22.115 '09-Jun-2020' 22.233 '03-Aug-2020' 22.352 '27-Sep-2020' 22.470 '22-Nov-2020' 22.588 

'16-Apr-2020' 22.119 '11-Jun-2020' 22.237 '05-Aug-2020' 22.356 '29-Sep-2020' 22.474 '24-Nov-2020' 22.592 

'18-Apr-2020' 22.123 '13-Jun-2020' 22.241 '06-Aug-2020' 22.360 '01-Oct-2020' 22.478 '26-Nov-2020' 22.596 

'20-Apr-2020' 22.127 '15-Jun-2020' 22.245 '08-Aug-2020' 22.363 '03-Oct-2020' 22.482 '28-Nov-2020' 22.600 

'22-Apr-2020' 22.131 '16-Jun-2020' 22.249 '10-Aug-2020' 22.367 '05-Oct-2020' 22.486 '30-Nov-2020' 22.604 

'24-Apr-2020' 22.135 '18-Jun-2020' 22.253 '12-Aug-2020' 22.371 '07-Oct-2020' 22.490 '01-Dec-2020' 22.608 

'25-Apr-2020' 22.139 '20-Jun-2020' 22.257 '14-Aug-2020' 22.375 '09-Oct-2020' 22.494 '03-Dec-2020' 22.612 

'27-Apr-2020' 22.143 '22-Jun-2020' 22.261 '16-Aug-2020' 22.379 '10-Oct-2020' 22.497 '05-Dec-2020' 22.616 

'29-Apr-2020' 22.147 '24-Jun-2020' 22.265 '18-Aug-2020' 22.383 '12-Oct-2020' 22.501 '07-Dec-2020' 22.620 

'01-May-2020' 22.150 '26-Jun-2020' 22.269 '19-Aug-2020' 22.387 '14-Oct-2020' 22.505 '08-Dec-2020' 22.624 

'03-May-2020' 22.154 '28-Jun-2020' 22.273 '21-Aug-2020' 22.391 '16-Oct-2020' 22.509 '09-Dec-2020' 22.628 

'05-May-2020' 22.158 '29-Jun-2020' 22.277 '23-Aug-2020' 22.395 '18-Oct-2020' 22.513 '10-Dec-2020' 22.632 

'07-May-2020' 22.162 '01-Jul-2020' 22.281 '25-Aug-2020' 22.399 '20-Oct-2020' 22.517 '11-Dec-2020' 22.635 

'08-May-2020' 22.166 '03-Jul-2020' 22.285 '27-Aug-2020' 22.403 '22-Oct-2020' 22.521 '13-Dec-2020' 22.639 

'10-May-2020' 22.170 '05-Jul-2020' 22.288 '29-Aug-2020' 22.407 '23-Oct-2020' 22.525 '15-Dec-2020' 22.643 

'12-May-2020' 22.174 '07-Jul-2020' 22.292 '31-Aug-2020' 22.411 '25-Oct-2020' 22.529 '17-Dec-2020' 22.647 
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Date Y Date Y 

'19-Dec-2020' 22.651 '11-Feb-2021' 22.770 

'21-Dec-2020' 22.655 '12-Feb-2021' 22.773 

'23-Dec-2020' 22.659 '14-Feb-2021' 22.777 

'24-Dec-2020' 22.663 '16-Feb-2021' 22.781 

'26-Dec-2020' 22.667 '17-Feb-2021' 22.785 

'28-Dec-2020' 22.671 '18-Feb-2021' 22.789 

'30-Dec-2020' 22.675 '20-Feb-2021' 22.793 

'01-Jan-2021' 22.679 '21-Feb-2021' 22.797 

'03-Jan-2021' 22.683 '22-Feb-2021' 22.801 

'05-Jan-2021' 22.687 '24-Feb-2021' 22.805 

'06-Jan-2021' 22.691 '26-Feb-2021' 22.809 

'08-Jan-2021' 22.695 '27-Feb-2021' 22.813 

'10-Jan-2021' 22.699 '01-Mar-2021' 22.817 

'12-Jan-2021' 22.703 '03-Mar-2021' 22.821 

'14-Jan-2021' 22.706 '04-Mar-2021' 22.825 

'16-Jan-2021' 22.710 '05-Mar-2021' 22.829 

'18-Jan-2021' 22.714 '07-Mar-2021' 22.833 

'19-Jan-2021' 22.718 '08-Mar-2021' 22.837 

'21-Jan-2021' 22.722 '09-Mar-2021' 22.841 

'23-Jan-2021' 22.726 

 
 

'25-Jan-2021' 22.730 

 
 

'26-Jan-2021' 22.734 

 
 

'28-Jan-2021' 22.738 

 
 

'30-Jan-2021' 22.742 

 
 

'31-Jan-2021' 22.746 

 
 

'02-Feb-2021' 22.750 

 
 

'04-Feb-2021' 22.754 

 
 

'06-Feb-2021' 22.758 

 
 

'07-Feb-2021' 22.762 

 
 

'09-Feb-2021' 22.766 
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In Table 24 are presented the ARIMA(4,1,2) model parameters obtained from the CO2 allowance 

prices and Table 25 the average mean used as parameters in the deterministic model.  

Table 24. ARIMA(4,1,2) Model parameters 

     

Parameter        Value           

Standard 

Error        t  Statistic  

Constant 0.00323827 0.00496789 0.65184 

AR{1} 115.614 0.0381616 30.296 

AR{2} -0.926418 0.0353956 -261.732 

AR{3} 0.0159244 0.0252981 0.629468 

AR{4} -0.0669539 0.0211635 -316.366 

MA{1} -116.982 0.039005 -299.916 

MA{2} 0.87485 0.0331871 263.612 

Variance 0.0862777 0.00100673 857.008 

 

 

 

Table 25. Mean of ARIMA(4,1,2) forecasted values used in deterministic model.  

Time Period Forecasted value (€/ton) 

1 21,686 

2 22,466 

3 23,195 

4 23,893 

5 24,611 

6 25,332 

7 26,054 

8 26,772 

9 27,493 

10 28,932 

 

 

 

 


