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Abstract – The total synthesis of (+)-C(9a)-epiepiquinamide has been achieved 

starting from ethyl 5-bromopentanoate, (RS)-tert-butanesulfinamide, nitromethane, 

ethyl acrylate and acetic anhydride. The diastereoselective coupling of ethyl 

4-nitrobutanoate and a chiral N-tert-butanesulfinyl imine, along with a double 

cyclization involving a primary amine through an intramolecular N-alkylation and 

lactam formation, are key steps of this synthesis.  

INTRODUCTION 

Alkaloids with the quinolizidine structural motif were isolated from different plants and, in a lesser 

extension, from animal sources too.1 Quinolizidine alkaloids are abundant in the family Leguminosae, 

especially in the genus Lupinus,2 and are biosynthesized through the cyclization of a unit of cadaverine, 

which derives from aminoacid L-lysine upon decarboxylation.3 These natural products exhibit broad 

pharmacological actions, performing as antipyretics, antibiotics and antivirals.4 They function as chemical 

defense compounds in plants against pathogens and herbivorous animals.5 For instance, (-)-lupidine (1) 

exhibits immunostimulatory activity6 and inhibit also cholisnesterases (Figure 1). The tetracyclic bis- 
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quinolizidine (-)-sparteine (2) is an antiarrhythmic agent7 and has also found wide application in 

asymmetric synthesis as a chiral ligand involving organolithium compounds (Figure 1).8 A mixture of 

quinolizidine alkaloids, among them (+)-sophoridine (3), were present in Sophora flavescens root, which is 

used in traditional Chinese medicine as antipyretic and diuretic agent (Figure 1).9 On the other hand, 

(+)-epiquinamide (4) is a quinolizidine alkaloid which was isolated from the skin of Ecuadoran frog 

Epipedobates tricolor in 2003.10 Primary studies regarding its biological activity indicated that this 

compound displayed potent and selective activities against nicotinic acetylcholine receptors. However, 

further more carefully undertaken studies shown that (+)-epiquinamide (4) was inactive and 

(-)-epibatidine alkaloid (5),11 which was isolated also from the same source, was responsible for the 

biological activity due to contamination in the first studies (Fibure 1).12    

 

 
Figure 1. 

 

In spite of these results, the synthesis of (+)-epiquinamide (4) and its stereoisomers has attracted much 

attention because these compounds could display potential farmacological activity.13 Different synthetic 

approaches have been reported to access epiquinamide in an enantioselective or racemic12,14 fashion. 

Most of the enantioselective syntheses are based on the chiral pool approach starting from aminoacids15 

or monosacharides,16 and also by means of chiral auxiliaries.17 There are also examples where at one step 

of the synthesis either a resolution of a racemate (enzymatic18a or with a chiral reagent18b) or a catalytic 

enantioselective procedure is involved.19 Continuing our interest in the use of N-tert-butanesulfinyl 

imines20 as electrophiles,  and being aware of the potential interest of epiquinamide stereoisomers with 

regard to biological activity, we decided to explore new synthetic pathways to access to 

(+)-C(9a)-epiepiquinamide (6) in an enantioenriched form, based on the diastereoselective aza-Henry 

reaction of ethyl 4-nitrobutanoate and a chiral N-tert-butanesulfinyl imine. Our retrosynthentic analysis 

for the preparation of (+)-C(9a)-epiepiquinamide (6) is depicted on Scheme 1.  
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Scheme 1. 

RESULTS AND DISCUSSION 

The first building block of this convergent strategy was prepared from ethyl acrylate (7) and nitromethane 

(8), working under basic conditions. When the reaction was performed in the presence of 0.1 equivalents 

of sodium hydroxide at 0 to 23 ºC for 12 hours, the expected ethyl 4-nitrobutanoate (9) was obtained in 

47% yield (Method A, Scheme 2).20t Almost the same yield was reached working under the same reaction 

conditions but using a 2M solution of sodium ethoxide in ethanol as a base (Method B, Scheme 2). The 

second method looks more interesting for scaling up the process. In addition, diethyl 4-nitroheptanedioate 

(10) was always formed as a side reaction product in yields ranging from 18 to 24%, which results from a 

double conjugate addition of one molecule of nitromethane (8) to the α,β-unsaturated ester 7, in spite of 

working with a large excess of nitromethane (5 equivalents). Importantly, no additional solvent, apart 

from the reagents, was needed in this transformation (Scheme 2). 

   

 
Scheme 2. 

 

The second building block was prepared starting from commercially available ethyl 5-bromopentanoate 

(11). Reduction of the ester 11 with DIBAL-H in dichloromethane at -78 ºC for 3 hours led to 

5-bromopentanal (12),21 which was condensed with (RS)-tert-butanesulfinamide (13) in the presence of 

titanium tetraethoxide at room temperature for 12 hours, to give the expected N-tert-butanesulfinamide 14 



 

in 54% overall yield (Scheme 3). 

 

 
Scheme 3. 

 

The key step of this synthesis is the diastereoselective coupling of nitro ester 9 and chiral sulfinyl imine 

14. We previously reported the aza-Henry reaction of ethyl 4-nitrobutanoate (9) with chiral 

N-tert-butanesulfinyl imines. Compound 15 was obtained in moderate yields working with 3 equivalents 

of the nitro ester 9 in the presence of 0.2 equivalents of sodium hydroxide as a base, at 40 °C for 24 

hours.20t Higher yield was obtained when 0.2 equivalents of a 2M solution of sodium ethoxide in ethanol 

was used at 60 ºC for 24 hours (Scheme 4). Fortunately, yield was considerably improved when 0.1 

equivalents of sodium ethoxide were added to the reaction mixture first, and after 3 hours, another 0.1 

equivalents of the same base were also added, working at room temperature for 13 additional hours 

(Scheme 4). These reactions proceeded with almost total facial diastereoselectivity considering the 

addition to the imine functional group. Regarding the second stereogenic center, the one bearing the nitro 

group, an almost 1:1 mixture of epimers were always obtained, because a rapid epimerization occurs 

working under basic conditions, due to the acidic character of the proton on that stereocenter. Concerning 

the stereochemical pathway of the addition of nitrocompounds to chiral N-tert-butanesulfinyl imines, we 

always found that the attack of the nucleophile occurs predominantly to the Si-face of the imine with R 

configuration at the sulfur atom of the sulfinyl group.20r,t  

  

 
Scheme 4. 

 

Construction of the quinozinile system was envisioned as arising from a double cyclization involving the 



 

amine group resulting upon desulfinylation of compound 15. Removal of the tert-butane sulfinyl group 

was easily achieved by treatment with a 2M solution of hydrogen chloride in diethyl ether, in ethanol as 

solvent, and it was completed after 1 hour. Further treatment of the resulting ammonium salt with sodium 

ethoxide in ethanol at 40 ºC for 20 hours, led to the formation of nitroquinilizidone 16 in 75% overall 

yield (Scheme 5). In this double cyclization, the free amine participated in an intramolecular N-alkylation 

involving the C-Br bond and lactam formation with the ester group. Importantly, quinolizidine derivative 

16 was formed as 6:1 mixture of diastereoisomers, although compound 15 was isolated in a 1:1 dr. This 

experimental result can be explained because epimerization occurs rapidly under basic conditions, and 

isomer 16 with a trans-fused quinolizidine core in a chair-chair conformation, with the nitro group in an 

equatorial orientation, is thermodynamically more stable than isomer 16’.  

 

 
Scheme 5. 

 

Last steps of the synthesis comprise the reduction of the nitro group to the amino group, the reduction of  

the lactam to give a bridge trialkyl amine derivative, and final acetylation of the primary amine. 

Reduction of nitro group in compound 16 was achieved in almost quantitative yield with hydrogen (1 

atm) and Raney-nickel in ethanol at room temperature for 40 hours. Primary amine derivative 17 was 

isolated in 94% yield (Scheme 6). Reduction of lactam 17 with lithium aluminium hydride provide the 

corresponding aminoquinolizidine, which was further N-acetylated to provide the expected 

(+)-C(9a)-epiepiquinamide (6) in 67% yield (Scheme 6).    

 

 
Scheme 6. 



 

 

In summary, a straightforward enantioenriched synthesis of (+)-C(9a)-epiepiquinamide (6) was carried 

out in six synthetic operations starting from commercially available compounds. A diastereoselective 

aza-Henry reaction of ethyl 4-nitrobutanoate and a chiral N-tert-butanesulfinyl imine is the key step of the 

synthesis, the configuration of the sulfur atom of the sulfinyl group determining the configuration of 

C(9a) stereocenter in this transformation. Target (+)-C(9a)-epiepiquinamide (6) was obtained in a 18.7% 

overall yield, considering the lowest yield of the two equally long linear sequence of this convergent 

synthesis.  

EXPERIMENTAL 

All chemicals were commercially available (Acros, Aldrich). TLC was performed on Merck silica gel 60 

F254, using aluminum plates and visualized with phosphomolybdic acid (PMA) stain. Chromatographic 

purification was performed by flash chromatography using Merck silica gel 60 (0.040-0.063 mm) and 

different eluents. Low-resolution electron impact (EI) mass spectra were obtained at 70eV on Agilent 

GC/MS-5973N apparatus equipped with a HP-5MS column (Agilent technologies, 30 m × 0.25 mm) and 

high resolution mass spectra (HRMS-ESI) were obtained on a Waters LCT Premier XE apparatus 

equipped with a time of flight (TOF) analyzer and the samples were ionized by ESI techniques and 

introduced through an ultra-high pressure liquid chromatograph (UPLC) model Waters ACQUITY H 

CLASS.  IR spectra were measured (film) with a Nicolet Impact 510 P-FT Spectrometer. NMR spectra 

were recorded with a Bruker AC-300 and a Bruker 500-AVANCE IIIHD, using CDCl3 or CD3OD as 

solvents, and TMS as internal standard. Optical rotations were measured on a Perkin Elmer 341 

polarimeter.  

 

Synthesis of ethyl 4-nitrobutanoate (9) and diethyl 4-nitroheptanedioate (10) 

To a solution of ethyl acrylate (7) (1.00 g, , 1.09 mL, 10.0 mmol) in nitromethane (3.052 g, 2.76 mL, 50.0 

mmol) was added a 2M solution of NaOEt in EtOH (0.50 mL, 1.0 mmol) at 0 ºC. The reaction mixture 

was stirred for 12 h and the system was allowed to reach room temperature. Then, the resulting mixture 

was hydrolyzed with H2O (20 mL) and extracted with EtOAc (3 × 15 mL). The organic layer was washed 

with brine (2 × 10 mL), dried over anhydrous MgSO4 and evaporated (15 Torr). The resulting residue 

was purified by distillation under vacuum to give pure compound 9 (0.676 g, 4.60 mmol, 46%) and the 

undistilled residue was passed through a path of silica gel with hexane to give pure compound 10 (0.548, 

2.10 mmol, 21%). Physical and spectroscopic data follow. 

Ethyl 4-nitrobutanonate (9)22.- Colourless oil; bp 156-158 ºC (20 Torr); Rf 0.46 (hexane/EtOAc: 3/1); 

IR ν (film) 2983, 2946, 2908, 1728, 1550, 1435, 1376, 1177, 1027 cm-1; 1H NMR (300 MHz, CDCl3) 



 

δ 4.49 (t, J = 6.6 Hz, 2H), 4.16 (q, J = 7.1 Hz, 2H), 2.47 (t, J = 6.8 Hz, 2H), 2.32 (quint, J = 6.8 Hz, 2H), 

1.27 (t, J = 7.1 Hz, 3H); 13C NMR (75 MHz, CDCl3) δ 171.8 (C), 74.3, 60.9, 30.5, 22.4 (CH2), 14.1 

(CH3); LRMS (EI) m/z 116 (M+-CH3O, 35%), 100 (9), 88 (11), 69 (10), 59 (100). 

Diethyl 4-nitroheptanedioate (10)23.- Colourless oil; Rf 0.44 (hexane/EtOAc: 3/1); IR ν (film) 2983, 

2941, 2910, 1729, 1548, 1445, 1375, 1322, 1252, 1182, 1097, 1028 cm-1; 1H NMR (300 MHz, CDCl3) 

δ 4.70-4.61 (m, 1H), 4.15 (t, J = 7.15 Hz, 4H), 2.41-2.35 (m, 4H), 2.27-2.12 (m, 4H), 1.26 (t, J = 7.15 Hz, 

6H); 13C NMR (75 MHz, CDCl3) δ 171.8 (C), 86.7 (CH), 60.9, 30.2, 28.7 (CH2), 14.2 (CH3); LRMS (EI) 

m/z 216 (M+-C2H5O, 26%), 185 (10), 170 (51), 169 (62), 157 (22), 141 (97), 123 (100), 113 (52), 111 

(28), 99 (48), 95 (50), 85 (15), 71 (81), 67 (42), 60 (16), 55 (63); HRMS (ESI): Calculated for C9H14NO5 

(M+-C2H5O) 216.0872, found 216.0879.  

 

Synthesis of chiral imine 14 from ethyl 5-bromopentanoate (11) and (R)-tert-butanesulfinamide (13) 

To a solution of ethyl 5-bromopentanoate (11) (1.045 g, 0.817 mL, 5.0 mmol) in dry CH2Cl2 (9.0 mL) 

was added a solution of DIBAL-H in toluene (4.60 mL, 5.5 mmol) at -78 ºC. The mixture was stirred for 

3 h at the same temperature, quenched with 1M HCl (5.0 mL) and allowed to reach room temperature. 

Then, the resulting mixture was hydrolyzed with H2O (15 mL) and extracted with CH2Cl2 (3 × 15 mL). 

The organic layer was washed with a saturated aqueous solution of NaHCO3 (2 × 10 mL), dried over 

anhydrous MgSO4 and evaporated (15 Torr). The resulting residue was 5-bromopentanal (12) (0.529 g, 

3.2 mmol) and it was pure enough to be used in the next reaction step. Thus, a mixture of 

(R)-tert-butanesulfinamide (13) (0.428 g, 3.5 mmol), 5-bromopentanal (12) (0.529 g, 3.2 mmol), and 

Ti(OEt)4 (1.596 g, 1.465 mL, 7.0 mmol) in THF (5.0 mL) was stirred for 12 h at room temperature. Then, 

the resulting mixture was hydrolyzed with brine (8 mL), extracted with EtOAc (3 × 10 mL), dried over 

anhydrous MgSO4 and evaporated (15 Torr). The residue was purified by column chromatography (silica 

gel, hexane/EtOAc) to yield pure product 14 (0.713 g, 2.66 mmol, 54% overall yield). Physical and 

spectroscopic data follow. 

(RS)-N-(tert-Butanesulfinyl)-5-bromopentan-1-imine (14)20y.- Yellow oil; [α]20
D -171.3 (c 1.01, 

CH2Cl2); Rf 0.32 (hexane/EtOAc: 3/1); IR ν (film) 2956, 1622, 1456, 1362, 1252, 1230, 1183, 1082, 732, 

644 cm-1; 1H NMR (300 MHz, CDCl3) δ 8.08 (t, J = 4.4 Hz, 1H), 3.44 (t, J = 6.5 Hz, 2H), 2.57 (td, J = 7.2, 

4.4 Hz, 2H), 2.03-1.85 (m, 2H), 1.90-1.73 (m, 2H), 1.20 (s, 9H); 13C NMR (75 MHz, CDCl3) δ 168.8 (CH), 

56.7 (C), 35.2 (CH2), 33.1 (CH2), 32.1 (CH2), 24.0 (CH2), 22.45 (CH3); LRMS (EI) m/z 213 (M+-C4H8, 

17%), 211 (M+, 17), 84 (8), 70 (8), 57 (100), 55 (9), 43 (41), 41 (26).  

 

Synthesis of compound 15 by diastereoselective coupling of ethyl 4-nitrobutanoate (9) and chiral 

imine 14 



 

To a mixture of ethyl 4-nitrobutanoate (9) (1.450 g, 9.0 mmol), and chiral imine 14 (0.805 g, 3.0 mmol) 

was added a 2M solution of NaOEt in EtOH (0.15 mL, 0.2 mmol) at room temperature and was stirred for 

3 h. Then a 2M solution of NaOEt in EtOH (0.15 mL, 0.2 mmol) was also added and the resulting 

reaction mixture was stirred at the same temperature for 13 additional h. The resulting mixture was 

hydrolyzed with H2O (15 mL) and extracted with EtOAc (3 × 15 mL). The organic layer was washed 

with brine (2 × 10 mL), dried over anhydrous MgSO4, and evaporated (15 Torr). The residue was 

purified by column chromatography (silica gel, hexane/EtOAc) to yield pure compound 15 (1.100 g, 2.57 

mmol, 86%). Physical and spectroscopic data follow. 

(4R*,5R,RS)-Ethyl 9-bromo-N-(tert-butanesulfinyl)-5-amino-4-nitrononanoate (15).- Mixture of 

diastereoisomers (1:1); colourless oil; Rf 0.47 (hexane/EtOAc: 1/1); IR ν (film) 3421, 3230, 2960, 2869, 

1732, 1625, 1549, 1457, 1367, 1303, 1184, 1055, 911 cm-1; 1H NMR (300 MHz, CDCl3) δ 4.96-4.83 (m, 

2H), 4.27 (d, J = 8.6 Hz, 1H), 4.21 (d, J = 9.8 Hz, 1H), 4.16 (q, J = 7.2 Hz, 4H), 3.62-3.50 (m, 2H), 3.40 (t, 

J = 6.4 Hz, 4H), 2.61-2.14 (m, 8H), 1.97-1.79 (m, 4H), 1.76-1.44 (m, 8H), 1.27 (s, 9H), 1.27 (t, J = 7.1 Hz, 

6H), 1.26 (s, 9H); 13C NMR (75 MHz, CDCl3) δ 172.1, 172.05 (C), 90.8, 89.8 (CH), 61.0, 61.0 (CH2), 59.4, 

58.5 (CH), 56.9, 56.8 (C), 33.35, 33.3, 32.8, 32.05, 32.0, 30.6, 30.15, 29.9, 26.0, 25.2, 24.6, 24.5 (CH2), 

22.9, 22.8, 14.2 , 14.2 (CH3); LRMS (EI) m/z 385 (M+-C2H5O, 2%), 383 (2%), 232 (10), 230 (8), 213 (8), 

162 (14), 116 (27), 93 (8), 67 (9), 57 (100), 55 (16), 41 (26); HRMS (ESI): Calculated for 

C15H28
79BrN2O5S (M+) 427.0902, found 427.0905. 

 

Synthesis of nitroquinolizidinone 16 from compound 15 through an intramolecular double 

cyclization 

To a solution of compound 15 (0.601 g, 1.40 mmol) in EtOH (15 mL) was added a 2M solution of HCl in 

in Et2O (7.0 mL, 14.0 mmol) at 0 ºC. The reaction mixture was allowed to reach room temperature and 

stirred for 1 h. After that all volatiles were removed under vacuum (15 Torr) and the resulting residue was 

dissolved in EtOH (100 mL). A 2M solution of NaOEt in EtOH (1.05 mL, 2.1 mmol) was added to this 

ethanolic solution, and the reaction mixture was stirred at 40 ºC for 20 h. Then, EtOH was removed under 

vacuum (15 Torr), and the resulting residue was hydrolyzed with a saturated aqueous solution of NaHCO3 

(100 mL), and brine (15 mL), and extracted with EtOAc (3 × 25 mL). The organic layer was dried over 

anhydrous MgSO4, and evaporated (15 Torr). The residue was purified by column chromatography (silica 

gel, hexane/EtOAc) to yield pure compound 16 (0.208 g, 1.05 mmol, 75%). Physical and spectroscopic 

data follow. 

(4S)-4-Nitrohexahydro-2H-quinolizin-1(6H)-one (16).- Brow-orange liquid; [α]20
D +6.3 (c 1.01, 

CH2Cl2); Rf 0.48 (CH2Cl2/MeOH: 18/1); IR ν (film) 2941, 2858, 1635, 1547, 1470, 1444, 1421, 1377, 

1363, 1343, 1272, 1198, 914 cm-1; 1H NMR (300 MHz, CDCl3) δ 4.85-4.73 (m, 1H), 4.58-4.50 (m, 1H), 



 

4.00 (ddd, J = 11.7, 5.1, 2.5 Hz, 1H), 2.59-2.41 (m, 3H), 2.39-2.27 (m, 2H), 2.03-1.92 (m, 1H), 1.91-1.82 

(m, 1H), 1.78-1.69 (m, 1H), 1.68-1.54 (m, 1H), 1.52-1.35 (m, 2H); 13C NMR (75 MHz, CDCl3) δ 166.5 

(C), 84.9, 58.3 (CH), 43.2, 32.0, 28.4, 24.8, 24.3, 23.9 (CH2); LRMS (EI) m/z 198 (M+, 1%), 152 (20), 

151 (100), 150 (17), 136 (25), 123 (12), 122 (27), 108 (16), 97 (12), 82 (12), 67 (12), 55 (27); HRMS 

(ESI): Calculated for C9H14NO (M+-NO2) 152.1075, found 152.1065. 

 

Synthesis of aminoquinolizidinone 17 by reduction of nitrocompound 16 

To a solution of nitro compound 16 (0.071 g, 0.356 mmol) in EtOH (3.0 mL) was added commercially 

available Raney nickel (0.812 g, 0.3 mL, 50% slurry in water) and the mixture was vigorously stirred at 

room temperature in hydrogen atmosphere (1 atm) for 40 h. The resulting suspension was filtered through 

a short pad of Celite with EtOH (40 mL) and concentrated in vacuo (15 Torr). The residue was pure 

compound 17 (0.056 g, 0.333 mmol, 94%). Physical and spectroscopic data follow. 

(4S)-4-Aminohexahydro-2H-quinolizin-1(6H)-one (17).- Brow-orange oil; [α]20
D -9.0 (c 1.06, CH2Cl2); 

Rf 0.12 (CH2Cl2/MeOH: 18/1); IR ν (film) 3282, 2931, 2856, 1709, 1621, 1467, 1443, 1421, 1272, 1172, 

837 cm-1; 1H NMR (300 MHz, CDCl3) δ 4.82-4.69 (m, 1H), 3.04-2.91 (m, 1H), 2.94-2.83 (m, 1H), 

2.62-2.31 (m, 5H), 2.12-1.82 (m, 3H), 1.78-1.61 (m, 2H), 1.56-1.28 (m, 3H); 13C NMR (75 MHz, CDCl3) 

δ 168.5 (C), 64.4, 51.9 (CH), 42.8, 32.0, 30.1, 28.3, 25.15, 24.3 (CH2); LRMS (EI) m/z 168 (M+, 35%), 125 

(21%), 97 (82), 84 (100), 83 (36), 82 (9), 56 (28), 55 (16); HRMS (ESI): Calculated for C9H16N2O (M+) 

168.1263, found 168.1265.  

 

Synthesis of (+)-C(9a)-epiepiquinamide (6) from aminoquinolizidinone 17 

To a solution of aminoquinolizidinone 17 (0.0747 g, 0.44 mmol) in dry THF (10 mL) was added LiAlH4 

(0.0479 g, 1.20 mmol) at 0 ºC. The reaction mixture was stirred at 0 ºC for 3 h, and at room temperature 

for 1 h. After that, H2O (0.44 mL), K2CO3 (0.44 g, 11.5 mmol) and H2O (0.44 mL) were successively 

added. The gray solid was filtered off and washed with EtOAc (30 mL). The filtrate was concentrated in 

vacuo (15 Torr) to provide a colourless oil which was then dissolved in dry dioxane (4.0 mL). A 1M 

solution of NaOH (4.4 mL, 4.4 mmol) was added followed by Ac2O (0.225 g , 0.212 mL, 2.2 mmol). The 

reaction mixture was stirred at room temperature for 12 h. After that, it was hydrolyzed with a saturated 

aqueous solution of NaHCO3 (5 mL), and extracted with CH2Cl2 (3 × 10 mL). The organic layer was 

dried over anhydrous MgSO4, and evaporated (15 Torr). The residue was purified by column 

chromatography (silica gel, CH2Cl2/MeOH, 9/1) to yield pure compound 6 (0.058 g, 0.296 mmol, 67%). 

Physical and spectroscopic data follow. 

 (+)-C(9a)-Epiepiquinamide (6).- White solid, mp 124-126 ºC (hexane/CH2Cl2); [α]20
D +2.4 (c 0.63, 

CH2Cl2); Rf 0.12 (CH2Cl2/MeOH: 18/1); IR ν (KBr) 3280, 2929, 2853, 1639, 1557, 1444, 1372, 1310, 



 

1122, 1113, 1023 cm-1; 1H NMR (500 MHz, CD3OD) δ 3.68 (ddd, J = 11.9, 9.9, 4.3 Hz, 1H), 3.01-2.94 (m, 

1H), 2.93-2.85 (m, 1H), 2.31-2.20 (m, 2H), 1.93 (s, 3H), 1.93-1.90 (m, 1H), 1.90-1.87 (m, 1H), 1.84-1.78 

(m, 1H), 1.77-1.67 (m, 3H), 1.66-1.57 (m, 1H), 1.41-1.27 (m, 4H), 1.26-1.18 (m, 1H); 13C NMR (126 MHz, 

CD3OD) δ 172.7 (C), 68.0 (CH), 57.2, 56.6 (CH2), 51.8 (CH), 32.0, 29.4, 26.0, 24.8, 24.4 (CH2), 22.7 

(CH3); LRMS (EI) m/z 138 (M+-C2H4NO, 11%), 137 (100), 136 (40), 122 (11), 83 (31), 70 (11), 55 (10), 43 

(12); HRMS (ESI): Calculated for C9H15N (M+-C2H5NO) 137.1206, found 137.1204.   
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