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Abstract

Most of the existing works on optimal imperfect maintenance activities of a
repairable equipment with independent components consider a single model
for equipment behaviour. In addition, it is assumed that all the components
of the equipment share the same model and the same maintenance inter-
vals and that effectiveness of maintenance is known. In this paper we take
a different approach. In order to formalize the uncertainty on the occur-
rence of failures and on the effect of maintenance activities we consider, for
each component, a class of candidate models obtained combining models for
failure rate with models for imperfect maintenance and let the data select
the best model (that might be different for the different components). All
the parameters are assumed to be unknown and are jointly estimated via
maximum likelihood. Model selection is performed, separately for each com-
ponent, using standard selection criteria that take into account the problem
of over-parametrization. The selected models are used to derive the cost per
unit time and the average reliability of the equipment, the objective func-
tions of a Multi-Objective Optimization Problem with maintenance intervals
of each single component as decision variables. The proposed procedure is
illustrated using a real data example.
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1. Introduction

During the last years the need of optimizing preventive maintenance ac-
tivities, performed in different repairable equipments of industrial plants, has
experimented a great increase as a consequence of the interest of improving
plants economy and safety (see, for example, Qiu et al., 2017a, or Zheng
et al., 2016). Cost and reliability of a reparable equipment, in fact, depend
on the random occurrences of failures which, in turn, depend on the age of
the equipment which is a function of its chronological time and the preven-
tive maintenance activities performed to slow down its deterioration. For an
equipment with q independent components, if preventive maintenance activ-
ities for the k-th component are scheduled every Mk units of time, (i.e. if
maintenance intervals are constant), the goal is to find the optimal value of
(M1, . . . ,Mq) that provides a suitable trade-off between the two conflicting
objectives of minimize cost and maximize reliability (see Wang and Pham,
2006 for a complete revision on maintenance methods).

A suitable solution of the problem requires a separate modeling, for each
component of the equipment, of (i) the failure rate; and (ii) the effect of
maintenance activities on the age of the component.

The most popular failure rate model is the Weibull one which includes,
as special cases, the exponential and the linear failure rate models (see Tan
and Kramer, 1995).

Imperfect Maintenance (IM) models assumes that maintenance activities
reduce the equipment age by some degree depending on their effectiveness.
The most important IM models are the Proportional Age Setback (PAS),
proposed by Martorell et al. (1999), and Proportional Age Reduction (PAR),
proposed by Malik (1979). While the PAS model considers that each mainte-
nance activity reduces the total equipment age by a factor ε, the PAR model
assumes that only the age gained between two consecutive maintenance ac-
tivities is reduced by a factor ε (see also Kijima and Sumita, 1986; Kijima,
1989; or Tanwar et al., 2014, for a more recent revision). Both models include
as special, and extreme cases, the less realistic Good as New (GAN) model
in which the the age of the equipment after each maintenance is restored
to the initial time (ε = 1); and the Bad as Old (denoted as BAO) model,
which assumes that the maintenance action has no effect on the age of the
equipment (ε = 0).

Most of the existing literature on optimal maintenance policy considers
a single model for equipment behaviour obtained by combining a model for

2



the random occurrences of failures and a model for the effect of maintenance
activities on the age of the component. In addition it is assumed that all
the components of the equipment share the same model and the same main-
tenance interval (i.e., M1 = M2 . . . = Mq in the optimization problem). A
common choice for the maintenance model is BAO or GAN (as in Neves
et al., 2011, Taghipour and Banjevic, 2013 or Qiu et al., 2017b). IM models,
although more realistic, are less common and, when used, the parameter that
represents the degree by which maintenance reduces the age of the equipment
is usually assumed to be known (as in Tsai et al., 2011), but in few cases
(see, for example, Wang and Yang, 2012).

Effectiveness of maintenance and failure rate, however, are usually un-
known and might be different for different components of a repairable equip-
ment. This suggests that: (a) considering a single model for equipment
behaviour introduces unnecessary assumptions on the random occurrence of
failures and on the effectiveness of maintenance, that could be avoided by
considering a richer class of models; (b) assuming that the effectiveness pa-
rameter in IM models is known underestimates the uncertainty of the prob-
lem. For a given model for equipment behaviour, the effectiveness parameter
should be considered unknown and estimated simultaneously with the pa-
rameter of the failure rate model; (c) different components should be allowed
to follow different models and have different maintenance intervals.

In order to address the limitations of current proposals, in this paper we
propose a general modelling approach to the problem where for each equip-
ment component we consider a class of four candidate models obtained by
combining models for failure rate (Weibull and linear) with models for main-
tenance (PAR and PAS). For each model the model’s parameters (which
include the effectiveness parameter ε of the IM models) are estimated si-
multaneously by maximum likelihood and the best model is selected using
standard model selection criteria. The selected models are then used as input
of the optimal maintanance optimization problem (see Feng et al., 2017, and
Tsai et al., 2011).

In Section 2 we introduce the class of four candidate models used to de-
scibe the uncertainty on equipment behaviour and derive corresponding ex-
pression of hazard and cumulative hazard functions. In Section 3 we obtain
the likelihood function four the four models and discuss maximum likelihood
estimation. The problem of over-parametrization and model selection is also
addressed in Section 3. In Section 4 we obtain the expression of the average
reliability and cost per time units for each of the four model and describe
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the optimization algorithm. An illustration of the proposed approach is pre-
sented in Section 5 using a data set containing failure time and maintenance
activities of eight motor-operated safety valves of a Nuclear Power Plant
(NPP) over a period of ten years. Finally, Section 6 summarizes the main
results and future work.

2. Reliability models under imperfect maintenance

In our modelling of equipment behaviour, for each equipment component
we consider a class of four candidate models PAS-linear; PAR-linear, PAS-
Weibull, PAR-Weibull obtained by combining two possible models for failure
rate, linear and Weibull; with two possible models for maintenance, PAR and
PAS. As observed in the introduction, both PAR and PAS models assume
that each maintenance activity reduces the age of the equipment by some
degree depending on its effectiveness and provide a much more realistic al-
ternative to the extreme “Bad as Old” (BAO) and “Good as New” (GAN)
maintenance models to explain the effect of maintenance activities on the
state of equipments. Note that despite the fact that the Weibull failure rate
model includes, as special case, the simpler linear failure rate model, when
the model’s parameters are unknown the linear model should be considered as
a separate option. If the “true” failure rate is linear, a Weibull model would
be over-parametrized, and the estimated linear model would be preferable,
for inferential purposes, to the estimated Weibull model (the two models are
asimptotically equivalent but might provide very different results if sample
size is small).

For each of the four models it is assumed that working conditions are
normal and initial hazard rate is null. These are reasonable assumptions
for the application that we discuss in Section 5 and simplify the expressions
involved in parameters estimation. A more detailed description of the four
models follows.

2.1. Proportional Age Setback model

In the PAS approach, each maintenance activity is assumed to shift the
origin of time from which the age of the equipments are evaluated. The PAS
model considers that maintenance activities reduce, proportionally to a factor
ε, the age the equipment had immediately before it enters in maintenance.
Following the model characterization, the age of the equipment in instant t
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of period m, w+
m−1, after the (m− 1)-maintenance activity is given by

ω+
m−1 = t−

m−2∑
k=0

(1− ε)kετm−k−1, (1)

where τj is the time in which the equipment undertakes the j-maintenance
activity.

Using (1), it is possible to obtain an age-dependent reliability model in
which the induced or conditional failure rate, in period m after the (m− 1)-
maintenance, is given by

hm(ω) = h

(
t−

m−2∑
k=0

(1− ε)kετm−k−1

)
. (2)

PAS-linear model

Considering the age of the equipment after the (m − 1)-maintenance given
by (1), and adopting a linear model for the failure rate,

h(ω) = αω(t, ε), (3)

the expression for the induced failure rate after the (m − 1)-maintenance
becomes

hm(ω) = α

(
t−

m−2∑
k=0

(1− ε)kετm−k−1

)
,

where α is the linear aging rate.
The cumulated hazard function Hm(ω) in the period m, after the (m−1)-

maintenance activity, can be obtained by integration of the induced hazard
function obtaining

Hm(ω) =
α

2

(
t−

m−2∑
k=0

(1− ε)kετm−k−1

)2

.

PAS-Weibull model

If, instead of the linear failure rate, a Weibull failure rate with shape
parameter β and scale parameter η, is considered,

h(ω) =
β

ηβ
(ω(t, ε))β−1, (4)
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then, replacing the expression corresponding to ω(t, ε) given by (1) into (4),
the expressions for the induced failure rate, and the cumulated hazard func-
tion in period m after the (m− 1)-maintenance become, respectively,

hm(ω) =
β

ηβ

(
t−

m−2∑
k=0

(1− ε)kετm−k−1

)β−1

,

Hm(ω) =
1

ηβ

(
t−

m−2∑
k=0

(1− ε)kετm−k−1

)β

.

2.2. Proportional Age Reduction model
In the PAR approach, each maintenance activity is assumed to reduce,

proportionally to its effectiveness, the age gained from the previous mainte-
nance. Thus, while the PAS model considers that each maintenance activity
reduces the total equipment age, the PAR model assumes that maintenance
reduces the age gained between two consecutive maintenance activities by a
factor ε.

According with the above conditions, the age of the equipment in instant
t of period m, after the (m− 1)-maintenance activity using the PAR model
is given by

ω+
m−1 = t− ετm−1. (5)

Using a similar procedure as the one described for the PAS model, but
adopting (5) instead of (1), it is possible to derive the expression for the
failure rate and the cumulated hazard function of imperfect maintenance in
instant t, under the PAR approach assuming either the linear or Weibull
failure rate model. This produces the PAR-linear and PAR-Weibull models:

PAR-linear model

hm(t) = α(t− ετm−1); Hm(t) =
α

2
(t− ετm−1)

2.

PAR-Weibull model

hm(t) =
β

ηβ
(t− ετm−1)

β−1; Hm(t) =
1

ηβ
(t− ετm−1)

β.

3. Maximum Likelihood Estimation and Model Selection

Given the class of four models for equipment behaviour discussed in the
previous section, we address here the problems of estimating the models
parameters and select the best model.
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3.1. Maximum Likelihood Estimation

For each of the four models for equipment behaviour discussed in the pre-
vious section, estimation of model’s parameters is obtained using the Maxi-
mum Likelihood procedure (MLE). This requires an explicit formula for the
likelihhood of each model and an optimization algorithm to maximize the
likelihood function.

The likelihood function (L) is the product of probabilities of the observed
data as a function of the model parameters. For a reliability model, as
described in Tan and Kramer (1995), it can be written as

L(ξ|observed data) =
∏

failures

h(t)
∏

maint.

R(t), (6)

where ξ denotes de vector of model’s parameters (i.e. ξ = (α, ε) for linear
failure rate and ξ = (β, η, ε) for Weibull failure rate) and R(t) is the reliability
function, R(t) = e−H(t).

In particular, for P equipments with a single component under imperfect
preventive maintenance, (6) becomes

L(ξ) =
P∏
p=1

[
Mp+1∏
m=1

{
rp,m∏
j=1

hp,m(tp,m,j) exp

(
−

Mp∑
m=1

Hp,m(τp,m)−HMp+1(τ
∗
p )

)}]
,

where for each component p: rp,m denotes the number of failures of the
component during the m-maintenance which occur at times tp,m1 , tp,m2 , . . . ;
τp,m is the chronological time for the m-maintenance; Mp denotes the number
of preventive maintenance activities performed during the observation period
τ ∗p ; hp,m(t) and Hp,m(τ) are the induced hazard function and the cumulated
hazard function in period m, respectively; and HMp+1(τ

∗
p ) is the cumulated

hazard function in censoring time τ ∗p .
As usual in this context, and for computational purpose, it is preferable

to maximize the logarithm of the likelihood function given by

logL(ξ) =

P∑
p=1

Mp+1∑
m=1


rp,m∑
j=1

log hp,m(tp,m,j)−
Mp∑
m=1

Hp,m(τp,m)−HMp+1(τ
∗
p )


 .
(7)

Replacing hp,m(t) and Hp,m(t) in (7) with the corresponding expressions
obtained in Section 2 produces the following log likelihood functions for the
PAS-linear, the PAR-linear, the PAS-Weibull and the PAR-Weibull models:
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PAS-linear model:

logL(α, ε) =

P∑
p=1


Mp+1∑
m=1

rp,m∑
j=1

log

[
α

(
tp,m,j −

m−2∑
k=0

(1− ε)kετp,m−k−1

)]

− α

2

 Mp∑
m=1

(
τp,m −

m−2∑
k=0

(1− ε)kετp,m−k−1

)2

+

τ∗p −Mp−2∑
k=0

(1− ε)kετp,m−k−1

2 .

PAR-linear model:

logL(α, ε) =
P∑
p=1


Mp+1∑
m=1

rp,m∑
j=1

log[α(tp,m,j − ετp,m−1)]

− α

2

 Mp∑
m=1

(τp,m − ετp,m−1)
2 + (τ∗p − ετp,m−1)

2

 .

PAS-Weibull model:

logL(β, η, ε) =

P∑
p=1


Mp+1∑
m=1

rp,m∑
j=1

log

 β

ηβ

(
tp,m,j −

m−2∑
k=0

(1− ε)kετp,m−k−1

)β−1


− 1

ηβ

 Mp∑
m=1

(
τp,m −

m−2∑
k=0

(1− ε)kετp,m−k−1

)β

+

τ∗p −Mp−2∑
k=0

(1− ε)kετp,m−k−1

β


 .

PAR-Weibull model:

logL(β, η, ε) =

P∑
p=1


Mp+1∑
m=1

rp,m∑
j=1

log

[
β

ηβ
(tp,m,j − ετp,m−1)

β−1

]

− 1

ηβ

 Mp∑
m=1

(τp,m − ετp,m−1)
β + (τ∗p − ετp,m−1)

β

 .
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MLE estimations of the vector of parameters for each of the four model
are obtained by maximizing the corresponding log likelihood function (as
a function of the vector of parameters). To perform the maximization, in
this paper we use the Nelder Mead Simplex method (for further details, see
Nelder and Mead, 1965 and Lagarias et al., 1998).

3.2. Model selection

Each of the four reliability models discussed in the previous sections pro-
vides a description of the equipment behaviour that in turns can be used to
optimize the maintenace intervals. Different models, however, provide differ-
ent descriptions and thus some model selection procedure is needed before
optimization of maintanace interval is performed. The criterion of compar-
ing the maximized likelihood, sometimes used in literature, works fine if the
competing models have the same number of parameters, but might lead to
overparametrization in other cases. It is well known that more complex mod-
els tend to have higher likelihood. In this paper, we consider three standard
selection criteria that address the issue of overparametrization: Leave One
Out Cross Validation, the Akaike information criterion and the Bayesian
information criterion.

Leave-one-out Cross-Validation (LCV) is a general technique used to mea-
sure how well a certain model generalizes to new data. Ideally, if we had a
large data set, we could partition the data in two parts. Use the first part
as learning sample to estimate the different models, and the second part as
validation data set to estimate the models fit to new data and select as best
model the one with best fit in the validation data set. However since data set
for estimation of reliability models are often small, this is usually not possible
for the applications that we are interested here. To overcome this problem
in LCV each data point is considered in turn as validation sample and the
rest of the data as learning sample. In this paper we use the implementation
of LCV proposed by Tan and Kramer (1995).

A drawback of cross validation is that it is computationally intensive.
Two simpler alternatives are the Akaike information criterion (AIC) and
the Bayesian information criterion (BIC) introduced respectively by Akaike
(1974) and Schwarz (1978). Both criteria provide a tradeoff between model
complexity and how well the model fits the data. Both criteria can be ex-
pressed as the sum of a godness-of-fit term (which is expressed as minus twice
the negative of the maximized loglikelihood) and a penalty term which is an
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increasing function of the number of parameters in the model. AIC can be
seen as an asymptotic aproximation of the LCV (much simpler to compute)
while BIC has a Bayesian interpretation in terms of posterior probabilities
of the model (for a detailed description of the two criteria, their properties
and their relationship with LCV see, for example, chapter 7 of Hastie et al.,
2008).

4. Optimization process

As a first step in the optimization process, for each of the four models
described in Section 2 (PAS-linear, PAS-Weibull, PAR-linear, PAR-Weibull),
we obtain the expression of the average hazard, average reliability and cost
in terms of the maintenance interval of an equipment with a single compo-
nent. The maintenance interval, M , is assumed to be constant. The results
presented easily generalize to the case of equipments with q ≥ 2 independent
components. In this case, in fact, the average reliability of the equipment is
just the product of the average reliability of the single components and the
hourly cost the sum of the hourly cost of the single components. The method-
ology to construct the average hazard and reliability functions is slightly dif-
ferent depending on the maintenance model used, so we distinguish the two
cases.

4.1. Average hazard and reliability functions for PAS models

As shown in Martorell et al. (1999) for the PAS model after few main-
tenances the age of the equipment (as a function of the chronological time)
exhibits a stationary behaviour. In particular, assuming a constant main-
tenance interval M , the time in which the equipment undertakes the m-
maintenance activity is mM and the age of the equipment in instant t of
period m, w+

m−1, after the (m− 1)-maintenance in equation (1) becomes:

ω+
m−1 = t−

m−2∑
k=0

(1− ε)kε(m− k − 1)M, (8)

and, for m large enough, (8) can be written as:

ω+
m−1 = t−mM +

M

ε
. (9)

The stationary behaviour of the age of the equipment in the PAS model is
illustrated in Figure 1-(a). As a consequence of this stationarity property,
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average hazard and reliability for the PAS model can be computed by in-
tegrating the hazard and reliability function over an arbitrary maintenance
interval. Substituting age by its expression given by (9) in formulas (3) and
(4), the hazard function for the the PAS-linear and PAS-Weibull models in
period m becomes

hm(t) =

{
α
(
t−mM + M

ε

)
, for PAS-linear,

β
ηβ

(
t−mM + M

ε

)β−1
, for PAS-Weibull.

(10)

The corresponding averaged hazard functions, h∗, are obtained integrating
(10) over an arbitrary maintenance interval and dividing by M , the length
of the maintenance interval,

h∗(M) =
1

M

∫ mM

(m−1)M

hm(t) dt =

{
Mα(2−ε)

2ε
, for PAS-linear,

Mβ−1

(εη)β

(
1− (1− ε)β

)
, for PAS-Weibull.

(11)
Similarly, given the general expression of the reliability function for the linear
and Weibull failure models

R(ω) =

 exp
(
−α

2
ω2
)
, for a linear model,

exp

(
−
(
ω
η

)β)
, for a Weibull model,

(12)

substituting in (12) age by its expression given by (9), the reliability function,
for the PAS-linear and PAS-Weibull models, in period m becomes

Rm(t) =


exp

(
−α

2

(
t−mM + M

ε

)2)
, for PAS-linear.

exp

(
−
(
t−mM+M

ε

η

)β)
, for PAS-Weibull,

(13)

and, as a consequence of stationarity in the PAS model, the averaged relia-
bility functions, R∗, for the two models is obtained by integrating (13) in the
maintenance interval ((m− 1)M,mM).

Note that since the expressions in (13) are not integrable functions we can
use their power series representation to perform the integration. The corre-
sponding approximation of the average reliability R∗(M) is a polynomial in
M whose degree will depend on the number of terms used in the power series
approximation (which, in turn, depends on the desired degree of accuracy of
the approximation).
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4.2. Average hazard and reliability functions for PAR models

Assuming a constant maintenance interval M , the time in which the
equipment undertakes the m-maintenance activity is mM and the age of
the equipment in instant t of period m, w+

m−1, after the (m−1)-maintenance
in equation (5) becomes

ω+
m−1 = t− ε(m− 1)M. (14)

The stationarity property that characterizes the behaviour of age in the PAS
model, does not hold for the PAR model. As a result the evaluation of the
average hazard and reliability for PAR models requires integration of the
hazard and reliability functions over the replacement period (0, RP ). Since
the age representation given by (14) is not continuous in (0, RP ) we use the
following linear approximation,

ω(t, ε) = t(1− ε) +
Mε

2
, 0 < t < RP. (15)

The age of the equipment (as a function of the chronological time) for the
PAR model and the linear approximation in (15) are shown in Figure 1-(b).

Substituting age by its expression given by (15) in formulas (3) and (4),
the hazard function for the PAR-linear and PAR-Weibull models becomes:

h(t) =

{
α
(
t(1− ε) + Mε

2

)
, for PAR-linear,

β
ηβ

(
t(1− ε) + Mε

2

)β−1
, for PAR-Weibull.

(16)

The corresponding averaged hazard functions, h∗, are obtained integrating
(16) over the replacement period and dividing by RP ,

h∗(M) =
1

RP

∫ RP

0

h(t) dt =

{
α
2
(εM +RP (1− ε)), for PAR-linear,

(Mε+2RP (1−ε))β−(Mε)β

RP (1−ε)(2η)β , for PAR-Weibull.

(17)
Similarly, substituting in (12) age by its expression in (15), the reliability
function for the PAR-linear and PAR-Weibull models becomes

R(t) =


exp

(
−α

2

(
t(1− ε) + Mε

2

)2)
, for PAR-linear,

exp

(
−
(
t(1−ε)+Mε

2

η

)β)
, for PAR-Weibull.

(18)
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tM mM

ω+
m

ω−
m

ω(t)

(a) PAS.

tM mM

ω+
m

ω−
m

ω(t)

(b) PAR.

Figure 1: PAS and PAR models age behaviour as function of time.

The average reliability function, R∗, for the PAR-linear and PAR-Weibull
models is then obtained by integrating (18) over the interval (0, RP ) and
dividing by the length of the replacement period, RP . Once again, since the
expressions in (18) are not integrable functions we can use their power series
representation to perform the integration.

4.3. Cost models

The relevant costs, in analyzing maintenance optimization of a safety-
related equipment with a single component, include the cost contributions
associated with performing preventive and corrective maintenance and the
cost associated with replacing the component. In particular the hourly cost
of the equipment as a function of the maintenance interval M is given by:

C(M) =
cm
M

+
1

M
[ρ− h∗(M)M ]cc +

co
RP

, (19)

where cm and cc denote the cost associated with conducting each preventive
and corrective maintenance, respectively; co is the total cost of replacing the
component; ρ is the cyclic or per-demand failure probability; h∗ is the average
hazard function discussed in subsections 4.1-4.2; and both M and RP are
expressed in hours.

The average reliability function, R∗(·), and the hourly cost function, C(·),
that we derived here are used as objective or restriction functions in the
optimization problem that we describe in more details in the next subsection.

4.4. Multi-objective Optimization Problem

The problem of optimizing the maintenance activities of an equipment
has a natural formalization as Multi-Objective Optimization Problem (MOP)
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where the goal is to determine the value of the maintenance intervals, over
the replacement period, in each component of the equipment (the decision
variables) that maximize the average reliability and minimize the hourly
cost (the objective functions) under a set of constraints, that, in our case,
are restrictions on the maintenance intervals generated by the value of the
hourly cost and reliability, (Ci, Ri), associated to the current maintenance
intervals implemented in the plant. The solution of the MOP problem is a
two step procedure. At the first step, the initial point (Ci, Ri) determines the
feasible region to solve two Single-Objective Optimization Problems (SOP),
where only one criterion (cost or reliability) is involved in the optimization
process acting as the single objective function, and the other is implemented
in the set of constraints. In particular, the first SOP problem consists in
determine the value of the maintenance intervals in each component that
minimize the cost per hour of the equipment subject to the restriction that
the average reliability must be greater or equal to the initial value Ri. We
denote the hourly cost and the average reliability associated to the solution
of this first SOP problem by (Cr, Ro). The second SOP problem consists
in determine the value of the maintenance intervals in each component that
maximize the average reliability of the equipment subject to the restriction
that the cost per hour must be smaller or equal to the initial value Ci. We
denote the hourly cost and the average reliability associated to the solution
of this second SOP problem by (Co, Rr).

The solutions of the two SOP’s subproblems establish a new feasible re-
gion to solve the MOP acting as new restrictions and references to define the
effectiveness of any feasible solution to the MOP in terms of the relative im-
provement in each objective function. We define the opposite of the relative
improvement at each feasible solution as

e(C) =
C − Cr
Cr − Co

; e(R) =
Rr −R
Ro −Rr

.

Applying the so-called weighted sum strategy, the multi-objective prob-
lem of minimizing the vector of objective functions is converted into a scalar
problem by constructing a weighted sum of e(C) and e(R). In particular,
if we take the weighting coefficients in interval [0, 1] wich sum to one, the
second step of the MOP procedure consists in the minimization of a convex
combination of both effectiveness functions, e(C) and e(R), subject to the
restrictions generated by the solutions of each SOP. The solution of this mini-
mization problem produces the Pareto front of the MOP problem (see Figure
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C

R

(Co, Rr)

(Cr, Ro)

(Ci, Ri)

Figure 2: Multi-Objective Optimization Problem.

2) a rich set of non-dominated solutions from which the decision maker can
choose the one that provides the best trade-off between cost and reliability.

The efficiency and accuracy of the solution of a MOP problem depend,
among other things, on the characteristics of the objective function and con-
straints. In our case, where the objective functions and constraints are non-
linear functions of the decision variables, the problem is known as Nonlinear
Programming (NLP). A solution of the NLP problem generally requires an
iterative procedure to establish a direction search at each major iteration
through the resolution of several Quadratic Programming subproblems (i.e.
minimization of a quadratic objective function that is linearly constrained).
These methods are commonly referred to as Sequential Quadratic Program-
ming (SQP) methods. Details can be found in Biggs (1975), Powell (1983)
or Fletcher (1987).

5. Application

In this section we illustrate the general approach to optimal maintenance
activities described in this paper using a data set containing failure time and
maintenance activities of eight motor-operated safety valves of a Nuclear
Power Plant (NPP) over a period of ten years. The failures are classified
as electrical or mechanical. The electrical failures are associated with the
actuator component while the mechanical failures correspond to the valve
component. In order to mitigate the equipment aging process, maintenance
activities are currently performed on each component every 180 days. The
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choice of 180 days for the maintenance interval of both components, however,
is the result of heuristic considerations.

The goal is to use the observed data and the proposed approach to find
the optimal values of the maintenance intervals for each component that
possibly provide a better tradeoff between reliability and cost.

As described in the previous sections, for each component we consider
four candidate models for the component behaviour: PAS-linear, PAR-linear,
PAS-Weibull, and PAR-Weibull. Maximum likelihood parameters estimates
by model type and type of component are shown in Table 1.

In Table 1 we also show the maximized likelihood (L) and the values of
the LCV, the AIC, and BIC statistics used for model selection. Optimal
values of the three selection criteria are highlighted in bold. As we noted in
Section 3.2, LCV is a positive oriented measure of model’s performance (the
larger the better) while AIC and BIC are negatively oriented measures (the
smaller their value the better is the model). As shown in table 1 the results of
model selection are robust with respect to the choice of the selection criterion.
Regardless of the criterion used (LCV, BIC or AIC) the best model for the
actuator is the PAS-Weibull, while the best model for the valve is the PAR-
linear. Note that for the valve component an analysis of model performance
based on the maximized likelihood L (that ignores model complexity and
over parametrization) would select the PAR-Weibull model rather than the
simpler PAR-linear model.

The best models for the actuator (PAS-Weibull) and for the valve (PAR-
linear) are used as inputs for the optimization problem discussed in Section
4, where, for both components, optimization is performed under reliability
and cost criteria, and maintenance intervals (MA for the actuator and MV

for the valve) are the decision variables. The replacement period for both
components is RP = 87600 hours. The yearly cost associated with con-
ducting each preventive and corrective maintenance (cm and cc), the total
cost of replacing the component (co) and the cyclic failure probability (ρ) by
component type are shown in Table 2.

Using the estimated models in Table 1 (the PAS-Weibull for the actuator
and the PAR-linear for the valve) and the cost parameters in Table 2, we
derive the average reliability and cost functions. As mentioned before, the
average reliability function is obtained by integration of the corresponding
reliability function by using a power series approximation. For the actuator
just two terms in the power series representation are sufficient to obtain an
approximation R∗

A(MA) of the average reliability function with an accuracy
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Model Components Parameters L LCV AIC BIC
PAS-linear Actuator α = 5.97e−9 2.03e−42 1.13e−39 195.9995 199.3266

ε = 1

Valve α = 1.54e−9 1.57e−26 7.98e−28 122.8291 125.9398
ε = 0.6002

PAR-linear Actuator α = 5.97e−9 2.03e−42 1.13e−39 195.9995 199.3266
ε = 1

Valve α = 1.73e−9 2.17e−26 1.30e−27 122.1891 125.2998
ε = 0.7584

PAS-Weibull Actuator β = 7.4708 7.85e−40 9.09e−36 186.0866 191.0773
η = 15397
ε = 0.8482

Valve β = 3.9505 3.25e−26 5.68e−30 123.377 128.0431
η = 32465
ε = 0.3256

PAR-Weibull Actuator β = 7.0403 5.94e−40 7.55e−36 186.6421 191.6328
η = 14971
ε = 0.9149

Valve β = 3.845 4.47e−26 4.95e−30 122.7397 127.4057
η = 29895
ε = 0.5282

Table 1: Summary of the estimation and model selection results.

ρ cc cm co
Actuator 9.1e−4 3120 300 1900

Valve 9.1e−4 3120 800 3600

Table 2: Single cost data for actuator and valve in e/year.
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of 10−9,

R∗
A(MA) = 1 +

(
MA

εη

)β (
(1− ε)β+1 − 1

)
εA(β + 1)

.

For the valve, however, we needed six terms in the power series representa-
tion of the reliability function to obtain an approximation R∗

V (MV ) with an
accuracy of 10−7 (the expression of R∗

V (MV ), a polynomial of degree 10 in
MV whose coefficients are products of powers of parameters, is omitted due
to its extension and complexity). The global average reliability function of
the equipment, R∗(MA,MV ), is then obtained as the product of the average
reliability function of each component,

R∗(MA,MV ) = R∗
A(MA) ·R∗

V (MV ). (20)

Replacing in (19), the cost parameters in Table 2 and the expression of
the averaged hazard functions, h∗, in (11) and (17), for the selected models
(PAS-Weibull for the actuator and the PAR-linear for the valve), we obtain
the expression of hourly cost of the equipment as a function of the decision
variables MA and MV (to unify time units to hours we multiply yearly cost
by 8760),

C(MA,MV ) = 8760

[
1

MA

(
300 + 3120

(
9.1e−4 +

(
MA

εAη

)β
(1− (1− ε)β)

))

+
1

MV

(
800 + 3120

(
9.1e−4 + αMV

2
(εVMV +RP (1− εV )

))]
+550. (21)

Finally, using (20) and (21) and the current maintenance activities in-
tervals implemented in the NPP for the actuator and the valve (MA =
MV =4320 hours, i.e. 180 days), we obtain the initial values for the ob-
jective functions: Ri = 0.857848 and Ci = 3372.94e. These values act as
restrictions to solve the single-objective optimization subproblems, which are
stated as:

min C(MA,MV )
s.t. R ≥ Ri

0 ≤MA,MV ≤ 87600
and

min −R(MA,MV )
s.t. C ≤ Ci

0 ≤MA,MV ≤ 87600.
(22)

The solution of the cost minimization subproblem (in days) is (MA,MV ) =
(270, 176), and reduces the yearly cost in nearly 150e in each equipment,
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MA MC C R
Initial 180 180 3372.94 0.8578

. . . . . . . . . . . .
opt(R) 261 162 3371.89 0.8602

. . . . . . . . . . . .
264 165 3336.87 0.8597
. . . . . . . . . . . .
265 167 3229.51 0.8579
. . . . . . . . . . . .
266 169 3294.38 0.8590
. . . . . . . . . . . .
267 172 3264.38 0.8585
. . . . . . . . . . . .
268 174 3244.62 0.8582
. . . . . . . . . . . .

opt(C) 270 176 3224.35 0.8579

Table 3: Some results of the optimization process.

keeping their averaged reliability slightly higher than its initial value. The
solution of the reliability maximization subproblem (in days) is (MA,MV ) =
(261, 162) with an associated reliability of 0.860161 and an associated cost
lower than the current one. The solutions of both subproblems generate the
new feasible set where MOP must be solved. Taking values of weighting co-
efficients in the interval [0,1] and decision variables bounded in the interval
[0,87600], the SQP method provides 155 non dominated solutions which de-
scribe the Pareto front of our problem. Table 3 shows some of these solutions
in addition to those associated to the initial values and to the solutions of
the subproblems in (22).

6. Conclusions

In this paper we describe a general approach to optimal imperfect main-
tenance activities of a repairable equipment with q independent components.
The proposed procedure allows to relax some of the assumptions that char-
acterize existing proposals. In particular, rather than assuming that all the
components of the equipment share the same failure rate and maintenance
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models and the same maintenance interval, and that the effectiveness param-
eter is known, we consider for each component a class of four candidate mod-
els that are obtained combining two possible models for failure rate (Weibull
or linear) and two possible models for imperfect maintenance (PAS y PAR)
and let the data select the most suitable model for each component. Both
the parameters of the failure rate model and the effectiveness parameter of
the IM models are assumed to be unknown and are jointly estimated via
maximum likelihood. Model selection is performed, separately for each com-
ponent, using three standard criteria that take into account the problem of
over-parametrization. The selected models are used to derive the cost per
unit time and the average reliability of the equipment, the objective func-
tions of a Multi-Objective Optimization Problem with maintenance intervals
of the single components as decision variables.

We illustrate the advantages of the proposed procedure using a data set
containing failure time and maintenance activities of eight motor-operated
safety valves of a NPP over a period of ten years. The results of this real
data example well illustrate: (1) the importance of considering a class of
model for each component and allow the selected model and the maintenance
interval to be different for different components of an equipment (the best
model for actuator and valve in the example are PAS-Weibull and PAR-linear
respectively, and the optimal maintenance intervals for the two components
that make the Pareto front of the optimization problem are also different); (2)
the limitations of the maximized likelihood as model selection criterion and
the importance of considering alternative criteria that do take into account
model complexity and over-parametrization (in the example the maximized
likelihood would pick the Weibull-PAR model as best model for the valve
rather than the simpler linear-PAR model selected by AIC, BIC and LVC
criteria); (3) the importance of assuming the effectiveness parameter of the
IM models to be unknown (notice how the estimates of ε in Table 1 differ
across the different models of the two components).
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