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In this paper we investigate the properties of two-dimensional (2D) convolutional codes which are obtained
from series concatenation of two 2D convolutional codes. For this purpose we confine ourselves to dealing
with finite-support 2D convolutional codes and make use of the so-called Fornasini-Marchesini input-state-
output (ISO) model representations. Within these ISO representations we study when the structural
properties of modal reachability and modal observability of the two given ISO representations carry
over to the resulting 2D convolutional code. Moreover, we provide necessary conditions for obtaining a
systematic concatenated convolutional code. Finally, we present a lower bound on its free distance.

1. Introduction

Codes derived by combining two codes (an inner code and an outer code) form an important class
of error-correcting codes called concatenated codes. This class, originally introduced by D. Forney
in 1965 (Forney, 1967), became widely used in communications due to fact that this technique
results in improving the probability of error (decreasing exponentially with code length), while
decoding complexity increases only polynomially (MacWilliams & Sloanepp, 1977, pp. 307-316).
Although the first construction of concatenated codes used block codes, NASA started to use a
short-constraint-length (64-state) convolutional code as an inner code, decoded by the optimal
Viterbi algorithm. Indeed, it was in 1993 that the field of coding theory was revolutionized by
the invention of turbo codes (concatenation of two convolutional codes) by Berrou, Glavieux &
Thitimajshima (1993). In this paper we are interested in Series Concatenation of Convolutional
Codes (SCCC) which are based on the application of two convolutional coding techniques twice
on the data input, first on the direct data sequence and second on the interleaved one (Benedetto,
Divsalar, Montorsi & Pollara, 1996).

Convolutional codes are one dimensional (1D) convolutional codes and can be seen as a general-
ization of block codes in the sense that a block code is a convolutional code with no delay, i.e., block
codes are basically 0D convolutional codes. In this way, two-dimensional (2D) convolutional codes
extend the 1D convolutional codes. These codes have a practical potential in applications as they
are very suitable to encode data recorded in two dimensions, e.g., pictures, storage media, wireless
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applications, etc. Despite the recent increasing interest (Almeida, Napp & Pinto, 2016; Climent,
Napp, Pinto & Perea, 2016; Lobo, Bitzer & Vouk, 2012; Napp, Pinto & Simdes, 2016; Ozkaya,
2014), in comparison to 1D convolutional codes, little research has been done in the area of 2D
convolutional codes and much more needs to be done to make it attractive for real life applications.

Convolutional codes have been defined using different points of view. In this paper we will make
use of two: the module-theoretic and the systems theory points of view. The module-theoretic
point of view uses generator matrices to represent the convolutional code whereas the systems
theory approach uses typically input-state-output representations (Kailath, 1980). Concatenated
convolutional codes have traditionally been investigated by means of generator matrices. However,
in (Climent, Herranz & Perea 2007, 2008) the first analysis of concatenated convolutional codes
using linear systems theory was proposed. The 2D counterpart has been very little investigated
(Climent, Napp, Perea & Pinto 2012; Climent et al., 2016; Climent, Napp, Pinto & Simdes, 2015;
Napp et al. 2016).

In this paper we investigate the properties of the series concatenation of 2D convolutional codes
by means of input-state-output representations. We extend previous results presented in (Climent
et al., 2015) by studying a new type of concatenation that has not been analysed before in the
context of 2D convolutional codes. In this work we confine ourselves to finite-support 2D convo-
lutional codes and make use of the so-called Fornasini-Marchesini input-state-output (ISO) model
representations. First we show that the series concatenation of two 2D convolutional codes re-
sults in another 2D convolutional code and we explicitly compute an ISO representation. Then,
we investigate under which conditions fundamental properties such as modally observability and
modally/locally reachability of ISO representations of two 2D convolutional codes carry over after
serial concatenation. In fact, we show that while the interconnection of two modally observable 2D
systems is also modally observable, the same does not happen for the properties of reachability.

2. Preliminaries

Let IF be a finite field and let F denote the algebraic closure of F. Denote by F[z1, 23] the ring
of polynomials in two indeterminates with coefficients in F, by F(z1, z2) the field of fractions of

Flz1, 22] and by F[[z1, 22]] the ring of formal powers series in two indeterminates with coefficients
in F.

2.1 Polynomial matrices in F[z1, 23]
In this section we start by giving some preliminaries on matrices over the polynomial ring F[z1, z9].
Definition 2.1 (Valcher & Fornasini, 1994): A matrix M (21, 22) € F[z1, 22]"*F, with n > k is,
(a) unimodular (i.e., admits a polynomial inverse) if n = k and det(M (21, 22)) € F\{0};
(b) right factor prime (rF P) if for every factorization
M(z1,29) = H(zl, 29)N (21, 22),

with M (21, 29) € Flz1, 20]** and N(z1, 22) € Fz1, 22)***, N (21, 22) is unimodular;
(c) right zero prime (rZP) if the ideal generated by the k x k minors of M (z1, z9) is F[z1, 22].

A matrix is left factor prime ((FP) / left zero prime ((ZP) if its transpose is rFP |/ rZP,
respectively. When we consider polynomial matrices in one indeterminate, the notions (b) and
(c) of the above definition are equivalent. However this is not the case for polynomial matrices
in two indeterminates. In fact, zero primeness implies factor primeness, but the contrary does not
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happen (see Fornasini & Valcher, 1994). The following lemmas give characterizations of right factor
primeness and right zero primeness that will be needed later.

Lemma 2.2 (Levy, 1981; Rocha, 1990): Let M(z1,22) € Flzq, 22)™*F, with n > k. Then the
following are equivalent:

(a) M(z1,22) isTFP;
(b) for all @21, 22) € F(21, 20)F, M (21, z2)0(21, 22) € Flz1, 22]" implies that 021, 2z2) € Fz1, 20]*.
(¢c) the k x k minors of M(z1, z2) have no non-trivial common factor.

Lemma 2.3 (Levy, 1981; Rocha, 1990): Let M(z1,22) € Flz1, 0], with n > k. Then the
following are equivalent:

(a) M(z1,22) isrZP;
(b) M(z1,22) admits a polynomial left inverse;
(¢) M(A1,A2) is full column rank, for all A1, e € F.

Remark 1: Obviously, unimodular matrices admit left and right inverses and so by Lemma 2.3
are also rZP and £Z P and therefore also rF'P and (FP.

The following lemma will be needed in the sequel. Let G(z1,22) € Flz1, 20]"**, H(z1,22) €
Flz, zg]("_k)xn, n > k, ¢; the ith column of H(z1, 22) and r; the jth row of G(z1, z2). We say that
the full size minor of H(z1, 22) constituted by the columns ¢;,,...,¢;,_, and the full size minor of
G(#1, 22) constituted by the rows r,,...,r;, are corresponding mazimal order minors of H(z1, z2)

and G(Zl,ZQ), if {il, --win—k} @] {jl, 7]k} = {1, - ,n} and {il, ...,in_k} N {j], ...,jk} = 0.

Lemma 2.4 (Fornasini & Valcher, 1994): Let G(z1,2) € Flz1,20]™* and H(z,z) €
Flz1, 20] ™ %)*" be a rFP and a (FP matrices, respectively, such that H(z1,20)G(z1,22) = 0.
Then the corresponding maximal order minors of H(z1,z2) and G(z1, z2) are equal, modulo a unit
of the ring Flz1, z3].

2.2 2D linear systems

Next we give preliminaries on 2D linear systems, which we will use to construct 2D finite support
convolutional codes. In particular we consider the Fornasini-Marchesini state space model repre-
sentation of 2D linear systems (see Fornasini & Marchesini, 1986). In this model a first quarter
plane 2D linear system, denoted by ¥ = (A1, A2, By, B2, C, D), is given by the updating equations

p(i+1,j+1) = Aw(i,j+1) + Aa(i+1,5) + Bru(i, j+1) + Byu(i+1, ),

1)
y(i,3) = Cux(i,j) + Du(i, j),

where A, Ay € FO% B, By, € FO*k (¢ ¢ F(n=kx3 D ¢ F=k)*k for §.n k € N, n > k, and
with past finite support of the input and of the state and zero initial conditions (i.e., u(i,j) = 0,
x(i,j) = 0 for i < 0 or j < 0 and z(0,0) = 0). We say that ¥ = (Ay, As, By, By, C, D) has
dimension §. The vectors x(i,7), u(i,j) and y(i,j) represent the local state, input and output at
(i,7), respectively.

The input, state and output 2D sequences (trajectories), {u(i, )} enz, {2(4,7)} i )enz;
{y(i,7)}(i,j)ene, respectively, can be represented as formal power series,

i(z1,22) = u(i,j)zi2] € Fllz1, 22]]",
(i,7)ENZ
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i(zla 22): Z x(%])zizé € F[[zb Z2H67
(4,7)€EN?

gz, 22)= Y y(i,5)242) € Fllzr, 2] "
(4,§)eN?

In the sequel we shall use the sequence and the corresponding series interchangeably. Given
an input trajectory u(z1,z2) with corresponding state #(z1,22) and output g(z1, z2) trajectories
obtained from (1), the matrix

(21, 22) = |U(z1, 22)

is called an input-state-output trajectory of X. The set of input-state-output trajectories of X is
given by

kerp(;, ., X (21, 22) = {f(21722) € Fller, 2" ™0 | X (21, 22)7 (21, 22) = 0} (2)

where
L; — A1Z1 — AQZQ —B1z1 — BQZQ 0

X(Zl, ZQ) =
-C —-D Ik

] c F(5+nfk)><(5+n). (3)

Next we present reachability and observability properties of such systems.

Definition 2.5 (Fornasini & Marchesini, 1986): Let ¥ = (A1, Aa, By, B2, C, D) be a 2D linear
system with dimension 9.

(a) ¥ is modally reachable if the matrix
[I(; — A121 — Aoz Bz + BQZQ]

is {FP.
(b) ¥ is modally observable if the matrix

Is — A1z1 — Aoz
C

isrFP.

2.3 2D finite support convolutional codes: ISO representations

It is well known that a convolutional code is essentially a linear system defined over a finite field. In
the 1D case a large body of literature has been devoted to study convolutional codes from a systems
theory point of view. In particular special attention has been given to the analysis of convolutional
codes by means of input-state-output representations (Rosenthal & York, 1999). Next, we extend
this idea to the context of 2D convolutional codes. In this section we recall the definition and
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properties of 2D finite support convolutional codes and introduce the input-state-output (ISO)
representations of such codes by means of the so-called Fornasini-Marchesini state space models.

Definition 2.6 (Valcher & Fornasini, 1994): A 2D (finite support) convolutional code C of rate
k/n is a free F[z1, z9]-submodule of F[z1, 22|, where k is the rank of C. A full column rank matrix
G(z1,22) € F[z1, 22]"** whose columns constitute a basis for C, i.e., such that

C = Imgy;, -,) G(21, 22)
= {ﬁ(zl,ZQ) € Flzy, 29]" | 0(21, 22) = G(z1, 22)0(21, 22), with G(z1,22) € F[zl,zg]k},

is called an encoder of C. The elements of C are called codewords.

Two full column rank matrices G(z1, 22), G(21, 22) € F|z1, 22]
generate the same 2D convolutional code, i.e., if

nxk are equivalent encoders if they

Im]F[Zl,ZQ] G(Zl, 2:2) = ImIF[zl,zZ] 6(21, 22),

which happens if and only if there exists a unimodular matrix U(z1, 20) € F[z1, 22]*** such that
G(21,22)U(21, 22) = G(21, 22) (see Valcher & Fornasini, 1994).

Note that the fact that two equivalent encoders differ by unimodular matrices also implies that
the primeness properties of the encoders of a code are preserved, i.e., if C admits a rF'P (rZP)
encoder then all its encoders are rF'P (rZP). A 2D finite support convolutional code C that
admits »F P encoders is called noncatastrophic, and it is named basic if all its encoders are rZP.

An encoder of the form

G(Zl, 2’2)

G(z1,22) = [ ,
k

] S F[Zl, ZQ]nXk,

up to a row permutation is called systematic. Not all 2D convolutional codes admit a systematic
encoder. We call 2D systematic code to a 2D convolutional code that admits a systematic encoder.
The class of 2D systematic codes is contained in the class of the 2D basic convolutional codes as
the following lemma shows. The proof is straightforward and we omit it.

Lemma 2.7: Let C be a 2D convolutional code with encoder G(z1,23) € Flz1, 20]"*F. Then C is
systematic if and only if G(z1, z2) admits a nonzero constant full size minor.

An important measure of robustness of a code is its distance. We define the notion of distance
as in Weiner (1998). The weight of

i(21,22) = w(i,f)2i2] € Flar, 2],
(4,5)EN?

with v (i, j) € F™ for (i,j) € N2, is given by

wt(0) = Z wt(v(i, 7)),

(4,5)€EN?

where wt(v(é,5)) is the number of nonzero elements of wv(i,j). The distance between
@1(2’1, 2’2), 132(2’1, Zz) € F[Z’l, Zg]n is diSt(ﬁl, 02) = Wt(@l — @2).
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Definition 2.8: Given a 2D convolutional code C, the distance of C, denoted by dist(C) is defined
as

min {dist(f;l, 172) | @1(21, 22),172(21, ZQ) S C, With ’[11(,21, ZQ) 75 @Q(Zl, ZQ)} .

Note that the linearity of C implies that dist(C) = min{wt(v) | 0(21, 22) € C, with 0(z1, z2) # 0}.

Next we make use of the representation machinery in 2D linear systems to treat 2D convolutional
codes. We consider a first quarter plane 2D linear system X as defined in (1). For (i, j) € N2, define

(i, j) = [y(l’])] cF"

u(i, J)

to be the code vector.

We will only consider the finite support input-output trajectories, {v(4, )} jyenz of (1). More-
over, we will not consider such vectors with the corresponding state vector Z(z1, z2) having infi-
nite support, since this would make the system remain indefinitely excited. Thus, we will restrict
ourselves to finite support input-output trajectories (@(z1,22),9(z1, 22)) with corresponding state
Z(z1, #2) also having finite support. We call such trajectories (4(z1, 22), 9(21, 22)) finite-weight input-
output trajectories and the triple (Z(z1, 22),0(21, 22), Y(21, 22)) finite-weight trajectories. Note that
not all finite support input-output trajectories have corresponding state Z(z1, z2) also having finite
support. The following result asserts that the set of finite-weight trajectories of (1) forms a 2D
finite support convolutional code.

Theorem 2.9 (Napp et al., 2010): The set of finite-weight input-output trajectories of (1) is a 2D
finite support convolutional code of rate k/n.

It is worth mentioning that this approach is different from the one adopted in Fornasini and
Valcher (1994) where the codewords are constituted only by the output g(z1, 22) of a system.

We denote by C(A1, Aa, By, B2, C, D) the 2D finite support convolutional code whose codewords
are the finite-weight input-output trajectories of the 2D linear system 3 = (Ay, As, By, B2, C, D).
Moreover, ¥ is called an input-state-output (ISO) representation of C(Ay, As, By, B2, C, D) (see
Napp et al., 2010). The input vector, the output vector and the code vector associated to a
finite-weight trajectory of X are called information wvector, parity vector and codeword of C,
respectively.

Next we will show how the properties of reachability and observability of ISO representations,
stated in Definition 2.5, reflect on the structure of the corresponding code.

Theorem 2.10 (Napp et al., 2010): Let ¥ = (A1, A2, By, B2, C, D) be a 2D linear system. If ¥ is
modally observable then C(Ay, As, B1, Ba, C, D) is noncatastrophic and its codewords are the finite
support input-output trajectories of X.

In case the ISO representation is modally reachable a necessary and sufficient condition can be
stated for the noncatastrophicity of the corresponding code. To show that we need first to introduce
the following technical lemma.

Lemma 2.11 (Climent et al., 2015): Let ¥ = (A, Az, B1, B2, C, D) be a 2D linear system and
X (z1,22) the corresponding matrixz defined in (3). Then ¥ is modally reachable if and only if the
matriz X (21, z2) is {FP.

Proof. Suppose that ¥ is modally reachable; then [L; — A1z1 — Aszo Bz + Bz 0] isFP.



May 13, 2018

International Journal of Control FINAL'VERSION'(to'Submit)

2.3 2D finite support convolutional codes: 1SO representations 2 PRELIMINARIES

Let w1 (21, 22) € F(z1, 22)° and (21, 22) € F(21, 20)" % be such that

[0n(z1,2)T  a(zn, 22)7] X (21, 22) € Fle, 29 X+,

0
= 1bo(z1, 22)7 € Flz1, 2] * (%) Consequently,

Then [wl(zl,zz)T 1@2(21,22)T] !I
n—=k

12)1(21, ZQ)T [Ig — A1z1 — A2Z2 —Blzl — BQZQ O] € F[Zl, ZQ]IX((H—H).

Therefore, by Lemma 2.2, w;(21, 22) € F[z1, zz]5 and X (z1,22) is (FP.
Now suppose that X (z1, 2z2) is £FP. Let w1 (21, 22) € F(z1, ,2'2)(S be such that

i (21, 22)7 [Is — Aiz1 — Aszy Bz + Bz € F21, 2] X0 +0)
then
i (21, 22)7 [I5 — Az — Aoz —Bjz1 — Bozo O] c F[zl,z2]1X(5+”),
Let us consider (21, 22) € F[z1, 22]"*; then
wa(21, Z2)T [—C -D In,k] € Flz, z2]1X(5+n)
and therefore
[1(21,22)T  a(21,22)7] X (21, 22) € Flz, 2] LX)

and, since X(z1,29) is /F P, by Lemma 2.2, [wl(zl,ZQ)T wQ(zl,ZQ)T] € F[Zl,ZQ]lX(6+n_k) and
therefore (21, z2) € F[21, 22]°. The result follows from Lemma 2.2. O

Theorem 2.12 (Climent et al., 2015): Let ¥ = (A1, Ag, By, B2, C, D) be a modally reachable 2D
linear system. Then % is modally observable if and only if C(A1, Ag, B1, Ba,C, D) is noncatas-
trophic.

Proof. From Theorem 2.10, we just need to prove that if C(A;, Aa, By, Ba, C, D) is noncatastrophic
then 3 is modally observable. Let us assume that Y is not modally observable. Then, from Lemma
2.2, there exists a nonconstant d(z1, z2) € F[z1, 23] which is a common factor of all § x § minors of

Ig — A121 — AQZQ
-C

Let L(z1, 29) € Flz1, 22)%%F and G(21, 22) € Flz1, 22]"** be such that

L(Zl, Z2)] _ 0

X(Zl, 22)
G(zl, ZQ)

L(z1, 22)

G(z1,292)
C(Ay, Ag, B, B2, C, D) (see Napp et al., 2010, proof of Theorem 1).

with X (z1,22) defined in (3) and where

] is rF'P and G(z1,%22) is an encoder of
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From Lemma 2.11, X (21, 22) is F'P and note that all (§+n—k) x (0 +n — k) minors of X (21, 22)
Is — A1z1 — Agzo

whose corresponding submatrices include o have also d(z1,22) as common

factor. Therefore, by Lemma 2.4, all k x k minors of G(z1, z2) have d(z1, z2) as common factor which

implies that G(z1, z2) is not 7F P and consequently C(A1, A, By, Ba, C, D) is catastrophic. O

The next proposition establishes necessary and sufficient conditions for a convolutional codes to
be systematic.

Proposition 2.13: Let ¥ = (A1, Aa, By, B2,C, D) be a modally reachable 2D linear system and
X(z1,22) the corresponding matriz defined in (3). Then C (A1, A2, B1,Bs,C, D) is systematic if
and only if X(z1,22) has a (0 +n — k) x (6§ +n — k) unimodular submatriz, computed by picking
up necessarily its first § columns.
_ | La(z1,22)
Proof. Let L(z,z2) = [G(zl, )
Li(z1,29) € Flzy, 22)°%F and G(z1,22) € Flz1, 22]™** an encoder of C = C (A1, As, By, By, C, D).
Note that, since ¥ is modally reachable then, by Lemma 2.11, the matrix X (z1, 22) is (F'P.
Then C is systematic if and only if, by Lemma 2.7, G(z1, 22) admits a nonzero constant full size
minor, i.e., if and only if, by Lemma 2.4, X (21, z2) has a nonzero constant (6 +n —k) x (6 +n —k)
minor, computed by picking up necessarily its first § columns, and the result follows. ]

] be a rF'P matrix such that X(z1,22)L(21,22) = 0, with

For a given system 3 = (Aj, Ag, By, By, C, D) of dimension § the property of Is — A1z1 — Agzs
being unimodular guarantees that such a system is modally reachable and modally observable and
the corresponding convolutional code is systematic. The proof is simple but we include it for the
sake of completeness.

Proposition 2.14: Let ¥ = (Ay, Ag, By, B2, C, D) be a 2D linear system such that Is— A1z1— Agzo
1s unimodular. Then:

(1) ¥ is modally reachable and modally observable.
(2) C(Ay, Ag, By, Bs,C, D) is systematic, with an encoder

Glor,29) = [T(z}]; zQ)]

where T(21,29) = C (I — A121 — Aaz2) ' (Biz1 + Baza) + D € Flzy, 2] " H)k,

Proof. (1) If Iy — Ayz1 — Asze is unimodular, then Is — Ajz; — Asgzo is /ZP and therefore
[L; — A12z1 — Aoz Biz + Bgzg] is £Z P which means that it is £F'P. Thus 3 is modally reach-
able. By Lemma 2.11, the corresponding matrix X (z1, 22) defined in (3) is F'P and all his 0 x §
minors have no common factors.

On the other hand, let L(z1, 29) = |:L1(Zl, 22)

G(z1, 22)
with Li(z1,22) € FO** and G(z1, 20) € F**F an encoder of C = C (A1, Ay, By, By, C, D). Then by
Lemma 2.4, we know that the k x k minors of G(z1, 22) have no common factors and the result
follows from Theorem 2.12.

(2) The result follows from (1) and Proposition 2.13. If we re-write the code vector as a formal
power series it is easy to see that

] be a rF'P matrix such that X (z1, 22)L(z1,22) = 0,

T (21, 22)

’(A)(Zl, ZQ) =
I,

] ﬂ(zl, 22),
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where T(z1,20) = C(I — A1z1 — Agzy) ' (B121 + Boz) + D € F(z1, 20) %)%k In fact, since an
input-output trajectory of ¥ satisfies

(21, 22)
L; — A1Z1 — AQZQ —B121 - BQZQ 0
fé(zl, 22) = O,
—C -D Lik| |
y(Zl, 22)

then
(Is — Ar1z1 — Aa20)E(z1, 22) — (B1z1 + Baza)u(z1,22) =0
{ —C#(z1,22) — Du(z1, z2) + In—x9(z1,22) =0
which is equivalent to
#(21,20) = (Is — A121 — Aozg) Y (B121 + Bozo)t(z1, 20)
{ (21, 22) = (C(I — Ayz1 — Asz9) Y (Biz1 + Bazo) + D) (21, 22)
Therefore

@(2’1, ZQ)

@(Zl, 2’2) = [

ﬂ(zl, ZQ)

3. ISO representations of concatenated 2D convolutional codes

In this section we study 2D convolutional codes that result from series concatenation of other two
2D convolutional codes. We will consider a very general series concatenation scheme as the one
proposed in Climent et al. (2007) for series concatenation f 1D convolutional codes. In particular
we focus on finding conditions for the properties of modal reachability and modal observability
for obtaining a systematic concatenated code. We conclude the section by giving a lower bound
on the distance of the resulting code.

Let C; and Cy be two 2D convolutional codes of rate k/m and m/n, respectively. We denote by

u®, y(i) and v the information vector, parity vector and codeword of C;, for i = 1,2, respectively.
Let us consider the series concatenation of C; and Cs so that the information vector u(® of Cs is

the codeword of Cy, i.e.
1
u® =, = |Y
ey,
as represented in Figure 1.
The next result shows that the series concatenation of two 2D convolutional codes is a 2D
convolutional code and presents an ISO representation for this concatenation.
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uM i, j) Ci PRIG) i C2

(m, k) (n,m)

v @ (i,4)

y (i, 5)

ARICY))

Figure 1. Series concatenation of C; and Ca

Theorem 3.1 (Climent et al., 2015): Let C; and Ca be two 2D convolutional codes of rate k/m
and m/n, respectively, and for i =1,2 let

= (A0 50 5.9, )
be an ISO representation of C; of dimension ;.

The series concatenation C of Ci and Cy is a 2D convolutional code of rate k/n with ISO repre-
sentation

Y = (A17A27Bl7B2707D)7
given by

A e

c F(51+52)X(51+52) A2 — c F(51+52)X(51+52)

o AW

(2) (2) H(1) [R(2) (2) (1)
B ByYD B B5'D
B1 — 12 + B c F(51+52)><k7 B2 — 22 + 21 c F(61+52)Xk

)

Bgl) Bél)

D" + D

c F(n—k)xk:’
DM

[C@) pPcm
C =

c F(n—k)x(dl—l—ég)’ D—
0 cm

where B§2) = [Bg) Bg)} , 352) = {Bg) Bg)] and D®) = [DEQ) Dém}, with Bg) € Fo2x(m—k)

Bg) c F§2Xk, D%Q) e F(nfm)x(mfk) and D§2) c F(nfm)xk_
Proof. Let us consider 31 and Y3 the ISO representations of C; and Cy given, respectively, by
2W@G+1,5+1) = APaO@ j+1) + AP2OG+1,5) + BPuW (i, j+1) + BPuD (i+1, ),
y D@, j) = CWal(i,j) + DOuM(i,j),
and

D(i+1,5+1) = AP, j+1) + AP 2@ (i+1,5) + BPu@ (i, j+1) + BPu@ (i+1,5),
y@(i,5) = CPBz@(4,5) + DPu (i, ),

10
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Bearing in mind that the information vector of Cy is the codeword of C1, we can replace in 3 the

input vector u(? (i, 7) by

o Y (4, 9)
v(l)(zaj)_ /- -
u M (i, 5)
and we obtain
:1:(2)(1' Jj+1) x(2)(i+1 7)
@(i+1,j+1) = (2) (2) ~(1) ’ + 149 (2) ~(1) ’
2@(i+1,5+7) = [4P BEcw)] 11 4@ BZcw)] et

+ (B + BYDO) Vi, j+1) + (BE + B DY) uM(i+1, ),

2@ (5,4

) J

y@6,5) = [pPc @)

+ (PPDW + D) u (i, ),

at (i, g

where B = B2 @], BY = [BY BY| and D® = [D DR, with B} € Fhx(nh),

2
Bg) c Fézxk’ D§2) c F(n—m)x(m—k) and D§2) c Fn—m)xk

Note that the input, state and output vectors of the ISO representation of the series concatenation

of C1 and Cq are, respectively,

(i, ) y®(i. )
u(i,j) = uM (@, 5), x(,j) = hy) = ‘
9) =uBed), =(td) L“)(z‘,j)] ) Lm(z‘,j)]

Then the ISO representation of the series concatenation of C; and Cy is

o [ mEew) o a mPe]
z(i+1,5+1) = o |z + N R Ga ks
0 A 0 AL
B eBfo0]  [EResgpn]
) u(i, j+1) + ) u(i+1,7),
B BV
c@®  pPcw pPpW 4 pP
y(i,j) = x(i, j) + u(i, j).
0 c® D)

It is natural to ask when a code obtained by this concatenation is modally observable. A sufficient

condition is given by the following theorem.

Theorem 3.2 (Climent et al., 2015): For i = 1,2, let ¥; = (Agi),Ag),By),Béi),C(i),D(i)) be a

2D linear system of dimension &;. If 31 and Yo are modally observable, then the 2D linear system

> defined in Theorem 3.1 is modally observable.

Proof. Assume that ¥; and ¥y are modally observable. Attending to Theorem 3.1, we have to

11
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prove that the matrix

_I(Sz - A?)Zl - A§2)Z2 —BS)C(l)Zl _ 353)0(1)22‘
0 Iy = A0z — A0z,
Y(Zlv ZQ) -
c® D&Q)C(l)
L 0 cW |

is rFP. Let (21, z2) € F(21, 22)2%% be such that

Y(Zla 22)12}(21, 2’2) & F[Zly 22]61+52+n7k'

Suppose that w(z1,22) = [W2(21, 22) wn (21, ZQ)T]T with g (21, 22) € F(21, 22)%. Then

1

I(; — Agl)zl — Agl)ZQ
Wy (21, 22) € Flzq, 2] TmF

cW

and, since ¥, is modally observable, w;(z1, z2) € Flz1, z2]51.
On the other hand,

Lg — AgQ)Zl — Ag2)22

2

Wo(21, 22)
c®?)
—BS)C(l)Zl - BS)C(l)zQ
+ 1211(21, 22) S F[Zl, 22]52+n—m
pPcow

which implies that

Is, — A§2)zl — Ag2)z2 5
12;2(21, 22) S F{Zl, 22] aFn—m

)

and, since X9 is modally observable, 1 (21, 22) € F[z1, 22]%2, and therefore (21, z2) € Flz1, 22]% %,
Thus, by Lemma 2.2, Y (21, z2) is rF'P and therefore 3 is modally observable. O

The next corollary is a consequence of Theorems 2.12 and 3.2 and shows that if the original
systems are modally reachable then modal observability and noncatastrophicity carry over to the
resulting concatenated code.

Corollary 3.3: For i = 1,2, let C; be a 2D convolutional code with ISO representation Y; and
such that 3; are modally reachable. If C1 and Co are noncatastrophic then the 2D linear system
Y = (A1, Ay, B1, By, C, D) defined in Theorem 3.1 is modally observable and therefore the respective
series concatenated code C (Ay, Aa, Bi, B, C, D) is noncatastrophic.

12
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The next example shows that it is not sufficient that the 2D linear systems 31 and Y9 are modally
reachable to get the 2D linear system defined in Theorem 3.1 modally reachable.

Example 3.4: Let a be a primitive element of the Galois field F = GF(8) with o® +a +1 = 0,
and consider, for ¢ = 1,2, the 2D linear system >; = (Agz), A(;), BY), Béz), c, D(i)>, where

1 1 o 0 1 1 1 0
T A B S SR R

0 0 o
o = [044 ag] , DM = [1 a4] ,
4
2 2 « 1 2 2 1 0 1
Ag):AQ):|:a3 0:|7 BE)_Bé):[a 1 Oé:|,

and C@ and D@ are matrices of suitable dimensions, and let ¥ = (A1, Aa, B1, By, C, D) be the
2D linear system as defined in Theorem 3.1, with

at 1 ot a’ 1 ad
« 0 ad at o’ ab
Al—Ag— 0 0 a 0 and Bl—Bz— 1 0
0 0 0 a? 0 ab
It is easy to see that the matrices
RW(z1,29) = [12 — AWz — AWM, B + Bg%}
and
R(Q)(Zh 29) = [[2 — Agz)zl - AgQ)ZQ Biz)zl + BéQ)zg}
are /I'P. In fact,
1 0
;o )
RW (21, 29) a 0| =1 RO(z,2) [a* 1| =D,
0 ag O{2 «
0 0

which means that R(M (21, 2) and R®)(z1, 29) are £ZP, and therefore, they are also /FP.
But the matrix

R(z1,29) = [Is — A1z1 — Agz Biz1 4 Baz]
is not /F'P. In fact, there exists

(21, 20) € F(z1, 20) 4\ Flzy, 2] 14

13
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such that

w(z1, 22)R(21, 22) € Flz, z2]1><6.

Just consider

1
w(z1, 22) = ) [1 21+ 29 a(z + 22)2 0] ,

T+az+2)
which is not polynomial, and
(21, 22)R(z1,22) = [1+ (21 +22) 0 @21 + 22) (1 + o' (21 + 22))
a(z1+2) (m+z)(l4+z+2) (2 +2),
which is polynomial. Then R(z1, 22) is not ¢F P, which means that 3 is not modally reachable.
Next we present a necessary condition for the concatenated code to be modally reachable.

Theorem 3.5: Fori = 1,2, let ¥; = (Agi),Ag),Bgi),Béi),C(i),D(i)> be a 2D linear system of

dimension O;, such that the matriz Is, — A?)zl — AgQ)zg is unimodular. Let ¥ be the 2D linear
system defined in Theorem 3.1. Then:

(1) If X1 is modally reachable, then ¥ is modally reachable.
(2) If X1 is modally observable, then % is modally observable.

Proof. (1) Assume that ¥; is modally reachable and that the matrix Is5, — Agz)zl — AéQ)ZQ is
unimodular. According to Theorem 3.1, we have to prove that the matrix R(z1, 22) given by

o APa - APs BPCUn - BCts, (B BEDO) (5 + BDY)
0 151 — Agl)zl — Agl)ZQ B%l)zl + Bél)ZQ
is /FP.
Let (21, 22) € F(z1, 22)"*®1%) be such that (21, z0)R(21, 22) € Flz1, 2] *(01+9+k) - Suppose
that Z@(Zl, 22) = [’LZ)Q(Zl, ZQ)T 1211(21, ZQ)T] with wz(zl, ZQ) € F(Zl, 2’2)52. Then

(21, 20)T <I52 - AgQ)zl — Ag2)2’2) € Flz1, 2] %%

and, since I, — AgQ)zl — Ag2)z2 is unimodular by Remark 1 and Lemma 2.2, wa(z1, 22) € Flz1, 22]52.

On the other hand,
(21, 2)T [—Bﬁ)cmzl — BP0, (B{‘;) + Bﬁ)D(D) o+ (ng> + B§?D<1>> zQ] +
(21, 20)7 [le A A, B, 4 B§1)Z2] € Flz1, 2] X 10)
which implies that

w1(21,22)T [[51 — Agl)zl _ Agl)z2 B§1)21 +B§1)22} c ]1.?[21722]1><(61+k)

14



May 13, 2018

International Journal of Control FINAL'VERSION'(to'Submit)

3 ISO REPRESENTATIONS OF CONCATENATED 2D CONVOLUTIONAL CODES

and, since ¥; is modally reachable, w;(z1, 22) € F[z1, 22]51. Therefore w(z1, z2) € F[z, 22]1X(51+52)
and, by Lemma 2.2, R(z1, 22) is F'P and thus ¥ is modally reachable.
Using a similar reasoning the proof of (2) readily follows. O

The next result follows from previous theorem and Proposition 2.14 and provides conditions for
obtaining a systematic convolutional code.

Corollary 3.6: For ¢ = 1,2, let C; be a 2D convolutional code with ISO representation ¥; =
<Agl), Ag), B%l), Bg), cl, D(i)) of dimension 0;. Suppose that the matriz Is, — Ag2)zl — AgZ)ZQ 18

unimodular and Cy is systematic. Then the series concatenation of C1 and Co is systematic.

However, the next example shows that the concatenation of two systematic 2D convolutional
codes does not necessarily yield a systematic 2D convolutional code.

Example 3.7: Let o be a primitive element of the Galois field F = GF(8) with a® + a + 1 =
0, and consider, for ¢ = 1,2, the 2D convolutional code C; with ISO representation ¥; =

(ASZ)v Ag)a B§l)’ Bg)’ C(l)’ D(Z)> ’ where

M _ 4 _ [0 1] 1) _ p1)_ [0
PR S R
m_ |t 1 a _ |1
o= 1 po=]i)

@ _[1 0 @ _[0 10
¢ _L 1]’ b _[101'

Note that C; and Cy are systematic. In fact, the corresponding matrices defined by (3)

1 21 + 29 0 0 O
0 I14+a(zi+2) a 0 0
Xi(21,22) = 1 (1 ) 11 ol

1 1 1 01
14+21+20 0 21429 21+ 22 0 0 0
0 1 0 21+ 20 alzi+2z2) 0 0

Xa(21,22) = 1 0 0 1 ( 0 ) 1 o’

1 1 1 0 1 01

both have a unimodular submatrix of order 4 (columns 1,2,3 and 5 for matrix X (21, 22) and for
matrix XQ(Zl, 22)).

15
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Let C be the series concatenation of C; and Cs; then, by Theorem 3.1, the corresponding matrix
X (21, 22) defined by (3) is

[an

_1+Zl+2’2 0 0 0

0 1 21+ 2 zZ1 + 22 (1+ )

0 1 21 + 29

1421+ 22 a(z
1

—~

21 + ZQ)

22) = N(z1,22)X (21, 22)

SO O, OO OO
SO OO O OO
O OO OO OO
oo oo o oo

OO M= OO

(Nl e N

_—= O = o
+

0
1
1 1
1 1
1 1

with

1+ 21 + 29

s}

N(Zl, 22) =

OO O OO+ OO
OO OO OO Oo
DO O R OO OO
OO OO O oo
O OO OO oo
_H O OO oo oo

0
1
0
0
0
0
0
0

OO OO OO

which is not unimodular and therefore X (21, 2z2) is is not ¢F'P.

To conclude the paper we present a lower bound on the distance of the concatenated code in terms
of the distance of C; and the distance of the set constituted by the parity vectors corresponding to
the codewords of Cs.

For i« = 1,2, let ¥; = (Agz), Ag), Bfl), Bél), cl), D(i)> be an ISO representation of the

2D systematic code C;, with dimension ¢;, where I5, — Agz)zl — Ag)zz is unimodular. Let

also ¥ = (A1, A9, B1,B2,C,D) be the 2D linear system defined in Theorem 3.1 and C =
C (A1, A2, By, B2,C, D) be the corresponding code. Then, a codeword of C is of the form

U2(z1, 22)

01(21, 22)

0(z1,22) = [

where 01(z1, 22) € C1 and, by Proposition 2.14, g2(21, 22) = To(21, 22)01(21, 22) with
Ty, 2) = €@ (I, = APz — A§2)z2)_1 (B21 + BP20) + D@ € Fzy, 2]
Moreover, let us assume that
ker T5(z1,22) N C1 = {0}.
Then we obtain that
dist(C) > dist(Cy) + dist(Im To (21, 22))

where dist(Im T(z1, 22)) = min{wt(9) | 9(z1, 22) € ImTh(z1, 22), with y(z1, 22) # 0}.

16
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