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Abstract
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1 Introduction

An adequate risk-adjusted return performance measure (PM) is essential for selecting
investment funds. The Sharpe ratio (Sharpe, 1966, 1994) has become the bechmark
PM by adjusting the expected excess fund return by the symmetric risk measure
or standard deviation. Although this ratio is still a reference indicator for assessing
the accuracy of investment strategies, its use becomes rather doubtful when the
fund return distribution is beyond the class of elliptical distributions (Owen and
Rabinovitch, 1983) that include the normal distribution. As a result, several one-
sided type measures of risk have been proposed and the associated PMs are known
as one-sided PMs. In fact, some of these PMs are also characterized by one-sided
reward measures.

Some examples of one-sided PMs are the adjusted for skewness Sharpe ratio
(ASSR) proposed by Zakamouline and Kokebakker (2009), the Generalized Rachev
family based on the conditional Value at Risk (Biglova et al. 2004), the Farinelli-
Tibiletti (FT) family based on both upper and lower partial moments (Farinelli and
Tibiletti, 2008) and the Kappa or S-S family (Sortino and Satchell, 2001) based on
lower partial moments. Other alternative reward-to-variability ratios are well doc-
umeted in Caporin et al. (2014) and the references therein. We will also implement
PMs based on the certainty equivalent amount as a function of both prudence and
temperance coefficients. These coefficients are related to the investor’s appetite for
asymmetry and aversion to leptokurtocity of fund returns. For details, see Eeck-
houdt and Schlesinger (2006), Ebert (2013) and references therein.

Some papers as Eling and Schuhmacher (2007), Eling (2008) and Auer (2015)
find that chosing different PMs is not critical to the portfolio evaluation. More
specifically, the PM choice does not matter because any PM generates the same
rank ordering as the Sharpe ratio (SR). Guo and Xiao (2016) agree with this result
whenever the selected PMs satisfy the monotonicity property regarding the SR and
the fund return distributions belong to the location-scale (LS) family. Indeed, many
PMs hold the monotonocity property and some popular elliptical multivariate distri-
butions for modeling stock returns (Normal, t-Student, Logistic, Exponential, etc.)
belong to the LS family.

In contrast, in this paper we show that some PMs like the FT family can generate
different rank scores meaning that the selected PM matters. Particularly, we get a
closed-form expression for FT measures by assuming a return distribution that does
not belong to the LS family. To be more precise, we consider the Gram-Charlier
(GC) expansion as the probability density function (pdf). The GC distribution has
been implemented, among others, by Corrado and Su (1996), Jondeau and Rockinger
(2001) and Jurczenko and Maillet (2006). The advantage of this distribution is that
both skewness (s) and excess kurtosis (ek) appear directly as the pdf’s parameters.
We previously get the closed-form expressions for the LPMs as simple linear func-
tions of both parameters. As a consequence, we can easily understand the behaviour
of these risk measures regarding changes in these higher moments. By expressing
the upper moments in terms of LPMs, we can focus just on this kind of downside risk
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measure1 and analyze its properties under the GC distribution when studying the
FT measures. Similarly, we obtain closed-form expressions for the Kappa measures
under the previous distribution.2

Finally, the GC restriction to capture higher levels of s and ek suggests some
other distributions to seize better these higher moments but, unfortunately, leading
to more complex expressions for the PMs. For instance, a more flexible distribu-
tion to the restricted higher moments under the GC distribution can be the semi-
nonparametric (SNP) density proposed by Gallant and Nychka (1987). We also
obtain the LPM analytical expressions under the SNP distribution.

The rest of the paper is organized as follows. In Section 2 we present different
PMs based on either the Expected Utility Theory (EUT) or the Prospect The-
ory/Cumulative Prospect Theory (PT/CPT), see Kahneman and Tversky (1979)
and Tversky and Kahneman (1992). Section 3 shows the GC distribution and some
properties. In Section 4 we obtain closed-form expressions for LPM and UPM mea-
sures under GC and hence, the expressions for both FTR and Kappa ratios. We also
analyze the behaviour of the Kappa ratios regarding the levels of s and ek and also
obtain the iso-curves for the Kappa measures.In Section 5 we conduct a simulation
study on the performance evaluation. Section 6 shows the SNP distribution and the
corresponding LPM expressions. Finally, Section 7 summarizes and provides the
main conclusions. The proofs of propositions and corollaries are deferred to a final
technical Appendix.

2 Performance Measures (PMs)

Let U (W ) denote the investor’s utility function where W is the amount of wealth.
The investor faces a capital allocation problema that is solved by maximizing his
expected utility of wealth E [U (W )], where E [·] is the expectation operator. The
market includes a risky asset and a risk-free one. Assume that the initial wealth
is WI and the capital allocation aims to invest an amount a in the risky asset and,
hence, WI − a in the risk-free asset. Thus, the investor’s final wealth is

W (r, a) = a (r − rf) +WI (1 + rf) , (1)

where r is a random variable that denotes the return of the risky asset and rf is
the risk-free rate of return that is assumed to be a constant. Assuming that a ≥ 0
(short-selling is not allowed), the investor’s objective is selecting a to maximize the
expected utility:

E [U (W (r, a∗))] = max
a
E [U (W (r, a))] , (2)

1Some seminal references on LPMs are Bawa (1975), Bawa and Lindenberg (1977), Fishburn
(1977), Holthausen (1981), Harlow and Rao (1989) and Harlow (1991).

2In the same spirit, Passow (2005) obtains a closed-form expression for the Sharpe-Omega ratio
(that belongs to the Kappa family) under the (more flexible) Johnson distribution family. The
drawback is that the above ratio becomes more cumbersome and, then, more difficult to interpret
than when assuming a GC distribution.
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where a∗ denotes the optimal amount invested in the risky asset from the maximiza-
tion of the expected utility on the final wealth in (1). Besides EUT as the benchmark
model of choice under uncertainty, we are interested in those models under PT/CPT
where the utility function is defined over gains and losses relative to some reference
point (kink), as opposed to wealth in EUT.

By using themaximum principle method,3 we can rewrite (2) asE [U (W (r, a∗))] =
h (π (r)) where h (·) is a strictly increasing function and π (r) represents the PM.4

More specifically, the investor prefers the risky portfolio r1 to the risky portfolio
r2 if π (r1) > π (r2). Hence, the aim at maximizing the investor’s expected utility
can alternatively be formulated as the maximization of a particular PM. In addi-
tion, a rational utility-based PM must be consistent with the stochastic-dominance
principles that will be analyzed later.

Finally, a GC probability distribution for the returns of the risky asset will be
assumed to obtain closed-form PM expressions under both EUT and PT/CPT. The
reason for this specific distribution is because we can get a very easy interpretation in
terms of the implied distribution parameters which are both skewness and kurtosis.

2.1 PMs based on EUT

These PMs will be obtained by implementing the maximum principle method and
using the certainty equivalent (CE) amount corresponding to E [U (W (r, a∗))] in
(2) for ranking portfolios. Thus,

E [U (W (r, a∗))] = max
a
U (CE) , (3)

such that CE = µW − ξ, where µW = E [W (r, a)] represents the expected final
wealth and ξ denotes the risk premium.

2.1.1 Certainty Equivalent as PM

Let U be a utility function with desirable properties, that is, U (1) > 0, U (2) <
0, U (3) > 0 and U (4) < 0, where U (i) denotes the i-th derivative of the utility
function. We start from the equation defining the CE amount given by

U (E [W (r, a)]− ξ) = E [U (W (r, a))] . (4)

First, on the right-hand side in (4), approximate the utility function U (x) by
a fourth-order Taylor expansion around the point x0 = µW , where x = W , and
take expectations. Second, on the left-hand side in (4), apply a first-order Taylor

3This method is presented by Pedersen and Satchell (2002), and later in Zakamouline and
Koekebakker (2009a, b) and Zakamouline (2014). Finally, under some conditions, we can find an
explicit solution for the amount a.

4Note that the PM is not unique since any positive increasing transformation of a PM leads to
an equivalent PM.
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expansion around the same point x0 but now x = µW − ξ. Then, the maximum CE
amount satisfying (3) is given by

CE∗ ≃ max
a

{
W0 + a (µ− rf)−

1

2
γσ2a2 +

1

3!
sψ3σ

3a3 − 1

4!
kψ4σ

4a4
}
, (5)

where µ, σ, s, and k denote, respectively, the mean, standard deviation, skewness
and kurtosis of the risky asset return and W0 = WI (1 + rf ). Let ωk = U (k) (µW ),
then γ = −ω2/ω1 is the traditional absolute risk aversion coefficient, ψ3 = ω3/ω1

is the coefficient of appetite toward asymmetry and ψ4 = −ω4/ω1 is the coefficient
of aversion to leptokurticity.5 Note that both ψ3 and ψ4 are connected with the
popular coefficients of prudence and temperance. In particular, ψ3 = γδP , where
δP = −ω3/ω2, is the coefficient of (absolute) prudence introduced by Kimball (1990),
and ψ4 = γδP δT , where δT = −ω4/ω3, is the coefficient of temperance presented in
Kimball (1992).

2.1.2 Adjusted for Skewness Sharpe ratio (ASSR)

By applying the maximum principle method, Zakamouline and Koekebakker (2009)
obtain a closed-form expression for π (r) by using a third-order Taylor expansion
of U (·) around the point W0 and considering the HARA utility function. More
specifically, the adjusted for skewness Sharpe ratio (ASSR) is defined as

ASSR = SR

√
1 + ϕ

s

3
SR, (6)

such that SR denotes the Sharpe ratio, defined as SR = (µ− rf) /σ, where µ and σ
denote, respectively, the mean and standard deviation of the risky asset return, the
coefficient ϕ = δP/γ is related to the investor’s preferences through the coefficients
of prudence and risk aversion, and s is the skewness coefficient for the return of the
risky asset.

Some properties of the ASSR are the following:

1. If all the investors have the same HARA utility (i.e., the parameter ϕ does
not change), the PM value is the same for all of them.

2. Note that (6) is just SR times a skewness adjusted factor and so, the ASSR
nests the SR for symmetric return distributions.

3. It holds that ϕ = 0 for quadratic utility, ϕ = 1 for CARA utility (i.e., negative
exponential utility), and ϕ = 2 for logarithmic utility. The case for CRRA

utility (i.e., the power utility defined as U(x) = x1−λ

1−λ
for λ 6= 1, where λ is

the coefficient of relative risk aversion) leads to ϕ = (λ+ 1) /λ. Note that
∂ϕ/∂λ < 0 for any λ. These types of utility functions are nested in the HARA
utility.

5The optimal amount a∗ in (5) comes from solving the equation α3a
3 + α2a

2 + α1a + α0 = 0
where α0 = µ − rf , α1 = −γσ2, α2 = 1

2
sψ3σ

3 and α3 = − 1

3!
kψ4σ

4. For more details, see Le
Courtois (2012).
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4. Finally, the ASSR can be interpreted as a particular case of the generalized
Sharpe ratio (GSR) introduced by Hodges (1998).6

2.2 PMs based on PT/CPT

As it was mentioned at the beginning of this Section, under PT/CPT, the utility
function is defined over gain and losses relative to a reference point. It means that
the utility function exhibits a kink at the reference point, with the slope of the loss
function steeper than that of the gain function. This is called loss aversion. In this
new framework, the investor can show three different types of aversion: aversion to
loss and aversion to uncertainty either in gains or losses.

Let W denote the reference point for the wealth. Köbberling and Wakker
(2005) proposes a measure for loss aversion (in a local sense) as given by λKW =
U (1)

(
W−

)
/U (1)

(
W+

)
where U (1)

(
W−

)
and U (1)

(
W+

)
denote, respectively, the

left and right derivatives of U at W . For a loss-neutral investor, we have λKW = 1
while loss aversion (seeking) implies λKW > 1 (λKW < 1). In particular, the utility
investor has the generalized form of a piecewise linear function plus a power one:

U (W ) =

{
1+

(
W −W

)
− (γ+/q)

(
W −W

)q
, if W ≥W,

−λ
[
1−
(
W −W

)
+ (γ−/m)

(
W −W

)m]
, if W < W,

(7)

where 1+ and 1− take values in {0, 1}, γ+ and γ− are real numbers, and λ, q, m > 0.
We can rewrite (7) as

U (W (r, a)) =

{
1+a (r − τ )− (γ+/q) a

q (r − τ )q , if r ≥ τ ,
−λ [1−a (τ − r) + (γ−/m) am (τ − r)m] , if r < τ,

(8)

where τ = rf−
(
W0 −W

)
/a. See Zakamouline (2014) for more details. Equation (8)

implies that E [U (W (r, a))] can be expressed in terms of lower and partial moments.
A lower partial moment (LPM) measures risk by negative deviations of the stock

returns, r, with respect to a minimal acceptable return (return threshold), τ . Fish-
burn (1977) defines the LPM of order m for a stock return as

LPM(τ,m) =

∫ τ

−∞
(τ − r)mf(r) dr, (9)

where f (·) denotes the probability density function (pdf) of r. Similarly, the upper
partial moment (UPM) is defined as

UPM(τ, q) =

∫ ∞

τ

(r − τ)qf(r) dr. (10)

If we set W = W0 in (8), then τ = rf and the investor’s expected utility can be
rewritten as

E [U (W (r))] = 1+aUPM(rf , 1)− (γ+/q) a
qUPM(rf , q) (11)

−λ [1−aLPM(rf , 1) + (γ−/m) amLPM(rf , m)] .

6GSR =
√
−2 log (−E [U (W (r, a∗))]) by assuming a negative exponential utility and zero

initial wealth.
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If we maximize (11) with respect to a, the first order condition is given by

1+UPM(rf , 1)− λ1−LPM(rf , 1)

−aq−1
[
γ+UPM(rf , q) + am−qλγ−LPM(rf , m)

]
= 0. (12)

Next, some closed-form expressions for a are obtained by considering two particular
cases in (8). By applying the maximum principle, the PM will be obtained as a
function of E [U (W (r, a∗))] in (2).

2.2.1 The Kappa measures

Consider the following case in (8): 1+ = 1− = 1, λ = 1, γ+ = 0, γ− > 0
and q = m > 1. This setting leads to a piecewise linear (in both sides of the
return threshold rf) plus a power function (in one side, just for r < rf). In this
case, the investor exhibits loss aversion. Note that the excess expected return can
be expressed as µ − rf = UPM(rf , 1) − LPM(rf , 1). Then, (12) simplifies to
(µ− rf )− am−1γ−LPM(rf , m) = 0. Solving for a in this equation and applying the
maximum principle, we obtain the group of PMs known as the S-S or Kappa ratios
(see Sortino and Satchell, 2001), defined for any return threshold τ as

K(τ,m) =
µ− τ

m

√
LPM(τ,m)

, (13)

where µ− τ is the excess expected return with respect to τ . Some popular PMs are:

1. The Omega-Sharpe ratio (see Kaplan and Knowles, 2004), which can be con-
sidered as the limit case of K(rf , m) in (13) for m → 1 (see Zakamouline,
2014).

2. The Sortino ratio (see Sortino and Van der Meer, 1991) for m = 2.

3. The Kappa 3 ratio (see Kaplan and Knowles, 2004) for m = 3.

2.2.2 The Farinelli-Tibiletti (FT) measures

Consider now the following case in (8): 1+ = 1− = 0, γ+ = −q, γ− = m such that
m > q > 0. These restrictions lead to a piecewise power utility function. In this case,
the equation ((12)) can be rewritten as q UPM(rf , q)− am−qmλLPM(rf , m) = 0.
Following the same steps as in the Kappa measures, we get the group of PMs known
as the Farinelli-Tibiletti (FT) ratios, see Farinelli and Tibiletti (2008). For any
return threshold τ , the FT is defined as

FT (τ, q,m) =
q
√
UPM(τ, q)

m
√
LPM(τ,m)

. (14)

Note that (14) nests two popular PMs:
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1. The Omega ratio7 which is obtained as the limit of FT (τ, 1, m) in (14) when
m → 1. This ratio can also be expressed (see Keating and Shadwick, 2002)
as:

FT (τ, 1, 1) =

∫∞
τ

(1− F (r)) dr∫ τ

−∞ F (r)dr
, (15)

where F (·) is the cumulative distribution function of r.

2. The Upside Potential ratio (see Sortino et al., 1999) when q = 1, m = 2.

2.2.3 Relationship between Kappa and FT measures

If we rewrite UPM(τ, q) in terms of LPM(τ,m) (see equations (9)-(10)), we get an
alternative expression for the FT ratio (that will be useful later), as shown in the
following Corollary.

Corollary 1 Let ψ (τ, q) = E[(r− τ)q] and let f (·) be the pdf of the portfolio stock
return r. Then, (14) can be expressed as

FT (τ, q,m) =

q

√
ψ (τ, q) + (−1)q+1 LPM(τ, q)

m
√
LPM(τ,m)

. (16)

Using the relationship between LPM(τ,m) amd the Kappa measures (see (13)),
equation (16) becomes

FT (τ, q,m) =

q

√
ψ (τ, q) + (−1)q+1 (µ− τ)qK(τ, q)−q

(µ− τ)K(τ,m)−1
. (17)

Note that, for q = 1, equation (17) simplifies to FT (τ, 1, m) = K(τ,m) [1 +K(τ, 1)−1].

2.3 Properties of utility-based PMs

The above two groups of PMs (i.e., based on EUT and PT/CPT) will be consistent
with the first-order stochastic dominance (FSD) when the underlying utility function
is everywhere increasing. The Kappa and FTmeasures will satisfy FSD when q, m >
0 in (8). Note that this restriction holds since q = m > 1 for Kappa measures (see
(13)) whereas m > q > 0 for FT measures (see (14)).

Regarding the second-order stochastic dominance (SSD), a specific PM will be
consistent with SSD if the utility function is everywhere increasing and concave.
Under the EUT framework, this property is held for PMs like ASSR and GSR. The
Kappa ratios are also consistent with SSD because the restriction m > 1 guarantees

7Note that K(τ, 1) = FTR (τ, 1, 1)− 1. The ratio introduced by Bernardo and Ledoit (2000) is
just the Omega measure for τ = 0 (or gain-to-loss ratio).
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that the utility function (8) is concave. Nevetheless, under the utility function (8),
the FT ratios (where m > q) are consistent with SSD when q < 1 < m since (8) is
concave everywhere. On the contrary, for other values of q and m, the stochastic
dominance (SD) principles cannot be applied.

Levy and Levy (2002) extend the classical SD principles by developing Prospect
and Markowitz SD (PSD and MSD, respectively) theories with S-shaped and reverse
S-shaped utility functions. Thus, a PM is consistent with second-order PSD (MSD)
when the utility function is increasing, convex (concave) below the reference point
and concave (convex) above the reference point. In particular, FT measures with
0 < q, m < 1 are consistent with second-order PSD since (8) becomes a S-shaped
utility function. FT measures with q, m > 1 verify the second-order MSD where
(8) is a reverse S-shaped utility function. In brief, it is straightforward to prove the
following Corollary that summarizes the main results for the above PMs based on
PT/CPT.

Corollary 2 Consider the utility function U (·) in (8) where q, m > 0, λ > 0, and
a > 0 (i.e., short selling is not allowed). Then, the following properties are verified:

1. U (·) is increasing everywhere and, hence, Kappa and FT measures are consis-
tent with FSD.

2. Kappa measures are consistent with SSD when m > 1.

3. By setting m > q, then FT measures are consitent with

(a) SSD when q < 1 < m.

(b) Second-order PSD when q, m < 1 (S-shaped utility function).

(c) MSD when q, m > 1 (reverse S-shaped utility function).

3 GC density and properties

We assume that the stock return r is a random variable defined as

r = µ+ σz, z ∼ GC(0, 1, s, ek), (18)

such that the pdf of the (standardized) random variable z is the Gram-Charlier
expansion with zero mean, unit variance, skewness s and excess kurtosis ek. Hence,
the return in (18) is just an affine transformation of a random variable with GC
expansion as pdf. The GC pdf, denoted as g (z), is defined as8

g (z) = p (z)φ (z) ; p(z) = 1 +
s√
3!
H3(z) +

ek√
4!
H4(z), (19)

8The pdf of r in (18) is obtained as f (r) = g (z) /σ.
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where φ (·) denotes the pdf of the standard normal variable and Hk (z) is the normal-
ized Hermite polynomial of order k. These polynomials can be defined recursively
for k ≥ 2 as

Hk(z) =
zHk−1(z)−

√
k − 1Hk−2(z)√
k

, (20)

with initial conditions H0 (z) = 1 and H1 (z) = z. It holds that {Hk (z)}k∈N consti-
tutes an orthonormal basis with respect to the weighting function φ(z), that is,

Eφ[Hk(z)Hl(z)] = 1(k=l), (21)

where 1(·) is the usual indicator function and the operator Eφ[·] takes the expectation
of its argument regarding φ (·). Note that Eφ [Hk (z)] = 0 for k ≥ 1 and then, (21)
is just the covariance between Hk (z) and Hl (z).

The pdf g (z) in (19) can lead to negative values for certain values of both
centered moments. Jondeau and Rockinger (2001) obtain numerically a restricted
space Γ for possible values of (ek, s) that guarantees the positivity of g (z). The
constrained GC expansion restricted to Γ will be referred as the true GC density.
Figure 1 exhibits Γ with a frontier (the envelope) delimiting the oval domain. Γ is
a compact and convex set. Note that ek ∈ [0, 4] while |s| ≤ 1.0493 verifying that
the range of s depends on the level of ek. For instance, if |s| = 0.6 then ek ranges
from 0.6908 to 3.7590, while for s = 0, ek ranges from 0 to 4. The maximum size for
skewness is reached for ek = 2.4508. Obviously, the case for the normal distribution
corresponds to the origin.

[ INSERT FIGURE 1 AROUND HERE ]

3.1 Moments of r and z

The first four (non-central) moments of z with pdf g (·) in (19) can be obtained by
using the relationship between the powers of z and the Hermite polynomials in (20)
and the condition in (21):

Eg [z] = 0, Eg

[
z2
]
= 1, Eg

[
z3
]
= s, Eg

[
z4
]
= ek + 3.

The following Proposition provides a general expression for Eg

[
zk
]
where k ∈ N+.

Proposition 1 The general expression for Eg

[
zk
]
, where k ≥ 5 and pdf g (·) in

(19), is given as

Eg

[
zk
]
=

{
λk,0 + λk,1 ek, k is even,

λk,2 s, k is odd,
(22)

where λk,l ∈ R can be seen in the Appendix. Since r in (18) is an affine transforma-
tion of z, the non-central moments of r are obtained as

Ef [r
k] =

k∑

n=0

(
k

n

)
µk−nσnEg[z

n], (23)

where
(
k
n

)
= k!

n!(k−n)!
.
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Proof. See the Appendix.

Note that, if k is even (odd), Eg

[
zk
]
depends only on the excess kurtosis (skew-

ness).

3.2 Cumulative density function

For m = 0, the LPM expression (see (9)) becomes the distribution function for the
standardized return z in (18).

Proposition 2 The cumulative density function of r in (18) is given by

F (r) = Φ (r∗)− s

3
√
2!
H2 (r

∗)φ (r∗)− ek

4
√
3!
H3 (r

∗)φ (r∗) , (24)

where r∗ = (r − µ) /σ.

Proof. See the Appendix.

The following Corollary shows the behaviour of F (r) with respect to the param-
eters s, ek, µ and σ.

Corollary 3 Let F (r) in (24) and r∗ = (r − µ) /σ. Then, it holds that

1. ∂F (r)/∂s > 0 ⇔ |r∗| < 1.

2. ∂F (r)/∂ek > 0 ⇔ r∗ ∈
(
−∞,−

√
3
)
∪
(
0,
√
3
)
.

3. For r∗ ∈
(
−
√

3−
√
6, 0
)
∪
(√

3 +
√
6,+∞

)
, then ∂F (r) /∂r∗ > 0 and so,

(a) ∂F (r) /∂µ < 0.

(b) ∂F (r) /∂σ > 0 iff µ > r.

Proof. See the Appendix.

Hence, for r∗ ∈ (0, 1), we have that both ∂F (r)/∂s and ∂F (r)/∂ek are positive.

4 LPMs and related PMs with GC distribution

This Section starts providing the closed-form expressions of LPMf (τ,m), where
the stock return is driven by (18), and the related expressions for Kf (τ,m) and
FTRf (τ, q,m). Later, we show that these LPMs are linear functions of both s and
ek and analyze the behaviour of the above PMs. Finally, we obtain some Kappa
iso-curves.

11



4.1 Closed-form expressions of LPMf (τ,m)

Proposition 3 Let z be the standardized return of r in (18). The lower partial
moment of order m ∈ N+ for the stock return r can be expressed as

LPMf(τ,m) = LPMn(τ,m) +
s√
3!
θ2,m +

ek√
4!
θ3,m, (25)

where LPMn(τ,m) is the LPM by assuming a normal distribution n (·) for r in (18)
with

LPMn(τ,m) =
∑m

k=0
(−1)k

(
m

k

)
(τ − µ)m−k σkBk, (26)

and

θj,m =
∑m

k=0
(−1)k

(
m

k

)
(τ − µ)m−k σkAkj, (27)

such that Bk = Bk (τ
∗) and Akj = Akj (τ

∗), with τ ∗ = (τ − µ) /σ, can be seen in the
Appendix.

Proof. See the Appendix.

The Kappa measures are easily obtained by using (13) and (25). It can be
seen that the behaviour of θj,m depends on the expected return, the volatility and
the return threshold, i.e., θj,m = θj,m (µ, σ, τ). Note that θ2,m and θ3,m quantify
the sensitivity of LPMf (τ,m) to changes in s and ek, respectively. The following
Corollary shows the general expression for the FT measures in (16) under the GC
density for the standardized return.

Corollary 4 Let z be the standardized return of r in (18). The performance mea-
sure FTRf(τ, q,m) in (16) for q,m ∈ N+ can be expressed as

FTRf (τ, q,m) =

q

√
ψf (τ, q) + (−1)q+1 LPMf(τ, q)

m
√
LPMf (τ,m)

, (28)

where LPMf (τ, ·) is given in (25) and ψf (τ, q) = Ef [(r − τ)q] is obtained as

ψf (τ, q) =
∑q

k=0

(
q

k

)
(µ− τ)q−k σkEg

[
zk
]
, (29)

where Eg

[
zk
]
is given in (22).

Many studies about performance evaluation focus on some popular Kappa mea-
sures such as the Omega-Sharpe, Sortino, and Kappa 3 ratios and the Upside Po-
tential ratio from the FT family. As a consequence, we are very interested in the
expressions of LPMf (τ,m) for m = 1, 2, 3. This is shown in the following Corollary.

12



Corollary 5 The expressions of θj,m for j = 2, 3 in (27) and LPMn(τ,m) for
m = 1, 2, 3 in (25) are given by

θj,1 = (τ − µ)A0j − σA1j ,

θj,2 = (τ − µ)2A0j − 2(τ − µ)σA1j + σ2A2j, (30)

θj,3 = (τ − µ)3A0j − 3(τ − µ)2σA1j + 3(τ − µ)σ2A2j − σ3A3j ,

and

LPMn(τ, 1) = (τ − µ)Φ (τ ∗) + σφ (τ ∗) ,

LPMn(τ, 2) = (τ − µ)2Φ (τ ∗) + (τ − µ)σφ (τ ∗) + σ2Φ (τ ∗) , (31)

LPMn(τ, 3) = (τ − µ)3Φ (τ ∗) + (τ − µ)2 σφ (τ ∗) + 3 (τ − µ)σ2Φ (τ ∗) + 2σ3φ (τ ∗) .

where the values for Akj = Akj (τ
∗) , τ ∗ = (τ − µ) /σ, can be seen in the Appendix.9

Proof. See the Appendix.

4.2 Behaviour of Kappa measures with respect to s and ek

We analyze the effects of the higher moments on the performance ratios. We set
the parameter vector (µ, σ, τ) equal to (µ0, σ0, τ0). Then, LPMf (τ0, m)=LPMm is
a function, gm, on both s and ek. Let ∆LPMm and dLPMm denote, respectively,
the increment and the total differential of LPMm with respect to its arguments.10

The next Corollary inmediately arises.

Corollary 6 If we approximate ∆LPMm by dLPMm, we get

∆LPMm =
∂gm
∂s

∆s +
∂gm
∂ek

∆ek

holding that
∆LPMm > 0 ⇔ ∆s < ϕm∆ek

where

ϕm = −1

2

θ3,m
θ2,m

. (32)

Table 1 exhibits the behaviour of the popular Kappa measures by changing either
s or ek, that is, we provide these measures for alternative portfolios with the same µ
and σ but different values for s and ek such that (ek, s) ∈ Γ. Consider, for instance,
the monthly return values of µ = 0.86%, σ = 2.61%, τ = rf (rf = 0.39%), and
three possible values of skewness (s = −0.7, 0, 0.4). The Sharpe ratio is equal to
0.1796. Plugging these parameters in (32), we get ϕ1 = −1.3471, ϕ2 = 0.0499 and
ϕ3 = 0.2289.

9LPMn(τ,m) is the same as θ1,m when j = 1 in (30). We decide to use LPMn(τ,m) instead
of θ1,m for an easier interpretation of (25).

10That is, ∆LPMm = gm (s+∆s, ek +∆ek)−gm (s, ek), where ∆x represents a small increment
in x.
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[ INSERT TABLE 1 AROUND HERE ]

Columns 2 to 10 show the three Kappa measures for the different combinations
(ek, s) according to different levels of skewness. The main results can be summarized
as follows:

1. Consider the portfolio π1 with (ek, s) = (0.8996, 0) and build new portfolios
by only increasing ek. We see that Kf (rf , 1) increases but Kf (rf , 2) and
Kf (rf , 3) decrease.

2. Take a new portfolio π2 with (ek, s) = (0.8996, 0.4). It holds that Kf (rf , m)
increases if we only increase s by changing π1 for π2. The same behaviour
holds for alternative values of ek.

3. Suppose now that ek increases and s decreases. Consider either portfolio π3,
with (ek, s) = (1.2048,−0.7), or π4, with (ek, s) = (2.1205,−0.7). It is verified
that both Kf (rf , 2) and Kf (rf , 3) decrease when going from π1 to either π3 or
π4. Meanwhile, there are opposite effects about the behaviour of LPMf (rf , 1).
Note that Kf (rf , 1) decreases (increases) when moving to π3 (π4).

4. Finally, we can see that (32) holds under these examples and so, the behaviour
of their related Kappa measures is verified. Thus, changing π1 for π2 leads to
∆s = 0.4,∆ek = 0. The case of changing π1 for π3 leads to ∆s = −0.7,∆ek =
0.3052. Finally, changing π1 for π4 leads ∆s = −0.7,∆ek = 1.2209.

In short, from the above results, we can suggest that ∂LPMf (rf , m) /∂s < 0
for m = 1, 2, 3 and that ∂LPMf (rf , 1) /∂ek < 0 and ∂LPMf (rf , m) /∂ek > 0 for
m = 2, 3.11

4.3 Iso-curves for performance measures

We obtain now the points (ek, s) that provide the same value for the selected Kappa
measure given fixed levels of τ , µ and σ. To shorten, let Ψ denote the vector (µ, σ, τ)
and let Ψ0 be a fixed value for Ψ. Thus, the iso-curve associated for any Kappa
measure, or iso-Kappa, corresponds to the set of points Π defined as

Π(m,Ψ0) =



(ek, s) ∈ Γ : Kf(τ0, m) =

µ0 − τ0

m

√
LPMn(τ0, m) + s√

3!
θ2,m + ek√

4!
θ3,m



 ,

(33)
where Kf (τ0, m) denotes a fixed value for the Kappa ratio given by equations

(13) and (25). These spaces are easily obtained according to the following Corollary.

11These results are also supported by studying the behaviour of θ2,m and θ3,m in (30) from many
simulated parameters of µ and σ. The simulation results confirm the previous conclusions.
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Corollary 7 The iso-Kappa (33) implies a linear relation between s and ek. Thus,
s = am + ϕm ek such that the slope ϕm is defined in (32) and

am =

√
6

θ2,m
[ξ0,m − LPMn(τ0, m)] , ξ0,m =

[
µ0 − τ0

Kf (τ0, m)

]m
, (34)

with LPMn(τ0, m) as in (26).

The iso-Kappa in (34) will be labeled as ’iso-Omega-Sharpe’, ’iso-Sortino’ and
’iso-Kappa 3’ respectively for m = 1, 2, 3. Since ∂ξ0,m/∂Kf (τ0, m) < 0 for µ0 > τ0,
then ∂am/∂Kf (τ0, m) > 0 iff θ2,m < 0. Let Ψ0 = (0.86%, 2.61%, 0.39%) be the
parameter set used to obtain Table 1. Then, the slopes ϕm for the different iso-
Kappas (see the values of ϕm in Subsection 4.2) verify that ϕ1 < 0, ϕ2 > 0, ϕ3 > 0.
So, an increase in ek leads to a decrease (increase) in s when moving along the
iso-Omega-Sharpe (iso-Sortino or iso-Kappa 3) curve.

By setting s = −0.7 and taking higher levels of ek, Table 1 shows thatKf (0.39%, 1)
increases (ξ0,1 decreases) but Kf (0.39%, m) decreases (ξ0,m increases) for m = 2, 3.
This means that the iso-Omega-Sharpe curves with negative slopes move in paralell
to the right with higher levels of Kf(0.39%, 1) since a1 in (34) increases because
θ2,1 < 0. Nevertheless, both the iso-Sortino and iso-Kappa3 curves with positive
slopes move in paralell to the right with lower levels of Kf (0.39%, m) since a1 de-
creases because θ2,m < 0.12

Note that, on one hand, the iso-Kappas from Corollary 7 become very restrictive
since we are fixing both the mean and volatility parameters for the portfolio returns
but, on the other hand, we obtain linear equations which can help to understand
the behaviour of the iso-Kappas.13 Finally, the iso-curves under FT measures do not
imply a linear relation between s and ek but we can obtain a linear approximation.

5 Simulation analysis

We implement a simulation analysis based on the closed-form expressions for the
PMs by assuming a GC distribution for the standardized stock returns in (18). We
start our analysis by obtaining the Spearman’s rank correlation between the SR
and alternative PMs for different portfolios. The higher this rank correlation, the
lower difference in ranking between the SR and the selected PM. A deeper study
will also be carried out by assessing how skewness and excess kurtosis can affect the
portfolio composition.

12The values for θ2,m are, respectively, θ2,1 = −7.53 × 10−4, θ2,2 = −2.18 × 10−4 and θ2,3 =
−1.87× 10−5. The curves for the iso-Kappas are not exhibited here for the sake of brevity.

13Suppose that we change the value for µ in Corollary 7. Then, the iso-Kappas depend on
µ, s and ek. By using the implicit function Theorem, we can obtain the corresponding partial
derivatives (evaluated at a certain point) to analyze the behavior of µ with respect to s and ek.
This extension is not shown here but it is available upon request.
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5.1 Simulation of parameters and performance ratios

To begin with, we simulate (for monthly returns) the parameter vectors ϑi =
(µi, σi, si, eki), i = 1, . . . , NT .

14 Let xmin and xmax denote the extreme values of
σ, s and SR. In particular, we set σmin = 0.963%, σmax = 2.163%, smin = −0.798,
smax = 0.987, SRmin = 1%, and SRmax = 22.3%. We need to generate four inde-
pendent uniform random variables Uj , j = 1, . . . , 4 on the interval (0, 1), each with
sample size N = 10, 000. The realizations of these variables will be denoted as
uji, i = 1, . . . , N . We implement the following two steps for each portfolio i:

1. We get σi = σmin + (σmax − σmin) u1i and SRi = SRmin + (SRmax − SRmin) u2i.
Then, the mean is obtained as µi = rf + σiSRi.

2. The skewness is obtained as si = smin + (smax − smin)u3i. Hence, eki =
eki,min + (eki,max − eki,min) u4i such that (eki,min, si) and (eki,max, si) belong to
the restricted space Γ, that is, (eki, si) ∈ Γ.15

Finally, we obtain the values for the PMs presented in Section 2 by inserting ϑi
into the corresponding formulas and fixing τ = rf .

5.2 Rank correlations

We obtain the average of one hundred Spearman’s rank correlations between πi and
SRi, such that each correlation is obtained through N vectors (πi, SRi) computed
for portfolios characterized by the vector ϑi, as explained in Subsection 5.1. The
mains results are as follows:

1. We compute the correlation between SR and FTR (rf , q,m) (see (28)) for
integer values q,m ≤ 6 such that m > q (reverse S-shaped utility function, see
Corollary 2). Accordingly, the correlations never exceed 25%. For instance, the
correlations for FTR (rf , 2, 3) and FTR (rf , 3, 4) are, respectively, 24.81% and
17.46%. Therefore, these PMs lead to quite different portfolio rankings with
respect to the Sharpe ratio. These results are also supported by Eling et al.
(2011) who analyze, among others, the behaviour of the FTRs. Nevertheless,
for the upside potential ratio (FTR (rf , 1, 2)) which does not verify thatm > q,
the rank correlation is 62.95%.

2. The Sharpe-Omega ratio, K (rf , 1), exhibits a very high correlation of 97.90%.
The same happens to both Sortino ratio, K (rf , 2), and Kappa 3, K (rf , 3),
with high correlations of, respectively, 94.29% and 91.18%. This evidence may
suggest no ranking difference with respect to the Sharpe ratio. The following
Subsection provides a more robust analysis by splitting the total sample in

14NT = N ×T where, as we will see later, N denotes the sample size per regression and T is the
number of regressions. We set N = 10, 000 and T = 100.

15We use the notation eki,min and eki,max to emphasize that the range for the possible values of
ek depends on si.
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two subsamples depending on the SR value. For instance, it will be shown
that the ranking difference between K (rf , 1) and the SR increases with the
level of SR.

3. The correlation between the ASSR (with ϕ = 1 in (6) assuming a CARA util-
ity) and the SR is extremely high (99.75%). Similar results are also obtained
by assuming a CRRA utility function.

4. Assuming a CRRA utility (with λ as the relative risk aversion parameter), the
correlation between the PMs based on the CE amount in (5) and the SR is
66.52% when λ = 1, 71.80% for λ = 2, 87.48% for λ = 5, and 94.35% for
λ = 7. Similar results hold under the CARA utility function. In brief, for low
risk averse investors, we find significant differences in ranking portfolios when
comparing the CE and the SR.

5.3 Effects of skewness and kurtosis on portfolio evaluation

We start studying the PMs from the S-S and FT families with higher rank corre-
lations according to the results in Subsection 5.2. Later, we will consider the PMs
based on CE and analyze the effects of the higher moments on ranking portfolios
for different types of risk-averse investors.

5.3.1 Results for PMs based on ASSR, both S-S and FT families

Following Zakamouline (2011), we propose two models:

1. The first model is defined as

πi = απSR
βπ

i , απ, βπ > 0, i = 1, · · · , N, (35)

where π is a specific PM (for all the portfolios i) such that πi > 0.16 The port-
folio i is characterized by the parameter vector ϑi. We estimate by ordinary
least squares (OLS) the logarithm of equation (35) and obtain R2

π,0, the (ad-
justed) R2 statistic. If the estimates of απ and βπ are positive, πi is equivalent
to SRi in the sense that both produce the same ranking. A high equivalence
between both measures will be indicated by a high value of R2

π,0.

2. The second model is given as

πi = απSR
βπ

i exp
(
βs
πsi + βek

π eki + επ,i
)
, i = 1, . . . , N, (36)

where επ,i is the error term according to π and ϑi. Note that βs
π and βek

π

are, respectively, the (relative) sensitivity of π to the skewness and excess
kurtosis of the portfolio return distribution. That is, βs

π = (∂π/∂s) /π and

16We just focus on the portfolios with positive PMs as the relevant ones in our study.
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βek
π = (∂π/∂ek) /π. We estimate by OLS the following expression, obtained

after applying logarithms to (36):

log (πi) = log (απ) + βπ log (SRi) + βs
πsi + βek

π eki + επ,i, i = 1, . . . , N. (37)

Let R2
π,1 denote the (adjusted) R2 statistics of the OLS regression in (37).

If the estimates of βs
π and βek

π were statistically significant, then both s and
ek can affect the behaviour of the PM given by π. Thus, this measure would
produce a different portfolio ranking than that from the SR. It also means that
R2

π,1−R2
π,0 would become large and the Spearman’s rank correlation coefficient

between π and SR, denoted as RS (π, SR), would be small. Otherwise, if the
estimates of both parameters were not significant, then R2

π,0 would be similar
to R2

π,1 and the Spearman’s rank correlation would be larger.

Table 2 provides the OLS estimates of βπ, β
s
π and βek

π , the rank correlation
RS (π, SR) and the statistics R2

π,0 and R2
π,1 by considering five different PMs. Za-

kamouline (2011) shows17 that a larger SR implies a lower RS (π, SR). A possible
reason might be that the larger the Sharpe ratio, the larger the adjustment for
non-normality of the portfolio return distribution by the selected PM. Hence, our
simulation analysis aims to test this behaviour by using two non-overlapping ranges
for SR for each PM. Specifically, we take SRmin, SRmax (see Subsection 5.1), we
compute the mean for both values and set the intervals J1 ≡ [1%, 11.65%] and
J2 ≡ (11.65%, 22.3%]. We split each sample size N in two parts, N1 and N2, and
run two regressions with πi as dependent variable:

1. In the first regression, the independent variables are the vectors (1, SRi, si, eki)
such that both si and eki come from ϑi and SRi = (µi − rf ) /σi ∈ J1 where
µi and σi also belong to ϑi.

2. The second regression is based on the remaining N2 points such that each
SRi ∈ J2.

The last column of this Table displays the Chow test (and its p-value). That
is, testing the null hypothesis of no structural break (one regression) against the
alternative one of structural break (two regressions). This experiment is repeated
100 times and Table 2 exhibits the mean values of the parameter estimates, rank
correlations, etc.

[INSERT TABLE 2 AROUND HERE ]

The main results from this Table are as follows:

17A simulation analysis is implemented by assuming that the return follows a Normal-Inverse-
Gaussian distribution.
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• R2 statistics, rank correlation and Chow test

Running two regressions is better than just one since the p-values for the Chow
test are null for all the PMs. In other words, the larger the SR, the larger
the sensitivity of any π to the higher moments. For the PMs with very high
rank correlations in Subsection 5.2 (ASSR, Omega-Sharpe ratio, Sortino, and
Kappa 3), their rank correlations are lower under J2. It holds that the ASSR
(not reported in the Table) is the PM with the lowest difference between J1 and
J2. Finally, R

2
π,1−R2

π,0 becomes higher under J2. On the contrary, as expected,
the PMs with low rank correlation (such as FTR (rf , 1, 2) and FTR (rf , 2, 3))
show correlations that are quite small and similar in both intervals. Further-
more, R2

π,1 −R2
π,0 is now extremely large.

• Behaviour of OLS beta estimates

First, for all the PMs, the OLS estimates for the three betas are statistically
significant at the 1% level and so, both skewness and excess kurtosis play
significant roles in these measures. Note that we only study the effects of
skewness (but not kurtosis) when the ASSR is considered. Second, β̂π and β̂s

π

are always positive and larger in the regression under J2. So, we can conclude
that (a) a higher value for the SR leads to a higher value for π and (b) all the

PMs are, as expected, in favour of positive skewness. Third, β̂ek
π is negative in

the Sortino and Kappa 3 measures. Finally, |β̂s
π| is much higher than |β̂ek

π | in
all the PMs except for the Omega-Sharpe ratio.

5.3.2 Results for PMs based on CE

We assume a CRRA utility function and analyze the impact of both higher moments
on the behaviour of the percentage change of the CE measure in (5) with respect to
CE0, a benchmark CE obtained under a normal distribution. We consider several
types of risk-averse investors by setting λ = 1, 2, . . . , 8 and denote the related CE
as CE (λ). In summary, we consider the following equation for any portfolio i,
characterized by the vector ϑi:

CEi (λ)− CE0,i (λ)

CE0,i (λ)
= γ0 + γssi + γkki + εi, i = 1, · · · , N, (38)

where CEi (λ) is obtained by considering both si and ki (=eki+3) from the simulated
portfolio i in Subsection 5.1 and CE0,i is obtained by assuming si = eki = 0 in ϑi.
Finally, εi denotes the error component. We estimate by OLS the equation (38),
a different one to each type of investor (eight regressions). In the same way as
in Subsection 5.3.1, we also test if there is a structural change, the experiment is
repeated 100 times, we compute the mean values, etc. We obtain the following
results:18

18The details are not reported here but available upon request.
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• The OLS estimates for γs and γk are always, respectively, positive and negative.
Thus, a higher level of skewness (kurtosis) implies a higher (lower) difference
between CEi (λ) and CE0,i (λ).

• The Chow test is rejected when λ ≥ 6. In contrast, the p-value for λ = 5 is
9.84% and the p-values for lower values of λ exhibit even more evidence of no
structural change. In conclusion, the size of the Sharpe ratio really matters to
higher risk-averse investors when ranking portfolios.

• The previous results can be reinforced as follows. We show that the mean of
the ratio γ1s/γ

2
s over the one hundred regressions goes from 0.83 (λ = 6) to 0.55

(λ = 8). Thus, the impact of skewness is higher in the interval J2 where SR is
larger and it becomes higher when the investor is more risk-averse. A similar
analysis shows that the ratio γ1k/γ

2
k goes from 0.76 (λ = 6) to 0.43 (λ = 8)

and we get the same conclusions as before.

6 LPMs under the SNP density

We aim to provide closed-form expressions for LPMs under the semi-nonparametric
(SNP) distributions introduced by Gallant and Nychka (1987).19 Both SNP and GC
densities are just the product of a standard normal density times a finite number of
Hermite polynomials. We can be interested in this alternative distribution for two
main reasons:

1. The SNP density shares the analytical tractability of the GC density, but it
is always positive. By comparison, the GC density is restricted to be positive
into the parameter set Γ (see Section 3).

2. The SNP nests the GC density in the sense that it allows a higher flexibility
in terms of skewness and excess kurtosis. Thus, Γ is contained into a higher
space under the SNP.20

However, in contrast to the GC density, the parameters implied in the SNP pdf
do not correspond directly to the skewness and kurtosis of the distribution. In fact,
this drawback is shared by other non-Gaussian distributions.

The SNP density of a random variable x is defined as

h (x) =
φ (x)

v′v

(
p∑

i=0

viHi (x)

)2

, (39)

where v = (v0, v1, . . . , vp)
′ ∈ R

p+1, φ (·) denotes the pdf of a standard normal vari-
able and Hi (x) are the normalized Hermite polynomials from (20). Since h (·) is

19See also Fenton and Gallant (1996) and Gallant and Tauchen (1999). León et al. (2009)
analyze the statistical properties of the SNP distributions.

20See the skewness-kurtosis frontiers under the SNP distribution in Figure 1 in León et al. (2009).
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homogeneous of degree zero in v, we can either impose v′v = 1 or v0 = 1 to solve the
scale indeterminacy. By expanding the square term expression in (39), we arrive at
Proposition 1 in León et al. (2009). For p = 2, we get

h (x) = φ (x)

4∑

k=0

γk (v)Hk (x) , (40)

γ0 (v) = 1, γ1 (v) =
2v1
(
v0 +

√
2v2
)

v′v
, γ2 (v) =

√
2
(
v21 + 2v22 +

√
2v0v2

)

v′v
,

γ3 (v) =
2
√
3v1v2
v′v

, γ4 (v) =

√
6v22
v′v

. (41)

We are interested in an affine transformation z∗ = a (v) + b (v)x with g (·) as the
density of z∗ verifying that Eg [z

∗] = 0, Eg [z
∗2] = 1. Hence, the location and scale

parameters a(v) and b(v) are obtained as

a (v) = − Eh [x]√
Vh [x]

, b (v) =
1√
Vh [x]

, (42)

where Eh [x] and Vh [x] denote, respectively, the mean and variance of x with h (·)
(defined in (40)) as pdf. Finally, we can express the stock return r as

r = µ+ σz∗ = µ+ aσ + bσx, (43)

such that f (r) = h (x) / (bσ) is the pdf of r. The mean and variance of r are,
respectively, Ef [r] = µ and Vf [r] = σ2. The next Proposition shows the general
LPM expression of r with the SNP density.

Proposition 4 Let r be the stock return in (43) with pdf f (r) = h (x) / (bσ) such
that h (x) is the SNP density in (40). The lower partial moment LPMf (τ,m) of r
is given as

LPMf (τ,m) =

m∑

j=0

(−1)j
(
m

j

)
κm−j
0 κj1Cj , (44)

where κ0 = τ − µ− aσ, κ1 = bσ, the parameters a and b are defined in (42) and

Cj =
4∑

i=0

ξi (v)Bj+i, (45)

such that Bl =
∫ τ+
−∞ xlφ(x)dx, with general solution in (60) (see the Appendix), where

τ+ = κ0/κ1 and ξi (v) is given by the following expressions:

ξ0 (v) = 1− γ2 (v) /
√
2 + 3γ4 (v) /

√
4!,

ξ1 (v) = γ1 (v)− 3γ3 (v) /
√
3!,

ξ2 (v) = γ2 (v) /
√
2− 6γ4 (v) /

√
4!, (46)

ξ3 (v) = γ3 (v) /
√
3!,

ξ4 (v) = γ4 (v) /
√
4!,

where the coefficients γk (v) are defined in (41).
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Proof. See the Appendix.

Given this result, it is easy to obtain the expressions of the S-S and FT families
when the stock returns are driven by the SNP distribution.

7 Conclusions

We derive closed-form expressions for lower partial moments (LPM) and upper par-
tial moments (LPM) under the Gram-Charlier (GC) density for stock returns. Since
LPMs can be expressed as linear functions of both skewness and excess kurtosis (s
and ek), the behaviour of the related performance measures (PM) can be easily un-
derstood in most cases. Both the Farinelli-Tibiletti (FT) and Kappa measures are
studied here.

A simulation analysis is also carried out for portfolio evaluation. We show that
one-sided PMs can affect the portfolio ranking differently to the Sharpe ratio (SR)
because of the PM sensitivity to the levels of s and ek implied in the portfolio
returns. Note that the SR is fully compatible with normally distributed returns
and, more general, with elliptical distributions of returns. Hence, the SR can lead
to incorrect evaluations due to asymmetry and heavy tails under the GC distribution,
see Jondeau and Rockinger (2001).

Finally, the semi-nonparametric (SNP) distribution by Gallant and Nychka (1987)
is introduced here as a more flexible density than the GC distribution in terms of cap-
turing more levels of s and ek. Closed-form expressions for LPMs are also obtained
under this distribution.

Several issues are left for further research. We could obtain efficient frontiers
based on LPMs as alternative risk measures, see Cumova and Nawrocki (2011, 2014),
and compare them with the Markowitz (1991) mean-variance approach. Alternative
copula models, see Cherubini (2004), could be assumed for dependence among the
different stock returns and either GC or SNP for their marginal distributions. Fi-
nally, in a similar way to Farinelli et al. (2008), we could also obtain optimal asset
allocations with different PMs under a multivariate distribution framework.
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Appendix. Proofs

Proof of Proposition 1

Kendall and Stuart (1977) shows that

Hk (z) =

[k/2]∑

n=0

ak,n z
k−2n, (47)

where [·] rounds its argument to the nearest (smaller) integer and

ak,n =

(
−1

2

)n
√
k!

(k − 2n)!n!
.

Taking expectations in (47) with pdf g (·), see equation (19), we obtain

Eg [Hk (z)] =

[k/2]∑

n=0

ak,nEg

[
zk−2n

]
. (48)

Given (19) and (21), we get Eg [Hk (z)] = 0 for k ≥ 5 and so, we obtain recursively
the expression for Eg

[
zk
]
in (22). Finally, we obtain (23) by using the binomial

expansion.

Proof of Proposition 2

Let z be the standardized return of r in (18) with pdf g (z) in (19). Its distribution
function is

FGC (z; s, ek) =

∫ z

−∞
g (x) dx =

∫ z

−∞
p(x)φ (x) dx

= Φ(z) +
s√
3!

∫ z

−∞
H3 (x)φ (x) dx+

ek√
4!

∫ z

−∞
H4 (x)φ (x) dx

= Φ(z)− s

3
√
2!
H2 (z) φ (z)−

ek

4
√
3!
H3 (z)φ (z) . (49)

where the last equality arises from the following relationship (see León et al. (2009)
for details): ∫ a

−∞
Hk(x)φ(x)dx = − 1√

k
Hk−1(a)φ(a), k ≥ 1. (50)

Let f (r) = g (z) /σ be the pdf of r and F (r) be the associated cdf, then F (r) =
FGC (r∗; s, ek) where r∗ = (r − µ) /σ completes the proof.

Proof of Corollary 3

We can rewrite (24) as

F (r) = B0 +
s√
3!
A02 +

ek√
4!
A03 (51)
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where

B0 = Φ(r∗), A02 = − 1√
3
H2(r

∗)φ(r∗), A03 = − 1√
4
H3(r

∗)φ(r∗). (52)

It holds that B0 > 0 ∀r∗, A02 > 0 iff |r∗| < 1 and A03 > 0 iff r∗ ∈
(
−∞,−

√
3
)
∪(

0,
√
3
)
. Moreover, using the relations (a) dφ (x) /dx = −xφ (x) and (b) dHk (x) /dx =√

kHk−1 (x), we get

∂A02

∂r∗
> 0 ⇔ r∗ ∈

(
−
√
3, 0
)
∪
(√

3,+∞
)
,

∂A03

∂r∗
> 0 ⇔ r∗ ∈ (−∞,−r∗1) ∪ (−r∗2, r∗2) ∪ (r∗1,+∞) ,

where r∗1 =
√

3 +
√
6 and r∗2 =

√
3−

√
6. Hence,

∂F (r)

∂s
> 0 ⇔ |r∗| < 1,

∂F (r)

∂ek
> 0 ⇔ r∗ ∈

(
−∞,−

√
3
)
∪
(
0,
√
3
)
,

and ∂F (r) /∂r∗ > 0 if r∗ ∈ (−r∗2, 0) ∪ (r∗1,+∞). Finally, the signs of the partial
derivatives of F (r) with respect to µ and σ are obtained by applying the chain rule
and using that ∂r∗/∂µ < 0, ∂r∗/∂σ > 0 iff µ > r.

Proof of Proposition 3

Let f and g denote, respectively, the pdfs for r and z in (18). So, it is verified that
f (r) = g (z) /σ where z = (r − µ) /σ. Then, we can rewrite (9) as

LPMf (τ,m) =

∫ τ

−∞
(τ − r)mf(r) dr =

∫ τ∗

−∞
(τ − µ− σz)mg(z) dz (53)

where τ ∗ = (τ − µ) /σ. If we apply the binomial expansion to (τ −µ−σz)m in (53),
then

LPMf(τ,m) =
∑m

k=0
(−1)k

(
m

k

)
(τ − µ)m−k σk

Ik, (54)

where Ik=Eg

[
zk |z < τ ∗

]
denotes the conditional expected value. Thus, for k ≥ 1,

we get

Ik =

∫ τ∗

−∞
zkg(z) dz = Bk +

s√
3!
Ak2 +

ek√
4!
Ak3, (55)

where

Bk =

∫ τ∗

−∞
zkφ(z)dz, Ak2 =

∫ τ∗

−∞
zkH3(z)φ(z)dz, Ak3 =

∫ τ∗

−∞
zkH4(z)φ(z)dz.

(56)
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By using (50), Ak2 and Ak3 can be expressed as

Ak2 =
1√
3!
(Bk+3 − 3Bk+1), Ak3 =

1√
4!
(Bk+4 − 6Bk+2 + 3Bk). (57)

By plugging (55) into (54), we get

LPMf(τ,m) = LPMn(τ,m) +
s√
3!
θ2,m +

ek√
4!
θ3,m,

where

θj,m =
∑m

k=0
(−1)k

(
m

k

)
(τ − µ)m−k σkAkj,

where LPMn(τ,m)=En[(τ−r)m+ ] such that n (·) is the pdf of the normal distribution
with mean µ and standard deviation σ. Thus,

LPMn(τ,m) =

∫ τ∗

−∞
(τ − µ− σz)m φ (z) dz =

∑m

k=0
(−1)k

(
m

k

)
(τ − µ)m−k σkBk.

(58)
Finally, to get the expression for Bk in (56), we need the following result (available
upon request):

zk =

[k/2]∑

n=0

ck,nHk−2n (z) , (59)

where ck,n ∈ R and Hi (·) is a Hermite polynomial. Note that (59) is just the
inversion formula of (47). If we take (50) and (59), then

Bk =

∫ τ∗

−∞
zkφ(z)dz =

[k/2]∑

n=0

ck,n

∫ τ∗

−∞
Hk−2n (z) φ(z)dz

=

[k/2]∑

n=0

ck,n

[
Φ(τ ∗)1(k−2n=0) +

1√
k − 2n

Hk−2n−1 (τ
∗)φ (τ ∗) 1(k−2n≥1)

]
, (60)

where 1(·) is the usual indicator function.

Proof of Corollary 5

The expressions of θj,m in (30) and LPMn(τ,m) in (31) are easily obtained form ≤ 3
by using, respectively, the equations (27) and (26) from Proposition 3. Since we need
to obtain Ak2 and Ak3 in (57) for k = 0, 1, 2, 3, 4, then we must previously get Bj in
(56) for j = 1, . . . , 7. This is straightforward by applying the condition (50).

Proof of Proposition 4

Let h and f denote, respectively, the pdfs for x and r in (40) and (43). So, it is
verified that f (r) = h (x) /(bσ). Then, we can rewrite (9) as

LPMf(τ,m) =

∫ τ

−∞
(τ − r)mf(r) dr =

∫ τ+

−∞
(κ0 − κ1x)

mh(x) dx, (61)
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where κ0 = τ − µ − aσ, κ1 = bσ > 0 and τ+ = κ0/κ1. The expressions of a and b
in (42) can be obtained from the first two unconditional moments of x, denoted as
µ′
x (1) and µ

′
x (2), from Lemma 1 in León et al. (2009). Thus, Eh [x] = µ′

x (1) is just
γ1 (v) in (41) and

µ′
x (2) =

2
(
v21 + 2v22 +

√
2v2v0

)

v′v
+ 1.

Then, Vh [x] = µ′
x (2)− µ′

x (1)
2. If we apply the binomial expansion to (κ0 − κ1x)

m

in (61) and consider (40), we have

LPMf(τ,m) =
∑m

j=0
(−1)j

(
m

j

)
κm−j
0 κj1

[
Bj +

∑4

k=1
γk (v)Gjk

]
(62)

where Bj =
∫ τ+
−∞ xjφ(x)dx and Gjk =

∫ τ+
−∞ xjHk(x)φ (x) dx. If we consider (47),

then the expressions of Gjk, for 0 ≤ j ≤ m and 1 ≤ k ≤ 4, are:

Gj1 = Bj+1, Gj2 =
1√
2
(Bj+2 − Bj) ,

Gj3 =
1√
3!
(Bj+3 − 3Bj+1), Gj4 =

1√
4!
(Bj+4 − 6Bj+2 + 3Bj).

(63)

Note that, in the above expressions, Bj are evaluated at the point τ+. By plugging
(63) into (62), we arrive at expressions (44)-(46).
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Appendix of Tables

Table 1: Sensitivity analysis for the Kappa measures under a GC distribution. Ef-
fects of skewness (s) and excess kurtosis (ek)

Panel A: Omega Panel B: Sortino Panel C: Kappa 3
ek s = −0.7 s = 0 s = 0.4 s = −0.7 s = 0 s = 0.4 s = −0.7 s = 0 s = 0.4

0.8996 0.5801 0.5959 0.6054 0.2622 0.2923 0.3150 0.1825 0.2070 0.2292
1.2048 0.5893 0.6057 0.6154 0.2617 0.2916 0.3141 0.1806 0.2040 0.2246
1.5100 0.5988 0.6157 0.6258 0.2612 0.2909 0.3133 0.1788 0.2011 0.2204
1.8153 0.6086 0.6261 0.6365 0.2607 0.2903 0.3124 0.1771 0.1983 0.2165
2.1205 0.6187 0.6368 0.6476 0.2602 0.2896 0.3116 0.1754 0.1957 0.2128
2.4257 0.6292 0.6479 0.6591 0.2598 0.2889 0.3107 0.1738 0.1932 0.2094
2.7309 0.6400 0.6594 0.6710 0.2593 0.2882 0.3099 0.1723 0.1909 0.2062
3.0361 0.6513 0.6713 0.6833 0.2588 0.2876 0.3091 0.1708 0.1887 0.2031
3.3414 0.6629 0.6836 0.6961 0.2583 0.2869 0.3083 0.1693 0.1865 0.2003
3.6466 0.6749 0.6964 0.7094 0.2578 0.2863 0.3074 0.1680 0.1845 0.1976

This Table exhibits the values of the closed-form formulas for the Kappa measures (Omega-Sharpe, Sortino
and Kappa 3) by using the LPM expressions from Corollary 5 for monthly returns. All the portfolios in this
Table have µ = 0.86% and σ = 2.61% but different values for s and ek such that (ek, s) ∈ Γ. The Sharpe
ratio is SR=0.1796 and the return threshold is rf = 0.39%.
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Table 2: Some results and statistics from the regression analysis by using samples of simulated monthly returns from a GC
distribution.

log (Perf. Measure) Sharpe ratio interval beta log(Sharpe) beta Skewness beta Exc. Kurt. Rank Corr. R2 R20 Chow Test (p-value)
Omega-Sharpe [1%, 11.65%] 1.1888 0.0286 0.0536 0.9509 0.9996 0.8999 10484.41

(11.65%, 22.3%] 1.2855 0.0458 0.0570 0.8965 0.9993 0.7941 (0.00)
Sortino [1%, 11.65%] 1.0993 0.1672 -0.0046 0.8728 0.9984 0.7540 1012.26

(11.65%, 22.3%] 1.1480 0.1820 -0.0077 0.7489 0.9966 0.5625 (0.00)
Kappa 3 [1%, 11.65%] 1.0685 0.1974 -0.0417 0.8059 0.9916 0.6439 95.29

(11.65%, 22.3%] 1.1017 0.2060 -0.0457 0.6583 0.9853 0.4429 (0.00)
FTR (1,2) [1%, 11.65%] 0.2802 0.1365 0.0498 0.3842 0.9979 0.1642 9798.84

(11.65%, 22.3%] 0.4199 0.1437 0.0520 0.3736 0.9985 0.1558 (0.00)
FTR (2,3) [1%, 11.65%] 0.1634 0.3150 0.0222 0.1277 0.9984 0.0179 1823.73

(11.65%, 22.3%] 0.2426 0.3228 0.0164 0.1286 0.9986 0.0182 (0.00)

This Table exhibits the results of estimating by OLS the model in (37). All the regressions contain the same explanatory variables: a
constant, the skewness, the excess kurtosis and the log of the Sharpe ratio. All the beta estimates (except the constant) are shown,
respectively, in columns 3 to 5. Consider different performance measures (PM) (dependent variable) in column 1, then the regression
is run twice. The total sample size (N=10,000) is divided in two parts having one regression per subsample. The criterion followed
to split N depends on the size of the Sharpe ratio (SR) of the portfolio i ∈ {1, · · · , N}, henceforth SRi. The column 2 is the SR
interval, SRi ∈ [1%, 11.65%] or SRi ∈ (11.65%, 22.3%]. There is a total of 10 different regressions. The column 6 is the Spearman’s
rank correlation between a certain PM and the SR for each subsample. Columns 7 and 8 correspond, respectively, to the adjusted
R2 statistics of equaiton (37) and the logarithm of equation (35). The last column represents both the value and the p-value (in
parenthesis) for the Chow-test with null hypothesis of no structural break (one regression) against the alternative one of structural
break (two regressions). Each portfolio is characterized by the vector (µi, σi, si, eki) and simulated according to the procedure described
in Subsection 5.1. Note that we repeat the above process a total of 100 times, so any value (or estimation) of the Table (from columns
3 to 9) is indeed the mean computed over 100 estimates.
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Appendix of Figures
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Figure 1: Space containing for stock returns the points (ek, s) with the excess kurtosis

level, ek, in the x-axis and the skewness level, s, in the y-axis. This space is limited by a

frontier (envelope) verifying that the Gram-Charlier (GC) density is well defined for the

points on and inside the envelope. Thus, the GC density will be restricted to this space

for (ek, s). Note that ek ∈ [0, 4] while s ∈ [−1.0493, 1.0493]. The range of s depends on

the level of ek. See Jondeau and Rockinger (2001) for more details about how to obtain

this frontier.
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