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���� The evenly convex hull of a given set is the intersection of all the open halfspaces

which contain such set (hence the convex hull is contained in the evenly convex hull). This paper

deals with �nite dimensional linear systems containing strict inequalities and (possibly) weak

inequalities as well as equalities. The number of inequalities and equalities in these systems is

arbitrary (possibly in�nite). For such kind of systems a consistency theorem is provided and

those strict inequalities (weak inequalities, equalities) which are satis�ed for every solution of a

given system are characterized. Such results are formulated in terms of the evenly convex hull

of certain sets which depend on the coef�cients of the system.
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1. Introduction

This paper deals with linear inequality systems in Rn of the form

σ = {a0tx > bt, t ∈ S; a0tx ≥ bt, t ∈ W ; a0tx = bt, t ∈ E} , (1.1)

with S 6= ∅, S,W and E pairwise disjoint sets, at ∈ Rn and bt ∈ R for all t ∈ T := S ∪W ∪E
(a possibly infinite set). We denote V = S ∪ W . The main purpose of the paper is

to characterize those systems σ for which there exist solutions (i.e., the class of consistent

systems). The secondary purpose consists of characterizing those (weak and strict) inequalities

and equalities which are satisfied by every solution of σ. In other words, this problem consists

of characterizing the consequence inequalities or equalities of a given consistent system.

Systems as σ with |T | < ∞ are considered in [18] and [29], where the concept of

legal linear combination is defined. A basic result in [29], the so-called Kuhn-Fourier

Theorem, characterizes the consistency of these systems in terms of legal linear combinations.

Other existence theorems for particular families of finite systems, formulated as alternative

theorems, have been collected in [ 19]. We summarize in Table 1 the information on the most

representative results spread on 11 references chronologically ordered.

Ref. Year S W E b· Cond.

[13] 1873 fin. ∅ ∅ 0 Not
[4] 1921-22 fin. ∅ ∅ arb. Not
[25] 1936 fin. fin. fin. 0 Not
[8] 1960 ∅ fin. ∅ arb. Not
[31]
[6]

1966
1968

∅ arb. ∅ arb. Not

[29] 1970 fin. fin. fin. arb. Not
[12] 1984 arb. arb. arb. 0 Yes
[12] 1984 arb. ∅ ∅ 0 Yes
[30] 1999 fin. fin. fin. arb. Not
[10] 2003 arb. arb. ∅ arb. Yes

The columns 3, 4 and 5 in Table 1 inform on the cardinality of the index sets, which can

be empty, finite or arbitrary (abbreviated as “∅”, “fin.” and “arb.”, respectively). Column 6

informs about the kind of right-hand side scalars bt the theorems deal with (0, in the case

of homogeneous systems, and arbitrary, otherwise). Finally, column 7 informs about the

full generality or not of the corresponding existence theorem. Observe that all the known

existence theorems for systems containing an arbitrary number of strict inequalities are only
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valid provided that a suitable closedness assumption holds.

In [30], classical alternative theorems concerning the consistency of finite linear inequality

systems are reformulated in a common, general form. In such systems, matricial notation is

used and inequalities of the form Ax ≥ b mean Ax = b but Ax 6= b. Such inequalities are

equivalent to Ax = b and e0Ax > e0b, with e0 = (1, . . . , 1) of appropriate size, so that these

systems are particular cases of (1.1) and all the results in [30] can be obtain as particular cases

of our Theorem 3.1.

[10, Proposition 2.1] provides a sufficient condition as well as a necessary condition for

σ to be consistent when E = ∅, but there is a gap between both conditions, i.e., there exists

a nonempty class of system which cannot be classified as either consistent or inconsistent.

Theorem 3.1 shows that, as Dr. Martínez-Legaz conjectured, the use of evenly convex sets

allows the elimination of the mentioned gap.

A set is evenly convex if it is the intersection of some family (possibly empty) of open

halfspaces. This class of sets was introduced by Fenchel [7] in order to extend the polarity

theory to nonclosed convex sets. Later, they have been applied in quasiconvex programming

[22, 23, 26 and 27], mathematical economy [ 24] and linear inequality systems [10] (as far as the

evenly convex sets are the solution sets of linear systems of either weak or strict inequalities).

New characterizations of this class of sets have been given recently in [5].

The evenly convex hull of a set X is the smallest evenly convex set which contains X .

Section 2 characterizes the evenly convex hull of a set and analyzes those properties which

could help in its effective calculus. Section 3 deals with the existence of solutions. The main

result there is the existence Theorem 3.1, which characterizes the consistent systems containing

strict inequalities without any assumption. Finally, Section 4 characterizes the weak (strict)

inequalities and the equalities which are consequence of a given consistent system.

Farkas’ Lemma provides a dual characterization of the containment of a polyhedral convex

set in a closed halfspace. This famous result has been extended in different directions (see the

survey in [15]):

1. Eliminating the finiteness assumptions on the number of constraints or the space dimension.

Thus, the classical paper [14] deals with Euclidean spaces, [3] with real locally convex spaces,

[ 6] with normed spaces, [31] with vector topological spaces, and [1] with matrix spaces.

2. Replacing polyhedral convex sets by closed convex sets and/or closed halfspaces by a

different class of sets. Thus, [21] characterizes the containment of polyhedral sets in polyhedral
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sets as well as in nonconvex sets determined by finitely many quadratic constraints whereas

[16] replaces polyhedral convex sets by the solution sets of convex semi-infinite systems and

eliminates the finiteness assumption on the number of quadratic constraints.

These dual characterizations of containments have important applications in mathematical

programming (duality, Lagrange multipliers, and minimax theory) and data mining (see, e.g.,

[20], [2], and [17]). These are the potential application fields of the extensions provided in

Section 4 of this paper, where closed convex sets are replaced by evenly convex sets (class

which also includes relatively open convex sets) and closed halfspaces by arbitrary halfspaces.

Concerning mathematical programming, we have shown in [10] several applications of the

existence question posed on systems such that S 6= ∅ andW = E = ∅. Let us observe now that

the typical stability condition for a linear semi-infinite program in Rn

Min c0x s.t. a0tx ≥ bt, t ∈W,

is the existence of a strong Slater element (see, e.g., [11]), i.e., the consistency of

{xn+1 > 0; a0tx− xn+1 ≥ bt, t ∈W} ,

so that |S| = 1 andW is infinite, i.e., mixed systems arise in a natural way.

Similarly, the stability condition for a linear program

Min c0x
s.t. a0tx ≥ bt, t ∈W

a0tx = bt, t ∈ E

is the linear independence of {at, t ∈ E} (if E 6= ∅) together with the consistency of

{a0tx > bt, t ∈W ; a0tx = bt, t ∈ E} ([9, Theorem 4.6]).

Now let us introduce the necessary notation. Given a nonempty set X ⊂ Rp, p ∈ N,
we denote by clX , convX , coneX , ecoX and spanX the closure of X , the convex hull of

X, the convex cone generated by X , the evenly convex hull of X and the linear subspace of

Rn spanned by X , respectively. Moreover, we define cone ∅ = span ∅ = {0p}. Some of

the above sets can be easily described by means of the space of generalized finite sequences,

R(T ), whose elements are the functions λ : T → R such that λt 6= 0 only on a finite subset

of T . The convex cone, in R(T ), of the nonnegative finite sequences is R(T )+ . If X 6= ∅ is
convex, we denote by dimX the dimension of X . Given two sets M ⊂ R and X ⊂ Rn, we

denote MX = {µx | µ ∈M, x ∈ X} if M 6= ∅ 6= X and {0n} otherwise. Finally, given
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a map A : Rp → Rq, X ⊂ Rp and Y ⊂ Rq, we denote AX = {A (x) | x ∈ X} and

A−1Y = {x ∈ Rp | A (x) ∈ Y }.
If S = ∅ (case not considered here), the following results are straightforward consequence

of [6, Theorem 1] and [31, Theorem 2], respectively.

Proposition 1.1. A system {a0tx ≥ bt, t ∈W ; a0tx = bt, t ∈ E} is consistent if and only ifµ
0n
1

¶
/∈ cl cone

½µ
at
bt

¶
, t ∈W ; ±

µ
at
bt

¶
, t ∈ E

¾
.

Proposition 1.2. A weak inequality a0x ≥ b is a consequence of a consistent system

{a0tx ≥ bt, t ∈W ; a0tx = bt, t ∈ E} if and only if
¡
a
b

¢ ∈ clK, where

K = cone

½µ
at
bt

¶
, t ∈W ; ±

µ
at
bt

¶
, t ∈ E;

µ
0n
−1
¶¾

.

Consequently, a strict inequality a0x > b is a consequence of a consistent system

{a0tx ≥ bt, t ∈W ; a0tx = bt, t ∈ E} if and only ifµ
a

b

¶
∈ clK and

µ
0n
1

¶
∈ cl

·
K + span

½µ
a

b

¶¾¸
.

We shall use the following characterizations of the evenly convex sets.

Proposition 1.3 ([10]). Given C ⊂ Rn such that ∅ 6= C 6= Rn, the following conditions are

equivalent to each other:

(i) C is evenly convex;

(ii) C is a convex set and for each x ∈ Rn\C there exists a hyperplane H such that x ∈ H and

H ∩ C = ∅; and

(iii) C is the result of eliminating from a closed convex set the union of some family of its

exposed faces.

2. The evenly convex hull

If convX Ã Rn, the intersection of all the open halfspaces containing X is the minimal

evenly convex set which containsX , i.e., it is ecoX . Alternatively, if convX = Rn (i.e., if there

does not exist a halfspace containing X), then ecoX = Rn. Obviously, X is evenly convex if

and only if ecoX = X . This happens, for instance, if X is either a closed or a relatively
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open convex set. Consequently, if X is a compact (open) set, then convX is a compact (open)

convex set and ecoX = convX. This is the case, in particular, if |X| <∞. From the definition

of evenly convex set, given x ∈ Rn, x /∈ ecoX if and only if there exists z ∈ Rn such that

(x− x)0 z > 0, for all x ∈ X . In particular,

0n /∈ ecoX if and only if {x0z > 0, x ∈ X} is consistent. (2.1)

(2.1) can be interpreted as a counterpart of the Farkas’ Lemma for homogeneous systems of

strict linear inequalities.

It can be easily seen that, for any X ⊂ Rn,

eco convX = ecoX = conv ecoX. (2.2)

Proposition 2.1. For any X ⊂ Rn, ecoX is the result of eliminating from cl convX the

union of all its exposed faces which do not intersect X . So dim ecoX = dim convX and

eco coneX = cl coneX .

Proof. Let C be the result of eliminating from cl convX the union of all its exposed faces

which do not intersectX . According to Proposition 1.3,C is evenly convex, so that ecoX ⊂ C.

Assume that the inclusion is strict and let z ∈ C\ (ecoX). Since ecoX is evenly convex, by

Proposition 1.3(ii), there exists c ∈ Rn\ {0n} and α ∈ R such that c0x < α for all x ∈ ecoX
and c0z = α. Then z ∈ Y := {y ∈ cl convX | c0y = α} and, since

convX ⊂ ecoX ⊂ cl convX, (2.3)

Y is an exposed face of cl convX which does not intersect X . This contradicts z ∈ C.

The dimensional equation is a consequence of (2.3). Finally, observe that any supporting

hyperplane of cl coneX contains 0n so that any exposed face intersects coneX and

eco coneX = cl coneX . ¤

Observe that , for any X ⊂ Rn,

cone ecoX ⊂ eco coneX = cl coneX. (2.4)

and the inclusion can be strict.
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Example 2.1. Given the set X =

½
x ∈ R2 | x2 = 1

1 + x21

¾
, we have

cl (convX) = R× [0, 1]

and

ecoX = R× ]0, 1] .
We can observe that ecoX is the result of eliminating from cl (convX) the only exposed face

which does not intersectX (the line R× {0}).
On the other hand, cone ecoX = coneX = (R× ]0,+∞[) ∪ {02} whereas eco coneX =

cl coneX = R× [0,+∞[, so that the inclusion in (2.4) is strict.

Lemma 2.1. Let A,B,C be nonempty sets in Rn. Then the following statements hold:

(i) convA+ coneB = conv (A+ R+B) .

(ii) convA+ coneB + spanC = conv (A+ R+B + RC) .

Proof. (i) If z ∈ convA + coneB, then there exist {a1, . . . , am} ⊂ A, {b1, . . . , bp} ⊂ B and

nonnegative scalars {λ1, . . . , λm} and
©
µ1, . . . , µp

ª
, with

mP
i=1

λi = 1, such that

z =
mX
i=1

λiai +

pX
j=1

µjbj.

We can assume λi > 0 for all i = 1, . . . ,m. If µj = 0 for all j = 1, . . . , p, then

z ∈ convA ⊂ conv (A+ R+B). Otherwise, we can assume
pP

j=1

µj > 0 and we can write

z =
m−1X
i=1

λiai +

pX
j=1

λmµj
pP

j=1

µj


am +


pP

j=1

µj

λm

 bj

 .

Since ai ∈ A + {0}B ⊂ A + R+B, i = 1, . . . ,m − 1, am +
 p

j=1
µj

λm

 bj ∈ A + R+B,

j = 1, . . . , p, and
m−1P
i=1

λi +
pP

j=1

λmµj
p

j=1
µj

 = 1, we have z ∈ conv (A+ R+B).

Hence convA+ coneB ⊂ conv (A+ R+B) .
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Conversely, any z ∈ conv (A+ R+B) can be written as

z =
mX
i=1

λi (ai + µibi) ,

with ai ∈ A, bi ∈ B, λi ≥ 0 and µi ≥ 0, i = 1, . . . ,m, and
mP
i=1

λi = 1.

Then

z =
mX
i=1

λiai +
mX
i=1

(λiµi) bi ∈ convA+ coneB.

(ii) By statement (i),

convA+ coneB + spanC = convA+ cone [B ∪ C ∪ (−C)]

= conv {A+ R+ [B ∪ C ∪ (−C)]} ⊂ conv (A+ R+B + RC) .

The reverse inclusion can be proved as in (i). ¤

Proposition 2.2. Let A,B,C be nonempty sets in Rn. Then the following statements hold:

(i) eco (convA+ coneB) = eco (A+ R+B) .

(ii) eco (convA+ coneB + spanC) = eco (A+ R+B + RC) .

Proof. (i) According to Lemma 2.1, part (i), and applying (2.2), we have

eco (convA+ coneB) = eco conv (A+ R+B) = eco (A+ R+B) .

(ii) Combining part (ii) of Lemma 2.1 and (2.2), we get

eco (convA+ coneB + spanC) = eco conv (A+ R+B + RC) = eco (A+ R+B + RC) . ¤

Proposition 2.3. Given two sets X ⊂ Rn and Y ⊂ Rm,

eco (X × Y ) = (ecoX)× (eco Y ) .

Proof. Since the product of evenly convex sets is evenly convex too [10, Proposition 3.6],

eco (X × Y ) ⊂ (ecoX)× (eco Y ).
Now we assume (x, y) /∈ eco (X × Y ). Let (c, d) ∈ Rn+m\ {0n+m} and α ∈ R such that

c0x+ d0y > α for all (x, y) ∈ X × Y and

c0x+ d0y ≤ α (2.5)
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(or even c0x+ d0y = α). We have either c 6= 0n or d 6= 0m (maybe both).

If c 6= 0n and d = 0m, then c0x > α for all x ∈ X and c0x ≤ α, so that x /∈ ecoX and

(x, y) /∈ ecoX × ecoY . We get the same conclusion if c = 0n and d 6= 0m.
Then, we can assume c 6= 0n and d 6= 0m. For each y ∈ Y , the set

{x ∈ Rn | c0x > α− d0y} is an open halfspace containing X, so that, if x ∈ ecoX , we have

c0x > α− d0y. Combining this expression and (2.5), we obtain d0y > d0y for all y ∈ Y , so that

y /∈ eco Y and (x, y) /∈ ecoX × ecoY .

So (x, y) /∈ ecoX × ecoY in either case and we can conclude (ecoX) × (ecoY ) ⊂
eco (X × Y ). ¤

Example 2.2. Let A : R2n → Rn such that A (x, z) = x + z and let X = C1 ×
C2, where C1 = {x ∈ R2 | tx1 + (1− t)x2 ≥ t− t2, t ∈ [0, 1] , x1 + x2 ≤ 1} and C2 =

{x ∈ R2 | x1 ≥ 0; x2 ≥ 0; x1 + x2 > 0}. It can be shown that we have ecoX = X by

Proposition 2.3 and so

A (ecoX) Ã ecoAX

(see Figures 3-5 in [10]).

The next result shows that the corresponding inclusion always holds.

Proposition 2.4. Let X 6= ∅ be a set in Rm and let A : Rm → Rn be a linear transformation.

Then A (ecoX) ⊂ ecoAX .

Proof. Let x ∈ ecoX and assume Ax /∈ ecoAX . Then, there exist c ∈ Rn\ {0n} and α ∈ R
such that c0Ax > α for all x ∈ X and c0Ax ≤ α.

Taking d := c0A ∈ Rm, we have d0x > α for all x ∈ X and d0x ≤ α, with d 6= 0m

(otherwise 0 ≤ α < 0), and this contradicts x ∈ ecoX . ¤

Corollary 2.1. Given two nonempty sets X,Y ⊂ Rn,

ecoX + ecoY ⊂ eco (X + Y ) . (2.6)

Proof. Let A : R2n → Rn be the linear transformation defined as A (x, y) = x + y, x, y ∈ Rn.

Then, applying Propositions 2.3, we have

ecoX + eco Y = A [(ecoX)× (eco Y )] = A [eco (X × Y )] (2.7)
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and, by Proposition 2.4,

A [eco (X × Y )] ⊂ eco [A (X × Y )] = eco (X + Y ) . (2.8)

Combining (2.7) and (2.8), we obtain (2.6). ¤

Since the sum of evenly convex sets is not necessarily evenly convex (recall Example 2.2),

the inclusion (2.6) cannot be replaced by an equality.

Proposition 2.5. Let X be a nonempty set in Rn and let A : Rm → Rn be a linear

transformation such that A−1X 6= ∅. Then

eco
¡
A−1X

¢ ⊂ A−1 (ecoX) . (2.9)

Proof. According to [10, Proposition 3.5], A−1 (ecoX) is an evenly convex set which contains

A−1X , so that (2.9) holds. ¤

The reverse inclusion is not true.

Example 2.3. Let X = (]0,+∞[× ]0,+∞[) ∪ {02} ⊂ R2 and let A : R2 → R2 be the linear

transformation defined as A (x1, x2) = (x1, 0).

A−1X = {0} × R is an evenly convex set whereas A−1 (ecoX) = R+ × R. So that,

eco (A−1X) = A−1X Ã A−1 (ecoX).

Since the intersection of evenly convex sets is evenly convex too, we get the next result.

Proposition 2.6. Given a family of nonempty sets in Rn, {Xi | i ∈ I},

eco

µ
∩
i∈I

Xi

¶
⊂ ∩

i∈I
(ecoXi) . (2.10)

Proof. The proof is trivial.

The next example shows that the inclusion in (2.10) cannot be replaced by an equality (even

though |I| <∞).

Example 2.4. Let X1 = R2 × {0} and

X2 = conv


 − cos t− sin t

−1

 , t ∈ ]0, 2π[
+ R+


 1
0
1


 ∪


 1
0
1

 ,
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x1 

x2 

x3 

x3 = -1

Figure 2.1

(see Figure 2.1).

Since ecoX1 = X1 and ecoX2 = clX2, we have (ecoX1) ∩ (ecoX2) =©
(x1, x2, 0) ∈ R3 | (x1 − 1)2 + x22 ≤ 1

ª
whereas

eco (X1 ∩X2) = X1 ∩X2 =
©
(x1, x2, 0) ∈ R3 | (x1 − 1)2 + x22 ≤ 1

ª \ {03} .

Proposition 2.7. Given a nonempty bounded set X ⊂ Rn,

cl (ecoX) = eco (clX) = conv (clX) .

Proof. By [28, Theorem 17.2],

cl (convX) = conv (clX) (2.11)

and, since clX is compact, we have

eco (clX) = conv (clX) . (2.12)

Combining (2.11) and (2.12), we obtain

eco (clX) = cl (convX) ,
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so that eco (clX) is a closed set containing ecoX and

cl (ecoX) ⊂ eco (clX) .

We obtain the opposite inclusion observing that cl (ecoX) is an evenly convex set

containing clX . ¤

The boundedness condition in the last result is not superfluous.

Example 2.1 (revisited). For the unbounded set X , we have

eco (clX) = ecoX = R× ]0, 1] 6= R× [0, 1] = cl (ecoX) .

3. Existence of solutions

The main result in this paper characterizes the consistency of linear systems with strict

inequalities in terms of the evenly convex hull of a certain set depending on the coefficients.

For the sake of brevity in the proofs, given a subset of indices I ⊂ T , we denote by CI the

set
n¡

at
bt

¢
, t ∈ I

o
.

Lemma 3.1. The following conditions are equivalent to each other:

(i) {a0tx > bt, t ∈ S}, with S 6= ∅, is consistent;

(ii) 0n+1 /∈ eco
·½µ

at
bt

¶
, t ∈ S;

µ
0n
−1
¶¾¸

;

(iii) 0n+1 /∈ eco
·½µ

at
bt

¶
, t ∈ S

¾¸
and

µ
0n
1

¶
/∈ cl cone

½µ
at
bt

¶
, t ∈ S

¾
.

Proof. (i) ⇒ (ii) Let x1 ∈ Rn be a solution of {a0tx > bt, t ∈ S}. Then
¡
x1

−1
¢ ∈ Rn+1 is a

solution of the homogeneous system½µ
at
bt

¶0µ x

xn+1

¶
> 0, t ∈ S;

µ
0n
−1
¶0µ x

xn+1

¶
> 0

¾
,

whose consistency is equivalent to condition (ii) by (2.1).

(ii)⇒ (iii) Since ecoCS ⊂ eco
£
CS ∪

©¡
0n
−1
¢ª¤

, condition (ii) entails 0n+1 /∈ ecoCS .

On the other hand, condition (ii) implies that there exists a vector c ∈ Rn+1 such that c0z > 0

for all z ∈ CS and c0
¡
0n
−1
¢
> 0. Hence, X =: {x ∈ Rn+1 | c0x ≥ 0} is an homogeneous closed
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halfspace containing CS such that
¡
0n
1

¢
/∈ X and, by [28, Corollary 11.7.2], cl coneCS ⊂ X.

Consequently,
¡
0n
1

¢
/∈ cl coneCS and (iii) holds.

(iii)⇒ (i) Now assume that 0n+1 /∈ ecoCS and
¡
0n
1

¢
/∈ cl coneCS .

First condition implies the existence of a vector
¡
a
α

¢ ∈ Rn+1 such that
¡
a
α

¢0
z > 0 for all

z ∈ CS . Then

a0ta+ btα > 0 (3.1)

for all t ∈ S.

By Proposition 1.1, second condition is equivalent to the consistency of the system

{a0tx ≥ bt, t ∈ S}. Let x be a solution of such system.

It can be easily realized, from (3.1), that x ∈ Rn, defined as

x :=



−a

α
, if α < 0,

a+ x, if α = 0,

2x+
a

α
, if α > 0,

is a solution of {a0tx > bt, t ∈ S}. ¤

Theorem 3.1. The following conditions are equivalent to each other:

(i) σ = {a0tx > bt, t ∈ S; a0tx ≥ bt, t ∈W ; a0tx = bt, t ∈ E}, with S 6= ∅, is consistent;

(ii) 0n+1 /∈ eco
·½µ

at
bt

¶
, t ∈ S

¾
+ R+

½µ
at
bt

¶
, t ∈W

¾
+ R

½µ
at
bt

¶
, t ∈ E

¾
;

µ
0n
−1
¶¸

;

(iii) 0n+1 /∈ eco
·½µ

at
bt

¶
, t ∈ S

¾
+ R+

½µ
at
bt

¶
, t ∈ W

¾
+ R

½µ
at
bt

¶
, t ∈ E

¾¸
and

µ
0n
1

¶
/∈ cl cone

½µ
at
bt

¶
, t ∈ V ; ±

µ
at
bt

¶
, t ∈ E

¾
.

Proof. We assumeW 6= ∅ 6= E (otherwise the proof is simpler). The proof is a straightforward

consequence of Lemma 3.1 due to the equivalence between the consistency of σ and the

consistency of the system

σ1 =
©
(as + αaw + βae)

0 x > bs + αbw + βbe, (s, w, e, α, β) ∈ S ×W × E × R+ ×R
ª
.

Since any solution of σ is trivially a solution of σ1, we consider a solution of σ1, say x.

Given s ∈ S, and taking arbitrarily w ∈ W and e ∈ E, we have, for the index

12



(s, w, e, 0, 0) ∈ S ×W × E × R+ × R, the strict inequality

a0sx > bs. (3.2)

Similarly, given w ∈ W , taking arbitrarily s ∈ S, e ∈ E and r > 0, we have, for the index

(s, w, e, r, 0) ∈ S ×W × E ×R+ ×R, the inequality

(as + raw)
0 x > bs + rbw. (3.3)

Multiplying by r−1 both sides of (3.3) and taking limits as r → +∞, we get

a0wx ≥ bw. (3.4)

Finally, given e ∈ E, for any s ∈ S, w ∈ W and r ∈ R\ {0}, we have, for the index

(s, w, e, 0, r) ∈ S ×W × E × R+ × R, the inequality

(as + rae)
0 x > bs + rbe. (3.5)

Multiplying by |r|−1 both sides of (3.5) and taking limits as r→ ±∞, we get now

a0ex = be. (3.6)

Therefore, from (3.2), (3.4) and (3.6), we conclude that x is a solution of σ. ¤

Obviously, conditions (ii) and (iii) are equivalent to assert the consistency of associated

systems in Rn+1 (in the same vein, the alternative theorems establish the equivalence between

the consistency of a given system and the inconsistency of an associated one). Observe that

Proposition 2.1 provides a geometric and analytic description of the condition 0n+1 /∈ ecoX .

Now we shall obtain some straightforward consequences of Theorem 3.1 (other consequences

are obtained in [10] as corollaries of the next result).

Corollary 3.1 ([10, Proposition 2.1]). Let σ be as in Theorem 3.1, with E = ∅. Then the

following statements hold:

(i) If σ is consistent, then µ
0n
1

¶
/∈ cl cone

½µ
at
bt

¶
, t ∈ T

¾
(3.7)

and

0n+1 /∈ conv
½µ

at
bt

¶
, t ∈ S

¾
+ cone

½µ
at
bt

¶
, t ∈W

¾
. (3.8)

13



(ii) If (3.7) and (3.8) hold and the set in (3.8) is closed, then σ is consistent.

Proof. (i) According to Lemma 2.1, part (i), we have

convCS + coneCW = conv [CS + R+CW ] ⊂ eco [CS + R+CW ] , (3.9)

and (3.7) and (3.8) hold by straightforward application of Theorem 3.1.

(ii) We can reformulate (3.8) as

0n+1 /∈ conv [CS + R+CW ] . (3.10)

Since we are assuming the closedness of the convex set in (3.10), it is equal to the set

eco [CS + R+CW ]. Then Theorem 3.1 applies again. ¤

The following example illustrates the dubious case in Corollary 3.1.

Example 3.1. Let σ = {tx1 + x2 > −t2, t ∈ [−1, 1] \ {0} ; −x2 > 0}.
Obviously, 02 is a solution of the relaxed system of σ,

σ =
©
tx1 + x2 ≥ −t2, t ∈ [−1, 1] \ {0} ; −x2 ≥ 0

ª
,

and, by Proposition 1.1, (3.7) holds. On the other hand, the set in (3.8) is here

Y = conv


 t

1
−t2

 , t ∈ [−1, 1] \ {0} ;
 0
−1
0


= conv


 t

1
−t2

 , t ∈ [−1, 1] ;
 0
−1
0

 \
 0
−1
0

 ,

 0
1
0

 ,
which is not closed and does not contain 03 (see Figure 3.1). Hence, (3.7) and (3.8) hold, but

we cannot apply Corollary 3.1.

On the other hand, Y is not evenly convex because 03 ∈ (clY ) \Y but for any hyperplane

H such that 03 ∈ H, we have H ∩ Y 6= ∅. In fact,

eco


 t

1
−t2

 , t ∈ [−1, 1] \ {0} ;
 0
−1
0

 = clY

and, since the first condition in Theorem 3.1(iii) fails, σ turns out to be inconsistent.

14



x1
x2

x3

Figure 3.1

Corollary 3.2. Let σ be as in Theorem 3.1, with E = ∅. Assume that {a0tx ≥ bt, t ∈W}
is consistent and that cone

n¡
at
bt

¢
, t ∈ T

o
and conv

n¡
at
bt

¢
, t ∈ S

o
+ cone

n¡
at
bt

¢
, t ∈W

o
are

closed sets. Then one and only one of the following alternatives hold:

(i) σ is consistent.

(ii) There exists λ ∈ R(T )+ such that at least one of the numbers λt, t ∈ S, is nonzero, andX
t∈T

λtat = 0n and
X
t∈T

λtbt ≥ 0. (3.11)

Proof. We shall prove the equivalence between (ii) and the negation of (i). According to

Corollary 3.1, (i) fails if and only if eitherµ
0n
1

¶
∈ coneCT (3.12)

or

0n+1 ∈ convCS + coneCW . (3.13)

If (3.12) holds, we can writeµ
0n
1

¶
=
X
t∈T

λt

µ
at
bt

¶
, λ ∈ R(T )+ ,

so that (3.11) holds. Moreover, there exists t ∈ S such that λt > 0 (otherwise
¡
0n
1

¢ ∈ coneCW ,

and this is impossible due to the consistency of {a0tx ≥ bt, t ∈ W}).
15



Alternatively, if (3.13) holds, there exists λ ∈ R(T )+ such that

0n+1 =
X
t∈T

λt

µ
at
bt

¶
and

X
t∈S

λt = 1,

and (3.11) holds again with λt > 0 for at least one index t ∈ S.

Consequently, (ii) holds in both cases.

Now we assume that (ii) holds, i.e., there exist λ ∈ R(T )+ and α ≥ 0 such that
P
t∈S

λt > 0

and µ
0n
α

¶
=
X
t∈T

λt

µ
at
bt

¶
. (3.14)

If α > 0, dividing both members of (3.14) by α, we getµ
0n
1

¶
=
X
t∈T

¡
α−1λt

¢µat
bt

¶
∈ coneCT

and σ is inconsistent.

Alternatively, if α = 0, dividing both members of (3.14) by µ :=
P
t∈S

λt, we get

0n+1 =
X
t∈S

¡
µ−1λt

¢µat
bt

¶
+
X
t∈W

¡
µ−1λt

¢µat
bt

¶
∈ convCS + coneCW ,

so that σ is inconsistent by Corollary 3.1.

Hence, (i) fails in both cases. ¤

If S is compact and cone
n¡

at
bt

¢
, t ∈W

o
is closed, then the closedness assumptions in

Corollary 3.2 hold. In particular, if S and W are finite, then Corollary 3.2 becomes [ 28,

Theorem 22.2].

The next result generalizes the Extended Motzkin’s Alternative Theorem (see [ 11, p. 68]).

Corollary 3.3. An homogeneous system

σ = {a0tx > 0, t ∈ S; a0tx ≥ 0, t ∈W ; a0tx = 0, t ∈ E}

is consistent if and only if

0n /∈ eco [{at, t ∈ S}+ R+ {at, t ∈W}+ R {at, t ∈ E}] . (3.15)
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Proof. Combining Theorem 3.1 and Proposition 2.3, σ is consistent if and only if

0n+1 /∈ eco
·½µ

at
0

¶
, t ∈ S

¾
+ R+

½µ
at
0

¶
, t ∈W

¾
+ R

½µ
at
0

¶
, t ∈ E

¾¸
= eco [{at, t ∈ S}+ R+ {at, t ∈W}+ R {at, t ∈ E}]× {0}

if and only if (3.15) holds. ¤

4. Consequence relations

A linear relation a0x ≥ b (a0x > b or a0x = b) is a consequence of a system σ if a0x ≥ b

(a0x > b or a0x = b) holds for every x ∈ Rn solution of σ. If σ is inconsistent, then any linear

inequality (or equality) is a consequence of σ. So we assume throughout this section that

σ = {a0tx > bt, t ∈ S; a0tx ≥ bt, t ∈W ; a0tx = bt, t ∈ E}

is consistent. We denote σ = {a0tx ≥ bt, t ∈ V ; a0tx = bt, t ∈ E}.

Proposition 4.1. A weak inequality a0x ≥ b is a consequence of σ if and only ifµ
a

b

¶
∈ cl cone

½µ
at
bt

¶
, t ∈ V ; ±

µ
at
bt

¶
, t ∈ E;

µ
0n
−1
¶¾

. (4.1)

Proof. If a0x ≥ b is a consequence of σ, then it is also a consequence of σ. In fact, let x be an

arbitrary solution of σ and take an arbitrary x1 solution of σ. Then, for every λ ∈ ]0, 1[, we get
a solution of σ of the form x (λ) := (1− λ)x + λx1. Since a0x ≥ b is a consequence of σ, we

get a0x (λ) ≥ b and taking limits as λ→ 0+ we obtain a0x ≥ b. Since a0x ≥ b is a consequence

of a consistent system σ = {a0tx ≥ bt, t ∈ V ; a0tx = bt, t ∈ E}, we can apply Proposition 1.2

to get (4.1). ¤

Corollary 4.1. An equation a0x = b is a consequence of σ if and only if

±
µ
a

b

¶
∈ cl cone

½µ
at
bt

¶
, t ∈ V ; ±

µ
at
bt

¶
, t ∈ E;

µ
0n
−1
¶¾

.

We have shown that a0x ≥ b (a0x = b) is a consequence of σ if and only if it is a

consequence of σ. So, this is a necessary condition for a0x > b to be a consequence of σ.

Inspired by [18], we say that a strict inequality a0x > b is a legal linear combination of σ if

17



there exists λ ∈ R(V )+ such that λt > 0 for at least one index t ∈ S, and µ ∈ R(E) such thatµ
a

b

¶
=
X
t∈V

λt

µ
at
bt

¶
+
X
t∈E

µt

µ
at
bt

¶
.

Proposition 4.2. A strict inequality a0x > b is a consequence of σ if and only if at least one of

the following conditions hold:

(i)

µ
0n
1

¶
∈ cl cone

½µ
at
bt

¶
, t ∈ V ; ±

µ
at
bt

¶
, t ∈ E; −

µ
a

b

¶¾
.

(ii) 0n+1 ∈ eco
·½µ

at
bt

¶
, t ∈ S

¾
+ R+

½µ
at
bt

¶
, t ∈W ; −

µ
a

b

¶¾
+ R

½µ
at
bt

¶
, t ∈ E

¾¸
.

If a0x > b is a legal linear combination of σ ∪ {00nx > −1}, then (i) holds. The converse

is true if

cone

½µ
at
bt

¶
, t ∈ V ; ±

µ
at
bt

¶
, t ∈ E; −

µ
a

b

¶¾
(4.2)

is closed.

If a0x > b is a legal linear combination of σ, then (ii) holds. The converse is true if

conv

·½µ
at
bt

¶
, t ∈ S

¾
+ R+

½µ
at
bt

¶
, t ∈ W ; −

µ
a

b

¶¾
+ R

½µ
at
bt

¶
, t ∈ E

¾¸
(4.3)

is evenly convex.

Proof. A strict inequality a0x > b is a consequence of σ if and only if

σ ∪ {a0x ≤ b} = {a0tx > bt, t ∈ S; a0tx ≥ bt, t ∈W ; a0tx = bt, t ∈ E; −a0x ≥ −b}

is inconsistent. Recalling Theorem 3.1, this is equivalent to assert that either (i) or (ii) holds.

Now we assume that a0x > b is a legal linear combination of σ ∪ {00nx > −1}. Then we

can write µ
a

b

¶
=
X
t∈V

λt

µ
at
bt

¶
+
X
t∈E

µt

µ
at
bt

¶
+ γ

µ
0n
−1
¶
, λ ∈ R(V )+ , µ ∈ R(E), γ > 0.

Then we have

µ
0n
1

¶
=
X
t∈V

¡
γ−1λt

¢µat
bt

¶
+
X
t∈E

¡
γ−1µt

¢µat
bt

¶
−γ−1

µ
a

b

¶
∈ cone

·
CV ∪ (±CE) ∪

½
−
µ
a

b

¶¾¸

18



and (i) holds. Conversely, if (i) holds and the convex cone in (4.2) is closed, we can writeµ
0n
1

¶
=
X
t∈V

λt

µ
at
bt

¶
+
X
t∈E

µt

µ
at
bt

¶
− γ

µ
a

b

¶
, λ ∈ R(V )+ , µ ∈ R(E), γ ≥ 0. (4.4)

If γ = 0,
¡
0n
1

¢ ∈ cone [CV ∪ (±CE)], but this entails the inconsistency of σ.

Thus γ > 0 and, from (4.4), we getµ
a

b

¶
=
X
t∈V

¡
γ−1λt

¢µat
bt

¶
+
X
t∈E

¡
γ−1µt

¢µat
bt

¶
+ γ−1

µ
0n
−1
¶
,

so that a0x > b is a legal linear combination of σ ∪ {00nx > −1}.
If a0x > b is a legal linear combination of σ, then there exist λ ∈ R(V )+ and µ ∈ R(E) such

that γ :=
P
t∈S

λt > 0 and µ
a

b

¶
=
X
t∈V

λt

µ
at
bt

¶
+
X
t∈E

µt

µ
at
bt

¶
.

By Proposition 2.2, we have

0n+1 =
X
t∈S

¡
γ−1λt

¢µat
bt

¶
+
X
t∈W

¡
γ−1λt

¢µat
bt

¶
+
X
t∈E

¡
γ−1µt

¢µat
bt

¶
− γ−1

µ
a

b

¶

∈ convCS + cone

·
CW ∪

½
−
µ
a

b

¶¾¸
+ spanCE

⊂ eco
·
convCS + cone

·
CW ∪

½
−
µ
a

b

¶¾¸
+ spanCE

¸
= eco

·
CS + R+

µ
CW ∪

½
−
µ
a

b

¶¾¶
+ RCE

¸
,

i.e. (ii) holds.

Finally, we assume that (ii) holds and the set in (4.3) is evenly convex. Then, by Lemma

2.1,

0n+1 ∈ convCS + cone

·
CW ∪

½
−
µ
a

b

¶¾¸
+ spanCE

and there exist λ ∈ R(V )+ , µ ∈ R(E) and γ ≥ 0 such thatP
t∈S

λt = 1 and

γ

µ
a

b

¶
=
X
t∈V

λt

µ
at
bt

¶
+
X
t∈E

µt

µ
at
bt

¶
. (4.5)

If γ = 0, then (4.5) yields

0n+1 ∈ convCS+coneCW+spanCE = conv [CS + R+CW + RCE] ⊂ eco [CS + R+CW + RCE]
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and σ would be inconsistent by Theorem 3.1, contradicting the assumption. Hence γ > 0 and

(4.5) entails µ
a

b

¶
=
X
t∈V

¡
γ−1λt

¢µat
bt

¶
+
X
t∈E

¡
γ−1µt

¢µat
bt

¶
with

P
t∈S

γ−1λt = γ−1 > 0, so that a0x > b is a legal linear combination of σ. ¤

If S, W and E are finite, then the convex cone in (4.2) is polyhedral and the set in (4.3),

which can be written as

conv

½µ
at
bt

¶
, t ∈ S

¾
+ cone

½µ
at
bt

¶
, t ∈W ; −

µ
a

b

¶¾
+ span

½µ
at
bt

¶
, t ∈ E

¾
(by Lemma 2.1, part (ii)), is actually a polyhedral convex set.

So, a0x > b is a consequence of a consistent finite system σ if and only if a0x > b is a legal

linear combination of either σ or σ ∪ {00nx > −1}. This result, for E = ∅, is a reformulation

of [18, Theorem II], and it is not valid for semi-infinite systems (unless the two additional

assumptions in Proposition 4.2 hold), as the next example shows.

Example 4.1. The inequality x2 > 0, in R2, is a consequence of

σ =
©−2tx1 + x2 > −t2, t ∈ U ; −x1 + x2 > 0

ª
,

where U = ]−1, 0[, as far as the solution set of σ is the interior of the epigraph of the function

f : R→R, defined as

f (x1) =


−2x1 − 1, x1 < −1,

x21, −1 ≤ x1 ≤ 0,

x1, x1 > 0.

Nevertheless, x2 > 0 fails to be legal linear combination of σ ∪ {002x > −1} or σ, since
the following systems are inconsistent: 0

1
0

 =
X
t∈U

λt

 −2t1
−t2

+ γ

 −11
0

+ µ

 0
0
−1

 , λ ∈ R(U)+ , γ ≥ 0, µ > 0,

and  0
1
0

 =
X
t∈U

λt

 −2t1
−t2

+ γ

 −11
0

 , λ ∈ R(U)+ , γ ≥ 0,
X
t∈U

λt + γ > 0.
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Actually statement (ii) in Proposition 4.2 holds but the set in (4.3) is not evenly convex (see

Figure 4.1).

x2

x1

x3

Figure 4.1

REFERENCES

[1] R. Bellman and K. Fan, On systems of linear inequalities in hermitian matrix variables. In: V.

L. Klee (ed.), Convexity. Proceedings of Symposia in Pure Mathematics VII, Providence, RI:

American Mathematical Society, (1963) 1-11.

[2] P. S. Bradley, U. M. Fayyad and O. L. Mangasarian, Data mining: Overview and optimization

opportunities, INFORMS Journal on Computing 11 (1999) 217-238.

[3] C. C. Braunschweiger, An extension of the nonhomogeneous Farkas theorem, American Math-

ematical Monthly 69 (1962) 969-975.

[4] W. B. Carver, Systems of linear inequalities, Annals of Mathematics 23 (1921-22) 212-220.

[5] A. Daniilidis and J.-E. Martínez-Legaz, Characterizations of evenly convex sets and evenly

quasiconvex functions, Journal of Mathematical Analysis and Applications 273 (2002) 58-66.

[6] K. Fan, On infinite systems of linear inequalities, Journal of Mathematical Analysis and Appli-

cations 21 (1968) 475-478.

[7] W. Fenchel, A remark on convex sets and polarity, Communications du Séminaire Mathéma-

21



tique de l’Université de Lund, Supplement (1952) 82-89.

[8] D. Gale, The theory of linear economic models, McGraw-Hill Book Company, New York, 1960.

[9] M. A. Goberna, V. Jornet and R. Puente, Optimización lineal. Teoría, métodos y modelos,

McGraw-Hill, Madrid, Spain, 2004.

[10] M. A. Goberna, V. Jornet and M. M. L. Rodríguez, On linear systems containing strict inequal-

ities, Linear Algebra and its Applications 360 (2003) 151-171.

[11] M. A. Goberna and M. A. López, Linear semi-infinite optimization, J. Wiley, Chichester, Eng-

land, 1998.

[12] M. A. Goberna, M. A. López, J. T. Pastor and E. Vercher, Alternative theorems for infinite

systems with applications to semi-infinite games, Nieuw Archief voor Wiskunde IV, Ser. 2 (1984)

218-234.

[13] P. Gordan, Über die Auflösungen linearer Gleichungen mit reelen Coefficienten, Mathematische

Annalen 6 (1873) 23-28.

[14] A. Haar, Über lineare ungleichungen, Acta Math. Szeged 2 (1924) 1-14.

[15] V. Jeyakumar, Farkas’ Lemma: Generalizations. In: Encyclopedia of Optimization, Vol. 2

(2001) 87-91, Kluwer Academic Publishers, Dordrecht, The Netherlands.

[16] V. Jeyakumar, Characterizing set containments involving infinite convex constraints and reverse-

convex constraints, SIAM Journal on Optimization. 13 (2003) 947-959.

[17] V. Jeyakumar and B. Waterhouse, Data classification via separable convex programming, Appl.

Math. Research Report AMR00/13, University of New South Wales, Sidney, Australia, 2000.

[18] H. W. Kuhn, Solvability and consistency for linear equations and inequalities, American Math-

ematical Monthly 63 (1956) 217-232.

[19] O. L. Mangasarian, Nonlinear programming, SIAM’s Classics in AppliedMathematics, Philadel-

phia, USA, 1994.

[20] O. L. Mangasarian, Mathematical programming in data mining, Data Mining and Knowledge

Discovery 1 (1997) 183-201.

[21] O. L. Mangasarian, Set containment characterization, Journal of Global Optimization 24 (2002)

473-480.

[22] J.-E. Martínez-Legaz, A generalized concept of conjugation, in: Optimization, Theory and Al-

gorithms, edited by J.-B. Hiriart-Urruty, W. Oettli and J. Stoer, Lecture Notes in Pure and Ap-

22



plied Mathematics 86 (1983) 45-59, Marcel Dekker, New York, NY.

[23] J.-E. Martínez-Legaz, Quasiconvex duality theory by generalized conjugation methods, Opti-

mization 19 (1988) 603-652.

[24] J.-E. Martínez-Legaz, Duality between direct and indirect utility functions under minimal hy-

potheses, Journal of Mathematical Economics 20 (1991) 199-209.

[25] T. S. Motzkin, Beiträge zur Theorie der linearen Ungleichungen, Azriel, Jerusalem, 1936;

transl. in Theodore S. Motzkin: Selected papers (D. Cantor, B. Gordon and B. Rothschild,

eds.), Birkhäuser, Boston, 1983, pp. 1-80.

[26] U. Passy and E. Z. Prisman, Conjugacy in quasiconvex programming, Mathematical Program-

ming 30 (1984) 121-146.

[27] J.-P. Penot and M. Volle, On quasiconvex duality, Mathematics of Operations Research 15

(1990) 597-625.

[28] R. T. Rockafellar, Convex Analysis, Princeton Univ. Press, Princeton, New Jersey, 1970.

[29] J. Stoer and C. Witzgall, Convexity and optimization in finite dimensions I, Springer-Verlag

Berlin, Heidelberg, Germany, 1970.

[30] P. Szilágyi, Nonhomogeneous linear theorems of the alternative, Pure Mathematics and Appli-

cations 10 (1999) 141-159.

[31] Y. J. Zhu, Generalizations of some fundamental theorems on linear inequalities, Acta Mathe-

matica Sinica 16 (1966) 25-39.

23


