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We consider a parametric linear optimization problem (called primal) and its corresponding dual problem, where the
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1 Introduction

We consider given alinear systemin R", o = {ajx > b, t € T'}, where T' is an arbitrary
index set with cardinality 2 < |T| < oco. We associate with o the parametric linear

optimization problem
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P(c): Inf dz st ax>b, teT,
and its dual

D(c): SupW(A):=Y M\b st > \a=c, AeR{,

teT te’l

where the parameter is ¢ € R” whereas X(¥), with 0 € X C R, denotes the set
of the mappings A : T — X vanishing everywhere except on a finite subset of T,
suppA = {t €T | \, #0}. We denote by F, F*(c) and v (c) the feasible set, the
optimal set and the optimal value of P (c), and we denote by A (c), A* (¢) and v? (c) the
feasible set, the optimal set and the optimal value of D (c), respectively. By definition,
v(c) =+ooif F=0andv” (c) = —o0if Ac) = 0.

If |T'] < oo, P (c)isalinear programming (LP) problem in canonical formand D (c)
is a LP problem in standard form. In this case, if at least one of the two problems is
bounded, then they are solvable and v (¢) = v? (c).

If |T| = oo, P(c)isaprima linear semi-infinite (LSIP) problem and D (c) is its
Haar's dua problem. It is possible that v (¢) < v (c) even though both problems
(possibly unsolvable) are consistent.

We consider the feasible set of P (¢), F' (which can be seen as a constant set-valued
mapping), the set-valued mappings F* : R* = R™ and A, A* : R* = R, and the
ordinary mappings v, v : R® — R. Similarly, given an index s € T, we associate with
therelaxed system o, := {a;z > b, t € T\ {s}} its corresponding parametric problems,
P, (¢) and D, (c), and their corresponding mappings. F, F, A, A%, v, and v?.

We say that the constraint o,z > b, (the variable \;) is superfluous relative to one of
the mappings associated with P (¢) (D (c), respectively) if its elimination does not modify
the corresponding mapping. For the sake of brevity we say that s € T is superfluous in
both cases. In particular, s is superfluousrelative to the primal feasible set if F, = F (i.e.,
s isredundant), s is super/fluousrelative to the primal value function (PVS) if v, = v, and
s is superfluous relative to the primal optimal set (POS) if F = F*. Similarly, we say
that s is super/luous relative to the dual optimal value (DVS) if v? = o?.



Concerning the dual set-valued mappings, since the decision spaces of D (¢) and
D, (c) are R™ and RU\*H respectively, the comparison of subsets requires the
identification of each subset of R("\{*}) with another one in R(™). The natural way to
do this consists of associating with each v € R("\{*}) ijts extension with zero5 € R,

ie,

= ) Yo t € T\{s},
Tt 0, t=s,

so that we identify any set I' ¢ RU\ED withtheset T == {7 e R") |y €T}. In

particular, we have A (c) C A(c) for al ¢ € R™, but, in contrast with the primal feasible
(T

set (where F, = F ispossible) we always have A, # A. In fact, defining A € ]R{+) such

that
\ 1, t=s,
710, teT\{s},
we have A € A(a,), sothat A(a,) # T foral ' C R&T\{S}). So, no congtraint in o is

superfluous relative to the dual feasible set.

Appealing to this notation, we say that s is superfluous relative to the dual optimal
set (DOS) if Ar = A~

The superfluous constraints and variables are related with other types of unnecessary
information. For instance, wesay that s € T isnonessential if its corresponding constraint
al.x > by isnot binding at the set of extreme points of F* (¢) for al ¢ € R™. On the other

hand, avariable is said to be extraneous (strongly extraneous) in a standard LP problem
Max 'z st. Az =b,z>0,,

where A and ¢ are fixed and b is the parameter, if this variable vanishes at some (all)
optimal solution for any vector b such that the above LP problem is solvable. Trandating
these concepts to our general context (7' arbitrary), we say that s € T is extraneous
(strongly extraneous) if for every ¢ € R, either A*(¢) = () or s ¢ supp X for some (all,
respectively) A € A*(c).

The paper ismainly intended to providetestsfor checking each of the eight superfluity
phenomena in parametric linear optimization we have just defined. These geometric
characterizations are given in Sections from 3 to 6. From them, we obtain in Section

7 adiagram (Figure 1) showing al the connections between all these phenomena



The next example showsthat all these phenomenanot only are possible but may occur

simultaneoudly.

Examplell Leto = {z; > 1;2; > —1}inR2. Itiseasy to seethat s = 2 is redundant,
POS, PVS and nonessential. In order to show that it is also DOS, DVS and strongly
extraneous we shall discuss the position of ¢ relative to the so-called first moment cone
of o, M := cone{a,,t € T}. If ¢ ¢ M, D(c) and D,(c) are inconsistent, so that
A*(c) = Ai(c) = 0 and vP(c) = vP(c) = —o0. If c € M, we can write ¢ = p(1,0)’
with u > 0. We have Ay(c) = {u} and A%(c) = {u}, withv®(c) = p. Onthe other hand,
Ale) = {(A,2) € RE | A1+ Ao =} and A*(c) = {(1, 0)'}, with v?(c) = p. Hence,

A3(c) = A*(c) and v2(c) = vP(c) for al ¢ € R?. Consequently, s = 2 isDOS and DV'S.
Moreover, if A*(c) # (), then it isasingleton set and the second coordinate of its unique
element is zero. Thus, s is strongly extraneous.

Thefirst papers dealing with redundancy are due to Boot [4] and Charnes, Cooper and
Thompson [5]. Since then many works have been written on this phenomenon (see, e.g.,
[10], [3], [ 7], and references therein). The extraneous variableswere introduced in [5] and
the strongly extraneous variablesin [11] (see also [2], [6], and references therein). With
the only exception of redundancy, fixing ¢ we get less restrictive concepts (i.e., excess of
information phenomena in nonparametric linear optimization). For instance, Mauri [12]
considered extraneous variables in LP whereas Goberna, Jornet and Molina[9] analyzed
PV S and POS constraintsin LP and LSIP.

Generally speaking, the existence of an excess of information in an optimization
problem affects its theoretical properties and the computational efficiency of the
numerical methods. Aardal [1] and Zhu and Broughan [13] have identified optimization
problemsin which the aggregation or the elimination of superfluous information provides
important benefits. Concerning linear optimization, in LP the unfavorable effects of the
excess of information outnumber the favorable ones ([11]), whereas the situation is the
oppositein LSIP ([9]).

2 Preliminaries

Let us introduce the necessary notation and basic results (whose proofs can be found in

[8]).
Givenaset ) # X C R™, we denote by cone X, span X, and conv X the convey



cone spanned by X, the linear span of X and the convex hull of X, respectively. From
the topological side, c1 X denote the closure of X and bd X itsboundary. If X £ () isa
convex subset of alinear space, extr X and O* X denote its set of extreme points and its
recession cone, respectively. By definition, extr () = ().

We associate with o its first-moment cone, M, defined in Example 1.1 and its

e { (2 )ver (%))

o isconsistent if and only if (

characteristic cone,

[1)” ) ¢ cl K. Moreover, o isstrongly inconsistent (i.e., o

contains at least a finite inconsistent subsystem) if and only if ( (1)” ) € K.
We associate with s € T the characteristic and the first moment cone of o, denoted

by K, and M,, and two intervals, J, and I, defined as

Jszz{aem(‘j;>eKs}cfs:={aeR|(‘;S)GK},

which can be empty, (open or closed) halflines or the wholereal lineR. Obviously, I, # ()
whereas J, # () if and only if a, € M,. Moreover, max {bs,sup J;} < sup Iy < +oc.
It is easy to see that sup I, = +oo entails the inconsistency of o and, conversdly, if
o is strongly inconsistent, then sup I, = +oo0. Similarly, sup J;, = +oo entails the
inconsistency of o, and, conversely, if o, is strongly inconsistent and a, € M,, then
sup Jy = +00.

Let H, := {x € R" | alz = b,} (ahyperplaneif a, # 0,). Theno, U {a,z = b,} isa
linear representation of F' N H,. If o isconsistent and s (or a’,x > b,) isnonbinding (i.e.,
FNH, = 0),then sisredundant. In particular, if o,U{a’,z = by} isstrongly inconsistent,
then s is called strongly redundant. If o is consistent, s is strongly redundant if and only

if there exists some e > 0 such that < b a_if - > c K,.

Lenma21 If o isnot strongly inconsistent and J, # I, then max I, = b,.

Proof. We suppose that o is not strongly inconsistent and 7\ Js # 0. If « € J; and

B € I\ Js, thena < £. 5



Qs

()-(2)(x)

with Z € K,and é > 0. Two cases can arise for 6.

Case l: 6 < 1. From (1) we get

1 a) 1 as(1—=190) \ _ ilséb
1—5(6)_1—5< B — 6bs )_(51—5; € K.
Then, ?1_—% < sup.J, < bs. Thus, 8 — by < by — 8bs, i.€., 8 < bs.

Case2: 6 > 1. Againfrom (1) we get

(a;}(igb‘z)>+(5—1)<2‘: ) :(5—bs)<01”>ef(,

and this entails, since o is not strongly inconsistent, that 3 — b, < 0, i.e., 5 < b,.
We have shown that 5 < b, for al g € I,\J;, sothat sup I, < b,. Sinceb, € I, we

Let g € I,\J,. Since ( ) € K\ K,, wecan write

conclude that max I, = b;. [ |

Now assume that o is consistent. An inequality o’z > b is consequence of o if and
only if ( Z > € cl K (Farkas Lemma). So, K isclosed if and only if every consequence
of o is aso the consequence of a finite subsystem. In this case o is said to be Farkas-
Minkowsy (FM). If o isan ordinary system (i.e., |T'| < oo), thenitisFM.

With respect to the dual problem D (c¢), we have

UD(C):Sup{aER|<;>€K} )

(and thisis different of —occ if and only if ¢ € M).

3 Superfluous constraintsrelative to the primal mappings

Proposition 3.1 Given s € T, the following statements are equivalent to each other:
() s isredundant.
(ii) sisPVS.



(iii) s isPOS
(iv) { (“) (0”) } Nl K, # 0.

bs 1
Proof. If a; = 0, for all ¢ € T, it is easy to prove that the statements (i)-(iv) only fail
(simultaneously) when b, < 0 forall t € T\ {s} and b, > 0 (consider ¢ = 0,,). So we can
assumethat {a;, t € T} # {0,}.
First we show that (i)<(ii)<(iii) discussing three possible cases.
Case 1: 0 and o, are consistent.
(1)=-(iii)=(ii) are trivial. In order to prove that (ii)=-(i) we assume that (i) fails. let 7 €
F\F,ie,ax > b, foradlte T\{s} anda.z < bs. Then v, (as) < a'T < by < v (as),
so that v, # v, i.e, (ii) fails.
Case 2: 0 and o, are inconsistent.
Snce FF=F;, =0, F*(c) = F¥(c) = 0 for al ¢ € R™ so that statements (i)-(iii) hold.
Case 3: o isinconsistent and o, iS consistent.
In this case s is obviously nonredundant and we shall prove that (ii) and (iii) fail too. In
fact, wehave F' = (), F*(c) = 0, and v(c) = +oo for al ¢ € R™. Moreover, the additional
assumption guarantees that () # F, # R™. Hence, there existsz € bd F. Leta’z > b
be a supporting halfspace for F; at . Then, z € F(a). Since F*(a) = ) # F}(a) and
vs(a) =b < 400 = v(a), (ii) and (iii) fail.
Finaly, let us observe that (i) holds if and only if either F;, = () (in which case F' = ()
too) or F, # () and a’.x > b, for al = € F,, i.e., either (01”) € cl K, or (ZS> € cl K,
(Farkas Lemma), i.e., (iv) holds.

If s is superfluous relative to the primal mappings and o, is consistent, then, from (iv),

as € cl M,. Neverthelessa, € M, could fail asthe next example shows.

Example31 Leto = {(1 —t)z; +txe > 0,6 € [0,1]} and s = 1. It iseasy to see that
Fy = F =R%, sothat s = 1 isredundant. Neverthelessa; = (0,1)" ¢ M.

4 Superfluousvariablesrelative to the dual value

Proposition 41 Given s € T, the following statements are equivalent to each other:
(i) sisDVS



(i) vP(as) = vP(ay) # —oo.

(i) ay € M, and sup J, = sup .

Proof. (i) =(ii) From (i) we get v2(a,) = v°(a,). Moreover, taking A € R
such that A, = 1ift = s and \;, = 0 otherwise, we have A\ € A(a,). Then
vP(as) > ¥ (\) = b, > —oc.

(ii) =(iii) Assume that v (a,) = v”(a,) # —oo. Since D;(a,) is consistent, a, € M.

Moreover, by (2),

sup J, = vP(as) = vP(a,) = sup L.

(ii1) = (i) We assume that (iii) holds. Sincea, € M,, M = M,.
Givenc € R",if c ¢ M = M,, wehave v (c) = vP(c) = —co. Hence, wetakec € M.
We have to prove that v (c) < vP(c), i.e, that a < vP(c) entailsa < vP(c).
Given a < v2(c), thereexists A € R and 3 > o such that
ag \ _ ag s \ _
()= 2 a()en(i)-(5) o
ter teT\{s}
If Xy = 0, wehavea < 8 < vP(c). Sowe assume )\, > 0.
Since ¢ ) ¢ K,wehaveb, < sup I, = sup J,.

bs
Given ¢ > 0, arbitrarily small, there exists v € Rf\{s}), n > 0and é € R such that

bs—£<6and
> o)+ (%)= (%)

s
teT\{s}

(Z:>:<Cfss)+<bsof§>: > %(Zf>+<bs_0g_n). (4

teT\{s}

Then,

Combining (3) and (4) we obtain

(5+As(5c—bs+n) ) -y ()\t-l-)\s%)(Z: ) € K.,

teT\{s}

o that
vP(e) > B+ A (6—bs+n)>B—e> 3> .



This completes the proof. |

In particular, if K, = K (e.g., if a,z > b, isrepeated), then s isDVS.

Corollary 41 If s isDVS then a, € M,. The converse statement holds if o, is strongly
inconsistent.

Proof. The direct statement is straightforward consequence of Proposition 4.1.

Now we assume that a;, € M, and o, is strongly inconsistent. Take an arbitrary o € Js.
Thenfor al 6 > 0 we have

(Oécf:5>:<céj)+5(01n>EKs-i-cone{(Ol”)}:Ks,

sothat « + 6 € J,. Hence +oo = supJ, < supl, and Proposition 4.1 applies
again. |

Proposition 4.2 If s isDVS then s isredundant.

Proof. Assume that s is nonredundant. Then, according to Proposition 3.1, we have

(Z’S > ¢ clK,. We shall provethat 3 := supJ, < b,. Infact, if 3 > b,, then

Qs

B,

there exists a nondecreasing sequence of scalars, {3, },.., such that (
r € Nandlim, 3, = 3 > b,. Then,

(Z:)zhﬂgi)*(m%ﬂ) R

in contradiction with the assumption. Hence, by (2), v2 (a,) = 3 < by < vP (ay), and s
cannot be DVS. |

> € K, forall

The converse statement of Proposition 4.2 is not true, as Example 3.1 shows (recall that
ai ¢ My).

5 Extraneous variables and nonessential constraints

Proposition 5.1  Given s € T, the following statements are equivalent to each other:
(i) s is extraneous.

(i) If D(as) issolvable, then D,(a,) issolvable and vP(a,) = vP(a,).

(iii) If there existsmax I, € R, then I, = J.



Proof. (i)=-(ii) We assume that (i) holdsand D(a,) is solvable.

Since s is extraneous and A*(a,) # 0, there exists \* € A*(a,) such that s ¢ supp A\".
Then the restriction of A" to T\ {s} is a feasible solution of D,(a,) such that the value
of the objective functional is ¥'(\*) = v”(a,) > vP(a,). Hence, D,(as) is solvable and
vP(a;) = vP(ay).

(ii))=(iii) We assume that (ii) holdsand @ = max I; € R. Then, recaling (2), D(as) is

solvable and v (a,) = @. Moreover, sup J, = v (a,) = vP(a,) = @ and, due to the

s

(

solvability of D;(as), we have max I, = @ = max J; and so I, = J; = |—00, @] .
(iii)=>(i) We assume (iii). Let ¢ € M such that A*(c) # . Then, there exists y € R
such that

c= Z%at and v”(c) = Z%bt.

terl tel
If v, = 0 we have finished. So, we assume that v, > 0. We shall obtain another optimal

solution of D (¢) which vanishes t s.
First we prove that v”(a,) = b,. Since v”(a,) > b, we shal assume that v”(a,) > b,

and we shall get a contradiction. Let u € Rf) suchthat > p,a; = asand by <> pu,by.
tel teT

Defining A € Rf) as

\ ._{ Vot Vb i EF s,
t = ;
Vshss if t=s,

we have
YoNar= D (Ve va)as+ 0

teT teT\{s}
= Z Vet + Vs Z K@y = Z Vel T Vs = C,
teT\{s} teT teT\{s}

sothat A € A(c). Similarly,

T =D b= > (1 + Vohte)be + Vsltsbs

teT teT\{s}

= Z Yebt + 75 Zﬂtbt > Z Yebi + 505 = 07 (¢),

teT\{s} teT teT\{s}
and thisis a contradiction.

By (2), we have b, = v”(a,) = max I, and, recaling (iii), we get b, € I, = J,. Thus

10



there exists p € R{"\*Y and ¢ > 0 such that

(5)= 3 (i )=<(%):
teT\{s}

Finally we shall prove that n € RY", defined as

- Ve + VsPts If t 7é S,
9o, if ¢ =s,

satisfiesn € A*(c) (observethat s ¢ suppn). Infact,

doma= > (vFreda

teT teT\{s}

= ) naHv Y, par= Y na s =

teT\{s} teT\{s} teT\{s}
so that, n € A(c). On the other hand,

(M =D _mbi=_ (v +7sp)be

teT ter\{s}

= D bty Y pbe= —Y4bs + 7, (bs + &) > 07 (e),

teT\{s} teT\{s}
so that n € A*(c). The proof is complete. [

Corollary 5.1 If ( ZS ) € K, then s isextraneous. Thisoccursif s isredundant and o,
isFM.

Proof. If Zs € K, then K = K, and I, = J,. Then statement (iii) in Proposition
5.1 trivialy holds.

Now we assume that s is redundant and o, isFM. Then a’x > b, is a consegquence of o

and Farkas' Lemmayields ( s ) cclK, =K,. |

b

Example 3.1 shows that the FM assumption cannot be removed in Corollary 5.1. In fact,
s = 1 isredundant (but it is not DVS: v (a;) = —oo < 0 = v” (ay)). Nevertheless,
defining \* such that \; = 1ift = 1 and A\; = 0 otherwise, it is easy to see that
A(ay) = {\"}, sothat A* (a;) = {A\*}. Since 1 € supp A*, s = 1 isnot extraneous.

Corollary 5.2 If s isextraneous and o is not strongly inconsistent, then sup J; > b,. 1



Proof. We suppose that sup J, < b,. Since b, < sup I, I,\J, # (. By Lemma 2.1, we
havemax I, = b,. Hence, I, = J, by Proposition 5.1, in contradiction with sup J, < b,.1l

Proposition 5.2 If o is strongly inconsistent then any s € T is strongly extraneous.
Otherwise, s is strongly extraneous if and only if sup J; > bs. Inthe last casg, if o is
consistent, then s is strongly redundant.

0y,

Proof. First we assume that o is strongly inconsistent, i.e., < 1

)E}KLaselﬂ

arbitrary and let v € R{"” such that

(7)-2 (i)
teT

Then, if A(c) # 0 (i.e,c € M),y € OTA(c) and ¥(y) = > v,b, = 1. In such case
D (¢) is unbounded (and so A*(¢) = ) for every ¢ € R™ ancflesT turns out to be strongly
extraneous.
Now we assume that o is not strongly inconsistent.
Suppose that s is strongly extraneous. By Corollary 5.2, we know that sup Js > b,. We
shall assume that sup J, = b, and we shall obtain a contradiction. If sup I, > b,, then
J, G I,. Then, by Lemma 2.1, max I, = b, and S0 v? (a,) = b,.
Consider \ € Rf) such that A\ = 1if t = s and \; = 0 otherwise. It can be easily
realized that A € A(a,) with ¥ (\) = b, = v (as). Then X € A*(a,;) and s € supp A,
and this contradicts the assumption on s.

Conversdly, if sup J; > by, there existse > 0 such that ( @s

by + ¢

Qs _ 1 Gy
(bs+v)_;At<bt)’

with \! € Rf), y>e>0ands ¢ supp A\

> € K,. Then we can

write

L et us suppose that s isnot strongly extraneous. Then, thereexistsc € R™ and \* € A*(c)
such that s € supp A?. Hence,
c o 2 ([ ¢ : 2
( WP () ) _tzT: A2 ( b > with A2 > 0.
€

Defining

B M NN it
t 0, if t =s,

12



we have

Z)\?at: Z Mag + \2 Z AMa; = c— Na, + Na, = ¢

teT teT\{s} teT\{s}

and

oAb =D Nb+X > A

teT teT\{s} teT\{s}

= vP(c) — A2by + X2(bs + ) = vP(c) + A2y > 0P (c),
in contradiction with \*> € A*(c). So, s is strongly extraneous.
Finally, observe that sup J, > b, entails the existence of ¢ > 0 such that s > €

by + ¢
K. Since we are assuming that o is consistent, s is strongly redundant. |

Proposition 5.3 If s is extraneous (strongly extraneous) and o is consistent (o is not
strongly inconsistent, respectively), then s isDVS.

Proof. First we assume that s is extraneous and o is consistent.

Sincea, € M, (by Corallary 5.2), —co < sup Iy, < +oc and so I, isahalfline.

Two cases can arise:

Casel: I, isclosed. Then, by Proposition 5.1, I, = J,.

Case2: I, isopen. Let@ := sup I, and 3 := sup J,. We shall provethat @ = 3.

Sinceb, € I, and I, isopen, b, < @. Let e > 0 arbitrarily such that b, + ¢ < @, i.e,

b, + ¢ € I,. Then we can write

Qg o Qg Ag On
(5 )= (i) (i) =e(%) o
teT\{s}

with A € RY"” and . > 0.
If \; > 1, then

(08n>=t€Tz\%S}At<‘gf>+(AS—1)<Z:)+,J,<Enl>eK7

contradicting the assumption on o.
Alternatively, if 0 < \; < 1, from (5) we obtain

(1—As)<bsaj_8>: 3 At(Zﬁ)jL(—u[)—nAss)eKs’

teT\{s} 13



bs + ¢
Sincesup I; = sup J; in both cases, s is DV S according to Proposition 4.1.

sothat,( s € K,and b, + ¢ < /3. Hence, @ = §3.

Now we suppose that s is strongly extraneous and o is not strongly inconsistent.

By Proposition 5.2, sup J;, > b,. Moreover, since o is not strongly inconsistent, /, and
J, can not be lines and reasoning as in the first part of the proof, we conclude that s is
DVS. |

Proposition 54 If o is inconsistent then any s € T is nonessential. Otherwise, s is
nonessential if and only if (extr F') N H, = .

Proof. The first statement is trivial. So we assume that o is consistent.

Assume that (extr F) N Hy # (). Let T € (extr F) N Hy. Then € (extr F* (ay)) N H,
and so s is essential.

Conversely assume that s is essential. Let ¢ € R” such that (extr F* (¢)) N Hs # 0. If
¢ = 0,, then F* (¢) = F and (extr F') N H, # (. So we can assumethat ¢ # 0,.

LetZ € (extr F* (¢)) N Hy. Since H := {z € R" | ¢z = T} isasupporting hyperplane
to F' at =, we have

(extr F) N H = extr (F N H) = extr F* (¢) .

Hence= € (extr F* (¢)) N Hs C (extr F) N Hy and (extr F') N Hy # 0. |

Proposition 5.5 Let o be consistent and s € T'. Then the following statements hold:
(1) If s isstrongly redundant, then it is strongly extraneous.

(i) If s isstrongly extraneous, then it is nonbinding.

(ii1) If s isnonbinding, then it is nonessential.

(iv) If s isnonessential and extr F # (), then it is nonbinding.

Proof. (i) Since o, U {al = b,} isstrongly inconsistent there exist A € R{ ", a € R
and i € R, such that

<oln)zz At(‘g:>+a<‘g:)+ﬂ<2”1). (6)
teT\{s}

0y,
1

Since o < 0, multiplying by || * both members of (6), we get

If « >0, then ( > € K, contradicting the assumption on o.

14



Qs o -1 Qg
<@+mrwruo>‘§:'“ At<bt>”{“

teT\{s}

sothat sup .J, > b, +|a|™" (14 p) > b, and the conclusion follows from Proposition 5.2.

(if) Again by Proposition 5.2, we have sup J; > b,. Lete > 0and A € ]Rf) such that

ag o g On
(5 )= 3 200 ) () g
teT\{s}

Let x € F. Multiplying by (z', —1) both members of (7), we get a’.x — (bs +¢) > 0.
Thena'x > b, andsox ¢ H,. Hence FF'N H, = ().
(iii) If F N Hs =0, then (extr F') N Hy = () and s0 s is nonessential by Proposition 5.4.
(iv) We assume that extr F' # () and s is binding.
Consider an arbitrary 7 € F'N H,. Since F = (convextr F) + 0T F, thereexist p € N,

P
{a', .. 2P} C extr F, {\,..,\,} € R,andy € O0"F suchthat >\, = 1 and
i=1

p ; .
T =) A\z'+y.Sincez € Hy, we have
i=1

P P
by =a.T = Z Nalxt +aly > Z Aibs + 0 = by,
i=1 i=1
and thisentails a2’ = b, foral i € {1,...,p}. Hence, {z!,...,2?} C (extr F) N H,, SO
that s is essential. u

The assumption extr F' = () cannot be eliminated in (iv): replace —1 in the system of
Example 1.1 with 1.

6 Superfluous variablesrelative to the dual optimal set

Example6l Leto = {z; > 1;7; > 1} inR? and s = 2. Obvioudly s is superfluous
relative to the primal mappings, DVS (by Proposition 4.1) and extraneous (by Corollary

5.1). Neverthelessit is neither strongly extraneous nor DOS: observe that A3(c) # A*(c)
forall c € M\ {0.} = cone {(1,0)'} \ {0.} since

N ={ b ez por =0

0, ifcé¢ M, 15



and
Aoy = L eom {0 0)'s (0}, if e = p (1,0) e >0,
0, if c ¢ M.
In fact, the last two concepts are basically equivalent, as the next result shows.

Proposition 6.1 Given s € T' the following statements hold:

(i) If o is strongly inconsistent, then s is DOS if and only if Dy(c) is unsolvable for all
c € R”.

(i) If s isDOS, then s is strongly extraneous, and the converseistrueif o is not strongly
inconsistent.

Proof. (i)We assume that o is strongly inconsistent. In such a case A*(¢) = 0 for all
c € R", sothat s isDOSif and only if A*(c) = 0 fordl ¢ € R™.

(ii) Supposethat s isDOS. If A*(c) # 0, taking A € A*(c) = A*(c) wehave \; = 0, i.e,
s ¢ supp A. Hence, s is strongly extraneous.

Finally we suppose that s is strongly extraneous and o is not strongly inconsistent.
By Proposition 5.3, s is DVS and by Proposition 4.1, a, € M, (i.e, M = M,) and

sup J; = sup I, (i.e, v (c) = v (c)). Let us show that A*(c) = A*(c) for every c € R™.

If c ¢ M = M, A*(c) = A*(c) = 0. Otherwise, v”(c) = vP(c) = sup J, > b, by

Proposition 5.2 and two cases can arise:

Case 1. vP(c) = vP(c) = oo and so A*(c) = A*(c) = 0.
Case2: b, < vP(c) = vP(c) < +oo. If thereexistsc € M and A € A*(c) such that

A ¢ Ax(c), then \; > 0 and s0 s € supp A, contradicting the assumption on s. Thus

A*(¢) C Azx(c) whereas the opposite inclusion trivially holds in this case.
Hence, A*(c) = A*(c) for every ¢ € R™ and s isDOS. [

The next example shows that the equivalence in (ii) fails if o is strongly inconsistent.

It also shows that we can have A*(c) = Az(c), for al ¢ € R™\ {0,}, and nevertheless

A*(0n) # A3 (0n).

Example6.2 Letusconsider o = {zy > ¢,t € ]0,1[; —z > 0} in R* and let usassociate
to the constraint —z, > 0 the index s = 1. It can be realized that o is strongly
inconsistent (and so, all constraints are strongly extraneous and inessential), whereas
A*(c) = Ai(c) = 0, for dl ¢ € R™ {0,}, A*(0,) = @ and A%(0,) is a singleton set
formed by the null function. Thus s = 1 isnot DOS (in fact, it is not superfluous in any
sense).

16



7 Conclusion

We have characterized in a geometric way all the phenomena of excess information in
parametric linear optimization introduced in Section 1, so that most of these properties
can be checked in practice (observe that sup J; and sup I, can be computed by solving
suitable LP or LSIP problems). Moreover, these characterizations alowed usto prove the
relationships summarized in Figure 1. Examples can be given showing that any existing
relationship between these phenomena can be derived from this diagram.

If |7 < oo and o is consistent, then there exist two clusters of equivalent properties:

(A) redundant, PVS, POS, DV'S, and extraneous.

(B) strongly redundant, DOS, strongly extraneous, nonbinding, and nonessential

(provided F' does not contain lines).

17



s DOS s strongly redundant

A A
1) @)
y
s strongly extraneous S extraneous
(1) 2)
s DVS
2
©)
A y
s nonbinding s redundant
A
@ @ / \
y
S nonessential s PVS s POS

(1) If oisnot strongly inconsistent.
(2) If o isconsistent.

(3) If osisFM (e.g.,[T|< ).

(4) If F == @ does not contain lines.

Figure 1
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