
Reconfigurable computing for tool path computation

Antonio Jimeno†, Sergio Cuenca†

† Computer Science Technology and Computation Department, University of Alicante
Carretera San Vicente del Raspeig s/n,

03690 San Vicente del Raspeig, Alicante, Spain.

Abstract. Tool path generation is one of the most complex problems in Computer Aided
Manufacturing. Although some efficient strategies have been developed to solve it, most of
them are only useful for 3 and 5 axis standard machining. The algorithm called Virtual
Digitising computes the tool path by means of a “virtually digitised” model of the surface and a
geometry specification of the tool and its motion, so can be used even in non-standard
machining (retrofitting). This algorithm is simple, robust and avoids the problem of tool-
surface collision by its own definition. However, its computing cost is high. Presented in the
paper there is a Virtual Digitising optimisation that takes the advantages of reconfigurable
computing (using Field Programmable Gates Arrays) in order to improve the algorithm speed.
A comparative study will show the gain and precision achieved.

1. Introduction

In order to get a predefined surface by means of the cutting wheels of a machine, it
is necessary to supply a series of 3D or 2D coordinates that define its motion. These
points are usually referred to tool centre positions.

In this way the problem can be expressed as obtaining a trajectory of tool centres
that defines the surface to be machined with a given precision. Figure 1 shows the
trajectory (tool path) of a circle centre point in order to define a rectangle. In this case,
for simplicity, the problem is presented in 2D. For 3D surfaces the problem becomes
more complex. This problem can be related to the dilation process from the
mathematical morphology where the object to mechanise is the shape to dilate and the
tool is the structuring element, however, 3D versions of morphological operations are
not efficient and techniques are still in development.

The basic virtual digitising strategy

Centre tool points are obtained by virtually touching the object to mechanise. This
algorithm1, 2, typically used to compute pencil curve tracing3, internally works as
mechanical copiers do: the copying arm touches the surface and a group of arms
transmitted the movement to the cutting wheels which perform the same movement
and finished the copied model.

Due to the fact that all the machining processes are simulated, this algorithm has
no restrictions in tool or machine specifications, so the algorithm can be used even in
non-standard machining (e.g. in retro-fitting machining).

The digitalization algorithm becomes simple once the surface and tool motion are
well defined. Basically, the behavior can be described as follows: For each point of
the trajectory the part surface is transformed in order to face the cutting tool. Then the
minimum distance from every surface point to the tool is computed in the direction of
tool attack axis. This distance determines the tool center point for the current step in
the virtual digitalization process. Physically, we select the point that touches the tool
surface in first place when the tool is moved along the attack axis. The process is
similar to that of is used for obtaining z-maps of the tool envelope surface, typically
used for 3-axis CNC machining: the inverse offsetting method4 and the direct cutting
simulation5, 6.

The basic pseudo-code algorithm can be expressed as follows:

For every trajectory position trpos do

 Min_distance= ∞
 For u in Surface_Rows do
 For v in Surface_Columns do
 p’(u,v) = p(u,v) * TR 4x4 (trpos)
 Current_distance=D(p’,u,v)
 If Current_distance<Min_distance
 then Min_distance=Current_distance
 Endif
 Endfor
 Endfor
 Tool_centre=Get_centre_point(MinDistance,trpos,TR 4x4)
 Add_trajectory(Tool_centre)
EndFor

Fig.1. Circle trajectory in order to get a rectangle

Algorithm 1. Basic virtual digitising algorithm

Analyzing algorithm, it is possible to observe up to three nested loops. One of
them, the most internal one, is used to access to every surface point in the selected
surface, that is, it consists into two loops, one for rows and the other for columns in
fact. The most external loop goes through every trajectory position. In order to obtain
a good finishing quality, it is necessary produce, at least, as many trajectory points as
points the surface has.

Let assume n as the maximum number of surface points, and m as the number of
trajectory positions, then the cost of the algorithm, is:

O(n.m) (1)

Values for n and m depend on the model size and the precision desired for the
machining. Note that n value consists of a grid of Surface_Rows x Surface_Columns
in size for the Algortimh 1. As a guide, typical numbers for both n and m in shoe last
machining are about twenty thousand; in this case, computing time is longer than the
machining one. We will show some quantitative examples with time measures in
section 3.

2. The reconfigurable approach

The high computational cost of the algorithm does not allow implanting efficient
tool paths generators in most of computers. For this reason, we are encouraged to
develop efficient strategies in order to reduce the tool path computing time. If we
have a look to the Basic Virtual Digitising algorithm, we notice that the most of the
complexity resides inside of the third loop. Accelerating the functions called in this
part, we will be able to reduce the total computation time significantly.

Most of computer systems are based on simple instruction set microprocessors.
Instructions have been chosen and optimized according to their frequency of
occurrence in programs. For high-intensity computations, an additional improvement
can be if we use special-purpose architectures.

One way of dealing with special-purpose algorithms as Virtual Digitizing is to use
application-specific integrated circuits (ASIC), this kind of circuits is unable to
execute any other task but the one it was constructed for, however they offer the best
speed rate. One of the least expensive technologies for implementing these circuits is
the field-programmable gate array (FPGA). Using this technology, a single device can
be reprogrammed (reconfigured) to perform different tasks at hardware speed. An
algorithm or a part of it is represented in a hardware-description language, compiled
into a netlist, and then transferred to an FPGA chip. Hence, a highly specialized
device is constructed. FPGA technology is being successfully used in genetic
algorithms, neural networks, or fuzzy neural networks (a complete state-of-the-art in
FPGAs is presented in 7).

There are three different operations inside the third loop of the Virtual Digitizing
algorithm that are excellent candidates to be implemented in a FPGA:

Point transformation: p’ (u,v) = p(u,v) * TR4x4

A 3D transformation is applied on every surface point, so the tool faces the surface.
This operation is made by means of a 4x4 transformation matrix. From a generic
stand point, the process consists of a row x matrix post multiplying.

Distance computing: D(p’,u,v)

This function computes the distance between a surface point and the tool in the tool

attack direction. Depending on the complexity of the tool geometry - sphere, torus,
cone, and so on - the function becomes more complex.

Comparison and assignment: If Cur_dist<Min_dist then Min_dist = Cur_dist

Finally, the most internal loop makes a comparison and an assignment if the

computed distance is lower than the current minimum distance.

These three different operations are carried out on every point of the tool trajectory

and for every surface point. Any optimization made at this level will improve the total
computation time significantly. As expressed above, distance computing
implementation varies on tool geometry and point transformation depends on tool
path strategy. So if we create hardware circuits (as ASICs) in order to speed up the
algorithm for each function, we will need as many circuits as different strategies or
tools we are going to use, that is, an expensive and complex architecture. A smart
solution would be the use of reconfigurable circuits. Figure 2 shows a static
reconfigurable architecture used to perform tool trajectories using virtual digitizing.
Different machines and tool path strategies will imply different functions in FPGA 1
and 2. So CPU will choose the proper task involved at a time and prepare FPGA for
the computation by reprogramming the static configuration memory. Surface data
resides in main memory and can be accessed both CPU and reconfigurable circuits.

FPGA 1
(vector x matrix

product)

FPGA 2
(distance)

FPGA 3
(comparator)

CPU

(scheduler)

STATIC
MEMORY
(reconf.)

In
terco

nn
ectio

n
 N

etw
o

rk
(b

u
s, ring

, 2
D

 G
rid, …

)

Fig. 2. General Scheme. Reconfigurable architecture for Virtual Digitizing algorithm.

MAIN

MEMORY

Double port

(surfaces)

3. Optimising tool path for a Turning Lathe Machine

We are developing a reconfigurable system that is able to perform tool path
computation using the Virtual Digitising algorithm efficiently.

The surface to be machined consists of a discrete model of a free-form NURB
surface. The more grid points we use to represent that surface, the more accurate
trajectory we get. For an object of 10 x 10 x 200 mm3 approximately we use a grid of
130 x 120 points what implies a distance of 2 mm between points in each dimension.

The machine selected is a traditional turning lathe, consisting of three different
axes, as shown in figure 3. All of them perform a spiral movement around the object
to be mechanised. The tool selected is a 3D torus, which simulates the double cutting
wheel in movement.

The Algorithm 1 is slightly transformed into:
For every_tool_translation_position_x do

 Min_distance= ∞
 For u in Surface_Rows do
 For v in Surface_Columns do
 For degrees = 0, 360 step inc_angle do
 TR 4x4 = Rotation_Matrix_X(degrees)

 p’(u,v) = p(u,v) * TR 4x4

 Current_distance=D(p’u,v)
 If Current_distance<Min_distance
 then Min_distance=Current_distance
 Endif

Endfor
 Endfor
 Endfor
 Tool_centre=Get_centre_point(MinDistance,trpos,TR 4x4)
 Add_trajectory(Tool_centre)
EndFor

Algorithm 2. Changes introduced in algorithm 1

Fig. 3. Tool motion definition for a turning lathe machine

For simplicity, we assume the X axis as the rotation axis (always is possible to find
a 3D-transformation matrix that translates any rotation vector v to the X-axis).

Algorithm 2 consists of four nested loops, first and last ones simulate the tool
movement around the object. Second and third loops analyse every surface point in
order to find the nearest one to the tool. The transformation matrix consists of a basic
3D rotation matrix around the X axis that rotates every point an increment angle up to
complete a round. The distance function computes the distance between a 3D point
and a 3D torus in the tool attack direction (Y axis) and can be expressed in equation
(2).

() () 2
2

22,, zTxrRyTzyxD xy −

 −−+−−=

(2)

Where:

Tx, Ty : Are the x,y coordinates of the torus centre.
x,y,z : are the 3D point coordinates
R, r : are the major and minor torus radii

For this example, we must to select the best FPGA configuration for each task
involved in the Virtual Digitising process. In the inner loop we distinguish three
different tasks: task 1 performs point rotation, task 2 computes the distance function
and task 3 makes a conditional assignment. We have made software simulations in
order to evaluate the cost of every task in the inner loop and the best time we can
achieve by using the field programmable logic technology.

Figure 4 shows the improvement achieved using FPGAs against the no specialized
algorithm (without using FPGAs). These lines have to be taken as optimal, since no
overhead has been considered in simulations for the use of FPGAs. Figure 5
represents the computing cost of each task as a percentage.

Fig. 4. Software simulation. Task 1 performs point transformation, in the
case of study, consists of a 3D rotation around the X axis. Task 2 computes 3D
distance between a 3D grid point and a torus (the tool).

0
500

1000
1500
2000
2500
3000

0 500 1000
Precission (points / mm)

T
im

e
(s

ec
.) No specialized

FPGA task 1

FPGA task 2

FPGA task 1 & 2

In next section, a reconfigurable architecture specialized in the rotation task is
presented.

4. The Multi-Rotator architecture

In the virtual digitising algorithm rotations are always computed in the same way:
every point is rotated a fixed angle around the rotation axis for the whole round (e.g.
for an increment of 4 degrees the successive rotations will be: 0, 4, 8, 12 …, 352 and
356 degrees using a configuration of 90 points per round).
In field programmable logic, CORDIC algorithm8 is used to perform generic spatial
rotations. CORDIC provides an iterative method of performing vector rotations by
arbitrary angles using only shifts and adds9. As opposite, our algorithm (called Multi-
Rotator10 or MR), computes the rotation directly, achieving the maximum precision
allowed by the binary representation of the geometric points. MR implementation
could be carried out by just using Constant Coefficient Multipliers (KCMs) and/or
distributed arithmetic11,12, achieving a response time equal or even smaller than the
unrolled and bit parallel versions of CORDIC algorithms13,14,15, using similar
resources and keeping the maximum precision.

The approach consist of producing r rotations of the same point 3D p with
coordinates (x,y,z). Every rotation step will be constant (∆θ). For the i rotation, the
point p will be rotated as:

θi= θi-1+∆θ (3)

For this study, we assume every rotation is made over the z-axis. The coordinates
of the p point after for i-th rotation are shown in (3). Note that z component will keep
unchanged due to the fact that rotation is made over the z-axis):

xi’=xcosθi - ysinθi = xCi -ySi

yi’=ycosθi+ xsinθi= yCi+xSi

(4)

Where Ci=cosθi, Si= sinθi .These equations could be expressed as a function of the
previous iteration angle as:

xi’=xcos(θi-1+∆θ) - ysin(θi-1+∆θ)
(5)

2%
23%

75%

Com parison

Rotation

Dis tance

Fig. 5. Inner loop computing time

yi’=ycos(θi-1+∆θ)+ xsin(θi-1+∆θ)

Using trigonometric properties of the angle addition for the sine and cosine:

sin(a+b)=sina·cosb+cosa·sinb
cos(a+b)=cosa·cosb-sina·sinb

(6)

we obtain:
xi’= xC i -ySi = [x Ci-1 C∆ - x Si-1 S∆] - [y Si-1 C∆ + y Ci-1 S∆]

yi’= yC i+xSi= [y Ci-1 C∆ - y Si-1 S∆]+ [x Si-1 C∆ + x Ci-1 S∆]
(7)

where C∆ = cos∆θ , S∆ = sin∆θ , Ci-1= cosθi-1 , Si-1= sinθi-1.

The four products: xCi, ySi, yCi, xSi , constitute a linear combination of the previous
rotation xCi-1, ySi-1, yCi-1, multiplied by the C∆ and S∆ constants. Because of these
transformations, and once the first rotation is calculated, for the rest of calculations it
is only necessary to do four products by constant coefficients (C∆ y S∆). Even the first
rotation is computed by means of constant products taking the initial angle equal to
zero degrees.

x1’=x C∆ - y S∆

y1’=y C∆ + x S∆

(8)

The KCMs are well suited to FPGA designs. They need only look up tables
(LUTs), shifts and adders. However, the LUTs size grows exponentially with n
(where n represents the binary precision selected for coordinate representation). This
number should be kept low to achieve a good FPGA spatial occupation. In this way,
we should compute the rotation using a 4 or 8 bit precision that is not a good value for
most of applications. An alternative consists of using the Serial Distributed
Arithmetic in order to calculate products and additions at the same time; in this case
the algorithm architecture is modified as figure 6 shows.

Fig.6.. MR architecture SDA based

Four n-bit shift registers are used to store products of i-1 rotation. In the first one

(θ0=0), the input multiplexers update the shift registers (S-Regs) with the point
coordinate values (x,y) or zero if the product includes the sine factor. The two
coefficients MAC blocks (2-C MAC) compute the products a·C∆-b·S∆ and a·C∆+b·S∆
working on a serial mode. After n cycles the four components of the (7) addition are
obtained (n+3 bits). In the last cycle, S-Regs are updated and both x and y coordinates
are computed at the same time. In order to reduce the resources, is possible to use just
Adder/Substracter (Add/Sub) blocks in the final phase, by means of increment a cycle
in the computing time. As a resume, the architecture will consist of 1 Add and 1 Sub
for a n+1 cycles computing time, or 1 Add/Sub block for a total time cost of n+2
cycles.

Every 2-C MAC module consists of a LUT that computes the partial products, and
a Scaling accumulator which computes partial sums (see figure 7). The LUT data,
referenced in figure 7, is composed of all partial sums of the two coefficients (C∆ and
S∆). The least significant bit of the shift registers addresses the LUT. Because the
address of the LUT contains all possible combinations of one or zero, based on the
two inputs, the LUT outputs contains all four possible sums of the coefficients. The
LUT is four n+1-bit words in size.

xCi-1

xSi-1

ySi-1

yCi-1

a·C∆-b·S∆

a·C∆+b·S∆

_

xCi

a·C∆-b·S∆

a·C∆+b·S∆

ai

bi

ai

bi

ai

bi

ai

bi

ySi

+

xSi

yCi

X’ i

Y’ i

xCi

xSi

yCi

ySi

X

Y

0

S-Reg

S-Reg

S-Reg

S-Reg

2-C MAC 1

2-C MAC 2

2-C MAC 3

2-C MAC 4

0

0

2-C MAC
a·C∆+b·S∆

LUT
4x(n+1)bits

Reg Scaling
Acc

A

B

ai

bi

1/2

(n+3) bits

Look up table
bi,ai / word
00 / 0
01 / C∆
10 / S∆

11 / C∆+S∆

Fig. 7. Structure of 2-C MAC based on SDA

All the LUTs are similar for products made in 2-C MAC (1, 3) and (2, 4)

respectively, for this reason only two double port memory LUTs will be needed. The
whole architecture will consist of: 4 multiplexers, 4 shift registers of n-bits, 2 LUTs of
4x(n+1) bits, 4 Scaling accumulators of (n+2)-bits, 1 adder of (n+2)-bits and 1
substracter of (n+2)-bits.

Table 1. Algorithms Comparative
In order to increase the processing speed of the MR architecture, it is possible to

use 2-C MACs based on Parallel distributed arithmetic (PDA). For instance, it is
possible to process odd and even bits of each S-Reg (2-bit PDA) at the same time,
reducing the number of cycles in a half. In that case, the number of LUTs is doubled
and it is necessary to include an additional Scaling accumulator to each module.

Table 1 shows a performance and resource comparison between MR and usual
CORDIC implementations. This kind of devices uses angle approximation in order to
reach the desired angle. Every coordinate is represented by an n-bit number, CORDIC
implementations use w approximation steps (called iterations) to obtain a valid result.
In this table, the number of cycles column means the clock cycles necessaries to
produce a single valid rotation (remember that virtual digitizing algorithm produces
this kind of rotations multiple times for every surface point).

Bit serial CORDIC implementation offers the worst performance index so that it
needs n cycles (n shifts) per iteration, although it allows the highest work frequencies
for the FPGAs. In the bit-parallel implementation the n shifts are carried out in a
cycle, using Barrel shifters, so that the number of cycles is reduced up to n. On the
other hand, the cycle period is about five times bigger9. Both of CORDIC
implementations achieve a maximum precision that depends on the number of
iterations (w), that is, in any case, always lower than the precision reached with n-bit
numbers. In MR implementations the number of cycles is equal or lower that the
fastest CORDIC implementation and the simplicity of the resources needed does

Architecture Number of cycles Resources n/w relation
Bit-serial
CORDIC

nxw

3 serial S-Reg
3 serial Add/Subs

1 serial ROM

n>w

Bit –parallel
CORDIC
iterative

w

3 Reg.
3 Barrel Shift.
3 Add/Subs

n>w

Bit –parallel
fully segmented

w+1

(3 Add/Subs)•(n+1)

n=w+2+log2(w)

SDA
MultiRotator

n+1

4 S-Reg
2 LUT, 4x(n+1) bits

4 Scaling Acc
1 Add + 1 Subs

-

2-bit PDA
Multirotator

n/2+1

8 S-Reg
4 LUT, 4x(n+1) bits

8 Scaling Acc
1 Add + 1 Subs

-

feasible clock frequency rates similar to the bit-parallel. Moreover, the precision
reached is the highest we could obtain using n-bits.

5. Experiments

The MR architecture has been simulated and analysed in terms of accuracy. The
target platform we have used was the XC4000E FPGA family. The simulation tool
was the Xilinx Foundation Series 2.1i software. Experiments simulate surface point
rotations using the virtual digitizing algorithm. Every point is rotated many times
using different angle steps up to complete a whole round (360 degrees). In this
context, we call iteration to each single rotation (do not confound with the term
iteration used in CORDIC literature as approximation).

Due to the fact of architecture scalability, we made experiments for both 16 and 32
bits in data word length. As showed in Table 1, the more bits are used for data
representation, the more hardware resources are needed. However, for 16-bit
simulations, the results were no good in terms of application requirements since we
obtain a relative error up to 6% (1% is the maximum allowed relative error in shoe
last machining). For this reason, we must to double architecture resources in order to
improve precision. In this section we only analyze 32-bit results.

Figure 8 shows relative error evolution for the 32-bit MR architecture. A whole
round was made using three different steps. Note that relative error is lineally
dependent with the number of iterations due to error accumulation. In order to
compute a tool path, we will obtain better precision if we use small steps; on the other
hand, we will achieve worse angle approximation since the iteration number will
grow. Figure 9 illustrates the linear dependency phenomena since there is no
significant difference between 0’5, 2’5 and 5º steps. In this graphic, we observe that
the relative error is much better than the 16-bit one. As an example, after five
iterations an error of 0’001632 % is obtained. For a high iteration number, the relative
error values keep under 0’1%, that is, ten times more accurate than maximum
application allowed error.

Figures 10 and 11 translate the previous results into number of erroneous bits in
data representation. Note that this number increases logarithmically with the iteration
number. After 200 iterations we obtain near nine erroneous bits, that is, a bit more of
25% in data length, even in the case the relative error is under 0’075%.

In absolute terms, the error obtained after a whole rotation (360º) for the 16-bit MR
could reach the ± 0’5 mm that is no good for machining purposes, however could be
suitable for another kind of applications as graphic representation. On the other hand,
after 720 iterations to complete a whole round, the 32-bit MR obtains an absolute
error of ± 7’8 microns, which is excellent for a shoe last mechanization process.

Fig. 8. Relative error versus goal angle for the 32-bit MR architecture.

Fig. 9. Relative error versus number of iterations for the 32-bit MR architecture.

Fig. 10. Erroneous bits versus goal angle for the 32-bit MR architecture.

0

0,05

0,1

0,15

0,2

0,25

0 45 90 135 180 225 270 315 360

Rotation angle (degrees)

R
el

at
iv

e
er

ro
r

(%
)

step 0'5º

step 2'5º

step 5º

0

2

4

6

8

10

0 45 90 135 180 225 270 315 360

Rotation angle (degrees)

In
co

rr
ec

t
b

it
s

step 0'5º

step 2'5º

step 5º

0

0,025

0,05

0,075

0,1

0 50 100 150 200

Iterations

R
el

at
iv

e
er

ro
r

(%
)

step 0'5º

step 2'5º

step 5º

Fig. 11. Erroneous bits versus number of iterations for the 32-bit MR architecture.

6. Conclusions and future investigation

The procedure of virtual digitizing it is simple to implement, offers good results
and avoid the problem of tool collision by its own definition. On the other hand, the
algorithm is not suitable for general purpose machining algorithms since it is too slow
versus other types of tool path generation algorithms. The use of reconfigurable
computing may be useful to solve high cost problems coming from the CAD/CAM
world. In particular, it can be applied to the virtual digitising algorithm achieving
good results in tool path generation.

The general scheme proposes new configurations in order to perform efficiently
the most of complex tasks as the distance computation. Future studies will allow
developing an intelligent scheduler able to choose the best FPGAs configurations for
every kind of trajectory achieving better computing times.

The MR architecture appears as a scalable and powerful FPGA design that
accelerates the speed of tool path computation for helicoidal trajectories. Simulations
have shown that 32-bit MR is suitable for machining purposes, being more accurate
and faster than traditional CORDIC schemes. In this study we are discarded 16-bit
implementations, which consume fewer resources; however they could be used for
other purposes that require less precision as computer graphics (circle or ellipse
drawings).

As future work, we are going to study different MR implementations on real FPGA
chip-cards. Best performance chips will be integrated in a CAD/CAM platform in
order to test hardware acceleration in tool path generation algorithms.

0

2

4

6

8

10

0 50 100 150 200

Iterations

In
co

rr
ec

t
b

it
s

step 0'5º

step 2'5º

step 5º

7. References

1. Jimeno A, García J., Salas F. “Shoe lasts machining using Virtual Digitising”. International
Journal of Advanced Manufacturing Technology. Vol 17 No.10 (2001), pp 744-750.

2. Jimeno A, García J., Salas F. “Shoe lasts and computer systems”. (Spanish) Tecnología del
Calzado. No. 178 (2000), pp. 73-79.

3. Jung W Park et al “ Pencil Curve Tracing via Virtual Digitizing” Proc. of IFIP CAPE
Conference, (1991), pp.97-104.

4. Takeuchi, Y et al. ‘Development of a personal CAD/CAM system for mold manufacturing’
Annals of CIRP, Vol 38 No 1 (1989), pp.429-432.

5. Jerard, R B, Drysdale, R L and Hauck, K ‘Geometric simulation of numerically controlled
machining’ Proc. of ASME Int’l Conf. on Computers in Engineering, ASME, New York
(1988), pp.129-136.

6. Farin, G., “Curves and surfaces for CAGD”, Academic Press. 1993.
7. Radunović B., Milutinović V., "A Survey of Reconfigurable Computing Architectures,"

Eighth International Workshop on Field Programmable Logic and Applications, Tallinn,
Estonia, 1998.

8. Volder, J.E.; The CORDIC Trigonometric Computing Technique, IRE Transactions on
Electronic Computers, V. EC-8, No. 3, (1959), pp. 330-334.

9. Andraka R. J.; A survey of CORDIC algorithms for FPGAs, FPGA '98. Proceedings of the
1998 ACM/SIGDA sixth international symposium on Field programmable gate arrays.
Monterey, CA (1998). pp 191-200.

10. Jimeno, A., Cuenca, S. “Reconfigurable logic for CAM” (Spanish). Proceedings of the
2001 JCRA. National Conference on Reconfigurable Computing and Applications. Alicante
- Spain, (2001). pp 243-252.

11. Stanley A. W. “Applications of Distributed Arithmetic to Digital signal Processing : A
tutorial review, IEEE A DSP Magazine, (1989), vol. 6, no. 3.

12. Goslyn G. “The role of DA in FPGA-based signal processing”. Xilinx Inc., 1995.
13. Wang, S. and Piuri, V., “A Unified View of CORDIC Processor Design”, Application

Specific Processors, Kluwer Academic (1996), pp. 121-160.
14. Andraka R. J; “Building a High Performance Bit-Serial Processor in an FPGA,”

Proceedings of Design SuperCon (1996) sections 5.1 - 5.21.
15. H.X. Lin and H.J. Sips, “On-Line CORDIC Algorithms,” IEEE Trans. Computers, vol. 39,

no. 8 (1990), pp. 1,038-1,052.

