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ABSTRACT

Nanoscale zero valent iron (nZVI) has proven to be a promising solution for contaminant
remediation, but its application is limited due to its high cost of synthesis and instability.
Encapsulating the nZVI in carbon spheres generates more stable particles with improved
properties due to the adsorption capacity provided by the carbon. The aim of this work was to
synthesize thin shell carbon-encapsulated iron nanoparticles (CE-nFe) through hydrothermal
carbonization (HTC) using olive mill wastewater as a carbonaceous source, which is a cheaper
and more sustainable method of synthesis than current practice. With this method, a high quality
nanomaterial was obtained, which displayed surface areas up to 220 m*/g and was composed of
~4 nm iron nanoparticles spheres surrounded by a thin layer of carbon (<1 nm). The effect of
HTC conditions on the nanoparticles structure and morphology was evaluated. Post-treatment of
the samples under nitrogen flow at high temperatures (600-800°C) was used to increase the ZVI
content of the samples. Finally, the synthesized CE-nFe were tested for the removal of heavy
metals from water. Thanks to the carbon layer, CE-nFe proved to avoid the delivery of heavy
metals ions back to water, a behavior previously observed with nZVI due to its aging after long

time periods.
Keywords

nZVI, olive mill wastewater, encapsulation, HTC, green chemistry, heavy metal removal, aging,
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INTRODUCTION

Nanoscale zero valent iron (nZV]) particles have proven in the last two decades to be a powerful
tool for water treatment.! Their interest lies in their capacity to remove a wide range of
pollutants through the donation of electrons in reduction processes, but also through the
adsorption of contaminants in its oxide shell>. nZVI has proven to be effective at the reductive
dehalogenation of chlorinated compounds, the sequestration of heavy metals, and the
degradation of organic dyes, among others °. However, its use in environmental remediation is
limited due to its lack of stability and easy aggregation in micro size flocs.* Due to its extremely
reactive surface, nZVI also reacts with dissolved oxygen and water, which accelerates the
nanoparticles aging and results in a loss of reactivity towards not target compounds.
Agglomeration of nZVI takes place via Van der Waals forces, electric dipolar interactions and
most importantly, by magnetic forces among the nanoparticles, causing either a reduction in
their effective surface area and/ or a decrease in its reactivity. Another important problem that is
limiting the practical application of nZVI is its high cost of production. The most common
method for nZVI synthesis is the reduction of ferrous salts by sodium borohydride, which is
driven at ambient temperature and pressure.” However, the process is expensive and is not
feasible for large-scale implementation, due to the large volume of hydrogen gas generated in
the reaction and the high cost of borohydride salt.® Moreover, sodium borohydride is a toxic
reagent. As a result, large-scale production of commercial nanoparticles is being conducted
mainly by high temperature reduction of iron oxides in hydrogen atmosphere.” This method,
although being more easily scalable, involves high capital costs. Other alternative methods such

as grinding, ultrasound and electrochemical methods are currently being developed.®

Considering the sequestration of heavy metal cations, one of the barriers for the application of
nZVI is the presence of an “aging effect”. As shown in a previous work’, although the initial
uptake of heavy metals by nZVI is good, as time elapses the nZVI releases some of the heavy

metal cations back into water due to the nZVI aging. Research conducted by Crane et al."
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showed that coating iron nanoparticles with carbon reduced the release of uranium back to water

due to the retention effect of carbon.

In order to counteract the drawbacks of nZVI current application, the encapsulation of nZVI is
being studied with the objective of enhancing the stability of nZVI without sacrificing its
efficiency in contaminant remediation.'' The encapsulation of nZVI inside micro or nano-
carbon spheres via hydrothermal carbonization (HTC) using an organic compound as
carbonaceous source, such as glucose or sucrose, has been recently developed.'”> HTC consists
of a thermal treatment of an aqueous solution or dispersion of a carbon-containing organic
material at moderate temperature and under autogeneous pressure, which produces a carbon-rich
solid as an insoluble product.” This method is easily scalable since is endothermic and
generates only gaseous products.'* It is considered a green method for nZVI synthesis, because
it does not use toxic reactants. Furthermore, when using a waste as the carbon-source material
the method becomes even more environmentally friendly. The carbon-encapsulated iron
nanoparticles (CE-nFe) obtained show improved capability for contaminant removal due to the

combination of the reducing properties of iron and the adsorptive capacity of the carbon."

Spain is the main world producer of olive oil with a 37.5% of the total production worldwide.'®
According to Azbar et al.'’, the waste generation in the olive oil industry is nearly the 75% of
the total mass harvested, which entails a high impact on the environment due to its high
phytotoxicity. One of the waste streams from the olive oil production is the olive mill
wastewater (OMW), which is rich in carbonaceous compounds, including polyphenols.'®
Previous studies have indicated that tea extracts, which also contain polyphenols, can be used to
synthesize iron nanoparticles at room temperature. According to the literature, polyphenols and
other natural compounds such as caffeine not only act as capping agents that minimize the
oxidation and agglomeration of zero valent iron, but also serve as reducing agent for the
synthesis of this metallic iron.""?* The chelating nature of polyphenols appears also in the

literature in other fields of research.”** Considering this, OMW was used as a feedstock in this
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work to produce CE-nFe through HTC, making profit of its reducing and capping properties to

maximize the amount of nZVI and the percentage of iron in the final material.

The aim of this work has been to develop a cheaper and more sustainable method for the
synthesis of CE-nFe from OMW and investigate its application to heavy metal removal.
Different conditions, such as iron to carbon ratio in the raw material, and heating temperature
and time, were assessed. A post-treatment of the nanomaterial to increase its nZVI content was
also investigated. This synthesis method could help dealing with the waste from the olive oil
industry, and at the same time would produce a high quality nanomaterial able to treat polluted

water sources.

MATERIALS AND METHODS
Chemicals

OMW was obtained from an olive mill company from Extremadura region in Spain, and was
used after being clarified by centrifugation at 5000 rpm during 30 min and filtration with an 8
pm fiber glass filter. The other reagents used, Ni(NO;),"H,0, Cd(CH;COO), 2H,0, ZnCl,,
K,Cr,07, CuCl,'H,0, Fe(NOs);-9H,O (Sigma-Aldrich), FeSO,-7H,O (VWR), zinc powder
(Fischer Scientific), ethanol (Montplet) and 37% HCI (Fischer Scientific), were of analytical

grade. All the solutions were prepared using purified water.
CE-nFe synthesis

The experimental procedure followed was based on Sun et al.’s work®, in which iron (III) nitrate
nonahydrate is reduced by means of a hydrothermal reaction with glucose. However, the
glucose was replaced by olive mill wastewater and slight modifications were performed.
Briefly, 300 mL of clarified OMW were mixed with 0.057 mol of Fe(NO;);-9H,O for 1 h. Then,
the mixture was transferred to a 1 L HTC reactor (FCF-1 from Zhengzhou Keda Machinery)

and was submitted to the required temperature and time (see Table 1). After cooling down the
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1

2

3 reactor with water at 5-10°C, the resulting mixture was filtered under vacuum with a 0.2 pm
4

5 cellulose acetate filter and washed 2 times with a 50/50 (v/v) ethanol water solution.
6

7 Subsequently, the solid fraction was transferred to an oven and dried at 80°C during 12 h. The
8

9 sample was then ground into a fine powder and transferred to a vial for characterization.

10

11

12 Table 1 shows a summary of the different conditions studied for CE-nFe. Note that the
13

14 experiment P1 was conducted without iron, as a reference for subsequent analyses. In the
1

12 experiment P3, glucose was used instead of OMW to compare both materials as the
1; carbonaceous source to produce the CE-nFe. In order to ensure equal comparison between both
;g experiments, a solution was made with glucose to contain the same level of total organic carbon
;; (TOC) as the OMW. In the rest of the experiments, HTC temperature was varied between 180
;i and 275°C and HTC reaction time from 0.5 to 18 h. The ratio of iron to carbon was also
;2 changed by varying the amount of iron nitrate nonahydrate and maintaining the amount of
;é OMW constant.

29

30 Table 1. Reaction conditions of HTC synthesis of CE-nFe and main properties of the

31

32 nanomaterial obtained.

33

34

35 Carbon T  Reaction nFe/nC;' Solid  Wrotal e/ Wsample Wreo)/Wroutre - Surface
36 Sample source (°C) time (h) (molFe/molC) weight (g) (%) ’ (%) arxa
37 gntis ° (m*/g)
38 Pl OMW 200 3 0 1.0 - 0.0 3.6
39

40 P2 - 200 3 - 67.4 2.9 53
41 P3  Glucose 200 3 0.05 7.6 5.5 38.6 11
o P4 OMW 200 3 0.05 7.5 425 9.6 176
44 P6 OMW 180 3 0.05 7.9 36.9 6.5 108
22 P7  OMW 225 3 0.05 7.4 44.5 5.5 190
47 P8 OMW 250 3 0.05 7.3 442 3.5 169
48 P9 OMW 275 3 0.05 7.1 448 6.8 146
Pt PI0 OMW 200 0.5 0.05 .1 37.8 13.8 130
51 P11 OMW 200 18 0.05 7.1 439 6.8 149
gg PI2 OMW 200 3 0.01 4.1 19.3 11.4 22
54 P13 OMW 200 3 0.025 6.3 26.0 6.3 46
55 P14 OMW 200 3 0.1 11.0 52.6 5.6 134
56

57

58 5

59
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P15 OMW 200 3 0.150 14.9 58.8 43 94
P16 OMW 200 3 0.2 16.9 65.1 4.0 71
P17  OMW 200 3 0.25 243 65.2 4.5 79

oNOYTULT D WN =

1nCi (initial carbon molar amount of the sample) was calculated from the COT value of the OMW. nCi =

COT(mg/L)-V- M, ! where V is the volume of OMW and M,, its molecular weight.

Subsequently, the samples were thermally treated at high temperatures (600-800°C) under
anaerobic conditions in order to increase their zero-valent iron content (post-treatment).
Specifically, the samples were inserted into a quartz tube and treated in an oven during 3 h
under a nitrogen mass flow of 500 mL/min. Then, the samples were extracted by adding
distilled water after cooling the sample to room temperature in order to avoid its ignition with
air. The samples were labeled as CE-nFe-P600, CE-nFe-P700 and CE-nFe-P800 for post-

treatment temperatures of 600, 700 and 800°C respectively.

Analysis methods

OMW was characterized by calculating its total organic carbon (TOC) by difference of total
carbon (TC) and inorganic carbon (IC) measured using a TOC-5000A from Shimadzu. In order
to obtain the solid fraction of the OMW, the sample was heated in an oven at 105°C during 8 h.
Then, elemental analysis was performed by grinding it into a fine powder and analyzing it with
an Elemental Microanalyzer Thermo Finningan Flash 1112 Series in order to determine the

percentage of C, N, H and S. pH measurement was performed using a Mettler Toledo Seven

Multi using the electrode 5014 of Crison. ICP-OES was performed to obtain the concentration

of the main elements of the OMW after digesting the sample with nitric acid and hydrogen

peroxide.

Field emission scanning electron microscopy (FESEM) performed on a Merlin VP Compact
from Zeiss at a voltage of 1 kV was used to evaluate the size, morphology and iron distribution
in the CE-nFe. Transmission electron microscopy (TEM) with a JEOL JEM-2010 was used to
determine the size of the iron nanoparticles and its location within the carbonaceous structure.

The software Infinity Analize from Lumenera was used to measure the size of the nanoparticles.

6
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The Brunauer-Emmet-Teller (BET) surface area and the pore size distribution of the samples
were obtained by physical adsorption with nitrogen at 77 K, using a Mark Quantachrome
Autosorb-6. Prior to the measurements, the samples were degassed under vacuum at 200°C for 4
h. X-ray diffraction (XRD) was performed to determine the crystalline structure of the samples
using a Bruker D8-Advance with CuKa radiation at 40 kV and a step size of 0.05° 20 at 3

s/step.

The iron content and thermal stability of the samples were determined by thermogravimetric
analysis (TG) under air or nitrogen with a Perkin Elmer Thermobalance model TGA/SDTA-
6000. The amount of iron incorporated into the CE-nFe was calculated by heating the sample to
950°C under air, which entails the combustion of carbon and the oxidation of iron to Fe;O,. The
ash at 950°C was assumed to be the amount of iron oxide plus the rest of inorganic compounds,

the latter being calculated by heating the sample P1 (without iron) at 950°C.

The zero valent iron (Fe”) content was determined by measuring the volume of H, gas produced
during the digestion of 0.1 g of the sample with 1 mL of 37% HCI, which is proportional to the
amount of iron, as shown in equation 1. Specifically, the sample is located in a vessel which is
communicated with a water column in a graduated burette. A known volume of HCI is added to
the vessel through a septum, and the H, gas produced causes the displacement of the water
column. The difference between the initial and final height of the water column corresponds to
the H, gas produced plus the volume of HCI added (1 mL). On the basis of the standard
reduction potentials, the iron oxides do not produce H, when acidified. The soundness of the
method was determined by measuring the H, generated by a known sample of Zn. The
difference between the observed and theoretical value was less than 10% for 6 repetitions of the

measurement.
2Fe + 6HCl — 2FeCl; + 3H, )

Application of CE-nFe particles on heavy metal removal of contaminated water

7

ACS Paragon Plus Environment



oNOYTULT D WN =

ACS Sustainable Chemistry & Engineering

The synthesized CE-nFe, CE-nFe-P600 and conventional nZVI particles were tested for the
treatment of an aqueous solution containing 10 ppm of the following heavy metals: Cu, Zn, Cr,
Ni and Cd, which are commonly found in ground and wastewater. The solution was prepared
synthetically using the corresponding reagents enumerated in the “Chemicals” section.
Furthermore, a carbon sample synthesized by HTC from OMW without iron addition and
submitted to post-treatment (AC-P600) was tested for heavy metal removal under the same
conditions. The aim of this experiment was to determine the influence of the carbon in heavy

metal removal.

Experiments were performed in a 500 mL batch laboratory scale reactor under continuous
mixing with a magnetic stirrer. The volume of contaminated solution used in each experiment
was 500 mL. A specific amount of nanomaterial was added to the reactor to start the reaction,
and 2 mL samples were taken from the solution at various reaction times. The nanoparticles
were separated from the solution by using a neodymium magnet, followed by centrifugation.
The concentration of the heavy metal cations in water was determined using inductively coupled
mass spectrometry (ICP-MS) using a VG PQ-ExCell from Thermo Elemental prior filtration

with PTFE 0.2 pm syringes and acidification to 2% of nitric acid.
RESULTS AND DISCUSSION
Comparison between OMW and glucose as a feedstock for CE-nFe synthesis

The characteristics of the OMW used for the synthesis of CE-nFe are shown in Table S1 and S2
of Supporting Information and are similar to those reported for OMW in other works, having a

high organic carbon content and an acidic pH**.

The results from the characterization of the materials synthesized by glucose and OMW
revealed significant differences between them. For the same synthesis conditions, glucose CE-
nFe (G-CE-nFe) exhibited only 5.5% of incorporation of Fe in the solid (see Table 1), compared
to 42.5% of Fe content achieved when using OMW as a feedstock (OMW-CE-nFe).
Additionally, the iron content in OMW-CE-nFe was significantly higher than that obtained by
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other authors using glucose as a raw material. For example, in Sun et al.’s work °, 10.5% iron
content was obtained using the same initial molar ratio of Fe/C, and in Yu et al.”s work®” only
7.4% of iron was incorporated into the material for a Fe/C initial molar ratio four times higher.
Interestingly, the analysis of zero valent iron content revealed that iron present in G-CE-nFe
was in a higher extent metallic iron (38.6% of total iron compared to only 9.6% for the OMW-
CE-nFe). However, although the glucose was able to produce a higher percentage of zero valent
iron, as the total iron incorporated in the sample was much lower, it resulted in a Fe” content in
G-CE-nFe (2.2%) half of the value displayed by OMW-CE-nFe (4.5%). Therefore, it is
reasonable to assume that olive mill wastewater, which is known to be rich in polyphenols, is
significantly more reducing than glucose, thus incorporating more metallic iron into the final

carbonaceous structure 28 .

The iron distribution in the materials was evaluated by using the signal of the backscattered
electrons in FE-SEM. It was not possible to observe the iron in the G-CE-nFe samples with this
technique, in accordance with the low iron percentages detected in this sample (see Table 1).
Conversely, as shown in Figure S1 of Supporting Information, OMW-CE-nFe displayed a very

good distribution of iron through the material.

Concerning the morphology and size of the materials obtained, TEM and FE-SEM images of
the particles were evaluated (see Figure 1). Both materials showed to have a completely
different morphology. While G-CE-nFe consisted of micro-spheres of diameters of 2.0 = 0.7
pum, OMW-CE-nFe presented a sphere-like nanostructure of sizes of 130 + 50 nm (see Figure
S2 in Supporting Information), which were composed of smaller spheres of iron nanoparticles
of very small size (4.4 + 0.6 nm) surrounded by a thin layer of carbon (<1 nm). OMW-CE-nFe
displayed strong aggregation, as expected for particles synthesized by HTC method. The
smaller size and more porous structure of OMW-CE-nFe provide the material with a higher

surface area and better properties for contaminant remediation compared to G-CE-nFe.
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i3 i

Figure 1. TEM images of: a) OMW-CE-nFe (sample P4), b) G-CE-nFe (sample P3), c) HRTEM

image of the nanoparticles shell of OMW-CE-nFe (sample P4). Reaction conditions: 200°C,

nFe/nC;=0.05,3 h

N, adsorption isotherms of both samples were evaluated and BET surface area and pore size
distribution using the Barret-Joyner-Halenda (BJH) method were calculated (see Figure S3 in
Supporting Information). The adsorption isotherms were both of type IV, suggesting a
mesoporous structure in accordance with the [UPAC classification of isotherms. Both isotherms
presented a type H3 hysteresis loop, which indicated the presence of slit-shaped pores. The

available BET surface area of OMW-CE-nFe was around 15 times higher than that of G-CE-nFe
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(176 m*/g vs 11 m*/g). Thus, although the OMW-CE-nFe showed strong aggregation, similar to
what is observed for conventional nZVI, its surface area was much greater than that of nZVI
(7.1 m*/g), probably due to the lower size of the encapsulated nanoparticles and to the carbon
layer. Similarly, the pore volume of OMW-CE-nFe was of 0.59 c¢m®/g, which is much higher
than the one of G-CE-nFe (0.027 cm’/g), further evidencing the different structure between both

materials.

With regard to the pore size distribution, G-CE-nFe showed a wider distribution of pores in the
sample, centered at 3.3, 4.2, 5.9 and 16.3 nm. Conversely, OMW-CE-nFe displayed a single
modal pore size distribution centered at 3.8 nm. Most probably, the pore size detected for
OMW-CE-nFe was attributed to the inter-particle voids. In order to obtain the size of the intra-
particle pores, the density functional theory (DFT) analysis could be useful. Nevertheless, this
model has to be regarded only as a semi-quantitative evaluation of the pore size distribution, as
none of the models available describes an activated carbon with iron content higher than 40%.
The quenched solid density functional theory (QSDFT) was applied with a kernel of an
activated carbon containing slit pores to the desorption branch of the isotherm (see Figure S4 in
Supporting Information). Results showed that, additionally to the pore size of 3.4 nm, pores at
1.2 and 1.8 nm which pertain to the supermicropore region were detected. Thus, it is reasonable
to conclude that OMW-CE-nFe have also some pores in the micropore region, although their

calculated size should be taken as an approximate value.

Regarding the crystalline composition of both materials, there were significant differences
between them, as showed by XRD pattern (see Figure S5 in Supporting Information). In OMW-
CE-nFe only the crystalline phase y-Fe,O; was detected, while in G-CE-nFe, the characteristic
peaks from iron oxide and iron carbide were identified. Moreover, also nitrogen-containing
compounds were identified ((CsHyNO,), and C,HsNO4H,0), which were ascribed to the
presence of nitrate in the reaction medium. This indicated that when using glucose as a raw

material, the solid obtained had more than one crystalline phase. Conversely, OMW-CE-nFe
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were more homogeneous, presenting only one crystalline phase ascribed to the iron oxide, while

carbon was amorphous and did not participate in any crystalline phase.

Summarizing, the material obtained using OMW as a feedstock demonstrated to have a
structure very different from that of G-CE-nFe. OMW-CE-nFe were composed of nanocarbon
spheres, instead of the common microspheres of 6-8 um which are obtained when glucose or
sucrose are used as a feedstock®*, presented a higher surface area and a greater incorporation of
iron into the material. The differences between G-CE-nFe and OMW-CE-nFe could be
attributed to the different composition of both raw materials. In the case of OMW, a wide range
of different compounds, such as diverse polyphenols, organic acids, alcohols and lipids, are
available in the reaction mixture for hydrolysis and condensation reactions which form the final
product. In contrast, in the case of G-CE-nFe, glucose is the only compound which is
hydrolyzed and is available for condensation and polymerization reactions. Glucose has been
deeply studied as a starting material for producing carbon materials through HTC. It is well
known that when treating glucose under temperatures of 170-300 °C, micro-carbon spheres of
sizes 0.25-8 um depending on the conditions applied are formed®. Conversely, the reactions
undertaken by OMW through HTC process are suggested to be very complex and a clear
scheme has not been reported, since several compounds are implied. Interestingly, in Wang et
al.’s work”, in which a mixture of melamine and glucose was used as a carbonaceous source, a
material similar to the OMW-CE-nFe was obtained. The nZVI was encapsulated in nanocarbon
spheres of diameter of 50-100 nm. The nanomaterial had also high iron content (=30%),
although the surface area of the material was only 18 m?*/g. Apart from melamine, other works
have shown to be able to produce nanoparticles through HTC method, although not containing
iron. In Atchudan et al.’s recent work (2017), the fruit extract from Chionanthus retusus, which
is rich in phenolic compounds and polysaccharides, was used to synthesize N/C nanospheres of
very low size (3-7 nm) through HTC (180°C, 6 h) *'. Similarly, Yan et al. (2015) synthesized
carbon nanoparticles of 10-25 nm from wood derived sugars with HTC treatment at

temperatures of 160-180°C during 8 h *2. Thus, it is concluded that depending on the
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carbonaceous source used for the HTC process, different structures can be obtained for the final
material, and OMW has proven to be able to produce nanocarbon spheres of very low size, thus

being a promising raw material for the green synthesis of nanomaterials.
Effect of HTC conditions on synthesized CE-nFe
Temperature effect

Changing the temperature of the reaction had a slight but not important effect on the amount of
CE-nFe synthesized and the iron percentage incorporated into the sample, as seen in Table 1.
The amount of nanoparticles obtained decreased with the temperature due to the higher degree
of carbonization. However, the difference between the highest and the lowest value (at 180 and
275°C, respectively) was 0.8 g, which corresponded to only 10 % of the average value. The iron
content incorporated into the material increased with temperature up to 225°C and then it
remained constant, but this was ascribed to the consequent decrease of the sample weight. The
results revealed that temperatures above 200°C were sufficient in order to obtain 100%

incorporation of iron (3.16 g) into the final material.

On the contrary, the surface area of the material calculated by the BET analysis presented a
strong variation with temperature (see Table 1). The surface area showed a maximum value at a
reaction temperature of 225°C, when its value almost doubled the one at 180°C (190 m*/g vs
108 m’/g). Taking into account the pore size distribution of the materials obtained by the BJH
model (see Figure S6 in Supporting Information), it can be seen that at 200°C and 250°C
reaction temperatures, the most abundant pore size was 3.8 nm. At 180°C and 250°C, the
distribution was also centered at the same value of pore size, but with a lower content. At the
highest temperature evaluated (275°C), the pore size distribution moved towards higher pore
sizes (8.6 nm). Considering that the sequestration of some heavy metals relies on the adsorption
capacity of the iron nanoparticles, the total surface area is an important property. Consequently,
it is not beneficial to increase the HTC reaction temperature higher than 225°C according to the

surface area results.
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Another effect observed in the final material as a result of the change in temperature was the
crystallinity. As shown in XRD results (see Figure S7 in Supporting Information), while at
180°C the material was amorphous, at 200°C the characteristic peaks of maghemite at 26 values

of 35.7, 57.2 and 62.8° were visible, and became higher at 275°C.

Effect of reaction time

The duration of the HTC reaction had a similar effect as the temperature in the solid production
(see Table 1). The higher the reaction time, the higher the carbonization of the material and
thus, the lower the amount of solid obtained. The iron content of the solid consequently

increased with the reaction time due to the decrease in the total sample weight.

The analysis of the BET surface area of the samples showed a maximum at a reaction time of 3
h, as seen in Table 1. This was consistent with the pore volume and pore size distribution
obtained by the BJH model (see Figure S8 in Supporting Information). Although the three
samples displayed a single modal pore size distribution centered at 3.8 nm, at the reaction time
of 3 h the proportion of pores at that size was higher. Regarding the XRD analysis of the
sample, the crystallinity of the material increased with reaction time, as shown in Figure S9 of

Supporting Information.

Effect of initial iron concentration

When increasing the nFe/nC;, there was a subsequent increase in both the solid production and
the Fe percentage in the final material, as seen in Table 1. The iron mass incorporated into the
nanomaterial steadily increased with the amount of iron precursor added. This was to be
expected, as more Fe available at the start increased the possibility for a higher incorporation of
Fe in the final product. Looking at the data at Table 1, it can be seen that the iron incorporated
into the final nanomaterial was always the stoichiometric put into the reaction, i.e., all the iron

added as iron nitrate to the reactor was precipitated in the OMW-CE-nFe. The solid production
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also increased with the increase of nFe/nC; ratio, which was due in part to the higher amount of
iron precipitated in each experiment. But it is more interesting to note that the carbonaceous
mass also increased with nFe/nC; ratio. Although the initial mass of OMW was the same for all
the experiments, the increase in iron resulted in a higher carbon production. Consequently, the
recovery of the reaction, defined as the carbonaceous material precipitated through HTC divided

by the initial carbon content, could be maximized by increasing the nFe/nC; ratio.

Regarding the iron percentage in the produced OMW-CE-nFe (nFe/nC,), it increased linearly
until 0.2 molFe/molC;, above which it remained constant (see Table 1). This suggests that the
amount of carbon encapsulating the iron decreased when more Fe precursor was added up to 0.2
molFe/molC;, above which the level of coating remained uniform. This was consistent with
TEM images of the nanoparticles (see Figure S10 at Supporting Information). At the initial
molar relationship Fe/C of 0.01, a wide layer of carbon covered the iron nanoparticles, which
were difficult to be distinguished inside the carbon structure due to a low precipitation.
However, when increasing nFe/nC; to 0.05, the nanoparticles precipitated, having an average
size of 4.4+0.6 nm, and they were also encapsulated by a thin coating (<1 nm) of carbon. At
nFe/nC; = 0.25, the structure of the nanomaterial was similar, but the size of the iron
nanoparticles increased to 9.7+1.5 nm and the carbon coating was such thinner that it was

difficult to distinguish it in the TEM images.

The BET surface area of the solid displayed an optimum value at nFe/nC; = 0.05, which gave
the highest surface area (Table 1). At lower ratios, the iron content was not enough to produce
the desired structure of the material, as evidenced by TEM and SEM images (see Figure S10
and S11 in Supporting Information). For higher ratios, the large iron loading produced an
increase in the nanoparticles sizes as shown in TEM and SEM images and a more crystalline
structure. Consequently, the surface area diminished in these samples. Indeed, at nFe/nC; = 0.25
(sample P17) there were some structures of bigger sizes (150 nm length x 58 nm width) with
low carbon content (2.6%) and highly crystalline (see Figure S12 in Supporting Information),
which produced a decrease in the surface area available. The increase of crystallinity with the
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initial molar ratio nFe/nC; was also showed by XRD (see Figure S11 in Supplementary
Information). At nFe/nCi = 0.01 the sample was completely amorphous, as any crystalline peak
was observed. At nFe/nCi = 0.05, the characteristic peaks of y-Fe,O5 (30.3, 35.6°, 43.6, 57.9°,
62.5°) were detected, and at nFe/nCi = 0.15 the same peaks were detected but with a higher
magnitude. The pore volume and pore size distribution of the samples calculated by the BJH
method (see Figure S13 at Supporting Information), also showed that the highest pore volume
was obtained at nFe/nC; = 0.05, again confirming that this was the optimal value for this

parameter.
Post-treatment of OMW-CE-nFe

The TG analysis of the OMW-CE-nFe under nitrogen atmosphere (see Figure S14 in Supporting
Information) revealed a sharp weight loss between 600°C and 800°C, which can be ascribed to
the reduction of ferric iron to zero valent iron and to the graphitization of the carbon. Thus, the
post-treatment of the OMW-CE-nFe under nitrogen atmosphere to increase the ZVI content was
studied within this temperature range. The results showed that the post-treatment produced an
increase in the total iron percentage in the nanomaterial, as shown in Table 2. This was to be
expected, since at high temperatures carbon is being converted to CO and CO,, thus increasing
the iron content of the samples. Furthermore, the post-treatment of the samples was successful
in increasing the ZVI content. The ZVI increased from 4.5% to 6.6, 10.0 and 15.5 % after the
treatment at 600, 700 and 800°C respectively during 3 h. This was corroborated by XRD
patterns shown in Figure S15 of Supporting Information. Before the post-treatment, only the
peak of y-Fe,O; was detected by XRD. However, after the post-treatment at 600°C and 800°C
the characteristic peaks of bee Fe(0) at 44.7° and 65.1° were observed and were more intense at
the treatment temperature of 800°C. The sample showed to contain also iron carbide, which had
been detected also by Wang et al. when using a mixture of melamine and glucose as starting
materials®. At 800°C, it is interesting to notice that crystalline carbon (lonsdaleite) was
identified by XRD. Lonsdaleite is known to be synthesized by heating and compression of

graphite.
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Table 2. Properties of the sample P4 (200°C, nFe/nC; = 0.05, 3 h,) after the post-treatment. Post-

treatment time was set to 3 h for all the samples.

Post-treatment

temperature  BET surface % Fe in %Fe" of total
Sample 0 area (m2/g) sample Fe
P4 - 176 42.5 10.6
P4_N600 600 195 53.0 12.4
P4 _N700 700 219 56.4 21.1
P4_N800 800 161 73.1 23.9

It was evidenced by TEM images (Figure 2) that the structure of the nanomaterials was slightly
modified after the post-treatment. Some of the iron sintered to higher particle sizes of 46+22 nm
(Figure 2a) and they were less aggregated and better distributed into the carbon. Another
interesting thing to remark is that when applying the post-treatment temperature of 800°C,
graphitic layers of carbon were observed surrounding the iron nanoparticles (Figure 2b).
Although the peak of graphitic carbon was not observed at XRD analysis, the measurement of
the distance between the layers of crystalline carbon matched with the one of graphite (0.335
nm). Moreover, the presence of lonsdaleite in the nanomaterial treated at 800°C further
suggested the presence of graphite. The iron nanoparticles encapsulated with graphitic carbon
have shown in the literature interesting properties as catalysts for efficient hydrogen evolution®®
and Fischer-Tropsch synthesis’**> Thus, the work presented here could serve as a sustainable

and low-cost method of synthesizing this kind of material with very interesting applications.

17

ACS Paragon Plus Environment



oNOYTULT D WN =

ACS Sustainable Chemistry & Engineering

Figure 2. TEM images of the sample P4 (200°C, nFe/nC; = 0.05, 3 h) after the post-treatment
with nitrogen at high temperatures. a) sample treated at 600°C; b) detail of the graphitic carbon

encapsulating the iron nanoparticles in the sample treated at 800°C.

Regarding the BET surface area of the nanomaterials, it increased with the post-treatment
temperature up to 700°C, at which it displayed 219 m*/g (see Table 2). However, at 800°C, the
surface area diminished to 161 m?/g, which is even lower than the initial surface area of the
OMW-CE-nFe before the post-treatment. This can be ascribed to the fact that at 800°C the
carbon becomes crystalline, presenting then a lower surface area, as evidenced by XRD and

TEM analysis.

One question of interest of the obtained OMW-CE-nFe after the post-treatment is if the nZVI
particles are protected against oxidation by the carbon layer. With this objective, the particles
were subjected to a specific program with the TG analyzer to determine their response to the
contact to an oxidant atmosphere (see Figure S16 in Supporting Information). Results showed
no oxidation of the nanoparticles after 15 hours of contact with air at 25°C, as the sample weight
did not show any increase that would have been ascribed to the formation of oxides in nZVI
surface. Thus, it is assumable to affirm that the carbon layer was able to protect the

nanoparticles against oxidation.
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Application of OMW-CE-nFe in heavy metal removal

The encapsulated particles (CE-nFe, CE-nFe-P600) together with nZVI and AC-P600 were
tested for their application in heavy metal remediation of contaminated water. The objective was
to elucidate if the encapsulated nanoparticles were able to avoid the aging effect displayed by
conventional nZVI observed in a previous study °, consisting of the delivery of some of the
heavy metal cations back to water. The evolution of the heavy metal cations in the aqueous
solution during reaction time is shown in Figure 3, and the final removal percentage achieved
by each of the materials is shown in Table S3 of Supporting Information. It can be seen in
Figure 3 that conventional nZVI and CE-nFe-P600 were the ones that achieved the highest
degradation efficiencies. Conversely, AC-P600 was the material that showed the lowest removal
efficiency, being negligible for Ni and Zn and only of 1.5% for Cd. Thus, it was corroborated
that the carbon produced by HTC from glucose and activated at 600°C under nitrogen
atmosphere did not have sufficient adsorption capacity to remove the heavy metals and that the
presence of iron was needed. In the case of CE-nFe, although the removal efficiencies were
higher than with AC-P600, they were much lower than with CE-nFe-P600. This is suggested to
be due to the lower ZVI content of CE-nFe (4.5%) compared to CE-nFe-P600 (15.5%), and also

to its lower surface area.
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Figure 3. Removal of heavy metal cations with time, using: a) conventional nZVI; b) AC-P600;
¢) OMW-CE-nFe; d) OMW-CE-nFe-P600. Reaction conditions: Cjy= 10 ppm, pHo =4.7, Cg.,
= 1g/L (except for AC-P600 in which the loading was 2.1 g/L.). OMW-CE-nFe used was sample
P4 (200°C, nFe/nC; = 0.05, 3 h).

Regarding the comparison between conventional nZVI and CE-nFe-P600, while at short
reaction times nZVI eliminated the heavy metals from the aqueous solution with high yields
(degradation > 99.9 % for Zn, Cd, Cu and Cr; and 93.4% for Ni), at extended periods the
contaminants started to be released back to water. This behavior is ascribed to the oxidation of
nZVI at long reaction times °. However, in the case of the encapsulated nanoparticles, the
delivery of the heavy metal cations was not produced, as shown in Figure 3. On the contrary,
the percentage of removal increased with the time of application of the nanoparticles until
degradations greater than 99% were obtained for all the elements except for Ni, which had a
removal efficiency of 97%. In the case of the conventional nZVI, the final degradation

percentages of the contaminants were only 94.0, 81.1, 76.5, 99.3, 100 % for Zn, Cd, Ni, Cu and
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Cr respectively. Therefore, it is concluded that, for applications in which the reaction times are
long, such as the remediation of contaminated soils or aquifers, the encapsulated nZVI could
avoid the release of the contaminants back to water that is observed when nZVI particles are
employed. At the view of the results, the mechanism by which CE-nFe remove the heavy metals
is suggested to involve two steps: the first one corresponds to the adsorption of the heavy metals
in the carbon layer, which is a slow step; and the second one consists of the reduction of some
of the heavy metals (Cr®*, Cu*", Ni*") by metallic iron and its surface complexation with the iron
oxide. However, the mechanism of removal of heavy metals is beyond the aim of this paper,
which intends to make a preliminary study of the effectiveness of the CE-nFe in avoiding the
aging effect of conventional nZVI. We believe that the study of the mechanism of removal of
the heavy metals and the study of more applications of this kind of material are interesting

issues for future works.
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SYNOPSIS: In this work, a sustainable route of synthesizing carbon encapsulated nZVI using a

waste stream from the olive oil industry is presented.
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