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ABSTRACT
The selective properties of fishing that influence behavioural traits have recently

gained interest. Recent acoustic tracking experiments have revealed between-

individual differences in the circadian behavioural traits of marine free-living fish;

these differences are consistent across time and ecological contexts and generate

different chronotypes. Here, we hypothesised that the directional selection resulting

from fishing influences the wild circadian behavioural variation and affects

differently to individuals in the same population differing in certain traits such as

awakening time or rest onset time. We developed a spatially explicit social-ecological

individual-based model (IBM) to test this hypothesis. The parametrisation of our

IBM was fully based on empirical data; which represent a fishery formed by patchily

distributed diurnal resident fish that are exploited by a fleet of mobile boats (mostly

bottom fisheries). We ran our IBM with and without the observed circadian

behavioural variation and estimated selection gradients as a quantitative measure

of trait change. Our simulations revealed significant and strong selection gradients

against early-riser chronotypes when compared with other behavioural and life-

history traits. Significant selection gradients were consistent across a wide range of

fishing effort scenarios. Our theoretical findings enhance our understanding of the

selective properties of fishing by bridging the gaps among three traditionally

separated fields: fisheries science, behavioural ecology and chronobiology. We

derive some general predictions from our theoretical findings and outline a list of

empirical research needs that are required to further understand the causes and

consequences of circadian behavioural variation in marine fish.

Subjects Aquaculture, Fisheries and Fish Science, Marine Biology

Keywords Chronotypes, Circadian behavioural traits, Individual-based model, Selection gradient,

Fisheries induced-evolution

INTRODUCTION
Humans have exploited fish populations through trait-selective harvesting since the origin

of our species (Allendorf & Hard, 2009). In fact, fishing is widely recognised today as a

major driver of contemporaneous evolution and trait change in wild fish populations

(Sullivan, Bird & Perry, 2017). There is substantial evidence that size-selective harvesting
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(e.g. gear selectivity) usually selects for fast life-histories and favours early maturation and

high reproductive investment (Alós et al., 2014; Heino, Pauli & Dieckmann, 2015; Laugen

et al., 2014; Matsumura, Arlinghaus & Dieckmann, 2011). The behavioural dimension of

fisheries selection has recently gained interest among fisheries scientists and managers due

to the growing evidence of consistent between-individual differences in the behaviour of

exploited fish and the study of selection in real fisheries (Arlinghaus et al., 2017; Diaz Pauli

& Sih, 2017, Uusi-Heikkilä et al., 2008). Currently, there is a large quantity of literature

demonstrating the existence of consistent (in temporal and ecological contexts) between-

individual differences of fish behavioural traits, such as boldness or aggressiveness, that

define behavioural types within fish populations (Conrad et al., 2011;Mittelbach, Ballew &

Kjelvik, 2014). In addition, with the recent development of aquatic telemetry, fisheries

scientists have a powerful tool available to study behavioural types of free-living fishes

(Hussey et al., 2015; Lennox et al., 2017a) and how fisheries may promote the selection of

behavioural types in real-world fisheries (Alós et al., 2016b; Monk & Arlinghaus, 2018;

Olsen et al., 2012). Together, these two developments have generated substantial empirical

evidence demonstrating that bold and high-exploratory individuals (Alós, Palmer &

Arlinghaus, 2012; Biro & Sampson, 2015; Härkönen et al., 2014; Klefoth, Kobler &

Arlinghaus, 2011; Olsen et al., 2012) are more prone to harvest; thus, this evidence

supports the idea that timidity syndrome can give rise to exploited fish populations that

are composed of shy, less active and less exploratory individuals (Arlinghaus et al., 2016,

2017).

Surprisingly, behavioural traits that determine timing have been poorly considered in

the context of the selective properties of fishing. Recently, Tillotson & Quinn (2017)

proposed the timing of migration or breeding as candidate traits that are targeted by

fisheries selection. Both the timing of migration and the timing of the breeding season

have strong impacts on population dynamics (Lowerre-Barbieri et al., 2017), and selection

imposed by these traits would strongly impact the long-term trajectory of the fish

stocks. Similarly, an ubiquitous behaviour related to timing in fish that has been

overlooked by the scientific fisheries community is the manifestation of underlying

circadian rhythms. Life on earth is governed by a 24-h rotation cycle that has led the

evolution of endogenous circadian clocks across taxa, including fish species (Kreitzman &

Foster, 2005). Similar to behavioural types, humans and some terrestrial animals show

temporally consistent between-individual variation in different circadian-related

behaviours, such as awakening time or sleep onset, that are the result of the interactions

between those endogenous individual circadian clocks and the environment; furthermore,

these interactions define chronotypes (Roenneberg et al., 2007; Bloch et al., 2013;

Rattenborg et al., 2017). Although chronotypes should be ubiquitous across animal

taxa, only a few studies have demonstrated the existence of chronotypes by exploring the

amount of behavioural variation explained by between-individual differences (Randler,

2014), and these studies have mainly focused on bird species (Dominoni et al., 2013;

Steinmeyer et al., 2010; Stuber et al., 2014, 2015).

Regardless of whether fish sleep or not (Reebs, 1992), most fish species show a

circadian-related behaviour in which they change from an active state to a resting state,
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leading to a ‘sleep-like’ behaviour that is consistent with the sleep architecture observed

in mammals (Schmidt, 2014; Siegel, 2008). This diel active/resting cycle is widely

observed in free-living fish across species (Krumme, 2009; Alós, Cabanellas-Reboredo &

Lowerre-Barbieri, 2012, Alós et al., 2016b; Koeck et al., 2013). Recently, Alós, Martorell-

Barceló & Campos-Candela (2017) found the first evidence supporting the existence of

chronotypes in fish focused on the pearly razorfish, Xyrichtys novacula. Similar to humans

and birds, fish chronotypes arise from between-individual differences in circadian

behavioural traits that are consistent over time and ecological contexts (Fig. 1). Far from

being anecdotal, chronotypes have been frequently linked to many fitness processes in

terrestrial animals, such as predation mortality or finding a reproductive mate

(Roenneberg, Wirz-Justice & Merrow, 2003, and see review by Adan et al., 2012), and

any directional selection pressure (i.e. either natural or human-induced) acting on

chronotypes could lead to trait changes in terms of circadian behavioural rhythms

(Helm et al., 2017). In fact, one recent study demonstrated how a potential

environmental-induced change in a behavioural trait can influence circadian behavioural

variation and impact fitness (Dominoni et al., 2013), i.e. city birds that started their

activity earlier than their forest conspecifics highlighted that urban environments

Figure 1 Circadian behavioural variation in free-living marine fish. Repeatability (R) of the wild behavioural variation in awakening time

(moment of initiation of the active phase as minutes relative to the sunrise) and rest onset (moment of initiation of the resting phase as minutes

relative to the sunset) observed in the pearly razorfish, Xyrichtys novacula. Sunset and sunrise are denoted by dashed red line. (A and D) Density and

histogram plots showing the distribution in awakening time and rest onset from 25 randomly selected individuals from the simulated population.

(B and E) Daily awakening time and rest onset (each colour represent a fish ID) across 15 days of simulated exploitation. The R scores and their

confidential interval are plotted for each trait. (C and F) Individual violin plots showing the within- and among-individual variability (the

individual mean is plotted as a black dot) in awakening and rest onset describing different types of chronotypes (e.g. early risers). Simulated data

shown is based on the empirical work by Alós, Martorell-Barceló & Campos-Candela (2017). Full-size DOI: 10.7717/peerj.4814/fig-1
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(i.e. those with artificial lighting) can significantly modify biologically important rhythms

in wild organisms and explained the potential reproductive advantages conferred to the

early-rising birds in such an artificial environments. Similarly, we assumed here that

early-riser fish chronotypes would be more vulnerable to fishing simply because the

number of encounters between the fish and fishers was expected to be higher.

Based on this assumption, the objective of this work was to explore the plausibility

of selection acting on fish chronotypes using a spatially explicit individual-based model

(IBM). Our IBM assumed relatively simple movement rules that dictated the encounters

between fish and fishers, and it was based on the real properties of a general bottom

coastal fishery; additionally, the IBM explicitly incorporated social-ecological factors

to add realism to our model (and simulations). The selection gradient (S), as a central

measure of selection in traditional quantitative genetics with heritability (Price, 1970),

has been widely used to describe trait changes in commercial and recreational fisheries

(Alós et al., 2016b; Monk & Arlinghaus, 2018). We aimed here to estimate mean-

standardised selection gradients on circadian behavioural traits to determine whether they

were different from zero, and we compared them with previously reported gradients of

other traits. Although the economic consequences of fisheries selection can be addressed

by proper fisheries management (Eikeset et al., 2013), it can generate undesirable

consequences in terms of ecosystem functioning (Audzijonyte et al., 2013; Jørgensen et al.,

2007); specifically, this selection can notably reduce the recovery of overexploited stocks

(Uusi-Heikkilä et al., 2015; Walsh et al., 2006) and decrease the recreational utility of

fisheries (Sutter et al., 2012). Therefore, our final objectives were to make broader

predictions about our findings and to stimulate research on the topic by providing a list

of empirical research needs to fully disentangle the causes and consequences of fish

chronotypes in exploited environments.

MATERIALS AND METHODS
To explore whether fishing selection influences circadian behavioural traits, we developed

a computational IBM where a fish population spatially behaves in a 2-D landscape and is

exploited by a fleet of fishing boats during a fishing session (see Fig. 2 and video in SM1).

Our IBM is spatially explicit because fish and fishers move (i.e. change position every

minute) across the landscape according to different types of movement models.

Encounters between the fish and fishers determined the mortality of the fish. Although

encounters between fish and fishers do not always predict harvest (Monk & Arlinghaus,

2018), these encounters are among the most important components related to the

vulnerability of most fishes (Lennox et al., 2017b), especially in bottom coastal fisheries

(Alós, Palmer & Arlinghaus, 2012; Alós et al., 2016b). Our model was built under a

prototypical bottom fishery where (i) target fish performed a sedentary behaviour that

lead to the establishment of a home range (HR) area, (ii) the centres of activity were

patchily distributed and formed a patchy landscape (which could be the consequence of

a fragmented habitat), and (iii) fish were exploited by a fleet of mobile fishing boats.

Our model was parametrised using empirical data from a popular recreational baited

hook-and-line fishery located in Mallorca Island (Spain) that targeted pearly razorfish
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(see full details in Alós et al., 2016b); however, the model is generalizable to any other

system that displays these three main properties. Our computational IBM simulation was

implemented and run in R (R Core Team, 2017). The R code is provided in the

Supplementary Material (SM2).

The ecological landscape: fish moving with individual heterogeneity
in circadian and spatial behaviour
We created a 2-D landscape of 12.1 km2 with open boundaries, of which 6.4 km2 formed

the preferred habitat of the pearly razorfish (hereinafter, the targeted species) to create a

realistic ecological landscape (see map in Fig. 2). We randomly distributed 2,000 centres of

activity (centre of the HR, see below) in the preferred habitat to create a patchy

distribution of fish across the ecological landscape, and each centre of activity was

designated to one identified fish (initial population = 2,000 individuals, density = 312

Figure 2 Properties of the spatially-explicit individual based model (IBM) developed here. (A) The 2-D landscape simulated here composed by

different types of habitats (land, satellite seawater as the preferred fish habitat, seagrass in green and gravels in light brown). The centres of activity of

each simulated fish (2,000 individuals) are shown in white. (B) Trajectory (positions every minute) of one fish in two different days. Red crosses

represent the first and the last positions of the active diurnal phase. (C) Trajectory of one fisher in two different days. Red dots represent the

positions were the fisher was fishing while white dots represents the positions were the fisher was searching according to the two-state movement

pattern. (D) Number of boats in the virtual scenario every day aggregated in 15 min slots since the sunrise (the real data obtained using visual census

is plotted in blue and the simulated data is plotted in green). The dashed red line represents the sunrise. The IBM was developed according to the

real characteristics of the fishery developed in the waters of Mallorca Island (NW Mediterranean targeting the pearly razorfish, Xyrichtys novacula,

Alós et al., 2016b). Full-size DOI: 10.7717/peerj.4814/fig-2
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individuals per km2, see Fig. 2). Then, fish survival was monitored every minute

during the entire prototypical fishing season; here, survival was monitored for 15 full

fishing days after the opening of the fishery on September 1st at 00:00, according to

Alós et al. (2016b). Thus, the IBM was discretised on time (every 1 min), had 21,600

time-steps (n), and the position (latitude and longitude) of each fish was mechanistically

generated based on its movement and circadian behavioural variation, as described below.

Fish movement is usually mechanistically explained by different types of random walks

(Smouse et al., 2010). Different from the purely random walks that generate standard

diffusion across space, many fish species use a confined area and form stable HR areas

(Alós et al., 2016a). The idea behind HR movement is that an individual moves within a

harmonic potential field following random stimuli (i.e. a random walk); however, the

individual has a general tendency to remain around a central place of residence

(Börger et al., 2006). In such cases, there is a need for an additional behavioural rule that

keeps the individual within its designated core site (Benhamou, 2014; Smouse et al., 2010),

and this can be described by the Ornstein–Uhlenbeck process that defines a biased

random walk (BRW) (Alós et al., 2016a).

For the purpose of this study, we focused on two descriptors of this BRWmovement

model described in Alós et al. (2016a): (i) the size of the circular HR radius (in metres)

that can be interpreted as a surrogate for the total foraging area and activity space, and

(ii) the harmonic force (k, in min-1) that can be interpreted as the strength of the drift

or attraction force towards the centre of the HR, which ultimately determines the slope

of the curve describing the cumulative space used in a period of time (we refer this as

exploration). We randomly assigned values for both parameters to our virtual population

of fish based on the real data estimated in Alós et al. (2016a); range for radius: 67–470 m

and exploration: 0.0005–0.025 min-1, using the function sample of the base package of

R. See Fig. 2 for a visualisation of the realised daily trajectories of a given fish.

Each of the 2,000 fish was assigned an individual mean and s.d. value for its

awakening time and a daily value for its rest onset time based on the real data published in

Alós, Martorell-Barceló & Campos-Candela (2017); this generated the daily transition

between the resting and active states at the individual level (see simulation scenarios

below). Once a set of movement parameters and circadian behaviours was assigned to

each identified fish, we generated a daily sequence of states (active vs. resting) based on

the individual mean and s.d. values for each fish for the entire simulated fishing.

Accordingly, we re-sampled the mean and s.d. of both circadian traits (i.e. awakening and

rest onset times) daily for each individual, and we generated one value from this

distribution for each day and individual (see Fig. 1). We then constructed the sequence of

active and resting states based on the local sunset and sunrise times and the daily

individual values that were generated. Finally, a position for all time-steps in an active

state was generated for the entire fishing season based on our HR mechanistic model and

the individual movement parameters of each fish (Fig. 2 and see SM1). During the resting

state, the individual remained in the same position, and the fish was invulnerable to

fishing as long as it remained in shelter (e.g. the pearly razorfish remains buried in the

sand at night, according to Alós, Cabanellas-Reboredo & Lowerre-Barbieri, 2012).
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The complete sequence of time-steps and positions for each fish was used to create a

realistic dynamic ecological landscape (see movie SM1).

The social landscape: a fleet of mobile boats targeting
the ecological landscape
A fleet of mobile fishing boats exploited the ecological landscape. The entire fleet

exploited the fishery every day during the entire fishing season (i.e. 15 days). On a

daily basis, the IBM carefully considered different arrival and departure times for boats in

the fishery (and the local sunrise data were used to synchronize the times with the

ecological landscape), as this aspect is highly relevant for the objectives of our study.

Specifically, we put effort into reproducing the real daily dynamics of fishing pressure by

assigning a time of arrival and a time of departure for each boat (see Fig. 2), and these

times were derived from a visual census of the actual fleet (Alós et al., 2016b); specifically,

fishers exploited the fishery for a duration that ranged from 160 to 460 min after sunrise,

with an effective fishing effort of 4.6 ± 1.2 h. For simplicity, no within-individual

variability in the time of arrival and departure was considered (i.e. each fisher arrived at

the fishery at the same time every day); however, some individuals arrived earlier than

others, which is similar to the idea of fish chronotypes.

As fishers arrived at the fishery (depending on their individual arrival time), their

spatial behaviour was based on a movement model that included two states. Individual

boat fisher trajectories are usually composed of different states, and typically there are

three main states: cruising, searching and fishing (Vermard et al., 2010; Walker & Bez,

2010). In our scenario, once fishers arrived at the fishery, they performed a classical search

pattern that included two states, i.e. fishing and searching (see Fig. 2). Here, we considered

relatively simple hidden Markov model (HMM) movement with two types of random

walks describing each state (Auger-Méthé et al., 2015). HMMs are widely used for

modelling any type of animal or fisher movement data (Patterson et al., 2017), and the

R package moveHMM was recently developed to perform simulations of movement

trajectories (Michelot, Langrock & Patterson, 2016).

Accordingly, for each fisher, a bi-variate time-series composed of step-lengths (in

metre) and turning angles (in radius) was generated to describe the trajectory of each

fisher every day. These temporal series were drawn by a state-dependent process at

moment n (unobserved in a real situation; the hidden Markov chain) using two

distributions of the step-lengths and turning angles (one per state; fishing vs. searching).

The transition among the two states was generated by a 2 � 2 transition probability

matrix, C = (�ij), where �ij was the probability of the fisher switching from the current

state (at time-step n) to the future state (at time-step n+1). Here, we considered

C ¼ 0:95 0:05
0:5 0:5

� �
, meaning that each fisher spent most of his/her time fishing to obtain realistic

fisher trajectories (see a realised trajectory of the fisher in Fig. 2).

Each state of the sequence was associated with a distinct random walk movement

model that included a BRW for fishing and a correlated biased random walk (CBRW)

for searching to adequately reproduce the spatial dynamics of the fleet (Fig. 2).
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When the fisher was in the fishing state, the boat drifted with the current. Though this

process is not a random walk, for simplicity, we used the mathematical description of

a conventional BRW by biasing the angle of the trajectory according to the surface current

in the area and adding some noise (see Fig. 2 and SM1). Accordingly, the step-lengths

of this state were described by a gamma distribution (because velocity cannot obtain

negative values), with the mean = 1 m and the s.d. = 0.5 m; additionally, the angle was

described by a von Mises distribution, with the mean equal to the angle of the surface

current and the concentration = 1.2 rad (noise) to reproduce similar real-life patterns

observed in the fishery. To add realism, we used the real observed angle of the surface

current for each time-step n since September 1st, 2016 at 00:00; these data were obtained

from an oceanographic buoy located in the study area by the SOCIB (www.socib.es)

(Tintoré et al., 2013).

The searching state of the fisher was modelled using the CBRWmodel described by

Langrock et al. (2014), which was developed to model the group dynamics of animal

movement. Accordingly, the searching state was mathematically described by a mixture

of a BRW, where the bias was imposed by the social information that generated a

tendency to move to the centroid of the positions of the other boats while searching (i.e.

watching other boats, social information); and a conventional correlated random walk

(CRW), where searching was described by a turning angle drawn from a von Mises

distribution with a mean = 0 and a concentration = 5 rad. In both cases, the step-lengths

were described by a gamma distribution of step-lengths with mean = 150 m and s.d. =

130 m (i.e. searching velocity). The BCRW developed by Langrock et al. (2014) is

unique due to the existence of a parameter (h) that specifies the weight of the BRW with

respect to the CRW portion of the BCRW. Here, we considered h = 0.7, which generated a

behaviour of the fleet characterised by the tendency to remain close to the other fishing

boats; this was based on the observations of real-life data. The full-day fisher trajectory

was generated according to the Markov chain of the two states (see Fig. 2) and the

movement model, and one independent trajectory was generated every day. The initial

location of each fisher in the fishery was randomly generated in the 2-D landscape, and

the first state of the day was searching. For simplicity, no among-fisher movement

variability was considered.

Simulation scenarios: with and without circadian
behavioural variation
Here, we were interested in the individual differences in the daily timing of switching

the circadian state in fish, and we were particularly interested in the repeatability score

(R) of two behavioural manifestations of fish circadian rhythms (Fig. 1): (i) awakening

time and (ii) rest onset time (referred to as minutes from sunrise or sunset, respectively).

R assesses the degree of consistency of the behaviours displayed by individuals over

time (Nakagawa & Schielzeth, 2010) and represents the phenotypic variation that is

attributable to individual heterogeneity; additionally R is often used to characterise

animal personalities and, in our context, to detect chronotypes (Alós, Martorell-Barceló &

Campos-Candela, 2017; Dingemanse & Dochtermann, 2013; Stuber et al., 2015). To test our
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hypothesis on how fishing selection acts on this circadian behavioural variation, we

simulated two scenarios. In the first scenario (i.e. the real scenario), the fish population

showed significant repeatability in the awakening and rest onset times, which generated

chronotypes (Fig. 1). Each of the 2,000 fish was randomly assigned an individual

mean and standard deviation (s.d.) in the awaking and rest onset times according to the

real data published in Alós, Martorell-Barceló & Campos-Candela (2017) to generate

chronotypes using the function sample of the R package (range of individual means of

awakening time: 18.2–271 min; range of individual means of rest onset time: -9.3 to 13.4

min, see Fig. 1). In the second scenario, all individuals in the population had an awakening

time and a rest onset time with the same normal distribution (mean = 0 min, s.d. = 15 min)

to obtain an ecological landscape where chronotypes did not exist (i.e. no real circadian

behavioural variation nor between-individual differences were simulated), and all

individuals were vulnerable to the fishing fleet. This second simulation scenario was used

to confirm that the potential selection gradients obtained in the first scenario were not

caused by the indirect selection of other behavioural traits or by other unknown dynamics

of the IBM. We initially considered a total number of 133 fishing boats (spatial fishing

effort: 11 boats per km2) based on the empirical data found for our target fishery, and the

main results are discussed using this relatively realistic scenario (Alós et al., 2016b).

However, both simulation scenarios were finally run using six fishing pressure scenarios

that differed in the number of mobile fishing boats exploiting the ecological landscape.

We used a wide range of different fishing effort scenarios to evaluate the strength of the

potential selection under different fishing pressures (i.e. two, four, six, eight, 10 and

12 boats per km2). These different fishing pressure values generated increasing

exploitation rates that ranged from 24% to 70% of the population, which indicates our

conclusions can be interpreted for a wide range of scenarios.

Model outcomes: exploitation model and estimation of
selection gradients
The coupled social-ecological landscapes were simulated, and the encounters between

fish and fishers were quantified in the two simulation scenarios under the different fishing

pressures described above (Fig. 2 and see movie in SM1). We defined an encounter

as successful when (i) the distance between the fish and the fisher was less than 5 m

(a reasonable distance to assume visual contact of the bait by the fish) in a given time-step,

n; (ii) the fish was in a vulnerable state (i.e. active); (iii) the fish had not previously

encountered another fisher (emulating harvest with depletion); and (iv) the fisher was

in the fishing state. When the four conditions were met, the fish ID was considered as

harvested and was removed from the simulation to emulate fishing with depletion. Once

the simulated fishing season ended, we characterised the surviving individuals (i.e. the

exploited population) in terms of their circadian and spatial behavioural variation. We

then estimated the selection gradient (S) of the two circadian (awakening time and

rest onset) and spatial (radius of the HR and exploration) behaviours. S was computed

as the difference between the phenotypic mean trait of the initial population and the mean

of the surviving population, and values were mean-standardised (Sm) to generate a
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normalised measure of selection strength followingMatsumura, Arlinghaus & Dieckmann

(2012), and to ensure they were comparable with previously reported data on other

traits. Sm is a measure of selection strength and allows the strength of selection acting on

each of the various behavioural traits to be ranked independent of the trait’s mean and

variance. Sm can be interpreted as the elasticity of fitness to trait change. For example, a

value of Sm = 0.5 means that doubling the trait value increases fitness by 50%. We

computed the 95% confidence intervals of Sm for each behavioural trait by bootstrapping

(1,000 iterations) the results of the simulation scenarios developed here using the boot

function of the R package (Canty & Ripley, 2017).

RESULTS
The first simulation scenario that considered real wild circadian behavioural variation

(i.e. observed fish chronotypes) adequately reproduced the existence of chronotypes

(Fig. 1). The R scores in this scenario were 0.43 [0.37–0.6] for awakening time and

0.45 [0.39–0.6] for rest onset, which were similar to the scores obtained from the real data

by Alós, Martorell-Barceló & Campos-Candela (2017). Fish started their activity as late

as 400 min after sunrise, and among-individual differences in awakening time were clearly

recognisable, enabling the identification of an early-riser chronotype (Fig. 1). In

contrast, fish finished their activity within a shorter period (up to 20 min after sunset),

but some individuals extended their activity by an average of a few minutes according to

the real data (Fig. 1).

The mean and s.d. of the four behavioural traits in the initial and exploited populations

are shown in Table 1. In total, 650 individuals survived (exploitation rate = 67.5%) in

the simulation scenario, and in general, the exploited population was composed of

individuals with later awakening times, similar rest onset times, smaller HRs and slower

exploration (Table 1). These results generated significant Sm that differed from zero in

terms of awakening time (mean Sm = 0.85), HR size (mean Sm = -0.52), and exploration

Table 1 Properties of the initial and exploited populations and selection gradients.

Observed fish chronotypes Initial (n = 2,000) Exploited (n = 650) Sm

Mean s.d. Mean s.d. Mean s.d. CI-low CI-high

Home range size (m) 203 90 183 79 -0.52 0.07 -0.65 -0.37
Exploration (min-1) 0.006 0.005 0.005 0.005 -0.22 0.03 -0.29 -0.15
Awakening time (min) 139 73 165 68 0.85 0.05 0.74 0.95

Rest onset (min) 4 7 4.2 6.8 -0.002 0.019 -0.039 0.035

No fish chronotypes Initial (n = 2,000) Exploited (n = 315)

Home range size (m) 204 88 185 83 -0.49 0.11 -0.72 -0.28
Exploration (min-1) 0.006 0.005 0.004 0.004 -0.36 0.05 -0.44 -0.26
Awakening time (min) 0.7 3.8 0.7 3.8 -0.0003 0.01 -0.02 0.02

Rest onset (min) -0.5 3.9 -0.3 4 -0.008 0.007 -0.021 0.006

Note:
Mean and standard deviation (s.d.) in the initial and exploited populations of the four behavioural traits studied here resulting from the simulation scenario where wild
fish chronotypes were simulated and fishing effort was 11 boats per km2 per exploitation day. Mean and s.d. of the mean-standardized selection gradients (S) and their
confidential interval (CI) resulting from the 1,000 bootstrap iterations. S in bold were considered significant.
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rate (mean Sm = -0.22) (Table 1). These results were consistent along the simulated

gradient of fishing effort, and the strength of significant Sm values increased as fishing

effort increased (Fig. 3).

In the second simulation scenario, i.e. where no fish chronotypes were simulated, the

number of surviving individuals was 315 (exploitation rate = 84.2%). In this case, the

exploited population was composed of individuals with similar awakening times and rest

onset times and smaller HRs and exploration rates (Table 1). These results generated

significant Sm different form zero values for only the HR size (mean Sm = -0.49) and
exploration (mean Sm = -0.36, Table 1), and we discarded significant Sm that differed

from zero for the circadian behavioural traits (Table 1). These results were also consistent

across the simulated gradient of fishing effort (Fig. 3). Therefore, we assumed that the

results from the observed fish chronotypes simulation scenario were caused by factors

other than circadian behavioural variation.

DISCUSSION
Circadian behavioural variation have important implications for individual fitness, and

many eco-evolutionary trends are dependent on the realised expression of circadian

rhythms (Roenneberg, Wirz-Justice & Merrow, 2003;Wicht et al., 2014); however, very little

Figure 3 Fishing selection acting on behavioural traits.Mean-standardized selection gradients and their confidential interval (CI) obtained in the

two simulation scenarios (observed fish chronotypes vs. no fish chronotypes) in a gradient of fishing effort (defined as number of boats per km2 per

exploitation day) in the four behavioural traits considered: (A and C) awakening time (as min relative to the sunrise), (B and D) the level of the

exploration of the home range (as min-1), (E and G) the home range of the individual (defined as the radius of the circular home range in metre)

and (F and H) rest onset (as min relative to the sunset). We considered significant mean-standardized selection gradients when the CI didn’t overlap

with the non-directional selection scenario (plotted as a dashed blue line). Full-size DOI: 10.7717/peerj.4814/fig-3
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information is known about the consequences of fish chronotypes. Here, we found that

fishing selection may influence the variation in circadian behaviours by differentially

harvesting early-riser chronotypes, and the strength of this selective process is linked to

the fishing pressure. We demonstrated these potential consequences of fish chronotypes

in exploited environments using a novel social-ecological IBM. IBMs are especially

appropriate for formulating and testing emergent population properties from individual

processes in predator–prey systems (Barbier & Watson, 2016; Watkins & Rose, 2017),

including fisheries (Alós, Palmer & Arlinghaus, 2012). The R score or the within-

population behavioural variation are classic examples of an emergent population property

from individuals, and this value makes IBMs particularly suited to test our hypotheses

(Bell, Hankison & Laskowski, 2009). In addition, our IBM allowed us to test our

working hypotheses using two different ecological simulation scenarios using real data

and a wide range of fishing pressure scenarios. Therefore, we feel our approach, although

theoretical, properly reproduce some of the potential fitness consequences of circadian

behavioural variation in exploited marine environments and provide novel insights in the

selective properties of fishing.

The results of the first simulation scenario, i.e. that which used real wild circadian

variability, revealed a significant selection gradient in terms of the awakening time.

Fish that survived the simulated fishing season were clearly not a random sample of

the initial population, and early-riser chronotypes were more prone to capture by the fleet

of boats. This finding adds a new variable to the complex concept of the vulnerability

of fish to fishing (Lennox et al., 2017b). This result was consistent across all fishing pressure

levels, suggesting that even in low fishing pressure scenarios (i.e. two boats per km2),

fishing selection may influence circadian behavioural traits. In fact, the strength of

selection was expected to increase as fishing pressure (i.e. mortality) increased. In

contrast, no evidence was found for any selective properties regarding the time of rest

onset, which was likely related to the fact that simulated fishing activity mainly occurred

during the daytime. In the second scenario, where no wild circadian behavioural variation

was simulated, the selection gradient of the awakening time was not significantly

different from zero, confirming that chronotypes were major drivers of selection

force; this result agrees the results of the first simulation scenario that was based on

real-world data.

The potential for eco-evolutionary changes in chronotypes under human pressure has

been recently proposed (Helm et al., 2017). In fact, Dominoni et al. (2013) demonstrated

that city European blackbirds, Turdus merula began their activity earlier and had faster

circadian oscillation than did their forest con-specifics. The results by Dominoni et al.

(2013) suggested that humans (through artificial lighting) may have selected for

individuals by favouring those with large circadian period lengths. In this example, the

selective force imposed by artificial lighting acts in the opposite direction than that of

our working hypothesis. In our work, the selective force is imposed by the timing of the

fishing pressure (Fig. 2); thus, the selective force should favour small foraging periods.

What is relevant in this context is that both artificial lighting in the city and fishing

pressure in the sea may impose selection gradients in circadian behavioural traits and
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may act as eco-evolutionary drivers in wild populations, and this information should be

further studied (Helm et al., 2017). In addition, our work provides the first evidence that

suggests fishing may play a role in the circadian rhythms found in oceans.

Our theoretical selection gradients were mean-standardised, which allowed them to

be compared with other traits. First, we found significant selection gradients in the two

spatial behavioural traits considered here, indicating selection against large HRs and

fast exploration rates. Although both were smaller than the values obtained by the

circadian behavioural traits, significant selection gradients were consistent between

the two simulation scenarios and across all fishing pressures. Interestingly, the direction

of selection was consistent with the empirical selection gradients of hook-and-line

recreational fisheries on these spatial behavioural traits, indicating that our IBM was

robust (Alós et al., 2016b). Moreover, the strength of the obtained selection gradient on

awakening time was also stronger when compared with other life history (Sm = 0.66) and

morphological (Sm = 0.29) traits that have previously been reported (Hereford, Hansen &

Houle, 2004), although in function of the fishing scenario simulated. In fact, the strength

of selection may vary according to the morality pressure, as revealed by the different

fishing effort scenarios in our simulations. This fact highlights the relevance of estimating

selection gradients in real populations that are exposed to mortality pressure and the

importance of using realistic scenarios (i.e. those based on data from the wild). However,

our results demonstrated that the potential of selection on circadian behavioural traits

certainly exists, and the selection strength could be similar or even stronger than that of

previously considered traits.

Although our work is mainly theoretical, we can derive some ecological implications

about the selective properties of fishing acting against early-riser chronotypes.

Chronotypes are important determinants of reproductive success in birds; for instance,

females choose males with early awakening times (Helm & Visser, 2010). Assuming

this also occurs in fish, one could predict a reduction in the overall reproductive output

of a population due to the absence of highly reproductive early-rising males. In addition,

fish such as the pearly razorfish play a key role in the food-web by preying on other

taxa (Castriota et al., 2005) and serving as prey for larger animals, such as dolphins. Thus,

a change in the daily timing in a population of pearly razorfish could induce foraging

behavioural changes with impact in the lower and upper levels of the food-web.

We can also speculate that fishing-induced selection against early risers is currently

occurring, and the results observed by Alós, Martorell-Barceló & Campos-Candela (2017)

are the result of such selective processes. Therefore, we suggest that the ecological

consequences of the selective properties acting on circadian behavioural traits are

plausible but may already be occurring. In all cases, there is a need to delve into the causes

and consequences of fish chronotypes selection, and more empirical work is needed in

clarifying the ecological consequences (Bloch et al., 2013; Helm & Visser, 2010).

The selection gradient is, however, only one component that addresses trait change

and derives eco-evolutionary trajectories (Price, 1970). The heritability, or the degree

of variation in a phenotypic trait in a population caused by genetic variation between

individuals, is a key component that can be used to forecast the population-level
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consequences of any mortality pressure (including fishing). There is no information

on the heritability of chronotypes in marine fish. However, Helm & Visser (2010)

quantified the heritability of the chronotypes in the great tit, Parus major to be 0.86, which

is certainly high. In addition, our study is a computational simulation, and it is possible

that our results are overestimations because we did not consider other sources of mortality

or connectivity; furthermore, we did neither consider other traits that may experience

fisheries selection (e.g. size, personality-related behavioural traits, age), nor quantified

the fitness in terms of expected reproductive lifetime (i.e. cumulated offspring). The

early-life stages of the pearly razorfish are pelagic, and the connectivity of the surrounding

non-exploited populations should be integrated to estimate the selection gradients

(Alós et al., 2014). Therefore, there is a need to provide empirical data to support our

predictions and to develop more complex meta-population dynamics that provide a more

accurate view of the strength of the selection gradients on the circadian behavioural

variation. Next-generation individual-based ecological models that aim to make

predictions in a changing world would help in this task by accounting for spatial and

temporal resources that merge individual fish and fisher behaviour and bioenergetics

with potential micro-evolutionary adaptations (Ayllón et al., 2016).

CONCLUSION
Our work demonstrates that the timing associated with fleet activity may generate

significant selection on fish circadian behavioural traits. In fact, the direct selection acting

on chronotypes can indirectly be a mechanism of fishing selection on migration or

breeding behaviours (Graham et al., 2017). Therefore, our work proposes a novel view

for understanding the selection properties of fishing acting behavioural traits and

generates a list of research needs.

First, we should explore how widespread chronotypes are across fish taxa. Adequate

technology and approaches used to measure chronotypes in the wild is certainly available

(Alós, Martorell-Barceló & Campos-Candela, 2017; Helm et al., 2017; Rattenborg et al.,

2017), and further work should also consider nocturnal species or species that focus their

activity during the crepuscular hours to evaluate the generality of our findings.

Second, there is a need to validate our theoretical predictions by performing selection

experiments in the wild, where fish are monitored while they are being exploited by

real fishers (Alós et al., 2016b); additionally, this should include different fleet timing

dynamics and fish-fishers behavioural interactions. This future work should also help

disentangle the synergistic effects of predation risk and fishing from the potential eco-

evolutionary dynamics generated by the existence of circadian behavioural variation.

Third, we should identify the mechanisms behind the expression of wild circadian

behavioural variation. Chronotypes are the emergent pattern of the interaction between

circadian clocks and the environment, which includes potential light entrainment and

responses to predation risk, and their study requires a combination of field and laboratory

experiments (Helm et al., 2017). In addition, we should explore the plasticity and

additive genetic variation (including its heritability) of fish chronotypes to evaluate the
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potential for evolution in circadian behavioural traits. In a quantitative genetic way,

one potential route would be the exploration of candidate genes and polymorphisms

linked to chronotypes, such as the CLOCK or the NPAS2 genes (Stuber et al., 2016),

and how they are translated across generations (Helm & Visser, 2010; Zhang et al., 2017).

Fourth, in our previous study, we found chronotypes as an independent axis of activity

as fish personality trait (Alós, Martorell-Barceló & Campos-Candela, 2017). However, there

is a need to extend our research to other fish personality traits, such as boldness,

exploration, aggressiveness or sociability (Conrad et al., 2011), and their feasible

interactions. This would help us understand the role of circadian rhythms in the

architecture of behavioural variation in fish. In addition, it would be helpful to explore

how chronotypes are correlated with individual growth (productivity) or reproductive

success, as it has been done with other behavioural traits (Biro & Stamps, 2008).

Once this information and population-based approaches become available, we will be

able to forecast the relevance of eco-evolutionary consequences of the wild circadian

behavioural variation and how human is affecting it. We hope our work stimulates

research and debates on this topic.
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Alós J, Martorell-Barceló M, Campos-Candela A. 2017. Repeatability of circadian behavioural

variation revealed in free-ranging marine fish. Royal Society Open Science 4(2):160791

DOI 10.1098/rsos.160791.

Alós J, Palmer M, Arlinghaus R. 2012. Consistent selection towards low activity phenotypes when

catchability depends on encounters among human predators and fish. PLOS ONE 7(10):e48030

DOI 10.1371/journal.pone.0048030.

Alós J, Palmer M, Balle S, Arlinghaus R. 2016a. Bayesian state-space modelling of conventional

acoustic tracking provides accurate descriptors of home range behavior in a small-bodied

coastal fish species. PLOS ONE 11:e0154089 DOI 10.1371/journal.pone.0154089.

Alós J, Palmer M, Catalan IA, Alonso-Fernández A, Basterretxea G, Jordi A, Buttay L, Morales-

Nin B, Arlinghaus R. 2014. Selective exploitation of spatially structured coastal fish

populations by recreational fishers may lead to evolutionary downsizing of adults. Marine

Ecology Progress Series 503:219–233 DOI 10.3354/meps10745.
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Passive gear-induced timidity syndrome in wild fish populations and its potential ecological and

managerial implications. Fish and Fisheries 18(2):360–373 DOI 10.1111/faf.12176.

Audzijonyte A, Kuparinen A, Gorton R, Fulton EA. 2013. Ecological consequences of body size

decline in harvested fish species: positive feedback loops in trophic interactions amplify human

impact. Biology Letters 9(2):20121103 DOI 10.1098/rsbl.2012.1103.
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Uusi-Heikkilä S, Wolter C, Klefoth T, Arlinghaus R. 2008. A behavioral perspective on

fishing-induced evolution. Trends in Ecology & Evolution 23(8):419–421

DOI 10.1016/j.tree.2008.04.006.

Martorell-Barceló et al. (2018), PeerJ, DOI 10.7717/peerj.4814 20/21

http://dx.doi.org/10.1177/0748730402239679
http://dx.doi.org/10.1016/j.neubiorev.2014.08.001
http://dx.doi.org/10.1016/j.tins.2008.02.001
http://dx.doi.org/10.1016/j.anbehav.2010.08.005
http://dx.doi.org/10.1534/g3.115.024216
http://dx.doi.org/10.1016/j.anbehav.2015.05.025
http://dx.doi.org/10.1016/j.anbehav.2014.10.010
http://dx.doi.org/10.1038/s41559-016-0065
http://dx.doi.org/10.1073/pnas.1212536109
http://dx.doi.org/10.1111/faf.12248
http://dx.doi.org/10.4031/mtsj.47.1.10
http://dx.doi.org/10.1111/eva.12268
http://dx.doi.org/10.1016/j.tree.2008.04.006
http://dx.doi.org/10.7717/peerj.4814
https://peerj.com/
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