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Abstract 

The hypothesis that small incision lenticule extraction provides better preservation of 

corneal biomechanics than previous laser refractive techniques has led to a growth in 

the interest on clinical and experimental research in this field. This hypothesis is based 

on the fact that corneal layers with greater stiffness are preserved with this new 

technique. However, this hypothesis is controversial as clinical research has shown a 

great disparity in the outcomes. In this review, we performed an in-depth analysis of the 

factors that may affect corneal biomechanics in laser refractive surgery procedures from 

a macro to a microstructural point of view. Differences between laboratory techniques 

which allow detecting the role of stiffness of thin layers and how a transfer of these 

improvements is still far from the clinical research are discussed. The macrostructural 

confounding variables affecting the outcomes obtained with currently available clinical 

devices are revised and some suggestions for researchers are provided to minimize their 

influence on measurements. Likewise, less known microstructural confounding 

variables that are more difficult to control are also described. New advances in 

algorithms with current devices or the introduction of new devices may help to unmask 

the possible advantages of small incision lenticule extraction in corneal biomechanics. 

 

Introduction 

Corneal biomechanics has generated great interest among researchers and clinicians in 

laser refractive surgery (LRS) due to two important factors: postoperative ectasia can 

occur without apparent preoperative risk factors using the currently available 

technology,1 and the potential influence of biomechanics on the prediction of LRS 

outcomes.2 Corneal ectasia after LRS is the most frightened complication for any 



refractive surgeon. Despite of the wide number of screening tools, including corneal 

wavefront aberrations, anterior curvature irregularity, thin pachymetry, atypical 

pachymetry profile, posterior surface elevation anomalies, or epithelial thickness 

mapping, any of them has shown to be totally effective in screening those corneas with 

early changes in biomechanical properties associated to the beginning of a ectatic 

process.3 Moreover, new advances have appeared in the last years integrating corneal 

tomography and dynamic Scheimpflug tonometry in order to increase the sensitivity and 

specificity for the detection of suspect cases.4 

The introduction of Small Incision Lenticule Extraction (SMILE) surgery has led to an 

increase of controversies about corneal biomechanics preservation after laser refractive 

surgery. Bowman’s layer is stiffer than anterior stroma, and in turn, anterior stroma 

stiffer than posterior.5 Since the stiffer layers are much preserved in SMILE, there exists 

a theoretical basis to hypothesize that this new technique provides a better preservation 

of corneal biomechanics than LASIK and PRK.6 In fact, mathematical biomechanical 

models have suggested that deeper corrections in the stroma may be possible in SMILE 

without additional risk for ectasia, because the residual stromal bed supports a greater 

stress in LASIK than in SMILE.7 However, this conclusion has to be interpreted with 

caution because the link between corneal stress and ectasia has yet to be defined7 and a 

conservative approach similar to that used for LASIK and PRK is being adopted after 

the report of some ectasias  after SMILE in subjects with normal8 and suspicious 

topographies.9–11  

Despite of the suggestions of mathematical6 and finite biomechanical model 

simulations,7 there are not a clear clinical evidence about the SMILE advantage over 

other LRS techniques in terms of corneal biomechanics. The aims of the current review 

are the following: (1) to describe the current techniques in laboratory and clinical 



practice for measuring corneal stiffness from the macro to the microstructural point of 

view and to remark the limitations of these techniques; (2) to identify changes generated 

in the cornea with different LRS techniques and to understand why biomechanical 

variations between them are not clinically detected with current clinical devices, and 

finally (3) to propose some special considerations in the design of clinical studies in 

order to enhance the capabilities of clinical devices to detect these differences by means 

of improving the research methodology in order to reduce the impact of confounding 

variables on the results. 

 

Laboratory versus clinical practice 

The interpretation of results obtained from laboratory methods for assessing corneal 

biomechanics can be very confusing for the clinician. First, these studies report as 

results the elastic Young’s modulus (YM) and shear moduli obtained from the ratio of 

applied stress (force) to resultant strain (deformation). However, YM quantifies the 

response of a perfectly elastic material which is not the case of soft tissues as the 

cornea.12 Therefore, to overcome this problem, soft biological tissues are typically 

assumed to behave as elastic solids if a significant linear regime of stress-to-strain exists 

in the limit of small strain response to applied stress.12 This allows obtaining the tangent 

modulus which is defined as the instantaneous slope of the stress-strain curve at a 

specific stress (Figure 1).13  

Figure 1 

 



The resultant YM of the cornea vary widely according to the method of measurement: 

(1) indentation (29 KPa), deformation maximized on the point of contact of the 

indenter  depending on the shape of tip used to apply the indentation; (2) tensile 

stretching (3 MPa) which induce macroscopic deformations that span the bulk of a 

tissue (Figure 1).12 It can be stated then that indentation techniques can be optimal to 

obtain the stiffness of a small location of the tissue from millimeters to nanometers and 

the tensile techniques to obtain stiffness of the bulk cornea, considering that a higher 

elastic modulus indicates that the material is stiffer. Furthermore, a limitation of these 

methods is that the manipulation of the eye for performing the measurement may result 

in fibre re-orientation, and hence tissue stiffening. A new methodology capable of 

mechanically testing intact eye globes has been proposed which is based on speckle 

laser interferometry. The use of this technology has led to conclusions, such as the 

central cornea is stiffer than the peripheral cornea.14 

Current techniques for assessing corneal biomechanics in clinical practice are based on 

the acquisition of some parameters during the corneal deformation by an air-puff. These 

parameters include the corneal hysteresis (CH) and corneal resistance factor (CRF) 

derived from the pressures obtained with the Ocular Response Analyzer (ORA; Reichert 

Ophthalmic Instruments, Depew, NY, USA). More recently, a dynamic Scheimpflug 

tonometer device (Corvis ST; Oculus Optikgeräte GmbH, Wetzlar, Germany) that 

records the cornea movement with a high speed camera has been developed that allows 

the acquisition of multiple parameters including aplannation, times, velocities, 

deflections, etc. However, parameters obtained with both devices differ widely from the 

standard descriptors of mechanical properties used in the laboratory. A novel Corneal 

Indentation Device (CID) has been proposed to measure the tangent modulus of 

elasticity of the cornea in clinical practice.15–17 These three clinical methods are based 



on the response of the bulk cornea and a small change in corneal biomechanics due to 

the physical composition might be not detected mainly because confounding variables 

such as corneal thickness and intraocular pressure play a major role in the resistance of 

the cornea. 

 

The role of corneal layers in corneal biomechanics 

Thin layers of the cornea 
 

Tensile stretching methods, either pulling a strip of the cornea18 or applying a pressure 

behind the cornea,19 have been used to obtain conclusions about the contribution of the 

different corneal layers to the biomechanics, concluding that some layers might be 

neglected in numerical simulations due to their small contribution, including the 

epithelium19,20 and the Bowman’s layer.18 These experiments have been performed 

measuring the differences in the whole cornea while maintaining or removing the 

epithelium and Bowman’s layer, but without isolating each layer. It is difficult to isolate 

each layer for mechanical testing as tensile testing requires a mechanical grip to hold 

and pull the material which would be difficult for thin layers. More sophisticated 

indentation methods, such as Atomic Force Microscopy (AFM) nano-indentation, have 

been proposed for a determination of the local elastic modulus of each of the corneal 

layers.21  

Last et al5 reported that Bowman’s layer has a YM of 109.8 kPa, higher than anterior 

stroma (33.1 kPa) and Descemet membrane (50 kPa). Furthermore, Xia et al. reported 

an increment of the YM for the stroma22 and Descement membrane23 from MPa to GPa 

(109 Pa) with corneal dehydration. From these results, we can hypothesize that the small 



contribution of these layers to the whole corneal biomechanics can be reasonably due to 

their small thickness in comparison to the total thickness of the cornea. From our 

perspective, as all these thin layers are affected in keratoconus,24  they should not be 

neglected in the biomechanical future research studies.  

The development of advanced imaging techniques, such as serial block face scanning 

electron microscopy, has enabled to know further about some other micro-structural 

components as elastic fibers, overlooked in recent years, which differ between normal 

and keratoconic corneas.25 Specifically, it has been reported that cornea contains a 

network of microfibrils anterior to Descemet's membrane, becoming progressively less 

abundant anteriorly. Conversely, in the keratoconus cornea elastic fibers are very few 

anterior to Descemet's membrane and are increased below the basal epithelium in 

thinned central regions.26 

The corneal stroma 
 

The stroma is the thicker layer of the cornea with a microstructural composition of 

collagen fibrils that varies with depth (Figure 2). The basic structure of collagen is the 

helical structure of tropocollagen (1 nm). These molecules are cross-linked to form 

collagen fibrils (50 – 100 nm) and these fibrils are assembled to form collagen fibers or 

“corneal lamellae” (500 – 1000 nm).27 The stromal thin collagen fibrils are embedded in 

a soft hydrated matrix formed by proteoglycans and interstitial fluid.28 The 

proteoglycans are composed of protein core and covalently linked glycosaminoglycan 

side chains and are important for corneal transparency by keeping the fibrils apart at a 

regular spacing.29 Nowadays, it is known that collagen fiber branching density 

decreases along corneal depth and that the collagen fibers have steep angles in the most 

anterior part of the cornea with fibers inserted into the Bowman’s membrane forming 



bow spring-like structures (Figure 2).30 This collagen organization gives a significantly 

higher stiffness31 and less elasticity32 to the anterior stroma compared to the middle and 

posterior stroma.  

Furthermore, the anterior cornea is isotropically organized whereas the middle and 

posterior parts have two preferential orientations attributed to nasal-temporal and 

inferior-superior directions and the fibers are reorganized with the increase of loading 

inflation pressure in the middle and posterior stroma.33 The stiffness of the stroma 

varies with depth from 7.71 Kpa to 240 Kpa for the anterior stroma, from 1.99 Kpa to 

70 Kpa for the central stroma and from 1.31 Kpa to 10 Kpa for the posterior stroma.34,35 

Figure 2 

 

Macro and microstructural changes after surgery 

From a theoretical perspective, SMILE preserves the stiffer layers of the cornea and for 

eyes with the same intraocular pressure and the same corneal thickness after surgery 

corneas should be stiffer after SMILE than after PRK or LASIK. However, some other 

microstructural changes can lead to variations in the stiffness among techniques or even 

for the same technique. Knox et al reported greater alteration of mechanical properties 

increasing the LASIK flap depth from 90 to 160 µm, and less variation for horizontal 

delaminations in comparison to vertical side-cuts.20 However, the advantages of 

horizontal delaminations should be interpreted with caution due to the possibility of 

increasing the risk of epithelial ingrowth.36 Wang et al. reported that the creation of a 

thin flap of 90–110 μm in rabbits did not additionally compromise the elastic modulus 

of the cornea and the mechanical response of the cornea after LASIK may be 



predominantly influenced by laser ablation.37 He et al. reported a higher YM in rabbits 

operated on with the SMILE technique using a lenticule thickness of 160m compared 

to the use of 100m.38 Likewise, Spiru et al39 found that the YM after SMILE treatment 

was significantly higher than after FLEx in ex-vivo porcine corneas, suggesting that 

cap-based technique SMILE can be considered superior in terms of biomechanical 

stability. 

Santhiago et al reported that the percentage of tissue altered, including flap thickness 

and ablation depth, is a more robust risk factor for corneal ectasia than residual stromal 

bed and central corneal thickness.40 They suggested that for subjects with the same 

percentage of tissue ablated, a major risk of corneal ectasia can be presented in those 

with thicker flaps than in those with greater ablation depth.40 Kling reported no 

differences in the biomechanical properties measured with stress-strain extensometry in 

porcine corneas after retreatment with SMILE and PRK in comparison to non-treated 

corneas, but less elastic modulus was found after LASIK than in the control group.41 

Despite  a highest preservation of corneal biomechanics was expected after SMILE 

compared to PRK, no differences were found that may be due in part to the fact that 

Bowman’s membrane in porcine corneas is not as highly developed as in humans or 

primates.41 

The epithelium thickness is increased after laser refractive surgery in comparison with 

non-operated eyes. In SMILE, this increment has been reported to be between 2.51 

µm42 and 15 µm43 greater at the center, decreasing along the periphery and acquiring a 

lenticular shape.44 Furthermore, the central epithelium hyperplasia has been reported to 

be less after SMILE than after LASIK (around 1 µm).42 This epithelial remodeling in 

SMILE has been reported to be correlated with age and the corrected refractive error but 

not with the refractive results.45 Conversely, the difference between the achieved 



stromal reduction in comparison to the planned tissue removal has been reported to be 

between 8 µm43 and 11.9 µm thicker on average for SMILE but only 0.4 µm for LASIK 

at 3 months postoperatively, which was related with the residual refractive error.43,42 

From these findings, it has been hypothesized that there exists an stromal expansion 

after SMILE43 that is compensated with a less increase of the central epithelial 

thickness.42 This can led us to hypothesize that corneas with the same thickness after 

surgery might be stiffer in SMILE than LASIK due to the expansion of the stroma 

instead of the epithelium which is a less stiff layer.19,20 However, this is only an 

hypothesis that should be confirmed in future studies because the nature of this 

expansion may vary the stiffness in the stroma in comparison to the untreated cornea.  

Corneal hydration also has an important role on corneal biomechanics. It is important to 

note that as the permeability of the cornea increases, the cornea becomes thicker but the 

stiffness decreases from GPa to MPa.22,46 This means that two corneas with the same 

thickness might have different biomechanical behavior depending on the level of 

corneal hydration. Regarding this topic, it would be interesting to differentiate between 

the components from stromal collagen fibrils and the soft hydrated matrix.28 The 

combination of corneal densitometry and biomechanical analysis may be a possible 

option to characterize the impact of corneal hydration.47  

 

The combination of densitometry and biomechanics 

The corneal structure previously described leads to disparities in the refractive index 

(RI) which produce light scattering visible through densitometry maps.48 The major 

sources of light scattering are the anterior superficial corneal epithelial cell layer and the 

posterior corneal endothelium because of the higher difference in RI from air and 



aquous.49 However, variations of light scattering are also presented within the cornea 

due to disparities of RI along epithelium, anterior stroma and posterior stroma.50 

Furthermore, different RIs are presented in the hydrated fibrils and the extrafibrilar 

matrix, and the RI of the corneal stroma is reduced as the cornea swells.51 In fact, the RI 

increment of the stroma has been associated with the dehydration after LASIK,52 and it 

is higher in older corneas which directly correlates with the increase of densitometry53 

and stiffness.54  

At the baseline state, the densitometry measured with the Pentacam system (Oculus) is 

highest in the anterior 120 m of the cornea in comparison to the center and posterior 

layers.53 Considering that the normal epithelial thickness is around 53.4±4.6 μm55 and 

that the lamellar angles relative to the stromal surface are highest in the anterior-most 83 

m of the corneal stroma, our hypothesis is that the increase of the anterior 

densitometry is not only due to epithelial thickness but also to the angle of the collagen 

lamellae30 at this part of the cornea and possibly due to the fact that the anterior stroma 

tends to be less hydrated and more resistant to water flow than the posterior stroma.52  

The densitometry increases after laser refractive surgery,56 probably due to the increase 

of the RI because of stromal dehydration by the laser application,52 and returns to values 

ever below the preoperative status at 12 month after PRK56 and SMILE.57 Furthermore, 

the preoperative values are reached at 3 months after LASIK and SMILE without 

differences between techniques,58 but not after PRK.56 The decrease in densitometry 

over the postoperative time period might be related to the recovery of corneal hydration, 

with a decrease in the refractive index of the stroma, ever for levels of hydration higher 

than preoperative values. This is in an agreement with the possible expansion of the 

stroma and the increment of corneal thickness with time.59,60 



We reported for the first time the potential usefulness of dynamic densitometry in 

refractive surgery. It is defined as the increase in densitometry during the course of the 

air-puff generated with the Corvis ST system (Oculus). It is important to differentiate 

between static densitometry measured with any rotating Scheimpflug camera and the 

dynamic densitometry measured with the Corvis ST system. The first one represents the 

natural state of the corneal fibrils and corneal hydration whereas the latter 

hypothetically would represent the modification of collagen fibers order and fluidics 

movement along the cornea during the air-puff course. We found that densitometry was 

increased during the inward stage, reaching the maximum value close to the highest 

concavity, whereas during the outward stage the densitometry at the second applanation 

status was higher than that obtained at first applanation.47 Our explanation about the 

course of dynamic densitometry is that the stromal fluid goes from the anterior to the 

posterior stroma with the air puff pressure, whilst the anterior fibers are compressed or 

reordered. Furthermore, we reported that the densitometry sign described as a brightness 

inclined fringe that appears in the peripheral corneal peaks at the highest concavity 

stage, moving to the corneal periphery until its disappearance, has a higher prevalence 

after SMILE. Specifically, the prevalence changed from 48.8% preoperatively to 72.1% 

postoperatively. This sign might be related with a greater fluid movement due to the 

alteration of collagen fibers during surgery.47 However, this is only an hypothesis that 

suggests the possible advantages of including corneal densitometry in the algorithms to 

compute corneal stiffness.  

 

 



Evidence on corneal biomechanical changes in the 
comparison of refractive surgery techniques 
 

Table 1 includes a summary with the main conclusions obtained from different studies 

that have measured corneal biomechanics in different LRS techniques, either with the 

ORA or the Corvis ST systems. Three of four studies agreed that LASIK/FS-LASIK 

have more affectation of the biomechanical parameters provided by those devices than 

PRK/LASEK. In contrast, differences between SMILE and FS-LASIK were more 

controversial, with no study supporting the hypothesis that FS-LASIK leads to fewer 

changes in biomechanical parameters compared to SMILE. The controversy increases in 

the comparison of SMILE and PRK/LASEK, without any tendency in favor of one of 

both techniques. Some other particularities with regard studies performed with variants 

of the same technique are also described in Table 1.  

Table 1 

 

Minimizing confounding variables with clinical devices 
 

The response of the cornea to an indentation load, similar to the air-puff of dynamic 

Scheimpflug tonometry, depends on the physical composition of the cornea, the 

intraocular pressure, and the corneal thickness.83 To enhance the ability of clinical 

devices to detect differences between LRS techniques, it is essential to minimize the 

possible effect of corneal thickness and intraocular pressure on the biomechanical 

measurements provided. However, despite of the performance of good and well-design 

studies for minimizing the impact of confounding variables, such as intraocular pressure 

and corneal thickness, it is still unclear if differences in the biomechanical properties 

after SMILE measured by dynamic Scheimpflug tonometry could be biased because the 



anterior collagen fibers during the loading of the air-puff are submitted to compression 

instead of tension stress.83  

Moreover, for continue advancing in the clinical research with the currently available 

devices, some basic considerations should be considered if biomechanical changes are 

intended to be evaluated after LRS with different techniques: 

1. Subjects should be measured preoperatively and postoperatively in the same 

timetable range. Although Hon et al13 reported no differences in tangent 

modulus with the CID due to the variation of IOP and CCT during the wake 

time, Ariza et al84 suggested that with air-puff devices, corneal displacement 

variations can reach 5% during the day depending on the level of stiffness of the 

cornea evaluated, with less variability from 10:00 AM to 13:00 PM.84 Indeed, 

we reported that the biomechanically corrected intraocular pressure of Corvis ST 

predicted better the preoperative IOP in subjects operated on with SMILE when 

the analysis was applied considering only subjects measured in the same time 

slot preoperatively and postoperatively.47 

2. Biomechanical parameters should be compared considering their relative change 

as a function of the removed corneal thickness, especially when using 

parameters that have been demonstrated to be significantly correlated with 

corneal thickness.82 Tissue removal in LASIK may be approximately determined 

with the Munnerlyn formula,85 but in SMILE a thickness of 10-15 m should be 

added corresponding to the edge thickness. Therefore, there is a slightly higher 

tissue removal in SMILE due to this and due to the quadratic dependency on the 

diameter of the optical zone.86 The real removed thickness should be then 

considered instead of the refractive error treated. We reported that the new 

stiffness parameter87 and biomechanically corrected intraocular pressure of 



Corvis ST were the only two parameters for which this correlation with removed 

corneal thickness was not presented.47 

3. Exclusion criteria should include any subject under treatments that may have any 

influence on corneal thickness or intraocular pressure due to its possible impact 

on corneal composition and then on corneal biomechanics.88 

 

Conclusions 
 

In this review, we have conducted an exhaustive analysis of the corneal structure and 

methods for measuring corneal stiffness in order to understand the role of corneal 

composition on biomechanics. The stiffness highly depends on the measurement 

method used in the laboratory, with a great variation between studies that may difficult 

the incorporation of this information in biomechanical models. The role of corneal 

layers should be considered as the stiffness relative to the thickness or, in other words, 

how stiff is the layer considering its thickness in comparison to the total cornea. Under 

this scenario, Bowman’s and Descemet’s layers are stiffer than the anterior stroma and 

this greater stiffness is masked when we use methods that evaluate the stiffness of the 

bulk cornea. Currently available clinical methods to characterize corneal biomechanics 

are not able to assess the stiffness of each of the layers of the cornea and the only 

possibility is to measure the bulk cornea. This may be considered as a limitation 

because of the impact of confounding variables, such as corneal thickness and 

intraocular pressure. According to the peer-reviewed literature, we have defined some 

considerations to minimize the influence of these confounding variables on the results. 

Despite of applying this consideration in future studies, we cannot ensure that it will 

allow clinicians to clarify if SMILE is superior in terms of corneal biomechanics to 



other LRS techniques. With the currently available clinical devices, as there are 

microstructural changes as corneal hydration alterations, stromal expansion or anterior 

stromal compression during the loading stage of the air puff, these may also act as 

confounding variables. Regarding the more recent advances on corneal biomechanics, it 

should be remarked that the new parameters of the Corvis ST system are not correlated 

with corneal thickness and dynamic corneal densitometry may be an additional tool in 

algorithms characterizing corneal biomechanics with the currently available devices. 
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Figure captions 
 

Figure 1. Graphical representation of a non-linear stress/strain function typical from the 

cornea. Tangent modulus is obtained from the slope at a particular stress for which the 

function is almost linear (elastic behavior). A graphical description of tensile stretching 

is included in the figure to explain the stress/strain relationship. 

 

Figure 2. Scheme for the role of different variables in the clinical measure of corneal 

biomechanics. From the macro to the micro structural point of view, the role of the 

different variables decreases in comparison to the mechanical displacement of the bulk 

cornea. 



 

Table 1. Studies analyzing corneal biomechanics after laser refractive surgery techniques 
 

Authors Instruments Techniques Conclusions 
 
LASIK vs LASEK / PRK 
(Kirwan et al. 2008)61 ORA LASIK, LASEK No differences among techniques 
(Kamiya et al. 2009)62  ORA LASIK, PRK More affectation after LASIK 
(Hassan et al. 2014)63 CORVIS LASIK, PRK More affectation after LASIK 
(Shen et al. 2014)64 CORVIS FS-LASIK, LASEK More affectation after FS-LASIK 
 
SMILE vs LASIK 
(Pedersen et al. 2014)65 ORA; CORVIS SMILE, FS-LASIK,  No differences among techniques 

(Wang et al. 2014)66 ORA SMILE, FS-LASIK 
Differences for myopias of more than 
6D favorable to SMILE 

(Shen et al. 2014)64 CORVIS SMILE, FS-LASIK,  No differences among techniques 
(Wu et al. 2014)67 ORA SMILE, FS-LASIK More affectation after FS-LASIK 
(Agca et al. 2014)68 ORA SMILE, FS-LASIK No differences among techniques 
(Sefat et al. 2016)69  CORVIS SMILE, FS-LASIK No differences among techniques 
(Osman et al. 2016)70 ORA SMILE, FS-LASIK More affectation after FS-LASIK 
(Wang et al. 2016)71 ORA SMILE, FS-LASIK More affectation after FS-LASIK 

(Zhang et al. 2016)72 ORA 
SMILE, FS-LASIK 
WF 

No differences among techniques 

 
SMILE vs LASEK/PRK 
(Shen et al. 2014)64 CORVIS SMILE, LASEK No differences among techniques 

(Dou et al. 2015)73 ORA SMILE, LASEK 
In terms of per unit tissue removed, 
SMILE seems to have less effect on 
corneal biomechanics than LASEK 

(Yıldırım et al. 2016)74 ORA SMILE; PRK More affectation after SMILE 
(Chen et al. 2016)75 ORA SMILE; LASEK More affectation after LASEK 
(Al-Nashar et al. 2017)76 ORA SMILE; PRK No differences among techniques 
    
TECHNIQUE VARIATIONS 

(Kamiya et al. 2014)77 ORA SMILE, FLEx 
The presence or absence of flap 
lifting does not significantly affect 
biomechanical parameters. 

(Shen et al. 2014)78 CORVIS SMILE 
Differences pre/post due to the 
extracction of the lenticule and not to 
its sculpting  

(Mastropasqua et al. 2014)79 CORVIS SMILE 
No significant modifications in 
biomechanical properties were 
observed after SMILE 

(El-Massry et al. 2015)80 ORA SMILE 
Less biomechanical affectation with 
160 m compared to 100 m 

(Leccisotti et al. 2016)81 CORVIS FS-LASIK 
There exists changes in 
biomechanical properties after 
femtosecond creation of a LASIK flap 

(Fernandez et al. 2017)82  CORVIS SMILE 
No differences among low, medium 
and high myopia after consideration 
of removed central corneal thickness 

SMILE: Small Incision Lenticule Extraction,; FLEx: Femtosecond Lenticule Extraction; LASEK: Laser-Assisted 
Subepithelial Keratomileusis; LASIK: Laser assisted in Situ Keratomileusis (microkeratome flap); FS-LASIK: Laser 
assisted in Situ Keratomileusis (femtosecond flap); FS-LASIK WF: Femtosecond Laser assisted in Situ 
Keratomileusis Wavefront Guided; ORA: Ocular Response Analyzer (Reichert Ophthalmic Instruments, Depew, NY, 
USA); CORVIS: Corvis ST (Oculus Optikgeräte GmbH, Wetzlar, Germany). 

 




