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Graphical abstract 

 

 

Highlights 

 A methodology for the optimization of complex chemical processes is developed. 

 A hybrid model is solved (simulation units, Kriging models and explicit equations). 

 Optimization of VCM process is performed to show the performance of our approach. 

 This approach has proved to be robust and reliable to solve complex problems. 

 Additionally, heat integration and economic feasibility are studied. 

 

Abstract 

A challenging problem in the synthesis and design of chemical processes consists of dealing with hybrid 

models involving process simulators and explicit constraints. Some unit operations in modular process 

simulators are slightly noisy or require large CPU times to converge. In this work, this problem is 

addressed by combining process simulators and surrogate models. We have replaced some unit 
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operations, which cannot be used directly with a gradient-based optimization, by surrogate models based 

on Kriging interpolation. To increase the robustness of the resulting optimization model, we perform a 

degree of freedom analysis and aggregate (or disaggregate) parts of the model to reduce the number of 

independent variables of the Kriging surrogate models (KSMs). Thus, the final model is composed of 

KSMs, unit operations (maintained in the process simulator) and also explicit equations. 

The optimization of the well-known vinyl chloride monomer (VCM) production process is performed 

to test the proposed approach. The effect of the heat integration is also studied. In addition, the economic 

feasibility of the optimized process is calculated assuming uncertainty in raw material and product 

prices. 

 

Keywords: simulation, optimization, MINLP, Kriging algorithm, Vinyl Chloride Monomer process. 

 

1. Introduction 

Methodologies for the synthesis of chemical processes can be classified into two different categories: 

sequential-conceptual methods and superstructure optimization-based methods. 

Sequential methods follow a natural hierarchy between the engineering decisions to obtain a chemical 

process flowsheet (Douglas, 1985, 1988). This approach is commonly used because the original problem 

is divided into a set of sub-problems that reduce the complexity of the initial problem. However, due to 

its sequential nature, this approach cannot guarantee an optimal solution since it ignores the different 

trade-offs between the various objectives of the prior stages. 

Superstructure optimization-based methods consider the complete network which is composed of all the 

unit operations, their connections, and other constraints (Grossmann, 1985; Yeomans and Grossmann, 

1999). The solution of the mathematical model specifies which of the initial units and connections are 

kept in the optimal structure. These methods are used because they offer a simultaneous optimization of 

the process structure and the operating conditions. However, superstructure optimization-based methods 

are complex to solve due to the resulting models, usually large-scale non-convex mixed-integer 

nonlinear programs (MINLP). The general algebraic form of these MINLP optimization problems is 

shown in Eq.(1). 
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where f(x,y) is the objective function (e.g., economic, environmental, etc.); h(x,y) are the equations that 

describe the behavior of the system (e.g., mass and energy balances, reaction rates, etc.); and g(x,y) are 

inequality constraints that define process specifications (e.g., product purities, maximum temperature 

allowed, etc.). The real n-vector x represents the continuous independent variables, and the t-vector y 

represents the discrete independent variables. 

When a sequential-modular process simulator is used as a black box to compute the objective function 

and/or the equations that describe the behavior of the system (equality constraints in the previous 

MINLP problem), different approaches can be employed to solve the resulting optimization problem. 

We can try to address the problem directly by using commercial derivative-based solvers (e.g., DICOPT, 

ALPHAECP, SBB…) or metaheuristic algorithms (e.g., genetic algorithms or particle swarm 

optimization algorithms). However, some important drawbacks arise with both paths. 

On the one hand, when mathematical programming solvers are used, the following challenges arise. 

First, due to the nonlinearities and non-convexities inherent to some unit operations and thermodynamic 

models, these methods do not guarantee a global solution and can be easily stuck in local solutions. 

Moreover, the solution depends very sensitively on initial values. However, what is much more 

important is the fact that the objective function and/or the set of constraints are analytically intractable 

(discontinuous, non-differentiable, and inherently noisy). Hence, derivatives of the objective and/or 

constraint functions with respect to the independent variables must be calculated by numerical 

differentiation (which limits the accuracy and effectiveness of such solvers). 

Derivatives calculated by perturbation can be very expensive to compute, and even in the case in which 

the CPU time is not excessive, some unit operations introduce numerical noise. Thus, an accurate 

derivative cannot be obtained. Of course, all these models are perfectly valid for simulation purposes, 

but even relatively small differences in two instances –completely negligible in any simulation– prevent 

the calculation of accurate derivatives (a detailed discussion can be found in Caballero and Grossmann 

(2008)). 
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On the other hand, metaheuristic techniques (which belong to a class of optimization strategies that does 

not require gradient information, i.e., derivative-free optimization (DFO) methods) seem to be well 

suited to simulation-based optimization when sequential-modular simulators are used. This is because 

they only require the values of the objective function. Of course, there are significant disadvantages of 

not having derivative information. We cannot expect that the performance of DFO methods matches 

those of derivative-based methods. In particular, the scale of the problems that can be efficiently solved 

by DFO algorithms does not exceed a few tens of variables (Conn et al., 2009). Besides, these techniques 

are not able to guarantee the optimality of the solution found, although they are designed to have the 

ability to escape from local optima. In addition, DFO algorithms normally require a large number of 

function evaluations, and perhaps, one of the most important disadvantages is that DFO algorithms 

exhibit poor performance in highly constrained systems. Generally, these algorithms handle the 

constraints by adding a penalty to the objective function to account for infeasibility. 

An added difficulty regardless the optimization technique is related to the convergence of flowsheets 

with several recycle streams. As simulations become more complex, the robustness (in terms of 

convergence) decreases and the simulator becomes prone to errors.   

These approaches for solving synthesis problems are not new. A considerable amount of literature 

supports the synergy achieved through the smart integration of chemical process simulators with an 

external optimizer based on gradient information (Balas, 1979; Brunet et al., 2012; Caballero et al., 

2005; Díaz and Bandoni, 1996; Diwekar et al., 1992; Navarro-Amorós et al., 2014; Raman and 

Grossmann, 1994; Reneaume et al., 1995) and metaheuristic techniques (Aspelund et al., 2010; Bravo-

Bravo et al., 2010; Chen et al., 2014; Dantus and High, 1999; Eslick and Miller, 2011; Gross and Roosen, 

1998; Gutiérrez-Antonio and Briones-Ramírez, 2009; Javaloyes-Antón et al., 2013; Leboreiro and 

Acevedo, 2004; Odjo et al., 2011; Vazquez–Castillo et al., 2009). 

Some researchers have proposed frameworks to reduce the complexity of the optimization models 

through the use of surrogate models (Jones et al., 1998; Shao et al., 2007; Won and Ray, 2005; Xiong 

et al., 2007). A surrogate model is a set of mathematical functions, based on data generated from the 

simulation. In this way, the optimization of an analytically tractable and computationally cheap 

surrogate model replaces the original black box process. Most often, for complex systems, it is 
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recommended to disaggregate the whole process into smaller units and model each block separately, 

ensuring that all relevant connectivity variables have also been included (i.e., component flows, 

temperatures, and pressures of each stream). 

The main novelties of the proposed approach are at the modeling stage and at solution stage. 

At the modeling level, as far as we know, the deterministic optimization of problems related to large-

scale superstructures with a non-fixed topology dealing with hybrid models involving process 

simulators, explicit constraints and surrogate models for dealing with noise units and third-party 

modules (i.e., non-numerical noisy proprietary models) has never been studied. 

At the solution stage, we use a logic-based algorithm -the Logic-Based Outer Approximation algorithm 

(Turkay and Grossmann, 1996)-. Logic-Based Algorithms do not require the reformulation of the 

problem as an MINLP. The NLP sub-problems can, therefore, be efficiently solved. The numerical 

efficiency of the optimization is improved by using a distributed approach for surrogate models (we use 

small surrogate models with a reduced number of degrees of freedom instead of a single large model). 

The advantage is that we minimize the necessity of resampling during the optimization (Biegler et al., 

2014; Quirante et al., 2015). 

In this work, we have used the Kriging algorithm to build the surrogate models since they are 

computationally efficient and they need relatively small sampling data to be built. Several works have 

been carried out to overcome the challenges of simulation-based optimization using surrogate models 

based on Kriging interpolation. Caballero and Grossmann (2008) studied the optimization of a 

disaggregated flowsheet using Kriging models, obtaining unit operations with low-level noise. Henao 

and Maravelias (2011) used artificial neural networks for disaggregating models. Other works have 

modeled and optimized chemical processes using Kriging-based techniques (Davis and Ierapetritou, 

2007; Palmer and Realff, 2002a, b; Quirante and Caballero, 2016; Quirante et al., 2015). A review of 

Kriging applications in simulation was made by Kleijnen (2009). 

The objective of this work is to develop an optimization-based simulation tool that uses a process 

simulator as calculation engine, where surrogate models based on Kriging interpolation replace those 

unit operations that introduce numerical noise or need a large CPU time to converge. At the same time, 

it allows us to introduce explicit equations in such a way that the resulting model includes surrogate 
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models, unit operations maintained in the process simulator and explicit equations. The rest of this article 

is organized as follows. In the next section, we discuss the main features of the proposed approach. 

Then, to illustrate this approach, we use the superstructure proposed by Turkay and Grossmann (1998) 

for the synthesis of the vinyl chloride monomer (VCM). To complete the study of the VCM process, the 

influence of the heat integration on the profit of the process is studied. Besides, the economic feasibility 

of the optimized VCM process is evaluated assuming uncertainty in raw material and product prices. 

Finally, the conclusions of this work are summarized at the end of the paper. 

 

2. Methodology 

In the proposed approach, simulation-based optimization of complex processes is performed using 

derivative-based solvers. The superstructure, which includes all the alternatives of interest of the process 

that we need to optimize, is implemented at the level of the process simulator, with the added feature 

that those unit operations that are inherently noisy and/or expensive to converge (in terms of CPU time) 

are replaced by surrogate models based on Kriging interpolation (e.g., distillation columns and reactors). 

The units that do not introduce numerical noise (such as mixers, splitters, coolers/heaters, compressors, 

valves or pumps) are maintained in the process simulator. The surrogate models are built in MATLAB 

from training data sets obtained from the process simulator. In addition, the equations related to capital 

and operating costs are implemented as explicit equations. 

As discrete decisions have to be made in order to select the different paths considered in the 

superstructure, the mathematical model of the optimization problem follows the generalized disjunctive 

programming (GDP) framework (Balas, 1979; Raman and Grossmann, 1994). Then, the disjunctions 

that represent the discrete decisions and involve models in the process simulator, are systematically 

converted to algebraic equations by means of the Big-M formulation (Nemhauser and Wolsey, 1988). 

Those discrete decisions, in terms of explicit equations, are either reformulated using a Big-M or a hull 

reformulation, depending on the characteristics of the equations. In general, convex constraints –that 

include all linear constraints– are reformulated using a convex hull approach and the rest by the Big-M 

formulation. The logic propositions are reformulated to a set of linear algebraic constraints (see for 

example Grossmann and Trespalacios (2013)). 
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The methodology followed to develop the simulation-based optimization of complex process 

superstructures can be divided into the following main steps. The first step is the simulation stage. The 

objective is to build our superstructure in a chemical process simulator. We can use process simulators 

such as Aspen Plus or Aspen HYSYS and take advantage of that they are developed following an 

objected-oriented approach. This architecture makes it possible to transfer functionalities to other 

software applications (Aspen Technology, 1994-2015). Thus, Aspen HYSYS (or Aspen Plus) can be 

accessed from external programs (such as MATLAB or Python) via Automation. This is a key feature 

since we will be able to develop an executive program to automate the surrogate model building step 

and to interface the final model, which is formed by unit operations implemented in the process 

simulator, surrogate models, and explicit equations, with the derivative-based optimization solver. 

After simulating our chemical process superstructure, we identify the unit operations or set of unit 

operations that introduce numerical noise and/or are expensive to converge. These units or blocks of 

units are replaced by surrogate models.  

In this work, we focus on the Kriging interpolation (Krige, 1951) to build the surrogate models. Kriging 

was developed by Daniel G. Krige during his Master’s degree (Krige, 1951). 

This fitting is composed of a polynomial expression, f(x), and a term corresponding to the deviation of 

that polynomial, Z(x). 

( ) ( ) ( )y x f x Z x   (2) 

The spatial correlation function R(xi,xj) can fit a scale factor 2 to the data, given the covariance for two 

points xi and xj. The extended exponential alternative for the spatial correlation function in Kriging 

models was used by Sacks et al. (1989). 

      , , , ,

1 1

, exp , exp ,
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where l (l  0) shows how fast the correlation goes to zero, and Pl (0  Pl  2) is the smoothness of 

the function, usually a Gaussian Kriging (Pl = 2). 

A thorough description of the Kriging interpolation method can be found in the literature (Jones, 2001; 

Jones et al., 1998; Quirante et al., 2015). 
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In order to build robust and accurate surrogate models, an efficient distribution of the training points 

becomes mandatory.  For this purpose, an a priori infill procedure, the ‘maxmin’ approach, has been 

used. This method maximizes the minimum distance between two training points (a broad description 

of the ‘maxmin’ approach can be found in Quirante and Caballero (2016)). First, we assign 2D points to 

the D-dimensional vertices of the hypercube that constitutes the feasible search space. Then, the 

remaining N-2D points are uniformly distributed following the ‘maxmin’ approach. Thus, we ensure that 

the complete domain is contained in the convex hull formed by all the sampling points and we are not 

doing ‘extrapolations’ in any moment. 

One of the major drawbacks of using surrogate models is that the surrogate model could not reproduce 

the original model with enough accuracy. Even in the case where we can ensure a good numerical 

conditioning (for example, small errors in the surrogate model do not reproduce a snowball effect and 

propagate throughout the entire optimization model), the lack of accuracy in the surrogate model could 

eventually end with a non-realistic result. To overcome that problem, some researchers have proposed 

different strategies based on using trust regions (Biegler et al., 2014; Caballero and Grossmann, 

2008; Quirante et al., 2015). The main idea is to perform an initial sampling and then contract, expand 

or move the region by resampling when needed. Finally, the surrogate model in the final point must be 

able to reproduce the actual model –some implementations also require an accurate reproduction of the 

gradient–. Alternatively, if the number of degrees of freedom of a model is small enough (up to 5 degrees 

of freedom), it is possible to initially perform an exhaustive sampling that allows us to generate a 

surrogate model accurate enough to avoid resampling. Of course, this second approach is not always 

possible. In any case, we have to deal with the tradeoff between the number of initial points and the 

number of major iterations. A large number of sampling points could require large CPU times in 

sampling, model calibration, and Kriging interpolation, but the number of resamples to recalibrate the 

surrogate model in different regions should be lower. 

Even though reducing the degrees of freedom to develop surrogate models that do not require 

recalibrations is not always possible, sometimes we can aggregate (or disaggregate) some models (unit 

operations in a modular simulator) and reduce the number of independent variables without losing 

accuracy. In this work, we have followed this approach. 
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Next, we have followed a disaggregated approach to developing the system, which has the following 

characteristics: 

- All the unit operations were simulated using Aspen HYSYS v.8.4 (Aspen Technology, 1994-

2015). 

- The calibration of the Kriging surrogate models was done using MATLAB (The Mathworks, 

2014). 

- The model, objective function, constraints, and surrogate models were implemented using an 

in-house algorithm (Caballero et al., 2014) of the basic Branch and Bound method interfaced 

with TOMLAB-MATLAB (Holmström, 1999). 

- We have connected MATLAB with Aspen HYSYS to optimize the process. 

The application of the proposed methodology is illustrated with the optimization of the benchmark 

process to produce Vinyl Chloride Monomer (VCM), following the superstructure proposed by Turkay 

and Grossmann (1998). The selection of this case study is basically due to the large amount of 

information and data that can be found in the literature. It has been studied by different researchers with 

different approaches and, therefore, it is easy to reproduce. 

We have considered this case study because it contains the complexity suited to test the proposed 

methodology: 

- A non-fixed topology with a large number of equipment (55 process units including 

compressors, heat exchangers, pumps, separators, different types of reactors, and different sets 

of conventional and thermally coupled distillation columns) that give rise to a large number of 

possible alternatives. 

- Reactors and distillation columns, which are slightly noisy and/or difficult to converge and, 

therefore, can be replaced by surrogate models. 

- Unit operations that do not introduce numerical noise (like mixers, splitters, compressors, heat 

exchangers and pumps) and can be maintained in the process simulator. 

- Recycle blocks, which are transformed to explicit equations avoiding inefficient and time-

consuming iterations. 

- Third-party modules developed in Matlab to calculate sizes and costs. 
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3. Case study: Vinyl chloride monomer production process 

Vinyl chloride monomer (VCM) is one of the world’s most important and largest commodity chemicals 

(Modler et al., 2015). It is used mainly for the production of polyvinyl chloride (PVC), which is the 

third-most widely produced synthetic plastic polymer (Fischer et al., 2014). 

In the past, vinyl chloride was first produced by treating 1,2-dichloroethane with a solution of potassium 

hydroxide in ethanol. One of the initially patented processes to produce vinyl chloride implicated 

reacting acetylene and hydrogen chloride using mercuric chloride as a catalyst. This method was widely 

used during the 1930s and 1940s, but nowadays, VCM is produced by pyrolytic decomposition of 

ethylene dichloride (EDC). EDC is produced by the direct chlorination of ethylene and by the 

oxychlorination of ethylene in the presence of hydrogen chloride and oxygen. Vinyl chloride is produced 

by the pyrolysis of EDC, obtaining hydrogen chloride as a co-product, which is recycled and completely 

used in the oxychlorination of ethylene. 

There are several combinations of technologies for vinyl chloride production. In Figure 1, the 

superstructure considered is shown. The VCM superstructure considered in this paper is based on the 

process given by Turkay and Grossmann (1998) and consists of three sections: direct chlorination, 

oxychlorination, and pyrolysis. 

 

 

The main reactions involved in the process are: 

Direct chlorination:  2 4 2 2 4 2C H Cl C H Cl   

Oxychlorination:  2 4 2 2 4 2 22 0.5C H HCl O C H Cl H O     

Pyrolysis:  2 4 2 2 32 2 2C H Cl C H Cl HCl   

Some considerations, which are described below, have been taken into account in order to reduce the 

number of independent variables during the building of the Kriging metamodels. 
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3.1. Objective function 

The objective is to determine the best flowsheet topology to maximize the profit of the plant. 

The objective function includes raw material costs, costs associated with utility consumptions 

(electricity, cooling water, refrigerant, steam, and fuel oil), annualized investment costs for equipment, 

and income from the sales of vinyl chloride and trichloroethane (TCE) by-product. The estimation of 

the capital costs is calculated using the correlations given by Turton et al. (2013). The objective function 

is determined by the following expression: 

· ·  ·p p r r op cap

p r

profit MF price MF price C F C
 

    
 

   (4) 

where MFp is the mass flow of the products sold, pricep is the price of the products sold, MFr is the mass 

flow of the raw materials bought, pricer is the price of the raw materials bought, Cop is the operating cost 

per year, F is the annualization factor, and Ccap is the capital cost of the equipment. Prices and costs have 

been updated by the global CEPCI cost index of 2015. The annualization factor is calculated by the 

equation recommended by Smith (2005) where we have considered a fixed interest rate of 10 % and a 

horizon time of 8 years. 

The prices of the products, raw materials, and utilities are given in Table 1 (ICIS, 2015). 

 

 

The superstructure presented in Figure 1 includes the alternatives explained below. 

 

3.2. Direct chlorination 

In the direct chlorination section (Figure 2), ethylene is chlorinated to EDC. The direct chlorination 

reactor operates at 55 – 100 ºC and 101.3 – 506.6 kPa. The conversion for the direct chlorination reaction 

under these conditions is 100 % and the selectivity to ethylene dichloride is greater than 99 % 

(McPherson et al., 1979). The exothermic reaction is catalyzed by ferric chloride catalyst. We modeled 

the direct chlorination reaction using kinetics derived from Wachi and Morikawa (1986) presented in 

appendix A. 
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3.2.1. Feed compression for direct chlorination system 

The feed enters the process at low pressure (101.3 kPa) and must be compressed to a higher pressure 

where the reaction is feasible. For compression, we use a single compressor (single-stage compression) 

(K-100). 

 

3.2.2. Heating/cooling before the direct chlorination reactor 

The operating conditions selected in the reactor implies that the temperature of its inlet should be 

between 55 and 100 ºC. To get this, the resulting stream from the compressed feed has to be heated or 

cooled. 

To model this situation, we define the Boolean variables Y1 and Y2 to select a heater or a cooler, 

respectively. 

1 2

, ,

, , , ,

55º 100º 55º 100ºFeedDC out FeedDC out

FeedDC in FeedDC out FeedDC in FeedDC out

Y Y

C T C C T C

T T T T

   
   

       
   

    

 (5) 

where TFeedDC,in and TFeedDC,out are the temperatures entering and leaving the exchanger, respectively. 

To simulate the heater (E-100), we use a heat exchanger using low-pressure steam as a hot utility. To 

simulate the cooler (E-101), we use a water-cooled heat exchanger using water as a refrigerant. 

 

3.2.3. Reactor for direct chlorination 

We have supposed that the reaction can take place in a CSTR in the presence of EDC liquid or without 

the presence of EDC, or in a PFR. To model the reactor alternatives, we define the Boolean variables 

Y3, Y4, and Y5 to operate with a CSTR with addition of EDC (R-100), with a CSTR (R-101), or with a 

PFR (R-102), respectively. 

3

54_ ,

, ,
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_ ,

55º 100º
55º 100º 55º 100º

101.3 505.6
101.3 505.6 101.3 505.6

0.01 / 5 /
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CSTR DC PFR DC

CSTR EDC DC

CSTR DC PFR DC

CSTR EDC DC

Y
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kPa P kPa
kPa P kPa kPa P kPa

kg h F kg h

 
  

    
       

            

 
 
 
 
 

 (6) 
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where TCSTR_EDC,DC is the temperature of the CSTR with addition of EDC, PCSTR_EDC,DC is the pressure of 

the same reactor and FCSTR_EDC,DC is the mass flow of EDC added to the reactor; TCSTR,DC is the 

temperature of the CSTR, PCSTR,DC is the pressure of the same reactor, TPFR,DC is the temperature of the 

PFR, PPFR,DC is the pressure of the PFR. The reactors are cooled using water as a refrigerant. 

 

3.2.4. Cooling after the direct chlorination reactor 

The stream leaving the direct chlorination reactor is considered to be cooled to 40 ºC in a water-cooled 

heat exchanger (E-102) using water as a refrigerant. 

 

3.2.5. Separation system 

The next step in the process is the separation system. The stream leaving the cooler (E-102) contains 

EDC produced, and unreacted ethylene and Cl2. A distillation column (T-100) is used to remove the 

light components and obtain EDC with the desired composition. The distillation column operates at 

101.3 kPa. A sensitivity analysis showed that the number of distillation trays and tray position did not 

have an important impact on the final results, so we fixed 10 trays with the feed in the 5th tray. 

 

3.3. Oxychlorination 

In the oxychlorination section (Figure 3), ethylene reacts with hydrogen chloride in the presence of 

oxygen. The reaction conditions are given as 180 – 225 ºC and 152.0 – 1621.2 kPa. The conversion 

under these conditions is in the range of 95-99 % with respect to ethylene, and the selectivity to ethylene 

dichloride is up to 93-96 % (Cowfer and Magistro, 1983). This exothermic reaction is catalyzed by a 

copper chloride catalyst impregnated on a porous alumina support. The reaction is modeled using the 

kinetics from a series of papers by Gel’Perin et al. (1979, 1983, 1984) described in appendix A. 

 

 

3.3.1. Feed compression for oxychlorination system 

The feed enters the process at low pressure (101.3 kPa) and must be compressed to a higher pressure 

where the reaction is feasible. For compression, we assume the choice between a single compressor 
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(single-stage compression), a system consisting of two compressors with intermediate cooling (two-

stage compression) or a system consisting of three compressors with intermediate cooling (three-stage 

compression). To model the system, for the single-stage compression alternative, we define the Boolean 

variable Y6 to operate at low pressure; for the two-stage compression with intermediate cooling, we 

define the Boolean variable Y7 to operate at medium pressure; and for the three-stage compression with 

intermediate cooling, we define the Boolean variable Y8 to operate at high pressure. We can write the 

following disjunction: 

8

,
7

, _ , 1
6

, _ ,

_ ,

405.3 1621.2

202.6 405.3 202.6

152.0 202.6 202.6

50º

OC

OC

OC

Comp out

Comp out Comp OC intermediate

Comp out Comp OC intermediate

Comp OC intermediate

Y

Y kPa P kPa

Y kPa P kPa P

kPa P kPa P kPa

T C

  
 

     
    

     
  

_ , 1

_ , 2

_ , 2

50º

405.3

100º

Comp OC intermediate

Comp OC intermediate

Comp OC intermediate

kPa

T C

P kPa

T C

 
 
 
 
 
 
 
 
 

  

 (7) 

where PComp_OC,intermediate and TComp_OC,intermediate are the intermediate pressure and temperature of two-stage 

compression, respectively (in Figure 3, PComp_OC,intermediate corresponds with the pressure of stream leaving 

the compressor K-201, and TComp_OC,intermediate corresponds with the temperature of the stream leaving the 

heat exchanger E-200). PComp_OC,intermediate1 corresponds with the pressure of stream leaving the 

compressor K-203, and TComp_OC,intermediate1 corresponds with the temperature of the stream leaving the 

heat exchanger E-201. PComp_OC,intermediate2 corresponds with the pressure of stream leaving the compressor 

K-204, and TComp_OC,intermediate2 corresponds with the temperature of the stream leaving the heat exchanger 

E-202. PComp_OC,out is the pressure of stream leaving the feed compression system. 

 

3.3.2. Heating/cooling before the oxychlorination reactor 

The operating conditions selected in the reactor implies that the temperature of its inlet should be 

between 180 and 225 ºC. To get this, the resulting stream from the compressed feed has to be heated or 

cooled. 

To model this situation, we define the Boolean variables Y9 and Y10 to select a heater or a cooler, 

respectively. 
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where TFeedOC,in and TFeedOC,out are the temperatures entering and leaving the exchanger, respectively. 

To simulate the heater (E-203), we use a heat exchanger using high-pressure steam as a hot utility. To 

simulate the cooler (E-204), we use a water-cooled heat exchanger using water as a refrigerant. 

 

3.3.3. Reactor for oxychlorination 

It is assumed that the reaction can take place in a PFR or in a PFR followed by a small CSTR. Note that 

the small CSTR could be needed for an additional conversion (Lakshmanan et al., 1999). 

To model the reactor alternatives, we define the Boolean variables Y11 and Y12 to operate with a PFR or 

with a PFR followed by a CSTR, respectively. 

11 12

, _ ,

, _ ,

180º 225º 180º 225º

152.0 1621.2 152.0 1621.2

PFR OC PFR CSTR OC

PFR OC PFR CSTR OC

Y Y

C T C C T C

kPa P kPa kPa P kPa

   
   

       
   

      

 (9) 

where TPFR,OC is the temperature of the PFR (R-200), PPFR,OC is the pressure of the same reactor; 

TPFR_CSTR,OC is the temperature of the PFR (R-201) followed by the CSTR (R-202) and PPFR_CSTR,OC is the 

pressure of the same reactor. We have considered that if the selected option is the second one, both 

reactors, PFR and CSTR, operate at the same temperature and pressure conditions. The reactors are 

cooled using water as a refrigerant. 

 

3.3.4. Cooling after the oxychlorination reactor 

The stream leaving the oxychlorination reactor is considered to be cooled to 40 ºC in a water-cooled 

heat exchanger (E-205) using water as a refrigerant. 

 

3.3.5. Separation system 

The next step in the process is the separation system. The stream leaving the cooler (E-205) contains 

water, EDC, TCE and ethylene, HCl and unreacted O2. First, a 3-phase separator (V-200) is used to 

remove water from the system. The vapor stream leaving the 3-phase separator enters to a distillation 
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column (T-200) where the light components (ethylene, HCl, and O2) are obtained as the top product and 

recycled back to the feed compression cycle for the oxychlorination process. The column bottoms are 

mixed with liquid leaving the 3-phase separator. Then, a second distillation column (T-201) is added to 

obtain EDC as top product and TCE as a bottom product with the desired compositions. Again, a 

sensitivity analysis showed that the number of trays and the feed tray position had not an important 

impact on the total cost. Therefore, for simplicity, it was considered that the first column has 10 trays 

and it is fed into tray 5, and the second column has 20 trays and it is fed into tray 10. 

 

3.4. Pyrolysis 

Produced EDC during the direct chlorination and the oxychlorination stages is fed to the pyrolysis 

section where vinyl chloride monomer is produced (Figure 4). The pyrolysis reactor operates at 450 – 

550 ºC and 202.6 – 3242.4 kPa. The conversion for the pyrolysis reaction under these conditions is 40-

60 % and the selectivity to vinyl chloride is 93-100 % (Cowfer and Magistro, 1983). The kinetics of the 

pyrolysis reactions are compiled from various literature sources (Karra and Senkan, 1988; Kurtz, 1972; 

Ranzi et al., 1990; Weissman and Benson, 1984) and are described in appendix A. 

The by-products recovered are recycled. Ethylene dichloride is recycled to the pyrolysis reactor and 

hydrogen chloride is recycled to the oxychlorination reaction section. 

 

 

3.4.1. Feed heating 

EDC produced in the direct chlorination is mixed with EDC produced in the oxychlorination system and 

EDC recycled from the separation system. This stream is considered to be heated to 200 ºC through a 

heat exchanger (E-300) using high-pressure steam as a hot utility. 

 

3.4.2. Feed compression for the pyrolysis system 

EDC enters the process at low pressure (101.3 kPa) and must be compressed to a higher pressure where 

the pyrolysis reaction is feasible. For compression, we assume the choice between a single compressor 

(single-stage compression), a system consisting of two compressors with intermediate cooling (two-
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stage compression) or a system consisting of three compressors with intermediate cooling (three-stage 

compression). To model the system, for the single-stage compression alternative, we define the Boolean 

variable Y13 to operate at low pressure; for the two-stage compression with intermediate cooling, we 

define the Boolean variable Y14 to operate at medium pressure; and for the three-stage compression with 

intermediate cooling, we define the Boolean variable Y15 to operate at high pressure. We can write the 

following disjunction: 

15

,
14

, _ ,
13

, _ ,

_ ,

1621.2 3242.4

405.3 1621.2

405.3202.6 405.3

200º
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Py

Py

Comp out

Comp out Comp Py intermediat

Comp out Comp Py intermediate

Comp Py intermediate

Y

Y kPa P kPa

Y kPa P kPa P

P kPakPa P kPa
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1

_ , 1

_ , 2

_ , 2

405.3

200º
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200º

e

Comp Py intermediate

Comp Py intermediate

Comp Py intermediate

kPa

T C

P kPa

T C

 
 
 
 

 
 
 
 
 

  

 
(10) 

where PComp_Py,intermediate and TComp_Py,intermediate are the intermediate pressure and temperature of two-stage 

compression, respectively (in Figure 4, PComp_Py,intermediate corresponds with the pressure of stream leaving 

the compressor K-301, and TComp_Py,intermediate corresponds with the temperature of the stream leaving the 

heat exchanger E-301). PComp_Py,intermediate1 corresponds with the pressure of stream leaving the 

compressor K-303, and TComp_Py,intermediate1 corresponds with the temperature of the stream leaving the 

heat exchanger E-302. PComp_Py,intermediate2 corresponds with the pressure of stream leaving the compressor 

K-304, and TComp_Py,intermediate2 corresponds with the temperature of the stream leaving the heat exchanger 

E-303. PComp_Py,out is the pressure of stream leaving the feed compression system. 

 

3.4.3. Heating/cooling before the pyrolysis reactor 

The operating conditions selected in the reactor implies that the temperature of its inlet should be 

between 450 and 550 ºC. To get this, the resulting stream from the compressed feed has to be heated or 

cooled. 

To model this situation, we define the Boolean variables Y16 and Y17 to select a heater or a cooler, 

respectively. 

16 17

, ,

, , , ,

450º 550º 450º 550ºFeedPy out FeedPy out

FeedPy in FeedPy out FeedPy in FeedPy out

Y Y

C T C C T C

T T T T
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where TFeedPy,in and TFeedPy,out are the temperatures entering and leaving the exchanger, respectively. 

To simulate the heater (E-304), we use a heat exchanger using fuel oil as a hot utility. To simulate the 

cooler (E-305), we use a water-cooled heat exchanger using water as a refrigerant. 

 

3.4.4. Reactor for pyrolysis 

Vinyl chloride monomer is produced by thermal cracking of EDC in a tubular reactor. A plug flow 

reactor (PFR) was used to model the pyrolysis section, where heat supplied to the reactor (R-300) is 

provided by an oven that uses fuel oil as a hot utility. 

 

3.4.5. Cooler after the pyrolysis reactor 

The stream produced in the pyrolysis reactor is cooled to obtain a liquid stream. To simulate the cooler, 

we use a water-cooled heat exchanger (E-306) using water as a refrigerant. 

 

3.4.6. Separation system 

The next step in the process is the separation system. The stream leaving the cooler (E-306) is first 

pumped before entering to the separation system, where we remove the light component (HCl) and the 

high component (EDC), obtaining VCM with the desired composition. 

To model this situation, we have studied eight different alternative distillation column sequences for 

separation of vinyl chloride, hydrogen chloride and ethylene dichloride (see Figure 5). We define the 

Boolean variables Y18, Y19, Y20, Y21, Y22, Y23, Y24, and Y25. 

a) Direct sequence (Y18). 

b) Direct sequence with a thermal couple (Y19). 

c) Indirect sequence (Y20). 

d) Indirect sequence with a thermal couple (Y21). 

e) Prefractionator (Y22). 

f) Prefractionator with a thermal couple (HCl-VCM) (Y23). 

g) Prefractionator with a thermal couple (VCM-EDC) (Y24). 

h) Divided Wall Column (DWC) (Y25). 
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Note that in this case, we include a Boolean variable for each sequence instead of a separation task (a 

comprehensive discussion on the optimization of complex separation sequences can be found in 

Caballero and Grossmann (2006); (2014)). This is possible because we are considering only eight 

alternatives. The advantage is that we can use a conjunctive representation instead of the disjunctive 

approach. Therefore, we avoid all the problems related to a task representation because we consider 

actual distillation columns. Instead of a Kriging model, in this case, we use the Fenske-Underwood-

Gilliland shortcut model (Fenske, 1932; Gilliland, 1940; Underwood, 1949), which does not introduce 

numerical noise, and validate each configuration with a rigorous simulation. 

 

 

4. Results  

The plant has been simulated on Aspen HYSYS v.8.4 in a 3.60 GHz i7-Core Processor and 8 GB of 

RAM under Windows 7. The UNIQUAC model is used as a thermodynamic package in the simulation. 

Kriging surrogate models were calibrated using MATLAB (The Mathworks, 2014). As MINLP solver, 

we use an implementation of the Outer Approximation (OA) (Duran and Grossmann, 1986) available 

through TOMLAB-MATLAB (Holmström, 1999). The complete model, objective function, explicit 

constraints, implicit models (models in the simulator) and surrogate models, are written in a proprietary 

modeling language (Caballero et al., 2014) interfaced with TOMLAB (Holmström, 1999). 

First, we carry out a sensitivity analysis to determine which units have to be replaced by Kriging 

surrogate models and if we need or not to merge some units in a single surrogate model. The three main 

criteria to decide when a unit (or set of units) is substituted by a surrogate model are the large CPU 

convergence time, an unacceptable numerical noise, and the lack of convergence in the complete area 

of the domain. The reactors and distillation columns are slightly noisy; therefore, those units have been 

replaced by Kriging surrogate models. The rest of the unit operations, mixers, splitters, compressors, 

pumps, heaters, and coolers, are maintained in their original form in the process simulator. 

However, if we substitute each reactor or distillation column by a Kriging surrogate model, some 

surrogate models will have a large number of degrees of freedom (more than 5 or 6 degrees of freedom) 

due to the number of components existing after the reactions. Consequently, some units have been 
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merged into a single metamodel. Specifically, units R-201 and R-202 have been merged into a single 

unit surrogate (unit R-OC). Moreover, a similar situation happens with equipment V-200, T-200, and 

T-201 (unit S-OC). For example, if units R-201 and R-202 are not merged into a single metamodel, the 

resulting surrogate model for unit R-202 would have ten independent variables, due to the amount of 

components produced in unit R-201. However, if we merge both reactors into unit R-OC, the number 

of independent variables is reduced to five. The same behavior occurs if we do not merge V-200, T-200, 

and T-201 into a single unit. 

In a system with numerical noise, if we converge the recycles at each iteration, we must ensure that the 

convergence tolerance is small enough to avoid the numerical noise propagation; otherwise, recycle 

streams could act as noise amplifiers. Besides, the convergence of all the recycles at each iteration 

considerably slow down the optimization because we must converge all the units in the simulator an 

undetermined number of times to close the recycles with the requested accuracy. To avoid all these 

problems, recycles are transferred to the MINLP solver in the form of constraints. The flowsheet 

contains four recycle streams. 

We calibrate a set of smaller surrogate models. Table 2 shows all the input-output Kriging metamodels 

used in this case study. Data for the Kriging models can be found in the supplementary material 

accompanying the paper. 

 

 

Once all the Kriging models have been calibrated, it is important to validate the surrogate models. We 

use “cross-validation” that allows us to check the accuracy of the model without extra sampling. The 

main idea is to exclude one of the points and predict it back using the n-1 remaining points (Jones et al., 

1998). If the number of points is not too small and there are not too many deviations, a single point has 

not too much influence in the Kriging and then it is not needed to reestimate the Kriging parameters. 

This procedure is repeated for all the points. 

As an example, Figure 6 shows the results from cross-validation for VCM produced in the PFR during 

the pyrolysis process. From the data in Figure 6, it can be seen that the differences between the 

simulation model and the Kriging metamodel are minimal. Therefore, the relatively low errors of all the 
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Kriging metamodels in the domain of the variables, allow us to use these models instead of the 

simulation models. 

 

The parameters obtained to build all the Kriging models can be found as supplementary material. 

The aim of this work consists of determining the best flowsheet topology in order to maximize the profit 

of the process, taking into account raw material costs, operating and capital costs, and income from the 

sales of the by-product (TCE) and the main product (VCM). 

The maximum profit obtained after the optimization is $17.0941 million/year. We achieve a maximum 

profit through the optimal configuration shown in Figure 7. 

 

 

 

The optimal solution shows that the best configuration combines the direct chlorination of ethylene with 

the oxychlorination of ethylene in order to maximize the profit of the process. This result is comparable 

with the optimal superstructure obtained in the work by Turkay and Grossmann (1998). The reason for 

not using the direct chlorination alone is because the hydrogen chloride by-product is a toxic chemical 

that has a very limited market demand. This explains why in the optimal flowsheet the HCl by-product 

is recycled to the oxychlorination reaction section, increasing the vinyl chloride production. 

Direct chlorination of ethylene is carried out using the CSTR reactor. For oxychlorination of ethylene, 

the three-stage compression system is used to increase the pressure of raw materials to reactor pressure. 

The oxychlorination reaction takes place in a PFR followed by a small CSTR. EDC obtained by direct 

chlorination and oxychlorination is mixed before entering a three-stage compression system, where the 

pressure is increased to the required pressure in the VCM reactor. Vinyl chloride monomer is separated 

from EDC and HCl using a prefractionator with a thermal couple. 

The main characteristics of the selected equipment in the optimal solution are shown in Table 3, Table 

4 and Table 5.  

 

 

ACCEPTED M
ANUSCRIP

T



22 

 

Mass flows and prices of raw materials and products obtained are shown in Table 6. 

 

 

In this paper, we have built a large number of Kriging models with a low number of degrees of freedom 

(maximum 5 independent variables). Surrogate models with more independent variables tend to be less 

accurate and require a very large number of training points (Quirante et al., 2015). 

The MINLP model is solved in 15 min 41 s. 

The methodology followed has proven to be accurate and reliable to solve hybrid models, which include 

process flowsheet at the level of commercial process simulator, Kriging surrogate models, and explicit 

equations (Quirante and Caballero, 2016). In this case, we have shown that the methodology can be 

easily extended to the case when the topology is not fixed. 

 

4.1. Energy integration of the process flowsheet 

Heat integration is the most effective method to reduce costs, through thermal integration between 

heating and cooling systems. The Heat Exchanger Network (HEN) is a basic component in the most of 

the industrial processes because they can significantly contribute to decreasing energy consumption 

(Allen et al., 2009). Therefore, in order to improve the energy efficiency of the plant, the heat exchanger 

network of the VCM process has been designed. 

The heat content of the reactor streams may be used to heat the cold streams. The process has fifteen 

hot process streams (H1 – H15) and nine cold process streams (C1 – C9). Following the solution 

obtained from the optimal process, the temperatures and the heat capacity flowrates are used to get a 

heat exchanger network (HEN). To determine the optimal HEN we have followed the MINLP 

formulation proposed by Yee and Grossmann (1990). A minimum approach temperature (ΔTml) of 10 

ºC is assumed for an efficient heat exchanger. 

Data of the streams involved in the heat integration are shown in Table 7. 

 

 

ACCEPTED M
ANUSCRIP

T



23 

 

The profit obtained prior to the heat integration is $17.0941 million/year, and the profit obtained after 

the heat integration is raised to $18.7971 million/year. Table 8 summarizes the utility needed on the 

economically optimized plant and on the heat integrated plant. 

 

 

Table 8 shows that utility consumptions are considerably reduced in the heat integrated process. The 

HEN reduces heating and cooling requirements (66.8 % and 26.3 %, respectively), what implies a 

reduction in the corresponding operating costs. 

Finally, the HEN has been generated using the superstructure approach proposed by Yee and Grossmann 

(1990). Figure 8 shows the heat exchanger network. 

 

 

In addition, several studies have shown that a reduction of energy consumption can accomplish the 

minimization of environmental impacts (Lara et al., 2013; Morar and Agachi, 2010). 

 

4.2. Economic feasibility study 

The optimization of the VCM process has been performed using deterministic values of the raw 

materials, products and utility prices given in Table 1. However, in this section, we check the economic 

feasibility of the optimized and heat integrated process in a more rigorous way. To this end, the inherent 

uncertainty in the raw material and product prices are taken into account. Assuming uncertainty in the 

prices provides robust results as opposed to the deterministic ones, based on nominal values. The 

objective of this study is not to optimize the flowsheet by introducing uncertainty in the prices, but it is 

to study how a change in the prices could influence in achieving the desired profit. 

To assess the benefits from the optimal process assuming a level of uncertainty in the prices, various 

metrics may be employed. For our purposes, the concept of financial risk is used. 

The financial risk is a probabilistic approach to risk management defined as the probability of not 

meeting a certain target value,  (Barbaro and Bagajewicz, 2004). In the framework of the present 

economic study, the financial risk is referred as the probability of not meeting the desired profit with 
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our optimal VCM process. The financial risk (FRisk) associated with our VCM flowsheet, x, and a target 

value, , is given by Eq.(12). 

   ,FRisk x P Profit x      (12) 

where Profit(x) is the actual profit (the resulting profit after introducing the uncertainty). Because a finite 

number of independent scenarios represents uncertainty in the raw material and product prices, the 

financial risk can be defined in terms of the probability of not meeting the target value in each scenario 

s. 

   , s

s S

FRisk x P Profit x


       (13) 

In addition, for each particular scenario, the profit is either greater (or equal) than the target value, in 

which case the probability is zero, or smaller than the target when the probability is one. Therefore, the 

financial risk can be expressed as Eq.(14). 

   , ,s s

s S

FRisk x Z x


    (14) 

where s is the probability of scenario, generally taken as 1/|S|, where |S| is the cardinality of the set of 

scenarios; and Zs() is a binary variable defined for each scenario (see Eq.(15)). 

 
1   ( )

,         
0  

s

s

if Profit x
Z x s S

otherwise

 
   


 (15) 

The profit achieved with the process is calculated through Eq.(16). 

( $ / )s s sProfit MM year Income Costs TAC    (16) 

Each term of Eq.(16) is given by Eq.(17). 

2 2

( $ / )   

( $ / )     

( $ / )  ·  

s s s

s s s s s

Income MM year VCM Sales TCE Sales

Costs MM year Ethylene Cost Cl Cost HCl Cost O Cost

TAC MM year Operating cost F Capital cost

 

   

 

 (17) 

A critical issue in this methodology is the generation of appropriate values of the uncertain parameters. 

In this work, we model the uncertainty in the raw material and product prices by a set of scenarios, 

generated by Monte Carlo sampling (Marsaglia and Tsang, 2000). 

There is a broad family of probability distribution functions. Some of the most common ones are the 

normal, uniform, triangular and lognormal distributions. In this case, we have selected the triangular 
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distribution for the generation of the different scenarios. This distribution is typically used in economic 

simulations and provides a good representation of the probability distribution for the uncertain prices 

when limited sample data is available (The Mathworks, 2014). Parameters for triangular distribution are 

the minimum price a, the maximum price b, and the most likely price c. 

Data prices for raw materials, products, and utilities are shown in Table 9 (updated values to 2015) 

(ICIS, 2015). 

 

The parameters of the triangular distribution a, b and c are obtained from this data. The parameters a 

and b are obtained from Table 9, decreasing and increasing the minimum and maximum prices by 10 % 

respectively. And the most likely price c is estimated from the sample mean. The results are shown in 

Table 10. 

 

 

The expected value E[X], variance Var[X] and standard deviation sd[X] of the triangular probability 

distribution function are obtained through the following expressions (see Table 11): 

 

 

   

2 2 2

3

18

a b c
E X

a b c ab ac bc
Var X

sd X Var X

 


    




 (18) 

 

 

The more direct way to assess the trade-offs between risk and the potential profit of the proposed VCM 

process is to use the cumulative risk curve.  For the given process, this curve shows the level of incurred 

financial risk at each potential profit level. Therefore, the cumulative curve is obtained when the 

financial risk of a set of different targets   is computed and plotted. Figure 9 shows the cumulative risk 

curve for the optimal and heat integrated VCM process for a set of expected profits ranging from 0 to 

30 million dollars per year. 
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The curve of Figure 9 shows that the optimal profit obtained after the heat integration ($18.7911 

million/year) is found for an incurred financial risk around 55.9 %. In addition, as a reference value, the 

configuration obtained can achieve a potential profit of $12.2 million/year with a financial risk of not 

achieving the target value of 5 %. 

 

5. Conclusions 

In this paper, we have dealt with hybrid models involving process simulators and explicit constraints. 

The problem that certain simulation modules present is that they can be slightly noisy or difficult to 

converge. In this work, this problem has been addressed by combining process simulators and surrogate 

models based on Kriging interpolation. Additionally, some parts of the model were aggregated in order 

to reduce the degrees of freedom of the Kriging surrogate models, allowing us to increase the robustness 

of the optimization model. Therefore, the final model was composed of unit operations maintained in 

the simulator, Kriging surrogate models, and explicit equations. 

As a case study, the optimization of the benchmark vinyl chloride monomer production process has been 

proposed to demonstrate the robustness of the proposed approach. The process consists of three reaction 

sections: direct chlorination (CSTR), oxychlorination (PFR + CSTR) and pyrolysis (PFR). 

This approach can be used to synthesize any chemical process using a superstructure optimization-based 

approach. Once the alternatives have been selected and the superstructure generated, the great advantage 

of the proposed approach is that the solution is a feasible flowsheet (at least a locally optimal solution) 

generated using state-of-the-art models (e.g., those implemented in a commercial process simulator or 

any other proprietary software).  

The direct industrial implementation depends on which is the confidence of the designer in the model. 

The approach could be used always but is the designer who decides the level of complexity of the models 

to balance rigorousness with numerical efficiency. However, this is out of the scope of the paper. We 

propose a framework that allows using the best available model(s) –rigorous thermodynamics, transport 

equations, etc.– for synthesizing chemical processes. 
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Energy integration of the process flowsheet was also performed to determine the minimum utility 

consumption of the process, obtaining the heat exchanger network. This allows us a significant cost 

saving, with the consequent reduction of the environmental impacts. 

The financial risk was also studied. The optimal configuration obtained can achieve a potential profit of 

$12.2 million/year with a financial risk of not achieving the target value around 5 %. 

It has been shown that the proposed method is very effective, efficient and robust for structural flowsheet 

optimization problems. 
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Appendix A. Kinetic schemes for the reaction sections in the vinyl chloride monomer production 

A.1. Direct chlorination reaction kinetics 

The kinetics for direct chlorination of ethylene to EDC were derived from Wachi and Morikawa (1986). 

EDC and trichloroethane (TCE) are formed through molecular addition and substitution reactions. 

Reaction DC1: 
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A.2. Oxychlorination reaction kinetics 

The kinetics for oxychlorination of ethylene to EDC were derived from a series of papers by Gel’Perin 

et al. (1979, 1983, 1984). EDC and several byproducts are formed by the following reactions. 

Reaction OC1: 
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Reaction OC3: 
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A.3. Pyrolysis reaction kinetics 

The kinetics for the pyrolysis of EDC to vinyl chloride monomer were compiled from various literature 

sources (Karra and Senkan, 1988; Kurtz, 1972; Ranzi et al., 1990; Weissman and Benson, 1984). Vinyl 

chloride, HCl, and EDC are the main products formed through the following reactions. 

Reaction P1: 
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Reaction P2: 
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Reaction P3: 
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Figure 1. Superstructure for the vinyl chloride monomer production. 

 

 

Figure 2. Superstructure for the direct chlorination of ethylene. 

 

 

Figure 3. Superstructure for the oxychlorination of ethylene. 

 

 

Figure 4. Superstructure for the pyrolysis of EDC.  
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Figure 5. Eight separation configurations represented in Figure 4 as “separation sequences”. Notation: 

Hydrochloric acid (HCl), Vinyl Chloride Monomer (VCM), Ethylene Dichloride (EDC). 
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Figure 6. Cross-validation for VCM produced in the pyrolysis reactor. 

 

 

Figure 7. Optimized flowsheet for the production of vinyl chloride monomer. 
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Figure 8. Heat exchanger network of the VCM plant. 

 

 

Figure 9. Cumulative risk curve. 
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Table 1. Prices of the raw materials, products, and utilities. 

Raw material 

/Product 
Cost ($/kg)  Utility 

Cost 

($/kWh) 

Ethylene 1.2802  Refrigerants  

Cl2 0.2578  Cooling water (30ºC to 40ºC) 0.0013 

HCl 0.0855  Refrigerant (refrigerated water 5ºC) 0.0159 

O2 0.0416  Refrigerant (low temperature -20ºC) 0.0284 

   Refrigerant (very low temperature -50ºC) 0.0472 

VCM 0.7505  Refrigerant (extremely low temperature -100ºC) 0.0900 

TCE 1.1920  Electricity 0.0600 

   Steam from boilers  

   LP steam (500 kPa, 160ºC) 0.0506 

   HP steam (4100 kPa, 254ºC) 0.0637 

   Fuel oil 0.0511 
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Table 2. Input-output Kriging metamodels used in the case study. 

 Inputs Outputs 

R-101 Temperature 

Pressure 

Mass flow (ethylene, Cl2) 

Mass flow (ethylene, Cl2, EDC) 

Heat flow 

T-100 Temperature 

Pressure 

Mass flow (ethylene, Cl2, EDC) 

Mass flow (distillate [ethylene, Cl2], bottom [EDC]) 

Temperature (distillate, bottom) 

Heat flow (E-103, E-104)  

Diameter 

R-OC Temperature 

Pressure 

Mass flow (ethylene, HCl, O2) 

Mass flow (ethylene, HCl, O2, EDC, TCE, H2O) 

Heat flow (R-201, R-202) 

S-OC Temperature 

Pressure 

Mass flow (ethylene, HCl, O2) 

Mass flow (distillate [ethylene, HCl, O2]) 

Mass flow (distillate [EDC], bottom [TCE]) 

Mass flow H2O 

Temperature distillate (T-200, T-201) 

Temperature bottom (T-200, T-201) 

Heat flow (E-203, E-204, E-205, E-206) 

Diameter (T-200, T-201) 

R-300 Temperature 

Pressure 

Mass flow (EDC) 

Mass flow (HCl, EDC, VCM) 

Heat flow 
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Table 3. Main characteristics of equipment selected in direct the chlorination system. 

Compressor (K-100)  Heater (E-100) 

Type Single-stage 

compression 
 Type Heater 

Inlet pressure (kPa) 101.3250  Area (m2) 0.7238 

Outlet pressure (kPa) 101.3250  Inlet temperature (ºC) 22.7518  

Power (kW) 0.0000  Outlet temperature (ºC) 73.0941 

   Utility LP steam 

Cost   Cost  

Annualized capital cost ($MM/year) 0.0000  Annualized capital cost ($MM/year) 0.0235 

Electricity cost ($MM/year) 0.0000  Utility cost ($MM/year) 0.0265 

     

Reactor (R-101)  Cooler (E-102) 

Type CSTR  Type Cooler 

Volume (m3) 50.0000  Area (m2) 1.6963 

Utility Water  Inlet temperature (ºC) 73.0941 

Energy (kW) 3192.3029  Outlet temperature (ºC) 40.0000 

   Utility Water 

Cost   Cost  

Annualized capital cost ($MM/year) 0.1063  Annualized capital cost ($MM/year) 0.0184 

Utility cost ($MM/year) 0.0325  Utility cost ($MM/year) 0.0079 

     

Column (T-100) 

Condenser   Reboiler  

Area (m2) 1.6963  Area (m2) 1.7808 

Temperature distillate (ºC) -26.8069  Temperature distillate (ºC) 82.6478 

Utility Refrigerant  Utility LP steam 

Cost   Cost  

Annualized capital cost ($MM/year) 0.0668  Annualized capital cost ($MM/year) 0.0435 

Utility cost ($MM/year) 0.0071  Utility cost ($MM/year) 0.0457 

     

Trays and tower     

Material of construction Carbon steel  Number of trays [Nt] 10.0000 

Tray spacing (m) Ht = 0.6096  Diameter (m) 0.3016 

Column height (m) H = 3 + Nt·Ht  Annualized capital cost ($MM/year) 0.0055 
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Table 4. Main characteristics of equipment selected in the oxychlorination system. 

Compression system     

Type Three-stage compression 

Compressor (K-203)  Cooler (E-201) 

Inlet pressure (kPa) 101.3250  Area (m2) 0.3455 

Outlet pressure (kPa) 202.6500  Inlet temperature (ºC) 45.6500 

Power (kW) 91.5638  Outlet temperature (ºC) 40.0000 

   Utility Water 

Cost   Cost  

Annualized capital cost ($MM/year) 0.0266  Annualized capital cost ($MM/year) 0.0317 

Electricity cost ($MM/year) 0.0440  Utility cost ($MM/year) 0.0012 

     

Compressor (K-204)  Cooler (E-202) 

Inlet pressure (kPa) 202.6500  Area (m2) 0.2414 

Outlet pressure (kPa) 405.3000  Inlet temperature (ºC) 108.3278 

Power (kW) 109.5742  Outlet temperature (ºC) 100.0000 

   Utility Water 

Cost   Cost  

Annualized capital cost ($MM/year) 0.0316  Annualized capital cost ($MM/year) 0.0376 

Electricity cost ($MM/year) 0.0526  Utility cost ($MM/year) 0.0001 

     

Compressor (K-204)  Heater (E-203) 

Inlet pressure (kPa) 405.3000  Area (m2) 1.9266 

Outlet pressure (kPa) 810.6000  Inlet temperature (ºC) 181.4258 

Power (kW) 130.5789  Outlet temperature (ºC) 225.0000 

   Utility HP steam 

Cost   Cost  

Annualized capital cost ($MM/year) 0.0372  Annualized capital cost ($MM/year) 0.0180 

Electricity cost ($MM/year) 0.0627  Utility cost ($MM/year) 0.0383 

     

Reactor (R-201)  Reactor (R-202) 

Type PFR  Type CSTR 

Diameter (m) 0.1330  Volume (m3) 5 

Length (m) 2.0000  Utility Water 

Number of tubes 36.0000  Energy (kW) 379.7062 

Utility Water    

Energy (kW) 2664.0722    

Cost   Cost  

Annualized capital cost ($MM/year) 0.0109  Annualized capital cost ($MM/year) 0.0317 

Utility cost ($MM/year) 0.0272  Utility cost ($MM/year) 0.0039 

     

Cooler (E-205)  Vessel (V-200) 

Area (m2) 5.2845  Type  3-phase separator 

Inlet temperature (ºC) 225.0000  

Outlet temperature (ºC) 40.0000  Inlet temperature (ºC) 40.0000 

Utility Water  Pressure (kPa) 810.6000 

Cost   Vapor phase 0.4630 

Annualized capital cost ($MM/year) 0.0156  Molar flow (kg/h) 7304.4781 

Utility cost ($MM/year) 0.0527    
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Table 4. Main characteristics of equipment selected in the oxychlorination system (continued). 

Column (T-200) 

Condenser (E-206)   Reboiler (E-207)  

Area (m2) 2.7728  Area (m2) 0.9944 

Temperature distillate (ºC) -53.2189  Temperature distillate (ºC) 79.0712 

Utility Refrigerant  Utility LP steam 

Cost   Cost  

Annualized capital cost ($MM/year) 0.0331  Annualized capital cost ($MM/year) 0.0685 

Utility cost ($MM/year) 0.1078  Utility cost ($MM/year) 0.0952 

     

Trays and tower     

Material of construction Carbon steel  Number of trays [Nt] 10.0000 

Tray spacing (m) Ht = 0.6096  Diameter (m) 0.5246 

Column height (m) H = 3 + Nt·Ht  Annualized capital cost ($MM/year) 0.0067 

     

Column (T-201) 

Condenser (E-208)   Reboiler (E-209)  

Area (m2) 41.5572  Area (m2) 24.1020 

Temperature distillate (ºC) 62.7384  Temperature distillate (ºC) 113.5267 

Utility Water  Utility LP steam 

Cost   Cost  

Annualized capital cost ($MM/year) 0.0196  Annualized capital cost ($MM/year) 0.0185 

Utility cost ($MM/year) 0.0093  Utility cost ($MM/year) 0.3717 

     

Trays and tower     

Material of construction Carbon steel  Number of trays [Nt] 20.0000 

Tray spacing (m) Ht = 0.6096  Diameter (m) 0.8484 

Column height (m) H = 3 + Nt·Ht  Annualized capital cost ($MM/year) 0.0153 
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Table 5. Main characteristics of equipment selected in the pyrolysis system. 

Heater (E-300) 

Area (m2) 5.7292  Cost  

Inlet temperature (ºC) 83.4251  Annualized capital cost ($MM/year) 0.0155 

Outlet temperature (ºC) 200.0000  Utility cost ($MM/year) 0.2427 

Utility HP steam    

     

Compression system     

Type Three-stage compression 

Compressor (K-303)  Cooler (E-302) 

Inlet pressure (kPa) 101.3250  Area (m2) 1.3905 

Outlet pressure (kPa) 405.3000  Inlet temperature (ºC) 251.7792 

Power (kW) 687.6363  Outlet temperature (ºC) 200.000 

   Utility Water 

Cost   Cost  

Annualized capital cost ($MM/year) 0.1531  Annualized capital cost ($MM/year) 0.0193 

Electricity cost ($MM/year) 0.3301  Utility cost ($MM/year) 0.0022 

     

Compressor (K-304)  Cooler (E-303) 

Inlet pressure (kPa) 405.3000  Area (m2) 2.4722 

Outlet pressure (kPa) 810.6000  Inlet temperature (ºC) 303.2558 

Power (kW) 421.7447  Outlet temperature (ºC) 200.0000 

   Utility Water 

Cost   Cost  

Annualized capital cost ($MM/year) 0.1036  Annualized capital cost ($MM/year) 0.0171 

Electricity cost ($MM/year) 0.2024  Utility cost ($MM/year) 0.0043 

     

Compressor (K-305)  Heater (E-304) 

Inlet pressure (kPa) 810.6000  Area (m2) 4.3766 

Outlet pressure (kPa) 2063.4038  Inlet temperature (ºC) 343.0175 

Power (kW) 584.1500  Outlet temperature (ºC) 471.4226 

   Utility Fuel oil 

Cost   Cost  

Annualized capital cost ($MM/year) 0.1347  Annualized capital cost ($MM/year) 0.0165 

Electricity cost ($MM/year) 0.2804  Utility cost ($MM/year) 0.2145 

     

Reactor (R-300)  Cooler (E-306) 

Type PFR  Type Cooler 

Diameter (m) 0.6180  Area (m2) 14.7338 

Length (m) 20.0000  Inlet temperature (ºC) 471.4226 

Number of tubes 50.0000  Outlet temperature (ºC) 32.2022 

Utility Fuel oil  Utility Water 

Energy (kW) 1499.6086    

Cost   Cost  

Annualized capital cost ($MM/year) 0.1024  Annualized capital cost ($MM/year) 0.0163 

Utility cost ($MM/year) 0.6133  Utility cost ($MM/year) 0.2289 

     

Pump (P-300) 

Adiabatic efficiency (%) 75.0000  Cost  

Inlet pressure (kPa) 2063.4038  Annualized capital cost ($MM/year) 0.0029 

Outlet pressure (kPa) 2335.0097  Utility cost ($MM/year) 0.0007 

Power (kW) 1.3842    
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Table 5. Main characteristics of equipment selected in the pyrolysis system (continued). 

Column (T-300) 

Condenser (E-307)   Trays and tower  

Temperature distillate (ºC) 26.7931  Material of construction Carbon steel 

Utility Water  Number of trays [Nt] 15.000 

Cost   Tray spacing (m) Ht = 0.6096 

Annualized capital cost ($MM/year) 0.4420  Column height (m) H = 3 + Nt·Ht 

Utility cost ($MM/year) 0.0003  Diameter (m) 0.3487 

   Annualized capital cost ($MM/year) 0.0176 

     

Column (T-301) 

Condenser (E-308)   Reboiler (E-309)  

Temperature distillate (ºC) 0.7869  Temperature distillate (ºC) 231.6219 

Utility Refrigerant  Utility HP steam 

Cost   Cost  

Annualized capital cost ($MM/year) 0.0202  Annualized capital cost ($MM/year) 0.0223 

Utility cost ($MM/year) 0.0672  Utility cost ($MM/year) 0.4726 

     

Trays and tower     

Material of construction Carbon steel  Number of trays [Nt] 39.0000 

Tray spacing (m) Ht = 0.6096  Diameter (m) 0.5577 

Column height (m) H = 3 + Nt·Ht  Annualized capital cost ($MM/year) 0.0633 
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Table 6. Mass flows and prices of products and raw materials. 

 
Mass flow 

(kg/h) 

Utility cost 

($MM/year) 

Raw material 

Ethylene 2083.4214 20.6234 

Cl2 4077.4712 8.1281 

HCl 0.4238 0.0003 

O2 892.2568 0.2867 

Product 

TCE 2657.0717 26.9959 

VCM 4652.0717 24.4880 

 

Table 7. Steams involved in the heat integration. 

 Tin (ºC) Tout (ºC) F·Cp (kW/ºC) Type 

H1 73.0941 72.0941 2673.6591 Hot 

H2 73.0941 40.0000 2.0826 Hot 

H3 -26.8069 -27.8069 39.6429 Hot 

H4 45.6500 40.0000 1.6529 Hot 

H5 108.3278 100.0000 1.7091 Hot 

H6 225.0000 224.0000 2664.0722 Hot 

H7 225.0000 224.0000 379.7062 Hot 

H8 225.0000 40.0000 2.3749 Hot 

H9 -53.2189 -54.2189 103.7722 Hot 

H10 62.7384 61.7384 912.1067 Hot 

H11 251.7792 200.0000 4.2631 Hot 

H12 303.2558 200.0000 4.1830 Hot 

H13 471.4226 32.2022 5.8558 Hot 

H14 26.7931 25.7931 2.4989 Hot 

H15 0.7869 -0.2131 295.5232 Hot 

C1 22.7518 73.0941 1.3371 Cold 

C2 82.6478 83.6478 1.1352 Cold 

C3 181.4258 225.0000 1.8075 Cold 

C4 79.0712 80.0712 65.9928 Cold 

C5 113.5267 114.5267 918.4802 Cold 

C6 83.4251 200.0000 4.0908 Cold 

C7 343.0175 471.4226 4.7299 Cold 

C8 471.4226 472.4226 1499.6086 Cold 

C9 231.6219 232.6219 927.0966 Cold 
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Table 8. Utility needed on the VCM plant. 

 
Economically optimized 

plant 

Heat integrated 

plant 

Heating requirements (kW)   

LP steam 1162.8131 0.0000 

HP steam 1478.2870 0.0000 

Fuel oil 2024.0745 1546.908 

Cooling requirements (kW)   

Water 7794.7779 7254.3630 

Refrigerated water 5 ºC 2280.2925 38.4697 

Refrigerant low temperature -20 ºC 295.5232 295.5232 

Refrigerant very low temperature -50 ºC 18.9159 39.6429 

Refrigerant extremely low temperature -100 ºC 103.7722 103.7722 

   

Utility cost (MM$/year) 2.5713 0.8683 

 

 

Table 9. Data prices for raw materials, products, and utilities. 

Raw material 

/ Product 

Price range ($/kg)  Utility Price range 

($/kWh) 

Ethylene 0.9813 – 1.4934  Cooling water 0.0013 

Cl2 0.1839 – 0.3145  Refrigerated water 0.0159 

HCl 0.0744 – 0.0909  Low temperature refrigerant 0.0284 

   Very low temperature refrigerant 0.0472 

VCM 0.6827 – 0.7680  Extremely low temperature refrigerant 0.0900 

TCE 1.1094 – 1.1947  LP steam 0.0506 

   HP steam 0.0637 

   Fuel oil 0.0460 – 0.0562 

   Electricity 0.0540 – 0.0660 
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Table 10. Triangular probability distribution model parameters. 

 Ethylene 

($/kg) 

Cl2 

($/kg) 

HCl 

($/kg) 

VCM 

($/kg) 

TCE 

($/kg) 

Electricity 

($/kWh) 

Fuel oil 

($/kWh) 

a 0.8832 0.1655 0.0670 0.6144 0.9984 0.0486 0.0414 

b 1.6427 0.3459 0.1000 0.8448 1.3142 0.0726 0.0618 

c 1.2374 0.2492 0.0827 0.7253 1.1520 0.0600 0.0511 

 

 

Table 11. Expected value, variance, and standard deviation of the raw material and product prices. 

 Ethylene 

($/kg) 

Cl2 

($/kg) 

HCl 

($/kg) 

VCM 

($/kg) 

TCE 

($/kg) 

Electricity 

($/kWh) 

Fuel oil 

($/kWh) 

Expected value E[X] 1.2544 0.2535 0.0832 0.7282 1.1549 0.0604 0.0514 

Variance Var[X] 0.0241 0.0014 0.0000 0.0022 0.0042 0.0000 0.0000 

Standard deviation sd[X] 0.1551 0.0369 0.0068 0.0470 0.0645 0.0049 0.0042 
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