
Accepted Manuscript

Scheduling framework for distributed intrusion detection systems over heterogeneous
network architectures

José Francisco Colom, David Gil, Higinio Mora, Bruno Volckaert

PII: S1084-8045(18)30041-9

DOI: 10.1016/j.jnca.2018.02.004

Reference: YJNCA 2063

To appear in: Journal of Network and Computer Applications

Received Date: 19 July 2017

Revised Date: 22 December 2017

Accepted Date: 2 February 2018

Please cite this article as: Colom, José.Francisco., Gil, D., Mora, H., Volckaert, B., Scheduling
framework for distributed intrusion detection systems over heterogeneous network architectures, Journal
of Network and Computer Applications (2018), doi: 10.1016/j.jnca.2018.02.004.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to
our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please
note that during the production process errors may be discovered which could affect the content, and all
legal disclaimers that apply to the journal pertain.

https://doi.org/10.1016/j.jnca.2018.02.004

M
ANUSCRIP

T

ACCEPTE
D

ACCEPTED MANUSCRIPT

data
capture

switch feature
extraction

switch

feature
extraction

switch

feature
extraction

switch

IDS data flow
possible path

for IDS data flow

Mobile computer

Cloud computer

communication
switch-controller

target

ta
rg

et

target

target

FIFO
IDS task

Framework
component

anomaly
detection

anomaly
detection

anomaly
detection

headers features

a
le

rt
s

features

features

a
le

rt
s

a
le

rt
s

CONTROLLER Scheduler

Predictive
model

History

Node
monitor

Application
(T,F)

Computers

i

M
ANUSCRIP

T

ACCEPTE
D

ACCEPTED MANUSCRIPT

Scheduling framework for distributed intrusion
detection systems over heterogeneous network

architectures

José Francisco Coloma,∗, David Gila, Higinio Moraa, Bruno Volckaertb

aDepartment of Computer Science Technology and Computation, University of Alicante,
Alicante, Spain

bDepartment of Information Technology, Ghent University, Technologiepark-Zwijnaarde 15,
B-9052 Ghent, Belgium

Abstract

The evolving trends of mobility, cloud computing and collaboration have

blurred the perimeter separating corporate networks from the wider world.

These new tools and business models enhance productivity and present new

opportunities for competitive advantage although they also introduce new risks.

Currently, security is one of the most limiting issues for technological develop-

ment in fields such as Internet of Things or Cyber-physical systems.

This work contributes to the cyber security research field with a design

that can incorporate advanced scheduling algorithms and predictive models in

a parallel and distributed way, in order to improve intrusion detection in the

current scenario, where increased demand for global and wireless interconnection

has weakened approaches based on protection tasks running only on specific

perimeter security devices.

The aim of this paper is to provide a framework to properly distribute in-

trusion detection system (IDS) tasks, considering security requirements and

variable availability of computing resources. To accomplish this, we propose a

novel approach, which promotes the integration of personal and enterprise com-

puting resources with externally supplied cloud services, in order to handle the

∗Corresponding author
Email addresses: jfcolom@dtic.ua.es (José Francisco Colom), dgil@dtic.ua.es (David

Gil), hmora@dtic.ua.es (Higinio Mora), bruno.volckaert@UGent.be (Bruno Volckaert)

Preprint submitted to Journal of Network and Computer Applications December 21, 2017

M
ANUSCRIP

T

ACCEPTE
D

ACCEPTED MANUSCRIPT

security requirements.

For example, in a business environment, there is a set information resources

that need to be specially protected, including data handled and transmitted by

small mobile devices. These devices can execute part of the IDS tasks necessary

for self-protection, but other tasks could be derived to other more powerful

systems. This integration must be achieved in a dynamic way: cloud resources

are used only when necessary, minimizing utility computing costs and security

problems posed by cloud, but preserving local resources when those are required

for business processes or user experience.

In addition to satisfying the main objective, the strengths and benefits of

the proposed framework can be explored in future research. This framework

provides the integration of different security approaches, including well-known

and recent advances in intrusion detection as well as supporting techniques that

increase the resilience of the system.

The proposed framework consists of: (1) a controller component, which

among other functions, decides the source and target hosts for each data flow;

and (2) a switching mechanism, allowing tasks to redirect data flows as estab-

lished by the controller scheduler.

The proposed approach has been validated through a number of experiments.

First, an experimental DIDS is designed by selecting and combining a number

of existing IDS solutions. Then, a prototype implementation of the proposed

framework, working as a proof of concept, is built. Finally, singular tests show-

ing the feasibility of our approach and providing a good insight into future work

are performed.

Keywords: Cyber security, Distributed Intrusion Detection System, Cloud

computing, Internet of Things

1. Introduction

Over the past decade, IT environments have become increasingly vulnera-

ble. The evolving trends of mobility, cloud computing and collaboration, have

2

M
ANUSCRIP

T

ACCEPTE
D

ACCEPTED MANUSCRIPT

blurred the perimeter separating corporate networks from the wider world.

While increased mobility may make an organisation and its employees more5

productive, it also creates layers of complexity for securing the enterprise [1].

In the coming years, cyber attacks will almost certainly intensify. Network-

ing technology vendor Cisco Systems forecasts that by 2020, 50 billion devices

will be connected to the Internet, including a large portion of industrial, mili-

tary and aerospace related devices and systems. Each new thing that connects10

to cyberspace is a potential target for a cyber attack [2].

One of the main approaches to information security and cyber security (see

[3] for a discussion about the difference between these two terms) has been the

development and deployment of intrusion detection systems (IDS) [4]. An IDS

dynamically controls the operations that need to be considered in an environ-15

ment by monitoring log files, network traffic or other sources. Then, it infers

whether these actions indicate an attack or they are usual practices in the en-

vironment [5]. Many intrusion detection techniques, frameworks, projects, and

products have been developed since the proposal of this approach. Currently,

the interest of diverse IDS approaches is growing as shown by the recent works20

in anomaly detection [6, 7], wireless sensor networks [8], mobile agents [9], new

statistical and machine learning techniques [10, 11, 12], smart grids [13], among

many others.

Taking into account the current scenario, where the network perimeter is

increasingly complex, having a number of instances of IDS processes deployed25

in select interconnection devices and security solutions, has become ineffective.

Furthermore, the classical “insiders” vs. “outsiders” distinction when referring

to network attackers could be irrelevant, since an outsider computer can become

internal without breaking any physical barrier by means of wireless network

attacks (other reasons for fighting insider threats can be found in [14]). Ideally,30

an effective network IDS should be able to examine all the data flows between all

computers regardless of its position in relation to corporate firewalls. Figure 1

gives a simplified view of this evolution of the connectivity and the implications

on the required security processes.

3

M
ANUSCRIP

T

ACCEPTE
D

ACCEPTED MANUSCRIPT

M
ai
nf
ra
m
e

M
ai
nf
ra
m
e

cloud
services

personal
"things"

home
network

corporate
network

Internet

Internet

router
switch

DMZ

(a) (b)

Figure 1: Conventional (a) and trendy (b) connectivity patterns. As connectivity moves

forward, all nodes should incorporate security processes for intrusion detection.

The proliferation of radio frequency identification (RFID), wireless sensor35

network (WSN), and smart mobile technologies, among others, in a communicating-

actuating network creates the Internet of Things (IoT). In this situation, sensors

and actuators are conjunct with the environment that surrounds us in order to

share information across platforms [15]. In a typical IoT scenario, sensor devices

with limited computing power and a specific purpose, interact with general pur-40

pose computers with relatively high computing power and capable of addressing

a diverse task load (laptops and desktop computers, among others); moreover,

they can utilize the almost limitless (albeit at a price) supply of computing

power brought by cloud vendors [16].

In order to maximize the protection offered by an IDS, IoT devices must45

participate in the detection process by capturing, filtering and analysing log

records and network traffic. However, such a distributed IDS configuration

comes with a major drawback: the computing resources embedded in user de-

vices are intended to serve mainly user applications, but some IDS processes are

usually resource-hungry which could compromise device performance or energy50

consumption, and therefore, deteriorate user experience. Fortunately, this load

4

M
ANUSCRIP

T

ACCEPTE
D

ACCEPTED MANUSCRIPT

can be alleviated by offloading part of the processing to the cloud, although po-

tentially incurring other drawbacks, such as increased cost or additional security

problems.

This work aims to provide a framework to properly schedule IDS tasks, con-55

sidering security requirements and variable availability of computing resources

in the devices. The presented approach favours the integration of personal and

enterprise computing resources with externally supplied cloud services, in order

to fit IDS requirements. Moreover, this integration is achieved in a flexible way:

cloud resources are used only when necessary, minimizing utility computing60

costs while at the same time preserving local resources when they are required

for business processes or user experience. In other words, different IDS activ-

ities are distributed throughout the network, taking the best of both worlds:

local execution with own computing resources and remote execution through

cloud-supplied services.65

The rest of the paper is organized as follows. First, a review of current IDS

related research areas and their relevant architectural solutions is presented.

Then, the framework design is proposed by formally defining the problem and

providing a conceptual view of the solution. After that, the experimental design

is addressed and tests are conducted, and the feasibility of the solution is verified.70

Finally, relevant conclusions and future directions of the research are drawn.

2. Related work

With the arrival of anomaly-based intrusion detection systems, there are

many approaches and techniques which have been developed to track novel at-

tacks on the systems. The scope of the review presented in [17] encompass75

core methods of computational intelligence, including artificial neural networks,

fuzzy systems, evolutionary computation, artificial immune systems, swarm in-

telligence, and soft computing. Machine learning methods are having a relevant

presence, especially in the anomaly detection area. For example, in [18], mutual

information is successfully explored to perform feature selection; in [19], the80

5

M
ANUSCRIP

T

ACCEPTE
D

ACCEPTED MANUSCRIPT

current state of ensemble-based methods in modern IDS is presented; in [20],

decision trees and support vector machines are combined to model intrusion

detection systems.

Alert correlation in collaborative IDS is another important approach; a num-

ber of algorithms and methods have been described in [21] and [22]. An IDS85

may be adopted and implemented to detect attacks and alert the operators

triggering a human intervention. However, the resource-constrained nature of

certain environments (Cyber-physical Systems, Internet of Things) presents a

challenge, since a reliable and accurate IDS can be computationally expensive

[23]. Consequently, computational nodes may not be able to perform intru-90

sion detection uninterruptedly. This leads researchers to devise a distributed

approach to intrusion detection [24].

In this article, the problem of deciding which devices process which parts of

the IDS system is tackled, and this in computer networks where intelligent sen-

sors and mobile devices can exchange information with servers through cloud95

services. In such an environment there is no a permanent corporate firewall

which hosts the IDS processes, but each device is responsible for its own protec-

tion against intrusions. On the other hand, machine learning IDS methods as

mentioned above require computing resources; these resources can be provided

by the device itself or by other computers, with the corresponding advantages100

and drawbacks. The proposed model allows to dynamically switch among dif-

ferent resource providers considering different parameters, e.g. performance,

operational cost or energy efficiency.

Intrusion detection has been extensively studied for servers, corporate net-

works and cloud resources [25], where computational power is not an impor-105

tant issue. However, applying traditional IDS techniques to IoT is difficult due

to its particular characteristics such as constrained-resource devices, specific

protocol stacks, and standards; a recent taxonomy of the proposed solutions

and future trends can be found in [26]. In [27], a survey of IDS using recent

ideas and methods proposed for the IoT is also presented; this work illustrates110

IDS platform differences and the current research trend towards a universal,

6

M
ANUSCRIP

T

ACCEPTE
D

ACCEPTED MANUSCRIPT

cross-platform distributed approach. Our proposed framework aims to allow

execution of proven techniques, distributed on a diversity of devices, globally

interconnected in an IoT setting, where resource scarcity remains a big chal-

lenge.115

Another important issue is trust management, which plays an important

role in IoT for reliable data fusion and mining, qualified services with context-

awareness, and enhanced user privacy and information security. However, cur-

rent literature still lacks a comprehensive study on trust management in IoT.

The paper presented in [28] investigates the properties of trust, propose objec-120

tives of IoT trust management, and provide a survey on the current literature

advances towards trustworthy IoT.

The paper presented by [29], survey different intrusions affecting availability,

confidentiality and integrity of Cloud resources and services. Consequently, the

authors examine structures of Intrusion Detection Systems (IDS) and Intrusion125

Prevention Systems (IPS) in the Cloud. They recommend IDS/IPS in Cloud

environment to accomplish desired security in the next generation networks.

Currently one of the remarkable solution for industrial systems is the integration

of cyber physical system (CPS) with the Internet of Things (IoT) utilizing cloud

computing services.130

The focus of the study presented in [30] is to highlight the security challenges

that the industrial systems of supervisory control and data acquisition face in

an IoT-cloud environment. The classical systems are already lacking in proper

security measures; however, with the integration of complex new architectures

for the future Internet based on the concepts of IoT, cloud computing, mobile135

wireless sensor networks, and so on, there are large issues at stakes in the secu-

rity and deployment of these classical systems. Integration of Cloud and IoT,

which is called the CloudIoT paradigm is also reviewed in [31]. Although, many

works in literature have surveyed Cloud and IoT separately these works lack a

detailed analysis of the new CloudIoT paradigm, which involves completely new140

applications, challenges, and research issues. Accordingly this paper provides a

literature survey on the integration of Cloud and IoT.

7

M
ANUSCRIP

T

ACCEPTE
D

ACCEPTED MANUSCRIPT

The work presented in [32] deals with another interesting problem in the IDS

area: the lack of datasets to carry out effective comparisons. Sometimes these

datasets are internal and therefore, due to privacy concerns, are not opened to145

the public; others are anonymized without clear trend indications. The authors

therefore propose a systematic approach to generate the datasets to address this

requirement.

A lot of research has been performed on scheduling strategies and map-

ping heuristics. New frameworks are still being proposed for specific types of150

applications (recent examples can be found in [33, 34]), where proper use of het-

erogeneous distributed resources remains a challenge. According to these works,

heterogeneous computing environments are capable of executing distributed IDS

(DIDS).

In summary, current global computer systems combining IoT with Cloud155

services require a novel mapping of state-of-the-art techniques, collaborative

methods and algorithms for IDS. The main contribution of this work is the

proposal of a novel framework capable of dynamically distributing many IDS

related tasks over a heterogeneous network. This includes mobile devices and

cloud services, in such a way that user experience is not compromised by the160

resource consumption of the IDS, while at the same time guaranteeing that all

relevant data flows are passed through the IDS.

3. Proposed distributed IDS framework

First, a distributed IDS is characterized as a set of processes which exchange

data flows. Then, a model is defined to quantify the resources available in each165

computer and the requirements of each process; this model allows to articu-

late a set of procedures to predict the future load of the involved computers;

this information will be used for scheduling. Finally, a conceptual solution is

designed, putting all the architectural elements together in order to address

possible implementations.170

8

M
ANUSCRIP

T

ACCEPTE
D

ACCEPTED MANUSCRIPT

3.1. IDS characterization

The proposed characterization is based on the collaboration and distributed

models presented in previous works of the authors [35, 36]. Now, those ideas are

reused in order to capture the complexity of an IDS as an application with the

following properties: (a) the IDS obtains input data from network interfaces175

and log files; (b) the work to be performed can be decomposed into a set of

individual tasks or processes, which exchange data flows across the network and

are executed in parallel; and (c) the results of the processing are translated into

a set of actions such as raising alarms, sending reports or blocking access.

In formal terms, the distributed IDS can be represented by a directed graph180

A = T, F where:

• T is the set of vertices and represents a set of tasks necessary for data

capture, processing, storage and actuation. Typically, the t ∈ T tasks

exchange data over a communication network and they cause an increase

in the load on the computers on which they execute.185

• F is the set of edges, and each f ∈ F represents a data flow exchanged

between two tasks (source and target).

The data flow diagram shown in Figure 2 depicts an example of IDS mod-

eled according to this principle. Table 1 offers additional explanation on each

proposed process.190

3.2. Resource characterization

The set C is defined as the computing elements on which tasks in T can

be executed. The set C effectively constitutes the computational resources in

the network in which the distributed IDS is deployed. In addition to intelligent

wireless sensors, the set C can include desktop computers, servers, mobile de-195

vices, etc. For example, Figure 3 shows a set of resources stemming from the

IoT infrastructure, available devices, and hired cloud resources.

In order to achieve an efficient distribution of tasks, the utilization of the

resources must be suitably characterized. For this purpose, L is defined as a

9

M
ANUSCRIP

T

ACCEPTE
D

ACCEPTED MANUSCRIPT

capture

filter

misuse
detection

behavioural
model

anomaly
detection

feature
extraction

alert
analysis

headers

packets 1

alerts 1

packets 2

features 1

features 2

alerts 2

Figure 2: Decomposition in tasks and data flows for a sample IDS

IoT infrastructure

wearable laptop

smartphone

cloud service
infrastructure

sensors

cluster

} user space
computers

Figure 3: Various resources from IoT to Cloud service infrastructure offering computational

power

10

M
ANUSCRIP

T

ACCEPTE
D

ACCEPTED MANUSCRIPT

Table 1: Definition and examples of the tasks for the proposed IDS

Task Definition Example

Capture Acquisition of all network traffic that

need to be monitored

HTTP traffic

Filter Selection of relevant fields for further

anomaly detection

HTTP headers, source and

target IP

Feature

extraction

Computing features for statistical pat-

tern recognition

Number of incoming connec-

tions from a given IP per sec.

Behavioral

model

Learning patterns of normal network

traffic

Common sequences of trans-

actions

Anomaly

detection

Pattern recognition to warn about pos-

sible attacks

Classification of uncommon

sequences of transactions

Misuse

detection

Application of rules to detect known at-

tacks

Detection of connections us-

ing forbidden protocols

Alert

analysis

Correlation of the output from different

IDS strategies to reduce false positives

Confirmation of an intrusion

attempt

vector domain that groups the relevant features which determine the load of

a computer. For example, L can be defined as a domain with two-component

vectors in the [0, 1] range with the following semantics:

L = Transfer rate× Processor load

The L components can refer to both computing resources and other con-

straints such as energy consumption or the economic cost of the service. The

components are expressed by a normalized value relative to each c ∈ C; in other200

words, the value specified for each component determines the fraction of the

resource available or required for the execution of tasks in T . Therefore, the

elements of L are used to characterize the load of the device, which is variable

over time, and also the requirements of each task in each computer available in

11

M
ANUSCRIP

T

ACCEPTE
D

ACCEPTED MANUSCRIPT

the system, which can be determined at design time:205

• Load modeling. Each computer c ∈ C is in a certain state in relation to the

load (computational load or other factors). This state is represented by a

vector lc,i ∈ L which describes the load of the computer c at instant i, and

hence its ability to execute more processes. Obviously, these values can

change at every instant i, depending on the different activities in which210

the device is involved.

• Requirement modeling. For each computer c ∈ C and each task t ∈ T ,

it is necessary to estimate how much the load would increase if c were to

execute t. This increment is represented by rt,c ∈ L (requirements of a

task t ∈ T on a computer c ∈ C).215

The values of rt,c effectively model the suitability of a device for a given

task. For example, a laptop with a powerful GPU will offer low values for the

Processor load component for those tasks that require intensive image process-

ing. In other words, rt,c quantifies the degree to which a computer with GPU

is suitable for performing image processing services, or the impact of that task220

on the computer load.

3.3. Load prediction

One of the main elements useful to design an effective scheduling policy is the

estimation of the status (load) of each device if some task of the IDS is executed

on it. In the proposed framework, this estimation is achieved through an internal

binary operation (procedure) defined in L, represented by the symbol ⊕. This

operator represents a specific procedure for load prediction in the following way:

lc,i+1 = lc,i ⊕ rt,c

Figure 4 offers a graphic representation of this procedure.

In general, the execution of ⊕ could require more information than is present

in its operands. For example, the precise estimation of the transfer rate relative225

12

M
ANUSCRIP

T

ACCEPTE
D

ACCEPTED MANUSCRIPT

Computer (C) Task (T)

is able to run

Processor load

Data transfer rate

Processor load
increase

Data to transfer{ {

It can be monitored over time (i)

It can be mesured or estimated

lc,i rt,c+ {
Predicted load

=

()

Figure 4: Load prediction coming from the monitored current state and the estimated impact

when executing the task

to the available bandwidth may require a prediction of that bandwidth in the

next period i + 1; to this end, a predictive analysis based on machine learning

that uses historical data on the performance of the network can be applied.

3.4. Framework definition

The proposed solution is made up of two main components: (1) special230

proxy local processes run on each computer, called switches, and (2), a system

controller which maintains a view of the overall system, and offers framework

services such as monitoring computers, checking available bandwidth and plan-

ning the source and target computer for each required data flow. Figure 5 shows

a high level view of the proposed architecture.235

The scheduler component is the major element within the proposed archi-

tecture of the system controller. The remaining controller components provide

the model and information required for the scheduler to determine the target

computer for every required stream. The scheduler mainly decides which tasks

should be executed on each device. For this, there are several possible strategies,240

with different level of complexity and degree of optimization in the results.

13

M
ANUSCRIP

T

ACCEPTE
D

ACCEPTED MANUSCRIPT

CONTROLLER

Switch...SwitchSwitch

COMPUTER c

Scheduler

Predictive
model

History

Node
monitor

Application
(T,F)

Transfer
rate

Processor
load

Computers

Scheduling
decisions

i

Figure 5: Architecture diagram of the proposed solution

A simple alternative is to define a feasibility function:

feasibility : L −→ {0, 1}

This function models the actual possibility of working with a given load on each

computer. A trivial implementation would get the value 0 (non-feasible) when

any of the components of l ∈ L has any value close to 1, and would get the value

1 (feasible) otherwise. In this case, the problem is to find a correspondence

schedule : T −→ C

that satisfies the following expression (in each i cycle)

∀c ∈ C, feasibility

lc,i ⊕
⊕∑

∀t|schedule(t)=c

rt,c

 = 1

The computational cost of the optimal solution to this problem is non-

polynomial, although it is possible to define heuristics that allow a significant

reduction of the response time albeit obtaining suboptimal solutions.245

14

M
ANUSCRIP

T

ACCEPTE
D

ACCEPTED MANUSCRIPT

Another key component in Figure 5 is the node monitor: it provides the per-

formance parameters relevant to take scheduling decisions (lc,i). This is done

in terms of a fraction of free computing resources available on each computer,

which can be estimated, for example, from the system load average and data

transfer rate. Other user experience factors such as energy consumption could250

be considered [37]. In addition, the node monitor could integrate different as-

pects of computer unavailability; for example, when an unexpected shutdown

occurs or all its resources are required for processes other than the distributed

IDS ones. These situations can be modelled by conveniently expanding L and

throwing proper values for lc,i, so that the framework scheduler can redirect the255

corresponding data flows.

To finish with the controller components displayed in Figure 5, the computer

status is logged in a historical database; this information is used as input for

a predictive model, so the scheduling can be performed not only based on the

result of direct measures, but also on mined knowledge (implementation of the260

⊕ procedure). Recent research has already been done in similar environments.

For example, proposals coming from [38, 39, 40], can be integrated into the

presented solution.

One computer c ∈ C is shown on top of Figure 5. Each computer can

potentially run any IDS task instance sharing the corresponding data flows,265

and each data flow is handled by a switch process. The switch processes work

as actuators for the scheduler component, transferring the scheduling decisions

to the IDS tasks to effectively address data flows. Figure 6 details the control

flow of a single switch process holding one data flow from t1 to t2.

Input data are obtained from switch processes or input devices (for example,270

sensors) for every task instance. Output data are also sent to a switch process,

or they can be used directly to indicate an appropriate alert action (i.e. warning

administrators, blocking interconnection devices, storing data for further foren-

sic analysis, etc.). The direction of the data flow towards the corresponding

task instance will be executed by every switch process and can be located either275

in the same or different computer. The controller is the component which takes

15

M
ANUSCRIP

T

ACCEPTE
D

ACCEPTED MANUSCRIPT

this decision, since it maintains the model of the overall system and runs a suit-

able algorithm for scheduling. In case that the controller is not available (i.e.

network problems or host breakdown), the switch process executes a fallback

procedure, and in that situation it uses only local information.280

N = N + 1

Task
Instance

t1

Read data
block

Write data
block

PROCESS

Switch

Read data
blockLocal

communication

N > threshold

N = 0

Send data block
to Target computer

N = 0

Controller
available

Get Target from
fallback procedure

Get Target from
Controller

Set fallback
Target

Task
Instance

t2

Read data
block

Write data
block

PROCESS

Local
communication

no

yes

yes no
Application activity

Framework activity

Data flow

Program flow

Network or local
communication

Network or local
communication

CONTROLLER

G
e
t

ta
rg

e
t

co
m

p
u
te

r

Network

Sensor
or

switch

Actuator
or

switch

Figure 6: Flow diagram showing two task instances exchanging one data flow through one

switch process. The controller, if available, decides the computer where data will be effectively

processed

The data block size and the N threshold value are remarkable issues in

Figure 6 The data block size may be variable and it can be specified in different

ways. For example, for the capture process, one block can hold a fixed number

of packet headers, or the number of packet headers captured during a fixed time

period.285

It is noteworthy how the values of block size and N threshold influence

the performance. If both values are high the use of resources is lower, and

16

M
ANUSCRIP

T

ACCEPTE
D

ACCEPTED MANUSCRIPT

consequently, we obtain a better performance. However, if these values are low

the accuracy of the system controller will improve; this is due to the possibility

to obtain a more precise vision of the current global state, favouring the most290

suitable decisions.

The higher the block size and N threshold, the lower the use of resources by

the framework, and therefore, better performance can be achieved. By contrast,

decreasing these values improves the accuracy of the system controller, as it

allows to maintain a more accurate picture of the global status, and therefore,295

more appropriate decisions can be taken.

The IDS processes run continuously by capturing and processing data. The

capture process continuously takes data from the network interface, and other

processes take their input from the output of other ones. After a number of

bytes processed (or elapsed time) modelled by N , the switch architectural el-300

ement must query the controller in order to find a new target for the output,

according to the scheduling algorithm. Therefore, N allows to parametrize the

performance/accuracy of the framework elements, and the maximum frequency

of scheduling decisions. The period of acquisition of load values captured by

the monitor (the difference in time between consecutive i events) must be set in305

accordance to this value of N , in order to avoid an extra overhead not providing

any useful accuracy.

4. Experimental design and results

In this section, an experimental design for the IDS framework is presented.

The objective is to build a system that shows the feasibility of the proposed310

ideas and work as a prototype for proof of concept. First, an experimental IDS is

designed by selecting and combining a number of existing IDS solutions. Then, a

prototype implementation of the proposed framework is provided. Finally, tests

are performed and framework parameters are adjusted to show the feasibility of

the approach.315

17

M
ANUSCRIP

T

ACCEPTE
D

ACCEPTED MANUSCRIPT

4.1. Experimental intrusion detection system

In order to test the proposed approach, it is necessary to start from a specific

IDS implementation which can be deployed using the framework. The Figure 2

can be used as a roadmap to build a distributed network IDS using select state

of the art tools and techniques; each node shown in the depicted graph has been320

mapped into a functionality extracted from an existing project or platform, as

summarized in Table 2.

Table 2: Mapping from tasks into implementations for the experimental NIDS

Task Functionality Source

project

Capture Acquiring target traffic from the network inter-

face

Tcpdump

Filter Extracting headers from selected packages using

TShark

Wireshark R©

Feature extraction Preprocessing traffic to produce statistical fea-

tures

MINDS

Behavioral model Finding typical patterns in network traffic Snort.AD

Anomaly detection Alerting about observations that do not fit the

typical patterns

Snort.AD

Misuse detection Rules matching for known attacks Snort R©

Alert analysis Correlating alert messages Hadoop R©

Tcpdump with its Libpcap library has been frequently used for capturing

network traffic [41, 42]. The experimental configuration employs Tcpdump to

acquire the data to be analysed, excluding the ones produced by the IDS tasks,325

so the IDS does not process data generated by itself (this processing will be

useless and time consuming in most environments). The obtained data stream

feeds two different IDS techniques: anomaly detection and misuse detection [43]:

18

M
ANUSCRIP

T

ACCEPTE
D

ACCEPTED MANUSCRIPT

• Anomaly detection.— The acquired data stream is filtered using TShark

command line tool from Wireshark suite [44], producing a reduced stream330

(relevant packet headers) required for feature extraction. Then, the fea-

tures are effectively extracted following the procedure proposed in Chan-

dola et al. [45] and implemented in MINDS (Minnesota INtrusion Detec-

tion System) using an R [46] script. Finally, the source code provided

by Snort.AD project [47] has been adapted to implement the behavioral335

model and anomaly detection processes in a standalone way (not inte-

grated with Snort).

• Misuse detection.— The acquired data stream is matched against the list

of rules provided by a Snort sensor [48, 49]. Since this process may produce

many false positives, further alert analysis using cloud big data clusters340

have been proposed [50, 51]. For this reason, the experimental configura-

tion includes a Hadoop cluster for correlating alert messages, which takes

into account the results raised by anomaly detection [52].

The designed IDS shows that existing products and techniques can be in-

tegrated following a data flow model. The objective is not to build a fully345

operative IDS, but to test the feasibility of the proposed framework. The pro-

posed framework provides a dynamic distribution mechanism for a number of

instances of each communicating task: those instances will be run on different

computers, according to the available resources.

4.2. Experimental framework implementation350

The proposed framework has been validated through a prototype implemen-

tation. The prototype is based mostly on Bash [53] scripting, and SSH (Secure

Shell) [54] as a communication mechanism for all services.

To begin with, a script has been built for each one of the tasks in the ex-

perimental NIDS. Those scripts provide a uniform interface for the framework,355

taking file names as arguments. The file names are used inside the script to

19

M
ANUSCRIP

T

ACCEPTE
D

ACCEPTED MANUSCRIPT

provide input and output to the corresponding tool implemented according to

Table 2.

Next, an initial startup script reads a textual representation of the NIDS

diagram (Figure 2), and it runs the corresponding task instances by calling the360

previous task scripts. New devices are added into the set, by providing a script

which, remotely invoked, registers the computer configuration into a database

file.

Finally, a prototype for the two main elements of the framework has been

developed: the switch component (one instance per task instance) and the con-365

troller component.

4.2.1. Switch component

The prototyped switch process follows the algorithm in Figure 6. It uses

SSH to periodically run a command in the controller computer, to find out the

target computer for each output data stream.370

According to the algorithm, if the controlling computer is not available (it

does not respond), a fallback decision must be taken. In this case, the experi-

mental prototype always decides to transfer the stream to a task running locally

(this strategy could be further improved).

Figure 7 shows the operation of the switch processes by depicting two ex-375

ample computers and a subset of the tasks of the experimental NIDS. The pro-

totype employs standard Unix FIFO streams along with ssh and dd (command

line copying) to transfer data between task instances and their corresponding

switch processes.

4.2.2. Controller component380

For building the prototyped controller, the following parameters have been

considered:

L = Transfer rate× Processor load

Then, the prototyped controller is made of a set of simplified processes, that

implement those represented in Figure 5:

20

M
ANUSCRIP

T

ACCEPTE
D

ACCEPTED MANUSCRIPT

capture anomaly
detection

feature
extraction

packets headers features alerts

IDS data flow

capture.sh

fifo
headers_out_0

fifo
headers_in_0

switch features.r

fifo
features_out_0

fifo
features_in_0

switch

fifo
headers_in_0

features.r

fifo
features_out_0

fifo
features_in_0

switch

fifo
headers_in_1

features.r

fifo
features_out_1

fifo
features_in_1

switch

fifo
headers_in_2

features.r

fifo
features_out_2

fifo
features_in_2

switch

...

...

...

...

data flow

possible path
for data flow

Mobile platform

Cloud platform

Figure 7: Processes created in two computers for a subset of the prototyped NIDS

• Node monitor.—This element must find out lc,i ∈ L. Namely, it obtains

the data transfer rate and the system load average by running vnstat and

top/uptime commands, respectively on each target computer, c, using385

SSH (the system load average as computed by top/uptime is the average

number of processes that are using the CPU, waiting to use the CPU,

or waiting for some I/O access). Finally, the results are added into a

historical file.

• Predictive model.—For this feasibility study, a basic estimation for l⊕r is390

provided: it takes the last capture available in the historical file, lc,i, and

21

M
ANUSCRIP

T

ACCEPTE
D

ACCEPTED MANUSCRIPT

adds it to the estimated requirements of the task, rt,c. This is done for

the two evaluated parameters: data transfer rate and system load average.

More advanced approaches could make an intensive use of the historical

file, improving the accuracy of the estimation.395

• Scheduler.—The decisions of the scheduler are hard-coded and modified

manually for the purpose of the experiment; in fact, it just decides to

target a remote computer if l ⊕ r is found out lower than a predefined

tolerance value.

4.3. Test environment for validation400

For the purpose of the test, the experimental NIDS has been deployed on a

network with three computers. Two of them act as mobile devices (Raspberry Pi

computers 1 [55]) and the other one as a server computer (Intel R© Core
TM

based

[56]). The hardware used to perform those roles in the network is summarized

in Table 3.405

Table 3: Computers deployed in the test environment. The three nodes are linked in a

standard wireless local area network

Role Mobile device Server computer

CPU ARMv6 Intel R© Core
TM

i5

Memory 512MB 6GB

Computer type Raspberry Pi Desktop

Number of units 2 1

The three tasks shown on top of Figure 7 (capture, feature extraction and

anomaly detection) have been taken into consideration for providing an il-

lustrative example and pointing out the benefits of the approach. The re-

quirements of each task in each computer have been estimated considering

L = Transfer rate× Processor load, obtaining the following matrix R:410

1Raspberry Pi is a trademark of the Raspberry Pi Foundation

22

M
ANUSCRIP

T

ACCEPTE
D

ACCEPTED MANUSCRIPT

R =

t1 t2 t3


c1 (0.5, 0.2) (0.3, 0.5) (1, 1) device

c2 (0.5, 0.2) (0.3, 0.5) (1, 1) device

c3 (1, 1) (0.3, 0.1) (0.1, 0.2) server

capture features anomaly

The elements rt,c = (1, 1) correspond to tasks t that will never be executed

on the corresponding computer c. Namely, the anomaly detection, t3, will never

be carried out by the device itself, c1 or c2, since it has been proven that it does

not have sufficient resources, even without task occupation; similarly, the data415

capture (t1) will not be done by the server (c3), since in this test the data traffic

accessible by the server is not relevant for the IDS (the data to protect are the

ones reaching the devices).

In the switch processes, the framework has been configured with a variable

value for N , corresponding to the data packets acquired during 60 seconds. The420

threshold value has been set to 0, so scheduling decisions are taken every single

block, thus, once a minute (N is the data block size shown in Figure 6). This

long period has been taken due to the time required by the implementation of the

feature extraction process in the single-core mobile device: the deployed R script

adds a constant time of 40 seconds to process any data block, including empty425

data blocks. However, this should not be a limitation in a real environment,

as the feature extraction process can be heavily optimized: those additional

seconds are not spent when running feature extraction on other platforms, and

nowadays it is common to find multicore architectures even in mobile devices

[57].430

Another important point in the node monitor configuration is the period of

acquisition of load values captured (the difference in time between consecutive

i events). Certainly, this parameter affects the performance and the optimiza-

tion grade of the scheduling. In the experiment, these load values are stated

using commands such as vnstat and uptime, which can offer average values ac-435

quired in the last minute. Since the prototyped controller does not have to take

23

M
ANUSCRIP

T

ACCEPTE
D

ACCEPTED MANUSCRIPT

scheduling decisions with a frequency higher than 1/60 seconds, this provide a

reasonably good estimation of the load status.

For the experiment, two additional problems must be resolved. First, net-

work traffic needs to be simulated for the NIDS to work. Second, common user440

tasks must be executed on the mobile computer, in order to observe the frame-

work behaviour. The first problem is addressed by running a script based on

the GNU Wget [58] tool, randomly producing web navigation traffic; the script

simulates a common web navigation session done by a user. For the second

problem, this script periodically plays an MP3 audio file, by using VLC R© from445

VideoLAN R© project [59].

4.4. Performance results and discussion

The described deployment has been used as a workbench for testing the

framework prototype and showing its benefits. Those benefits are given in

terms of performance, as the employed tools (Table 2) implement existing tech-450

niques put in place to evaluate metrics such as occupied bandwidth or processor

throughput. First, one mobile computer is considered in order to evaluate the

effect of the framework activity when some extra processing load is required by

the user (audio reproduction has been used as benchmark). Second, four mobile

computers are considered to evaluate the effect of the framework on the server455

performance.

4.4.1. Framework performance evaluation on mobile clients

The upper diagram in Figure 8 shows the system load average, as computed

by the uptime command. The average is taken over the last minute. As can

be seen, at the beginning of the test, the packet header flow is sent to the460

feature extraction task in the mobile computer itself. After that, the system

load is increased by running an MP3 audio reproduction task, reaching 3.5 from

minute 5. At this point, with the framework enabled, the system load average

starts a downward trend, allowing the audio stream to be properly played. This

behaviour is in accordance with the framework logic: the framework scheduler465

24

M
ANUSCRIP

T

ACCEPTE
D

ACCEPTED MANUSCRIPT

instructs the switch process to send packet headers to the server computer,

where the corresponding server task will extract the features, freeing the mobile

computer from this load. Finally, after finishing the audio stream reproduc-

tion, the system load average goes lower than 1, so the packet header flow is

back to the mobile instance of the feature extraction task, as instructed by the470

framework scheduler.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
0

100

200

300

400

500

600

Time (minutes)

D
at

a
 tr

an
sf

er
 r

at
e

(k
bi

t/s
 in

 la
st

 m
in

ut
e)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
0

0.5

1

1.5

2

2.5

3

3.5

4

Enabled
Disabled

Time (minutes)

S
ys

te
m

 lo
ad

 a
ve

ra
g

e
(la

st
 m

in
ut

e)

Framework activity

Mp3 audio reproduction

Packet header flow
sent to server

Averages

Figure 8: Mobile computer: system load average and data transfer rate, with and without

framework activity

The lower diagram in Figure 8 reflects the effect of the framework activity

in the bandwidth use. The data transfer rate is increased by a fraction of

the analysed flow due to sending packet headers to a remote computer. Since

25

M
ANUSCRIP

T

ACCEPTE
D

ACCEPTED MANUSCRIPT

the wireless network supports a bandwidth of several megabytes per second in475

the test environment, this increase can be perfectly assumed. In more complex

scenarios, other scheduling policies may be put in place, expanding L with other

factors: variable free bandwidth in networks with shared transfer media, energy

consumption and user preferences, among others.

In the experiment, the user navigation has been simulated by random down-480

loads. For this reason, the experiment has been conducted several times, check-

ing that the essential result remains the same: successful switching of the packet

header stream, saving mobile processor time when required by user tasks.

4.4.2. Framework performance evaluation on server resources

In order to evaluate the framework from the server point of view, three485

experiments have been performed, using now four mobile units and one server,

and measuring the amount of data received by the server during 10 minutes.

(a) No user activity is loaded on mobile devices: the prototyped controller de-

cides feature extraction in the mobile computers. The amount of transferred

data, TX and RX, is measured using iftop [60] in the server, getting 34.5490

kB (transfer rate 0.46 kbit/s), which corresponds to the features and the

additional information required for SSH communication.

(b) VLC is loaded on each mobile computer, during the 10 minutes of the exper-

iment: the prototyped controller decides feature extraction on the server. In

this case, the transferred data raises to 1.40 MB (transfer rate 18.67 Kbit/s),495

which corresponds to the traffic headers and additional information required

for SSH communication.

(c) At the beginning of each minute in the experiment, VLC is loaded on each

mobile computer during one minute with a probability of 0.25, 0.5 and 0.75.

As expected, intermediate values are observed for the amount of transferred500

data.

Figure 9 depicts the results obtained.

26

M
ANUSCRIP

T

ACCEPTE
D

ACCEPTED MANUSCRIPT

Figure 9: Server computer: data received during 10 minutes, for different levels of processor

load in mobile devices

As has been shown, the proposed framework helps to reduce the occupied

bandwidth in this case, by using the free processing capabilities available in

mobile devices during certain time intervals.505

The same experiment has been run with other metrics. For example, the

processor load is expected to decrease at the server side when the feature ex-

traction process is hosted on mobile computers. However, due to the multicore

design of the computer used as server, this parameter has not been significantly

impacted.510

5. Conclusion and future work

The major contribution of this work is the design of a novel framework that

allows convenient distribution of intrusion detection tasks taking into account se-

curity requirements, variable availability of computing resources in personal and

enterprise computers, and additional capabilities coming from cloud services. In515

addition, the proposal integrates IDS projects built on diverse technologies and

approaches, allowing modular re-use of established IDS techniques. As a derived

result, the framework avoids a single point of failure or attack, by supporting

multiple instances of the different tasks required for the overall IDS.

27

M
ANUSCRIP

T

ACCEPTE
D

ACCEPTED MANUSCRIPT

The experiments show the feasibility of the approach, and provide insight520

into future work. The framework itself can evolve in different directions, listed

below.

From the scheduling point of view, two main problems have been identified,

which can be explored further. First, considerable effort must be spent in order

to adapt and test existing techniques for flow scheduling on the proposed ar-525

chitecture; well-known and novel methods, algorithms and heuristics should be

taken into account. Second, additional research is required to integrate existing

predictive models, taking the most of their capabilities in order to increase the

effectiveness of the scheduler component.

Another future work line has to do with the way in which optimum frame-530

work parameters are established: in addition to simulation aided estimation,

adaptive behaviour could be added to the proposed framework, incorporating

the results from advanced modelling techniques using, for example, neural net-

works.

System resilience is another interesting issue to work on. The framework535

supports a fallback policy, to be activated when central control is not available

or accessible. This could be expanded by adding a service discovery mechanism,

allowing devices to autonomously take suboptimal decisions based on local in-

formation coming from neighbour computers.

Finally, the experimental design should be completed, integrating other rel-540

evant factors, such as main memory usage, storage requirements and energy

consumption.

Acknowledgement

This work has been partially funded by the Spanish Ministry of Economy and

Competitiveness (MINECO/FEDER) under the granted Project SEQUOIA-UA545

(Management requirements and methodology for Big Data analytics) TIN2015-

63502-C3-3-R, by the University of Alicante, within the program of support for

research, under project GRE14-10, and by the Conselleria de Educación, Inves-

28

M
ANUSCRIP

T

ACCEPTE
D

ACCEPTED MANUSCRIPT

tigación, Cultura y Deporte, Comunidad Valenciana, Spain, within the programs

of support for research, under project GV/2016/087 and AICO/2017/134.550

References

[1] R. Brewer, Cyber threats: reducing the time to detection and response,

Network Security 2015 (2015) 5–8.

[2] K. Elazari, How to survive cyberwar STEP ONE: Stop counting on others

to protect you, Scientific American 312 (2015) 66–69.555

[3] R. von Solms, J. van Niekerk, From information security to cyber security,

Computers & Security 38 (2013) 97–102.

[4] D. E. Denning, An intrusion-detection model, IEEE Transactions on Soft-

ware Engineering 13 (1987) 222–232.

[5] H. Debar, M. Dacier, A. Wespi, Towards a taxonomy of intrusion-detection560

systems, Computer Networks-the International Journal of Computer and

Telecommunications Networking 31 (1999) 805–822.

[6] L. J. G. Villalba, A. L. S. Orozco, J. M. Vidal, Anomaly-based network

intrusion detection system, IEEE Latin America Transactions 13 (2015)

850–855.565

[7] R. Singh, H. Kumar, R. K. Singla, An intrusion detection system using

network traffic profiling and online sequential extreme learning machine,

Expert Systems with Applications 42 (2015) 8609–8624.

[8] M. Riecker, S. Biedermann, R. El Bansarkhani, M. Hollick, Lightweight

energy consumption-based intrusion detection system for wireless sensor570

networks, International Journal of Information Security 14 (2015) 155–

167.

[9] B. Shah, B. H. Trivedi, Improving performance of mobile agent based

intrusion detection system, in: Fifth International Conference on Advanced

Computing & Communication Technologies (ACCT), 2015, pp. 425–430.575

29

M
ANUSCRIP

T

ACCEPTE
D

ACCEPTED MANUSCRIPT

[10] A. Derhab, A. Bouras, Multivariate correlation analysis and geometric

linear similarity for real-time intrusion detection systems, Security and

Communication Networks 8 (2015) 1193–1212.

[11] L. Wei-Chao, K. Shih-Wen, T. Chih-Fong, CANN: An intrusion detec-

tion system based on combining cluster centers and nearest neighbors,580

Knowledge-Based Systems 78 (2015) 13–21.

[12] A. S. Eesa, Z. Orman, A. M. A. Brifcani, A novel feature-selection approach

based on the cuttlefish optimization algorithm for intrusion detection sys-

tems, Expert Systems with Applications 42 (2015) 2670–2679.

[13] M. A. Faisal, Z. Aung, J. R. Williams, A. Sanchez, Data-stream-based585

intrusion detection system for advanced metering infrastructure in smart

grid: A feasibility study, IEEE Systems Journal 9 (2015) 31–44.

[14] F. L. Greitzer, A. P. Moore, D. M. Cappelli, D. H. Andrews, L. A. Carroll,

T. D. Hull, Combating the insider cyber threat, IEEE Security & Privacy

6 (2008) 61–64.590

[15] J. Gubbi, R. Buyya, S. Marusic, M. Palaniswami, Internet of Things (IoT):

A vision, architectural elements, and future directions, Future Genera-

tion Computer Systems-the International Journal of Grid Computing and

Escience 29 (2013) 1645–1660.

[16] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski,595

G. Lee, D. Patterson, A. Rabkin, I. Stoica, M. Zaharia, A view of cloud

computing, Communications of the Acm 53 (2010) 50–58.

[17] S. X. Wu, W. Banzhaf, The use of computational intelligence in intrusion

detection systems: A review, Applied Soft Computing 10 (2010) 1–35.

[18] F. Amiri, M. R. Yousefi, C. Lucas, A. Shakery, N. Yazdani, Mutual600

information-based feature selection for intrusion detection systems, Journal

of Network and Computer Applications 34 (2011) 1184–1199.

30

M
ANUSCRIP

T

ACCEPTE
D

ACCEPTED MANUSCRIPT

[19] G. Folino, P. Sabatino, Ensemble based collaborative and distributed in-

trusion detection systems: A survey, Journal of Network and Computer

Applications 66 (2016) 1–16.605

[20] S. Peddabachigari, A. Abraham, C. Grosan, J. Thomas, Modeling intrusion

detection system using hybrid intelligent systems, Journal of Network and

Computer Applications 30 (2007) 114–132.

[21] J. Maestre, A. L. Sandoval, L. J. Garca, Alert correlation framework for

malware detection by anomaly-based packet payload analysis, Journal of610

Network and Computer Applications 97 (2017) 11–22.

[22] H. T. Elshoush, I. M. Osman, Alert correlation in collaborative intelligent

intrusion detection systems – a survey, Applied Soft Computing 11 (2011)

4349–4365.

[23] H.-J. Liao, C.-H. R. Lin, Y.-C. Lin, K.-Y. Tung, Intrusion detection system:615

A comprehensive review, Journal of Network and Computer Applications

36 (2013) 16–24.

[24] W. Abbas, A. Laszka, Y. Vorobeychik, X. Koutsoukos, Scheduling in-

trusion detection systems in resource-bounded cyber-physical systems, in:

First ACM Workshop on Cyber-Physical Systems-Security and/or PrivaCy620

(CPS-SPC), 2015, pp. 55–66.

[25] A. Patel, M. Taghavi, K. Bakhtiyari, J. Celestino, An intrusion detection

and prevention system in cloud computing: A systematic review, Journal

of Network and Computer Applications 36 (2013) 25–41.

[26] B. B. Zarpelo, R. S. Miani, C. T. Kawakani, S. C. de Alvarenga, A survey of625

intrusion detection in Internet of Things, Journal of Network and Computer

Applications 84 (2017) 25–37.

[27] A. A. Gendreau, M. Moorman, Survey of intrusion detection systems to-

wards an end to end secure Internet of Things, in: IEEE 4th International

31

M
ANUSCRIP

T

ACCEPTE
D

ACCEPTED MANUSCRIPT

Conference on Future Internet of Things and Cloud (FiCloud), 2016, pp.630

84–90.

[28] Z. Yan, P. Zhang, A. V. Vasilakos, A survey on trust management for

Internet of Things, Journal of Network and Computer Applications 42

(2014) 120–134.

[29] C. Modi, D. Patel, B. Borisaniya, H. Patel, A. Patel, M. Rajarajan, A635

survey of intrusion detection techniques in Cloud, Journal of Network and

Computer Applications 36 (2013) 42–57.

[30] A. Sajid, H. Abbas, K. Saleem, Cloud-assisted IoT-based SCADA systems

security: A review of the state of the art and future challenges, IEEE

Access 4 (2016) 1375–1384.640

[31] A. Botta, W. de Donato, V. Persico, A. Pescapé, Integration of cloud

computing and Internet of Things: A survey, Future Generation Computer

Systems 56 (2016) 684 – 700.

[32] A. Shiravi, H. Shiravi, M. Tavallaee, A. A. Ghorbani, Toward develop-

ing a systematic approach to generate benchmark datasets for intrusion645

detection, Computers and Security 31 (2012) 357–374.

[33] X. Ning, C. Bin, C. Lei, H. Zi, S. Yingxia, Heterogeneous environment

aware streaming graph partitioning, IEEE Transactions on Knowledge and

Data Engineering 27 (2015) 1560–1572.

[34] C. Kao, W. Hsu, An adaptive heterogeneous runtime framework for irreg-650

ular applications, Journal of Signal Processing Systems for Signal Image

and Video Technology 80 (2015) 245–259.

[35] H. Mora, J. F. Colom, D. Gil, A. Jimeno-Morenilla, Distributed computa-

tional model for shared processing on Cyber-Physical System environments,

Computer Communications 111 (2017) 68–83.655

32

M
ANUSCRIP

T

ACCEPTE
D

ACCEPTED MANUSCRIPT

[36] J. F. Colom, H. Mora, D. Gil, M. T. Signes-Pont, Collaborative building

of behavioural models based on internet of things, Computers & Electrical

Engineering 58 (2017) 385–396.

[37] G. Suarez-Tangil, J. E. Tapiador, P. Peris-Lopez, S. Pastrana, Power-

aware anomaly detection in smartphones: An analysis of on-platform versus660

externalized operation, Pervasive and Mobile Computing 18 (2015) 137–

151.

[38] A. Uthra Rajan, S. V. Kasmir Raja, A. Jeyasekar, A. J. Lattanze, Energy-

efficient predictive congestion control for wireless sensor networks, IET

Wireless Sensor Systems 5 (2015) 115–123.665

[39] Z. Wang, X. Wang, X. Jin, T. Wang, Y. Luo, MBalancer: predictive

dynamic memory balancing for virtual machines, Journal of Software 25

(2014) 2206–2219.

[40] A. Bashar, Autonomic scaling of cloud computing resources using bn-

based prediction models, in: IEEE 2nd International Conference on Cloud670

Networking, 2013, pp. 200–204.

[41] K. Young-Hwan, R. Konow, D. Dujovne, T. Turletti, W. Dabbous,

G. Navarro, PcapWT: An efficient packet extraction tool for large vol-

ume network traces, Computer Networks 79 (2015) 91–102.

[42] B. Langthasa, B. Acharya, S. Sarmah, Classification of network traffic675

in LAN, in: International Conference on Electronic Design, Computer

Networks & Automated Verification, 2015, pp. 92–99.

[43] D. S. Punithavathani, K. Sujatha, J. M. Jain, Surveillance of anomaly and

misuse in critical networks to counter insider threats using computational

intelligence, Cluster Computing-the Journal of Networks Software Tools680

and Applications 18 (2015) 435–451.

[44] T. Ishitaki, D. Elmazi, L. Yi, T. Oda, L. Barolli, K. Uchida, Applica-

tion of neural networks for intrusion detection in Tor networks, in: IEEE

33

M
ANUSCRIP

T

ACCEPTE
D

ACCEPTED MANUSCRIPT

29th International Conference on Advanced Information Networking and

Applications Workshops (WAINA), 2015, pp. 67–72.685

[45] V. Chandola, E. Eilertson, L. Ertoz, G. Simon, V. Kumar, MINDS: Archi-

tecture & design, in: Data Warehousing and Data Mining Techniques for

Cyber Security, volume 31 of Advances in Information Security, Springer

US, 2007, pp. 83–107.

[46] R Core Team, R: A Language and Environment for Statistical Comput-690

ing, R Foundation for Statistical Computing, Vienna, Austria, 2014. URL:

http://www.R-project.org.

[47] R. Jasek, A. Szmit, M. Szmit, Usage of modern exponential-smoothing

models in network traffic modelling, in: I. Zelinka, G. Chen, O. E. Rssler,

V. Snasel, A. Abraham (Eds.), Nostradamus 2013: Prediction, Modeling695

and Analysis of Complex Systems, volume 210 of Advances in Intelligent

Systems and Computing, Springer International Publishing, 2013, pp. 435–

444.

[48] S. Dharmapurikar, J. W. Lockwood, Fast and scalable pattern matching

for network intrusion detection systems, IEEE Journal on Selected Areas700

in Communications 24 (2006) 1781–1792.

[49] W. Bul’ajoul, A. James, M. Pannu, Improving network intrusion detection

system performance through quality of service configuration and parallel

technology, Journal of Computer and System Sciences 81 (2015) 981–999.

[50] Y. Jiaxue, G. Yu, B. Yubin, Y. Ge, Scalable complex event processing on705

top of MapReduce, in: Proceedings of the 14th Asia-Pacific Web Confer-

ence (APWeb), 2012, pp. 529–536.

[51] Y. Shun-Fa, C. Wei-Yu, W. Yao-Tsung, ICAS: An inter-vm IDS log cloud

analysis system, in: 2011 IEEE International Conference on Cloud Com-

puting and Intelligence Systems, 2011, pp. 285–289.710

34

http://www.R-project.org

M
ANUSCRIP

T

ACCEPTE
D

ACCEPTED MANUSCRIPT

[52] M. Kumar, M. Hanumanthappa, Scalable intrusion detection systems log

analysis using cloud computing infrastructure, in: IEEE International Con-

ference on Computational Intelligence and Computing Research (ICCIC),

2013, pp. 206–209.

[53] B. Smith, Bash, the bourne again shell, Byte 17 (1992) 299–299.715

[54] T. Ylonen, SSH - secure login connections over the internet, Proceedings

of the Sixth Annual Usenix Security Symposium: Focusing on Applications

of Cryptography (1996) 37–42.

[55] C. Edwards, Not-so-humble Raspberry Pi gets big ideas, Engineering &

Technology 8 (2013) 30–33.720

[56] N. Kurd, P. Mosalikanti, M. Neidengard, J. Douglas, R. Kumar, Next gen-

eration Intel (R) Core (TM) micro-architecture (nehalem) clocking, IEEE

Journal of Solid-State Circuits 44 (2009) 1121–1129.

[57] T. Hubbard, R. Lencevicius, E. Metz, G. Raghavan, Performance vali-

dation on multicore mobile devices, Verified Software: Theories, Tools,725

Experiments 4171 (2008) 413–421.

[58] S. Neeli, K. Govindasamy, B. M. Wilamowski, A. Malinowski, Automated

data mining from web servers using perl script, in: 12th International

Conference on Intelligent Engineering Systems, 2008, pp. 191–196.

[59] T. Basset, Coordination and social structures in an open source project:730

VideoLAN, Free/Open Source Software Development (2005) 125–151.

[60] C. Binnie, Real-Time Network Statistics with Iftop, Apress, Berkeley, CA,

2016, pp. 1–12.

35

M
ANUSCRIP

T

ACCEPTE
D

ACCEPTED MANUSCRIPT
José Francisco Colom received the B.S. degree in Computer Science
Engineering in University of Alicante, Spain, in 1998. He received the
PhD degree in computer science from the University of Alicante in 2016.
Currently he works as a computer teacher in vocational education, and
collaborates in teaching and research activities in the faculty of the
Department of Computer Science Technology at the same university. His
current areas of research interest include distributed systems, data mining
and computer security.

David Gil is an associated professor at the Department of Computing
Technology and Data Processing at the University of Alicante, Spain.
David received a Ph.D. in Computer Science from the University of
Alicante (Spain) in 2008. His research interests include Applications of
Artificial Intelligence, data mining, data warehouses, multidimensional
databases, OLAP, design with UML, and MDA. He has published papers
in high quality international conferences and highly cited international
journals, and he is also a reviewer. Dr. Gil has been involved in the
organization of several internationals workshops and has served as a
Program Committee member of several conferences and workshops.

Higinio Mora received the BS degree in computer science engineering
and the BS degree in business studies in University of Alicante, Spain, in
1996 and 1997, respectively. He received the PhD degree in computer
science from the University of Alicante in 2003. Since 2002, he is a
member of the faculty of the Computer Technology and Computation
Department at the same university where he is currently an associate
professor and researcher of Specialized Processors Architecture
Laboratory. His areas of research interest include computer modelling,
computer architectures, high performance computing, embedded systems,
internet of things and cloud computing paradigm. He has participated in
many conferences and most of his work has been published in
international journals and conferences, with more than 50 published
papers.

Bruno Volckaert is professor advanced programming and software
engineering in the Department of Information Technology (INTEC) at
Ghent University and senior researcher at IMEC. He obtained his Master
of Computer Science degree in 2001 from Ghent University, after which
he worked on his PhD at Ghent University on data intensive scheduling
and service management for Grid computing, which he obtained in 2006.
He has been involved in the inception and execution of over 30 national
and European research projects dealing with reliable distributed
applications and was coordinator of 3 large national interdisciplinary
research tracks budgeted at 8.8 M . He has over 85 publications in�
conferences and journals. His current research deals with reliable and
high performance distributed software systems for City-of-Things (IoT
for Smart Cities, with the creation of a living, city-wide lab in the city of
Antwerpen-Belgium), automated decision support systems for UAVs,
intelligent transportation applications and autonomous resource
optimization of cloud-based applications.

M
ANUSCRIP

T

ACCEPTE
D

ACCEPTED MANUSCRIPT

· Novel framework for scheduling intrusion detection tasks in IoT

· Flexible integration of cloud computing and mobile computing resources

· Architecture for deployment of state-of-art methods and techniques

· System resilience achieved by allowing multiple task instances in different devices

· Experimental results show resource utilization and performance benefits

	paper.pdf
	Introduction
	Related work
	Proposed distributed IDS framework
	IDS characterization
	Resource characterization
	Load prediction
	Framework definition

	Experimental design and results
	Experimental intrusion detection system
	Experimental framework implementation
	Switch component
	Controller component

	Test environment for validation
	Performance results and discussion
	Framework performance evaluation on mobile clients
	Framework performance evaluation on server resources

	Conclusion and future work

