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ABSTRACT 
 

Closed-form exact solutions for an oscillator with anti-symmetric quadratic nonlinearity are derived 

from the first integral of the nonlinear differential equation governing the behaviour of this oscillator. 

The mathematical model is an ordinary second order differential equation in which the sign of the 

quadratic nonlinear term changes. Two parameters characterize this oscillator: the coefficient of the 

linear term and the coefficient of the quadratic term. Not only the common case in which both 

coefficients are positive but also all possible combinations of positive and negative signs of these 

coefficients which provide periodic motions are considered, giving rise to four different cases. Three 

different periods and solutions are obtained, since the same result is valid in two of these cases. An 

interesting feature is that oscillatory motions whose equilibrium points are not at x = 0 are also 

considered. The periods are given in terms of an incomplete or complete elliptic integral of the first 

kind, and the exact solutions are expressed as functions including Jacobi elliptic cosine or sine 

functions.  
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1. Introduction 

Mathematical models based on nonlinear oscillators have been widely used, not only in 

mechanics but also in other branches of physics, mathematics or engineering [1-4]. In 

conservative nonlinear oscillators the restoring force is not dependent on time, the total 

energy is constant [2,3] and any oscillation is stationary. The solutions for this type of 

oscillators are periodic and range over a continuous interval of initial values [5]. In this paper 

we obtain closed-form exact expressions for the period and solution of an anti-symmetric 

quadratic nonlinear oscillator with linear and nonlinear terms, modelled by the following 

second-order differential equation 

 d2x
dt2

+ a1x + a2 sgn(x)x
2 = 0  (1) 

where a1 and a2 are the coefficients of the linear and nonlinear terms, respectively. 

Cveticanin analysed the vibrations of this oscillator when a1 > 0 [6] and made a qualitative 

analysis of the differential equation in (1) for both mass-hard and mass-soft spring systems. 

She also derived the exact solution to the anti-symmetric quadratic equation when a1 > 0 

using Jacobi elliptic functions [6]. Elías Zúñiga obtained the exact solution to the quadratic 

mixed-parity Helmholtz–Duffing oscillator [7]; Jin-wen Zhu derived the exact solution to a 

damped quadratic non-linear oscillator [8], and Marinca and Herişanu obtained explicit and 

exact solutions to cubic Duffing and double-well Duffing equations [9]. However, none of 

these authors solved the nonlinear differential equation but assumed that its exact solution is 

given by an equation which includes the dn Jacobian elliptic function and five unknown 

parameters that need to be determined. When a1 = 0 and a2 > 0, Eq. (1) corresponds to a truly 

nonlinear oscillator [10] for which exact expressions for the period and solution have already 

been obtained [11]. However, as far as we know, for the general situation described by Eq. 

(1), only analytical approximate expressions for the exact period and exact solution have so 

far been obtained. Mickens and Mixon [12] obtained accurate analytical approximate 

solutions to an anti-symmetric quadratic non-linear oscillator using the generalized harmonic 

balance method, as did Chen et al [13] using the elliptic perturbation method. Beléndez et al 

approximately solved this nonlinear oscillator when a1 = 0 using a modified He’s homotopy 

perturbation method [14] as well as a novel rational harmonic balance approach [15]. 

Recently, Cveticanin et al [16] obtained solutions to oscillators with symmetric and 
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asymmetric quadratic nonlinearity in the form of Jacobi elliptic functions. The case in which 

coefficients a1 and a2 are both positive is the most commonly analysed. However, we 

obtained exact approximate solutions not only when both coefficients are positive but also 

for all possible combinations of positive and negative values of these coefficients which 

provide periodic motions. In this paper we obtain exact expressions for the period and 

solution of an anti-symmetric quadratic nonlinear oscillator modelled by Eq. (1). Unlike the 

procedure followed by other authors [6-9,16], instead of assuming an expression for the 

solution we solve the nonlinear differential equation exactly. The various combinations of 

positive and negative signs of these coefficients give rise to four different cases. In three of 

these ((a) a1 ≥ 0, a2 > 0, and x0 > 0, (b) a1 < 0, a2 > 0 and x0 > −3a1 / 2a2 , and (c) a1 > 0, a2 < 

0 and 0 < x0 < −a1 / a2 ) the system oscillates around the equilibrium position x = 0 with 

x ∈ [−x0 ,x0 ] , where x0 > 0 is the oscillation amplitude. However, there is still one more case 

((d) a1 > 0, a2 < 0, and 0 > x1 > −3a1 / 2a2  or 3a1 / 2a2 < x0 < 0 ) in which the system does not 

oscillate around the position x = 0 where x ∈ [−x0 ,x0 ] , but around the equilibrium position 

x = −a1 / a2  where x ∈ [x1,x0 ]  (when 0 > x0 > −3a1 / 2a2 ) or x = a1 / a2  where x ∈ [x1,x0 ]  

(when 3a1 / 2a2 < x0 < 0 ). Three different sets of closed-form expressions for the exact period 

and solution were obtained. Some examples are analysed and plots including periods, 

solutions or phase-diagrams are presented and discussed. 

 

2. Solution when a1 ≥ 0, a2 > 0 and x0 > 0 

Consider the anti-symmetric quadratic nonlinear oscillator given in Eq. (1) with initial 

conditions 

  x(0) = A
              

€ 

dx
dt

(0) = 0 (2) 

In Eq. (1) we assume that the coefficients of the linear and the nonlinear terms satisfy the 

inequalities 

 a1 ≥ 0          a2 > 0   (3) 
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This system corresponds to a nonlinear oscillator for which the nonlinear function 

f (x) = a1x + a2 sgn(x)x
2  is odd, i.e. f (−x) = − f (x)  and satisfies the condition x f (x) > 0  

when x ∈ [−x0 ,x0 ] , x ≠ 0, where x0 > 0 is the initial amplitude. This system oscillates around 

the equilibrium position x = 0 and the period, T, and periodic solution, x, are dependent on 

the oscillation amplitude x0.  

In order to obtain the exact period and periodic solution to Eq. (1), we take into account that 

this is a conservative system and has the following first integral 

  

dx
dt
!

"
#

$

%
&

2

+ a1x
2 +
2
3
a2 sgn(x)x

3 = a1x0
2 +
2
3
a2x0

3 ≥ 0  (4) 

which can be written as follows 

  

dx
dt
!

"
#

$

%
&

2

= a1(x0
2 − x2 )+ 2

3
a2 (x0

3 − sgn(x)x3)  (5) 

From this equation we obtain 

 
2a2
3
dt = ± dx

3a1
2a2

(x0
2 − x2 )+ (x0

3 − sgn(x)x3)
 (6) 

where the sign (±) is chosen taking into account the sign of dx/dt in each quadrant.  

From Eq. (6) we obtain t as a function of x for the following cases: 

(a) Trajectory 1 → 2 (0 ≤ t ≤ T/4 and x0 ≥ x ≥ 0), x is positive and dx/dt is negative. 

(b) Trajectory 2 → 3 (T/4 ≤ t ≤ T/2 and 0 ≥ x ≥ −x0), x is negative and dx/dt is negative. 

(c) Trajectory 3 → 4 (T/2 ≤ t ≤ 3T/4 and −x0 ≤ x ≤ 0), x is negative and dx/dt is positive. 

(d) Trajectory 4 → 1 (3T/4 ≤ t ≤ T and 0 ≤ x ≤ x0), x is positive and dx/dt is positive: 

For the first time interval (0 ≤ t ≤ T/4, trajectory 1 → 2) the deflection is positive (x > 0) and 

from Eq. (6) it follows that  
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2a2
3
dt = − dx

3a1
2a2

(x0
2 − x2 )+ (x0

3 − x3)
 (7) 

and after some mathematical operations we obtain 

 2a2
3

dt
0

t

∫ = −
dx

(x0 − x) x
2 + x0 +

3a1
2a2

#

$
%

&

'
(x + x0

2 +
3a1
2a2

x0
)

*
+
+

,

-
.
.

x0

x

∫  (8) 

which can be written as 

 

2a2
3
t = dx

(α − x)[(x −σ )2 + ρ2]x

α

∫  (9) 

where 

 α = x0   (10) 

 σ = −
1
2
x0 −

3a1
4a2

 (11) 

 ρ =
3
4
x0
2 +
3a1
4a2

x0 −
9
16

a1
a2

"

#
$$

%

&
''

2

 (12) 

The value of the integral in Eq. (9) is given in GR’s book a ≥ x ≥ b > c  [17, 6th edition, 

Formula 3.138, Integral 8, page 260]; however, we found an error in the calculation (an 

inverse cotangent function is included instead of an arctangent function). Consequently, we 

solved the integral ourselves (see Appendix A) and obtained the following result (Eq. 

(A11)): 

 du

(α − x)[(x −σ )2 + ρ2]x

α

∫ =
1
p
F 2arctan α − x

p
, p−σ +α

2p

#

$
%
%

&

'
(
(   (13) 

where 

 p = (σ −α)2 + ρ2  (14) 
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and F(φ,m) is the incomplete elliptic integral of the first kind defined as follows [15] 

 F (φ,m) = dθ

1−msin2θ0

φ

∫  (15) 

Therefore, from Eqs. (10)-(15) it follows that 

 p =
3a1
a2
x0 +3x0

2  (16) 

 m = k 2 = p−σ +α
2p

=
1
2
+

3a1 +6a2x0
8 3a2 (a1x0 + a2x0

2 )
 (17) 

where m is the parameter and k is the elliptic modulus. The inverse function of F(φ,m) is 

given by the Jacobi amplitude φ [18,19] 

 F −1(u,m) = φ = am(u,m)   (18) 

whose cosine is the Jacobi cosine function, cn [19] 

 cosφ = cos(am(u,m)) = cn(u,m)   (19) 

In order to introduce an “arccos” function in Eq. (14) we take into account that 

 2arctan z = φ  (20) 

where  

 z = α − x
p

 (21) 

From Eq. (20) we obtain 

 tan φ
2
= z  (22) 

Taking into account the trigonometric formula 

 tan φ
2
= ±

1− cosφ
1+ cosφ

 (23) 

it follows that 
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 cosφ = 1− z
2

1+ z2
 (24) 

which allows Eq. (14) to be written as 

 dx

(α − x)[(x −σ )2 + ρ2 ]x

α

∫ =
1

p
F arccos p−α + x

p+α − x

⎛

⎝
⎜

⎞

⎠
⎟,
p−σ +α
2p

⎛

⎝
⎜

⎞

⎠
⎟   (25) 

From Eqs. (9), (19) and (25), it follows that 

 

p−α + x
p+α − x

= cn
2a2 p
3
t, p−σ +α

2p

"

#
$
$

%

&
'
'  (26) 

Substituting Eqs. (10), (11), (12), (16) and (17) into Eq. (26) gives 

  xa (t) = x0 −
3a1
a2
x0 +3x0

2
1− cn 4

3 a2(a1x0 + a2x0
2 )( )

1/4
t,m

"

#
$

%

&
'

1+ cn 4
3 a2(a1x0 + a2x0

2 )( )
1/4
t,m

"

#
$

%

&
'

"

#

$
$
$
$

%

&

'
'
'
'

 (27) 

which is valid for trajectory 1 → 2 and m is given in Eq. (17).  

The period of oscillation is four times the time taken by the oscillator to go from x = 0 to x = 

x0. This results in 

 

T = 4 3
2a2

dx

(α − x)[(x −σ )2 + ρ2 ]0

α

∫ = 4 3
2pa2

F 2arctan α
p
, p−σ +α

2p

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟  (28) 

and substituting Eqs. (10), (11), (16) and (17) into Eq. (28) gives  

 
T = 2 6

(3a1a2x0 +3a2
2x0
2 )1/4

F 2arctan
a2x0

3a1 +3a2x0

!

"
##

$

%
&&

1/4

, 1
2
+

3a1 +6a2x0
8 3a2(a1x0 +3a2x0

2 )

!

"

#
#

$

%

&
&  

 (29) 

Taking into account Eq. (25) the exact period can also be written as  

T = 2 6
(3a1a2x0 +3a2

2x0
2 )1/4

F arccos
3a1x0 +3a2x0

2 − a2 x0
3a1x0 +3a2x0

2 + a2 x0

"

#

$
$

%

&

'
'
, 1
2
+

3a1 +6a2x0
8 3a2(a1x0 +3a2x0

2 )

"

#

$
$

%

&

'
'  

 (30) 

which can be written as follows 
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T = F (φ0 ,m)
Ω

 (31) 

where 

 φ0(a1,a2,x0 ) = arccos
3a1x0 +3a2x0

2 − a2 x0
3a1x0 +3a2x0

2 + a2 x0

"

#

$
$

%

&

'
'
 (32) 

 
Ω(a1,a2,x0 ) =

1
2 6

(3a1a2x0 +3a2
2x0
2 )1/4   (33) 

and m is given in Eq. (17). 

In the next time-motion interval (T/4 ≤ t ≤ T/2, trajectory 2 → 3) the deflection is negative, x 

< 0 and from Eq. (6) it follows that 

 
2a2
3

dt
T /4

t

∫ = −
dx

3a1
2a2

(x0
2 − x2 )+ (x0

3 + x3)
0

x

∫  (34) 

where T is the period of oscillation given in Eq. (29). Let x = –y, then Eq. (34) becomes 

 
2a2
3

t − T
4

"

#
$

%

&
'=

dy
3a1
2a2

(x0
2 − y2 )+ (x0

3 − y3)
0

−x

∫  (35) 

which can be written as follows 

 
2a2
3

t − T
4

"

#
$

%

&
'=

dy
3a1
2a2

(x0
2 − y2 )+ (x0

3 − y3)
0

x0∫ −
dy

3a1
2a2

(x0
2 − y2 )+ (x0

3 − y3)
−x

x0∫  (36) 

The values of the two integrals on the right-hand side of Eq. (36) are 

 dy
3a1
2a2

(x0
2 − y2 )+ (x0

3 − y3)
0

x0∫ =
2a2
3
T
4

 (37) 
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 dy

3a1
2a2

(x0
2 − y2 )+ (x0

3 − y3)
−x

x0∫ =
1

p
F arccos p−α − x

p+α + x

#

$
%

&

'
(,
p−σ +α
2p

#

$
%

&

'
(  (38) 

where Eqs. (25) and (29) have been taken into account. Substituting Eqs. (37) and (38) into 

Eq. (34) gives 

 

p−α − x
p+α + x

= cn
2a2 p
3

T
2
− t

"

#
$

%

&
',
p−σ +α
2p

"

#
$
$

%

&
'
'  (39) 

After some simplifications, the solution for trajectory 2 → 1 can be written as follows 

  xb(t) = −x0 +
3a1
a2
x0 +3x0

2
1− cn 4

3 a2(a1x0 + a2x0
2 )( )

1/4
t − T

2( ),m
"

#
$

%

&
'

1+ cn 4
3 a2(a1x0 + a2x0

2 )( )
1/4
t − T

2( ),m
"

#
$

%

&
'

"

#

$
$
$
$

%

&

'
'
'
'

 (40) 

where we take into account that cn(z1 − z2;m) = cn(z2 − z1;m)  [16]. For trajectory 3 → 4 (T/2 

≤ t ≤ 3T/4) the deflection is also negative (x < 0) and it can easily be verified that the same 

solution as that given in Eq. (40) is obtained. 

Finally, for the last time interval (3T/4 ≤ t ≤ T, trajectory 4 → 1) the deflection is positive 

and from Eq. (6) it follows that 

 2a2
3

dt
3T /4

t

∫ =
dx

(x0 − x) x
2 + x0 +

3a1
2a2

#

$
%

&

'
(x + x0

2 +
3a1
2a2

x0
)

*
+
+

,

-
.
.

0

x

∫  (41) 

which can be written as follows 

 
2a2
3

t − 3T
4

"

#
$

%

&
'=

dx
3a1
2a2

(x0
2 − x2 )+ (x0

3 − x3)
0

x0∫ −
dx

3a1
2a2

(x0
2 − x2 )+ (x0

3 − x3)
x

x0∫  (42) 

After simplifying the solution for 3 → 4 may be written as follows 
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  xc (t) = x0 −
3a1
a2
x0 +3x0

2
1− cn 4

3 a2(a1x0 + a2x0
2 )( )

1/4
(t −T ),m

"

#
$

%

&
'

1+ cn 4
3 a2(a1x0 + a2x0

2 )( )
1/4
(t −T ),m

"

#
$

%

&
'

"

#

$
$
$
$

%

&

'
'
'
'

 (43) 

Then, the exact solution to Eq. (1) for the first period (0 ≤ t ≤ T) can be written as the 

following piecewise function  

 x(t) =

xa (t), 0 ≤ t ≤ T
4

−xa t −
T
2

⎛

⎝
⎜

⎞

⎠
⎟,

T
4
≤ t ≤ 3T

4

xa (t −T ),
3T
4
≤ t ≤T

⎧

⎨

⎪
⎪
⎪

⎩

⎪
⎪
⎪

 (44) 

where x(t) is a continuous function over the entire domain and xa(t), xb(t) and xc(t) are given 

in Eqs. (27), (40) and (43), respectively.  

In summary, when a1 ≥ 0 and a2 > 0, and for all values of the initial amplitude (x0 > 0), the 

exact period is given by Eq. (29) and the exact solution is a piece-wise continuous time-

dependent function composed of three parts defined separately over two quarter-period and 

one half-period intervals as can be seen in Eq. (44).  

We can obtain the period when a1 = 0 and a2 = 1, which corresponds to a truly nonlinear 

oscillator [10] 

 d2x
dt2

+ sgn(x)x2 = 0  (45) 

From Eq. (29) the period of this truly nonlinear oscillator is 

T = 3
1/4 8

x0
F 2arctan 1

31/4
!

"
#

$

%
&,
2+ 3
4

!

"
#
#

$

%
&
&=
31/4 8

x0
F arccos 3−1

3−1

!

"
#
#

$

%
&
&,
2+ 3
4

!

"
#
#

$

%
&
& ≈
6.86926

x0
  (46) 

which coincides with the value given in [7] 

 T = 8π
3x0

Γ(1/ 3)
Γ(5 / 6)

≈
6.86926
x0

 (47) 
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3. Solution when a1 < 0, a2 > 0 and x0 > –3a1/2a2 

We assumed that a1 ≥ 0 and a2 > 0 (Eq. (3)) in order to obtain the exact period and exact 

solution given in Eqs. (27), (30), (40) and (43) which are valid for all values of the initial 

amplitude (x0 > 0). However, under certain conditions these equations are also valid even 

though a1 and a2 are not both positive. A dynamical study of the nonlinear differential 

equation given in Eq. (1) showed that its motion is periodic with a centre at (0,0) in the 

following situations: 

 

(a) a1 ≥ 0, a2 > 0, x0 > 0

(b) a1 < 0, a2 > 0, x0 >
3 a1
2a2

(c) a1 > 0, a2 < 0, 0 < x0 <
a1
a2

"

#

$
$
$
$

%

$
$
$
$

 (48) 

 

The phase plots in Figure 1 illustrate three examples of these situations. Figure 1 (a) shows 

the behaviour of the oscillator when a1 = 1, a2 = 1 and x0 = 1 (x0 must be > 0, (a)). Figure 1 

(b) shows its behaviour when a1 = –1, a2 = 1 and x0 = 1.6 (x0 must be > 3/2, (b)), whereas 

Figure 1 (c) shows the phase plot when a1 = 1, a2 = –1 and x0 = 0.9 (x0 must be < 1, (c)). As 

can be seen in these figures, the system oscillates around the equilibrium position x = 0 and 

the periodic solution x satisfies the condition x ∈ [−x0 ,x0 ] , where x0 > 0 is the oscillation 

amplitude. Eqs. (27), (30), (40) and (43) can be used to obtain the period and solution in 

cases (a) and (b), i.e., they are valid for (a) a1 ≥ 0, a2 > 0 and x0 > 0, and (b) a1 < 0, a2 > 0 

and x0 >
3 a1
2a2

. However, in case (c) in Eq. (48) it is necessary to obtain the equation for the 

period again since if a2 < 0, the root 2a2 / 3 is not a real number and so Eq. (6) can not be 

used.  
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Figure 1.-  Phase plot for (a) a1 = 1 and a2 = 1 with x0 = 1 (x0 must be > 0, (a)), (b) a1 = –1 and a2 = 
1 with x0 = 1.6 (x0 must be > 3/2, (b)), and (c) a1 = 1 and a2 = –1 with x0 = 0.9 (x0 must 
be < 1, (c)). 
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4. Solution when a1 > 0, a2 < 0 and 0 < x0 < –a1/a2 

In order to obtain the exact solution when a1 > 0, a2 < 0 and 0 < x0 < a1 / a2  (Eq. (48c)) in 

which case the system oscillates around the equilibrium position x = 0 and the periodic 

solution x satisfies the condition x ∈ [−x0 ,x0 ] , we proceed as follows. From Eq. (5) and 

considering that x > 0, we obtain t as a function of x as follows 

 

−2a2
3
dt = ± dx

−
3a1
2a2

(x0
2 − x2 )− (x0

3 − x3)
 

(49)  

Taking into account that a1 < 0 and a2 < 0, Eq. (49) can be written as 

 

−2a2
3

dt
0

t

∫ = ±
dx

(a− x)(b− x)(x − c)x

b

∫
 

(50) 

where constants a, b and c satisfy the condition that a > b ≥ x > c and are given as follows  

 a = 1
4a2

−3a1 − 2a2x0 − 3 3a1
2 − 4a1a2x0 − 4a2

2x0
2( )  (51) 

 
b = x0   (52) 

 c = 1
4a2

−3a1 − 2a2x0 + 3 3a1
2 − 4a1a2x0 − 4a2

2x0
2( )  (53) 

The value of the integral in Eq. (50) when a ≥ x ≥ b > c  is [17, 6th edition, Formula 3.131, 

Integral 4, page 250] 

 

dx
(a− x)(x −b)(x − c)x

b

∫ =
2
a− c

F (δ,q)

 

(54) 

F(φ,m) is the incomplete elliptic integral of the first kind defined in Eq. (15) and 

 

δ = arcsin (a− c)(b− x)
(b− c)(a− x)

 

(55) 

 

q = b− c
a− c

 

(56) 
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Substitution of these results into Eq. (50) gives the following equation for t as a function of x 

 

t = 2 3
2a2(c− a)

F arcsin
(a− c)(x0 − x)
(x0 − c)(a− x)

,
x0 − c
a− c

"

#
$
$

%

&
'
'

 

(57) 

The period of oscillation is four times the time taken by the oscillator to go from x = x0 to x = 

0. Therefore 

 

T = 8 3
2a2 (c− a)

F arcsin
(a− c)x0
(x0 − c)a

,
x0 − c
a− c

"

#
$
$

%

&
'
'

 

(58) 

which finally can be written as follows 

 T = 8 3
Φ
F arcsin 2Φ

9a1 +6a2x0 +Φ
,
Φ−3a1 −6a2x0

2Φ

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟  (59) 

where  Φ, which is a function of a1, a2 and x0, is defined as follows 

 Φ(a1,a2 ,x0 ) = 3 3a1
2 − 4a1a2x0 − 4a2

2x0
2  (60) 

From Eq. (57) it follows that if 0 ≤ t ≤ T/4 then 

 

F arcsin (a− c)(A− x)
(A− c)(a− x)

, A− c
a− c

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟=
1
2
2a2 (c− a)

3
t

 

(61) 

The inverse function of the incomplete elliptical function of the first kind in Eq. (61) is the 

Jacobi sine function sn. Therefore 

 

(a− c)(x0 − x)
(x0 − c)(a− x)

= sn 1
2
2a2 (c− a)

3
t,
x0 − c
a− c

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

 

(62) 

and after some mathematical operations, when 0 ≤ t ≤ T/4 we finally obtain the following 

solution 

  xa (t) = x0

1− 9a1 +6a2x0 +Φ
2Φ

sn2 1
2

Φ
3
t,Φ−3a1 −6a2x0

2Φ

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

1+ 9a1 +6a2x0 +Φ
2Φ

sn2 1
2

Φ
3
t,Φ−3a1 −6a2x0

2Φ

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

 (63) 
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where Φ is given in Eq. (60).  

In a similar way it is possible to obtain the following equation for the exact solution when 

T/4 ≤ t ≤ 3T/4  

 

xb(t) = −x0

1− 9a1 +6a2x0 +Φ
2Φ

sn2 1
2

Φ
3
t − T
2

⎛

⎝
⎜

⎞

⎠
⎟,
Φ−3a1 −6a2x0

2Φ

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

1+ 9a1 +6a2x0 +Φ
2Φ

sn2 1
2

Φ
3
t − T
2

⎛

⎝
⎜

⎞

⎠
⎟,
Φ−3a1 −6a2x0

2Φ

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

 (64) 

 

and finally when 3T/4 ≤ t ≤ T the exact solution is given by the following equation 

 

 xc (t) = x0

1− 9a1 +6a2x0 +Φ
2Φ

sn2 1
2

Φ
3
(t −T ),Φ−3a1 −6a2x0

2Φ

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

1+ 9a1 +6a2x0 +Φ
2Φ

sn2 1
2

Φ
3
(t −T ),Φ−3a1 −6a2x0

2Φ

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

 (65) 

 

Then, the exact solution to Eq. (1) when a1 > 0 and a2 < 0 can be written as the following 

piecewise function  

 x(t) =

xa (t), 0 ≤ t ≤ T
4

−xa t −
T
2

⎛

⎝
⎜

⎞

⎠
⎟,

T
4
≤ t ≤ 3T

4

xa (t −T ),
3T
4
≤ t ≤T

⎧

⎨

⎪
⎪
⎪

⎩

⎪
⎪
⎪

  (66) 

 

where the exact period T is given in Eq. (69). It is important to point out that when a1 > 0 and 

a2 < 0, Eqs. (59), (63), (64) and (65) are valid provided that the initial amplitude x0 satisfies 

the condition 0 < x0 < a1 / a2 . 
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In summary, in sections 2, 3 and 4 we obtained the exact periods and solutions for Eq. (1) for 

all values of parameters a1 and a2 and oscillation amplitude x0 for which this system 

oscillates around the equilibrium position x = 0. These values are shown in Eq. (48). In this 

case the period, T, and the periodic solution, x, are dependent on x0 and x ∈ [−x0 ,x0 ] . 

Figure 2 shows the variation in the period in Eq. (30) as a function of the initial amplitude x0  

when (a) a1 = 1 and a2 = 1, and (b) a1 = –1 and a2 = 1, as well as the variation in the period in 

Eq. (59) when (c) a1 = 1 and a2 = –1. Given that the exact solutions for motion are known, 

we can plot them as a function of time.  

 

(c)

(b)

(a)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
x00

5

10

15

T

 

Figure 2.- Exact period in Eq. (30) as a function of the initial amplitude x0 for (a) a1 = 1 and a2 = 1, 
and (b) a1 = –1 and a2 = 1, as well as the variation in the period in Eq. (59) when (c) a1 = 
1 and a2 = –1. 

 

Figure 3 shows the periodic solutions when (a) a1 = 1, a2 = 1 and x0  = 1, and (b) a1 = –1, a2 = 

1 and x0  = 1.6. These solutions were obtained using the period and exact solution given in 

Eqs. (27), (30), (40) and (43) and their phase plots are shown in Figures 1 (a) and (b), 

respectively. Finally, in Figure 3 (c) we plotted the exact solution when a1 = 1, a2 = –1 and x0  

= 0.9 using the period and exact solution given in Eqs. (59), (63), (64) and (65). The phase 

plot for this situation is shown in Figure 1 (c). 
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Figure 3.- Exact periodic solutions for an anti-symmetric quadratic oscillator when (a) a1 = 1, a2 = 1 
and x0 = 1 using the period and exact solution given in Eqs. (27), (30), (40) and (43), (b) 
a1 = –1, a2 = 1 and x0 = 1.6 using the period and exact solution given in Eqs. (27), (30), 
(40) and (43), and (c) a1 = 1, a2 = –1 and x0 = 0.9 using the exact period and solution 
given in Eqs. (59), (63), (64) and (65).  
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5. Solution when a1 < 0, a2 > 0 and 0 < x0 < –3a1/2a2 

Now we assume that the coefficients of the linear and the nonlinear terms satisfy the 

condition 

  a1 < 0          a2 > 0   (67) 

with initial conditions   

  x(0) = x0               

€ 

dx
dt

(0) = 0 (68) 

Unlike in the cases studied above, the initial amplitude is now denoted by x1. The phase plot 

in Figure 1 (b) shows the behaviour of the oscillator when x0 > −
3a1
2a2

 (a1 = –1, a2 = 1 and x0 

= 8/5 = 1.6 > 3/2). The oscillation is periodic with a centre at (0,0). In this situation, which 

was discussed in Section 3, Eqs. (27), (29), (40) and (43) must be used to obtain the exact 

period and solution replacing A by x1.  

x2

(1,0)x1 x0

-2 -1 0 1 2

-0.4

-0.2

0.0

0.2

0.4

x

v

 

Figure 4.- Phase plot showing the behaviour of the oscillator when 0 < x0 < −
3a1
2a2

 (a1 = –1, a2 = 1 

and x0 = 7/5  < 3/2). 
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The phase portrait in Figure 4 shows the behaviour of the oscillator when 0 < x0 < −
3a1
2a2

 (a1 

= –1, a2 = 1 and x0 = 7/5 = 1.4 < 3/2). Three equilibrium points can be seen. There are 

centres at (±a1 / a2 ,0)  as well as a saddle at (0,0). Now the system oscillates around the 

equilibrium position x = −a1 / a2  (when x ∈ [x1,x0 ]  and 0 < x1 ≤ x ≤ x0) or x = a1 / a2 (when 

3a1
2a2

< x0 < 0 ). It is important to point out that now the differential equation given in Eq. (1) 

governs the motion of a mixed-parity nonlinear oscillator, d
2x
dt2

+ a1x + a2x
2 = 0 , which has 

asymmetric quadratic nonlinearity with a positive quadratic term. 

We shall now obtain the period and solution corresponding to the right orbit in Figure 4 for 

which x > 0 considering that x0 is the highest value of x. From Eq. (6) and considering that x 

> 0, we obtain t as a function of x as follows 

 

2a2
3
dt = − dx

3a1
2a2

(x0
2 − x2 )+ (x1

2 − x3)
 

(69)  

which can be written as 

 

2a2
3

dt
0

t

∫ = ±
dx

(x0 − x)(x − x1)(x − x2 )x0

x

∫
 

(70) 

where x1 and x2 are defined by the following equations   

 x1 =
1
4a2

−3a1 − 2a2x0 + 3 3a0
2 − 4a1a2x0 − 4a2

2x0
2( )  (71)

 
 x2 =

1
4a2

−3a1 − 2a2x0 − 3 3a1
2 − 4a1a2x0 − 4a2

2x0
2( )  (72) 

x0 and x1 are shown in Figure 4 when a1 = –1, a2 = 1 and x0 = 7/5. In this case the 

equilibrium point is at x = −a1 / a2  (x = 1 and v = 0). It can easily be verified that the right 

orbit in Figure 4 satisfies the inequalities 

 x0 ≥ x ≥ x1 > x2  (73) 
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Now the period, T, and the periodic solution, x, are dependent on x0 and x ∈ [x1,x0 ] . The 

following integral is valid for a ≥ x ≥ b > c  [17, 6th edition, Formula 3.131, Integral 6, page 

250] 

 

dx
(a− x)(x −b)(x − c)x

a

∫ =
2
a− c

F (λ, p)

 

(74) 

where F(λ,p) is the incomplete elliptic integral of the first kind defined in Eq. (15) and λ and 

p are given by the following equations 

 

λ = arcsin a− x
a−b

 

(75) 

 

p = a−b
a− c

 

(76) 

Then the value of the integral in Eq. (70) is 

 

t = 2 3
2a2 (x0 − x2 )

F arcsin
x0 − x
x0 − x1

,
x0 − x1
x0 − x2

"

#
$
$

%

&
'
'

 

(77) 

As can be seen in Figure 4, the period of oscillation is twice the time taken by the oscillator 

to go from x = x0 to x = x1. Therefore 

 

T = 4 3
2a2 (x0 − x2 )

F arcsin
x0 − x1
x0 − x1

,
x0 − x1
x0 − x2

"

#
$
$

%

&
'
'= 4

3
2a2 (x0 − x2 )

F π
2
,
x0 − x1
x0 − x2

"

#
$$

%

&
''

 

(78) 

which finally can be written as follows 

 

T = 4 3
2a2 (x0 − x2 )

K
x0 − x1
x0 − x2

"

#
$$

%

&
''

 

(79) 

where K(m) is the complete elliptic integral of the first kind defined as follows [16] 

 K (m) = dθ

1−msin2θ0

π /2

∫  (80) 

Substituting Eqs. (71) and (72) in Eq. (79), gives the exact period of oscillation as  
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T = 4 6

3a1 +6a2x0 + 3 3a1
2 − 4a1a2x0 − 4a2

2x0
2
K
3a1 +6a2x0 − 3 3a1

2 − 4a1a2x0 − 4a2
2x0
2

3a1 +6a2x0 + 3 3a1
2 − 4a1a2x0 − 4a2

2x0
2

"

#

$
$

%

&

'
'

 

  (81) 

which satisfies the condition T(x1) = T(x0). Taking into account the definition given in Eq. 

(60), the period can also be written as follows 

 

T = 4 6
3a1 +6a2x0 +Φ

K
3a1 +6a2x0 −Φ
3a1 +6a2x0 +Φ

#

$
%%

&

'
((  (82) 

In order to obtain the solution x as a function of time t, from Eq. (77) it follows that 

 

F arcsin
x0 − x
x0 − x1

,
x0 − x1
x0 − x2

"

#
$
$

%

&
'
'=
1
2
2a2
3
(x0 − x2 )

1/2 t

 

(83) 

which may be written as 

 

x0 − x
x0 − x1

=sn 1
2
2a2
3
(x0 − x2 )

1/2 t,
x0 − x1
x0 − x2

"

#
$
$

%

&
'
'

 

(84) 

Then the exact solution is given by the equation 

 

x(t) = x0 − (x0 − x1)sn
2 1
2
2a2
3
(x0 − x2 )

1/2 t,
x0 − x1
x0 − x2

"

#
$
$

%

&
'
'

 

(85) 

Finally, taking into account Eqs. (60), (71) and (72) the exact solution may be expressed as 

 

x(t) = x1 −
1
4a2

3a1 +6a2x0 −Φ( )sn2
3a1 +6a2x0 +Φ

2 6
t,
3a1 +6a2x0 −Φ
3a1 +6a2x0 +Φ

#

$

%
%

&

'

(
(  (86) 

When a1 < 0 and a2 > 0, Eqs. (82) and (86) are valid provided that the initial position x0 

satisfies the condition 0 < x0 <
3a1
2 a2

 , except for the equilibrium point (when x0 = a1 / a2 ). 

As can be seen, in this case the exact solution is not a piece-wise function and using only one 

equation it is possible to describe the oscillatory motion of the system for any value of time. 
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The expressions for the period and exact solution corresponding to the left orbit in Figure 4, 

i.e., when x < 0 can be obtained following the same procedure as that used when x > 0 and is 

not included here. 

Figure 5 shows the variation in period as a function of initial position when a1 = –1 and a2 = 

1. (a) 0 < x0 < –3a1/2a2 = 3/2, section 5, Eq. (81), and (b) x0 > –3a1/2a2 = 3/2, section 3, Eq. 

(30). As can be seen the motion is not periodic when the initial position is –3a1/2a2. Figure 6 

(a) shows the plot of displacement x as a function of time t when a1 = –1, a2 = 1 and x0 = 7/5 

= 1.4. The displacement was obtained using Eq. (86). In this example, and from Eq. (81), it 

follows that  

 x1 =
1
2
1+ 57( ) ≈ 0.427492  (87) 

(a) (b)
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x04
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Figure 5.- Exact period as a function of the initial position x0 for a1 = –1 and a2 = 1. (a) 

0 < x0 < −
3a1
2a2

=
3
2

, section 5, Eq. (81), and (b) x0 > −
3a1
2a2

=
3
2

, section 3, Eq. (30). 

 

As can be easily verified in Figure 6 (a), the oscillatory motion of this system is bounded 

between
 
x1 =

1
2
1+ 57( ) ≈ 0.427492  and x0 = 7/5 = 1.4 and the equilibrium point is located at 

x =a1 / a2  = 1. 
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Figure 6.- Exact periodic solution for an anti-symmetric quadratic oscillator when (a) a1 = –1, a2 = 1 
and x0 = 7/5 = 1.4. This displacement was obtained using Eq. (86), and (b) a1 = –1, a2 = 1 

and x0 =
1
2
1+ 57( ) ≈ 0.427492 . In this situation, x1 = 7/5 = 1.4. 

 

Figure 6 (b) shows displacement x as a function of time t when a1 = –1, a2 = 1 and 

x0 =
1
2
1+ 57( ) ≈ 0.427492 . In this case x1 = 7/5 = 1.4.  The equation of the separatrix orbit 

may be obtained from Eq. (86). For this orbit x0 = −3a1 / 2a2  and the period T in Eq. (82) is 

infinite. Substituting x0 = −3a1 / 2a2  in Eq. (86) gives 
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Eq. (86) allows us to obtain the equation of the separatrix orbit. For this orbit x0 = −3a1 / 2a2  

and the period T in Eq. (82) is infinite. Substituting x0 = −3a1 / 2a2  in Eq. (86) we obtain 

 xas (t) = −
3a1
2a2

+
3a1
2a2

tanh2 1
2

−a1 t
⎛

⎝
⎜

⎞

⎠
⎟  (88) 

and the velocity is 

 vas (t) =
3a1 −a1
2a2

tanh 1
2

−a1 t
⎛

⎝
⎜

⎞

⎠
⎟ 1− tanh2

1
2

−a1 t
⎛

⎝
⎜

⎞

⎠
⎟

⎡

⎣
⎢

⎤

⎦
⎥ (89) 

which gives the following relationship between vas and xas 

 vas
2 (xas ) = −

1
3
xas
2 (3a1 + 2a2xas )  (90) 

for x0 = −3a1 / 2a2 > 0  and 

 vas
2 (xas ) = −

1
3
xas
2 (3a1 ± 2a2xas )  (91) 

for x0 = 3a1 / 2a2 < 0 . For both initial conditions, x0 = −3a1 / 2a2 > 0  and x0 = 3a1 / 2a2 < 0 , 

the separatrix curve has a fish-shaped form and corresponds to a homoclinic orbit connecting 

the hyperbolic fixed point x = 0 to itself. Figure 7 shows the phase-space curves when a1 = –

1 and a2 = 1 and combines the results analysed in sections 3 and 5. The separatrix curve 

calculated using Eq. (91) is also plotted in this figure. There are three critical points, (a1/a2,0) 

and (–a1/a2,0), which are centres, and (0,0), which is an unstable saddle point. 

 

6. Conclusions 

Oscillators with symmetric quadratic nonlinearity were analysed and closed-form 

expressions for their exact periods and solutions for all possible oscillatory motions were 

obtained. Four possible combinations of coefficients a1 and a2 were shown to give periodic 

motions. In three of them ((a) a1 ≥ 0, a2 > 0, and x0 > 0, (b) a1 < 0, a2 > 0 and x0 > –3a1/2a2, 

and (c) a1 > 0, a2 < 0 and 0 < x0 < –a1/a2) the system oscillates around the equilibrium 

position x = 0 with x ∈ [−x0 ,x0 ] , where x0 > 0 is the oscillation amplitude. However, there is 

still one more case ((d) a1 > 0, a2 < 0, and 0 > x0 > −3a1 / 2a2  or 3a1 / 2a2 < x0 < 0 ) in which 

the system does not oscillate around the position x = 0 with x ∈ [−x0 ,x0 ]  but around the 
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equilibrium position x = −a1 / a2  with x ∈ [x1,x0 ]  (when 0 > x0 > −3a1 / 2a2 ) or x = a1 / a2  

with x ∈ [x1,x0 ]  (when 3a1 / 2a2 < x0 < 0 ). Case (d) corresponds to a mixed-parity nonlinear 

oscillator with asymmetric quadratic nonlinearity and a positive quadratic term. 

 

Figure 7.- Phase-space curves when a1 = –1 and a2 = 1 combining the results analysed in sections 3 
and 5. The separatrix orbit (dashed line) as well as the critical points (±a1/a2,0), which are 
centres, and (0,0), which is an unstable saddle point, are also included. 

 

In cases (a) and (b) the exact period is given as a function which includes an incomplete 

elliptic integral of the first kind and the exact solution is expressed as a piecewise function 

including Jacobi elliptic cosine functions. In case (c) the exact period also includes an 

incomplete elliptic integral of the first kind and the exact solution is also expressed as a 

piecewise function but now it includes Jacobi elliptic sine functions. Finally, in case (d) the 

exact period is given as a function which includes an incomplete elliptic integral of the first 

kind, whereas the exact solution consists of a single function including Jacobi elliptic sine 

functions. It was necessary to solve an integral (Eq. (9)) in order to obtain the exact solution 

in cases (a) and (b). We found an error in the calculation of this integral in GR’s book [17] 

and so we solved it ourselves.  
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Appendix A 
In GR’s book [17, 6th edition, Formula 3.138, Integral 8, page 260] the solution of the 

following integral may be found 

 
I = dx

(α − x)[(x −σ )2 + ρ2 ]x

α

∫       (A1) 

This is the integral we needed to solve in Eq. (9) in order to obtain the exact period of the 

nonlinear oscillator modelled by Eq. (1). The solution given in GR’s book is 

 
I = dx

(α − x)[(x −σ )2 + ρ2 ]x

α

∫ =
1

p
F 2arccot α − x

p
, p−σ +α

2p

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟       (A2) 

where  

 p = (σ −α)2 + ρ2  (A3) 

and x < α. However, this solution is incorrect as shown below.  

We consider the integral in Eq. (A1). The change of variable 

 
tanθ
2
=

α − x
p

  (A3) 

gives 

 
I = p tan(θ / 2)dθ

cos2(θ / 2) p tan2(θ / 2)[(α −σ − p tan2(θ / 2))2 + ρ2]0

2arctan α−x
p∫       (A4) 

which after some mathematical operations can be written as follows 

 I = 1

p

dθ

cos4(θ / 2)+ sin4(θ / 2)+ 2(σ −α)
p

sin2(θ / 2)cos2(θ / 2)
0

2arctan α−x
p∫  (A5) 

Taking into account the following trigonometric equations 

 
cos4 θ

2
+ sin4 θ

2
=
1+ cosθ
2

!

"
#

$

%
&

2

+
1− cosθ
2

!

"
#

$

%
&

2

=
1
2
(1+ cos2θ ) =1− 1

2
sin2θ  (A6) 
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sin2 θ

2
cos2 θ

2
=
1
4
sin2θ  (A7) 

Eq. (A5) becomes 

I = 1
p

dθ

1− 1
2
sin2θ +σ −α

2p
sin2θ

0

2arctan α−x
p∫ =

1
p

dθ

1− p−σ +α
2p

sin2θ
0

2arctan α−x
p∫     (A8) 

Now considering an incomplete elliptic integral of the first kind defined in Eq. (15) and 

introducing φ and m as follows 

 φ = 2arctan α − x
p

      (A9) 

 m = p−σ +α
2p

      (A10) 

the correct solution for the integral in Eq. (A1) is 

 I = dx

(α − x)[(x −σ )2 + ρ2 ]x

α

∫ =
1
p
F 2arctan α − x

p
, p−σ +α

2p

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟       (A11) 

which is the equation we used in section 2. 
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