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chloride ingress: a probabilistic approach
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aDepartament d’Enginyeria Civil, Universitat d’Alacant, Ap. 99, 03080 Alacant, Spain

Abstract

Estimation of depassivation time is a key issue in corrosion prevention. A method to get a probabilistic model
from a deterministic one is presented and applied to three simple models: square root of time (SRT), error
function (EF) and constant flux (CF) models. Probability distributions of the involved random variables
are needed as input parameters. Experimental data have been obtained from a concrete structure exposed
to the atmospheric marine environment. These data are analysed to obtain the probability distributions
of chloride transport parameters: penetration velocity k (SRT model), diffusion coefficient D (EF and CF
models), surface chloride concentration CS (EF model), and chloride ingress flux J (CF model). These
distributions are used to calculate the depassivation time probability distributions according to the three
models and the orientation of the samples respect to the sea. This allows to estimate depassivation time for
a given depassivation probability.

Keywords: Corrosion, Reinforced concrete, Probability, Chloride

1. Introduction

Port and maritime constructions are infrastructures of high economic and social value. For this reason
tools for calculating their service life are of especial interest. In the case of reinforced concrete structures
exposed to the marine environment a prime cause of distress is steel corrosion due to chloride ingress [1].
The damage of the structure due to corrosion is produced after the depassivation of steel, which is produced
when a high-enough chloride content is reached in the concrete around the steel rebar [2].

Although structural damages only appear after there has been a certain development of the corrosion
process, at times the occurrence of steel depassivation has been considered as the event marking the end of
service life [2, 3]. This can be considered as a conservative approach, that can be of interest for instance at
the design or maintenance phases of the construction of important infrastructures.

The calculations of the end of service life can be carried out through deterministic or probabilistic methods
[4]. Deterministic methodologies, which rely on the calculation of the time at which a certain variable
reaches a critical value, have been widely used and are even still included in some structural concrete codes
[5]. During the last years probabilistic methods for the calculation of service life have gained importance
[6–10], since they take into account the uncertainties of the model parameters, thus allowing to introduce
the concept of failure probability. The aim of the probabilistic methods is to obtain the probability of an
undesirable event (limit state) occurring. In the case of calculations related with the onset of reinforcement
corrosion in maritime structures, the conservative limit state would be surpassed when the probability of
reaching a critical value for the chloride content at steel depth would be higher than a set value.

Several concrete codes include service life calculation tools [11, 12], which contain their own set of
assumptions, for instance regarding the chloride transport model and probability density functions adopted
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Property Value
Compressive strength (MPa) 25.6
Cement content (kg/m3) 220
Bulk density (kg/m3) 2150
Porosity (%) 15.8
Background Cl− concentration (%) 0.0175
Mean values of at least three samples

Table 1: Properties of the studied concrete

for each one of the considered random variables. They can be fully exploited at the design phase, after
setting the duration of the service life and the maximum allowable probability of failure, for calculating
appropriate values for some of the design parameters, for instance the minimum reinforcement concrete
cover.

Another situation of interest is represented by the surveys of existing structures affected by reinforcement
corrosion due to chlorides, for assessing their residual service life [13, 14]. In such cases it is frequent to
perform more or less extensive campaigns for obtaining experimental raw data, typically chloride content
profiles, and calculated transport parameters representing the performance of the structure. In these cases
the abovementioned tools, included in the concrete codes, may represent some rigidity since they use fixed
transport models and fixed probability functions for the random variables. The modeler might wish to use
some of the available transport models, empirical or physical with different sophistication levels. Further-
more, the experimental sets of data, corresponding to the relevant variables in the models, may fit better to
a particular probability function, different from that prescribed in the codes.

The aim of the present work is to present a methodology that allows getting a probabilistic chloride
transport model from a deterministic one, thus making possible to calculate the failure probability in relation
with the steel depassivation limit state. This is achieved assigning the proper probability distributions to
the variables in the deterministic model and computing the corresponding probability distribution of the
calculated depassivation time. A method is also proposed for estimating the best choice for the probability
density function applicable to any of the random variables. This is accomplished by calculating the minimum
value of a newly proposed parameter, α, which represents the difference between the experimental values of
the random variables and the values calculated trough any of the available theoretical probability density
functions. The difference is integrated over the full domain of the random variable. The proposed procedures
provide flexibility to the modeler in choosing the desired empirical transport model, and allow estimating
the most adequate probability function for the relevant random variables.

The full methodology has been applied to data obtained from a harbour concrete structure exposed
during 30 years to a Mediterranean marine atmosphere. The data were obtained during three field campaigns
performed in 1997, 2004 and 2014.

2. Experimental

Concrete cores extracted from the Alacant harbour were studied [15]. Alacant is a Mediterranean city
located in the south-east of Spain (38◦19’N, 0◦29’W). All samples had atmospherical marine exposure
conditions and were taken from the Dock 17. This structure was built in 1984 and samples were taken at
several locations in 1997 (8 cores), 2004 (6 cores), and 2014 (3 cores). According to the documentation,
the structure was fabricated with bulk concrete H-175 [16] and cement used was ordinary Portland cement
P-350 [17]. The following tests were performed following standard methods on concrete cores extracted from
the studied structure: compressive strength, cement content quantification [18], bulk density, and porosity.
Results are shown in Table 1.

Powder samples were obtained from the concrete cores using a profile grinder [19]. This technique allows
obtaining powder samples in 2mm intervals. Powder samples were analysed to determine its total chloride

2



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

contents. The method used was potentiometric titration [20, 21]. Thus, detailed chloride profiles were
obtained. Background chloride concentration (present in concrete before exposure due to raw materials)
was determined analysing the innermost part of 11 cores, and the mean value was used. It is shown in Table
1. Bulk density was also determined [22] in order to refer chloride concentrations as kg Cl−/m3 of concrete
instead of mass percentages when necessary. The mean value obtained was used in all calculations involving
density.

All calculations were performed using MATLAB R2013b software [23]. In particular, integrations were
carried out with commands integral and integral3, which use adaptive methods [24] in order to enhance
precission.

3. Probability distributions

Several authors have used statistics to evaluate experimental data regarding chloride ingress and steel
depassivation. Normal [25], lognormal [25, 26], beta [12] or gamma distributions [11] have been suggested in
the literature for different parameters. Also, some parameters can be studied under the extreme value theory
and generalised extreme value distributions (GEV) including Gumbel, Fréchet and Weibull distributions
might be applied [27].

Experimental probability distributions have also been used [28]. The experimental probability density
function can be estimated from a given set of values xi (i = 1 . . . N) of the random variable X as follows.
The domain of the variable is divided in m equally spaced bins of size ∆x = (xmax − xmin)/m, where xmin
and xmax are respectively the minimum and maximum values of the set. Then, the number of values of the
set that lay in each bin is counted and the value ϕi of the probability density function in bin i, which is
assumed to be constant in the bin, is calculated as:

ϕi =
ni

N∆x
(1)

where ni is the number of values that lay in bin i. The smaller the size of bins ∆x is, the higher the precision
in the probability density function is. Nevertheless, the size of the bin must be large enough to contain a
significant number of values ni. Thus, a precise experimental probability density function can be obtained
only if the size of the set of values N is large.

When the precision of the experimental probability distributions is not good enough, the use of theoretical
probability distributions is preferable. They can be estimated from the available experimental data. Five
kinds of these theoretical probability distributions were used in this paper in order to model the random
variables: normal, lognormal, beta, gamma, and Fréchet distributions. All of them depend on two parameters
that can be estimated from a given set of values of the random variable. The mean value of the set and the
variance of the set are defined respectively as:

e =
1

n

n∑
i=1

xi ; v =
1

n− 1

n∑
i=1

(xi − e)2 (2)

where the set of values of the random variable X is xi (i = 1 . . . n). Given a theoretical probability
distribution of the random variable X, the mean value (or expectation) of the distribution E(X) and the
variance of the distribution Var(X) can be estimated as:

E(X) ≈ e ; Var(X) ≈ v (3)

The value of the two parameters on which the distribution depends can be solved from equation (3) when
appropriate expression for E(X) and Var(X) in terms of the two parameters are substituted here. Normal,
lognormal, beta, and gamma probability distributions are summarized in Tables 2 and 3. Information shown
in these tables is: the random variable domain, the two parameters on which the distribution depends,
the probability density function ϕ(x), the cumulative distribution function Φ(x), the mean value of the
distribution E(X), the variance of the distribution Var(X), and the formulae used to estimate the parameter
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Distribution
Normal Lognormal

Domain −∞ < x < +∞ 0 ≤ x < +∞

Parameters µ ∈ R, σ > 0 µ ∈ R, σ > 0

Probability
density function
ϕ(x)

1

σ
√

2π
exp

(
− (x− µ)

2

2σ2

)
1

xσ
√

2π
exp

(
− (lnx− µ)

2

2σ2

)

Cumulative dis-
tribution func-
tion Φ(x)

1

2
+

1

2
erf

(
x− µ
σ
√

2

)
1

2
+

1

2
erf

(
lnx− µ
σ
√

2

)

E(X) µ exp

(
µ+

σ2

2

)
Var(X) σ2

(
exp

(
σ2
)
− 1
)

exp
(
2µ+ σ2

)
µ = e µ = ln

e2

√
v + e2

Parameters es-
timation

σ =
√
v σ =

√
ln
( v
e2

+ 1
)

Table 2: Normal and lognormal probability distributions

values from a given set of values of the random variable. The mean value of the set e and the variance
of the set v are used in these formulae. Γ(x) =

∫∞
0
ux−1 exp(−u)du is the gamma function, erf(x) =

2√
π

∫ x
0

exp(−u2)du is the error function, Ia,b(x) =
∫ x

0
ua−1(1 − u)b−1du (0 ≤ x ≤ 1) is the incomplete beta

function, and γa(x) =
∫ x

0
ua−1 exp(−u)du is the lower incomplete gamma function.

Fréchet distribution was developed under the extreme value theory, in which, given a set of random
variables with the same distribution, the Fréchet distribution is the one that follows the extreme values
(maximum or minimum) of sets of values of these random variables. Fréchet distribution depends on three

parameters: µ ∈ R, σ, ξ > 0. The domain of the random variable is µ − σ

ξ
≤ x < +∞. The probability

density function and the cumulative distribution function are respectively:

ϕ(x) =
1

σ
t(x)ξ+1 exp (−t(x)) ; Φ(x) = exp (−t(x)) (4)

where

t(x) =

(
1 +

(
x− µ
σ

)
ξ

)−1/ξ

(5)

The mean value and the variance of the distribution are respectively:

E(X) =

 µ+ σ
Γ(1− ξ)− 1

ξ
(ξ < 1)

+∞ (ξ ≥ 1)
(6)
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Distribution
Beta Gamma

Domain 0 ≤ x ≤ L 0 ≤ x < +∞

Parameters a, b > 0 λ, k > 0

Probability
density function
ϕ(x)

Γ(a+b)
Γ(a)Γ(b)L

(
x
L

)a−1 (
1− x

L

)b−1 xk−1

Γ(k)λk
exp(−x/λ)

Cumulative dis-
tribution func-
tion Φ(x)

Γ(a+ b)

Γ(a)Γ(b)
Ia,b(x/L)

γk(x/λ)

Γ(k)

E(X)
aL

a+ b
kλ

Var(X)
abL2

(a+ b+ 1)(a+ b)2
kλ2

a =
e2

v
− e3

vL
− e

L
λ =

v

eParameters es-
timation

b = a

(
L

e
− 1

)
k =

e2

v

Table 3: Beta and gamma probability distributions

Var(X) =


σ2

ξ2

(
Γ(1− 2ξ)− Γ2(1− ξ)

) (
ξ < 1

2

)
+∞

(
ξ ≥ 1

2

) (7)

We are interested in positive variables. A Fréchet distribution with a positive domain (0 ≤ x < +∞) can
be obtained if the value µ = σ/ξ is chosen, yielding the two parameter Fréchet distribution whose probability
density function and cumulative distribution function are respectively:

ϕ(x) =
1

σ

(
xξ

σ

)− 1+ξ
ξ

exp

(
−
(
xξ

σ

)− 1
ξ

)
; Φ(x) = exp

(
−
(
xξ

σ

)−1/ξ
)

(8)

Also, the restriction ξ < 1
2 is imposed because a finite value of E(X) and Var(X) is expected for the

studied variables, obtaining:

E(X) =
σ

ξ
Γ(1− ξ) ; Var(X) =

σ2

ξ2

(
Γ(1− 2ξ)− Γ2(1− ξ)

)
(9)

In order to get the parameter values from these expressions and (3) ξ must be solved from:

Γ(1− 2ξ)

Γ2(1− ξ)
=

v

e2
+ 1 (10)

And then σ is calculated as:

σ =
eξ

Γ(1− ξ)
(11)
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4. Probabilistic models

4.1. General formulation

Steel depassivation time ti in models shown below is written as a function of several random variables
whose probability distributions are known. Then, ti is a random variable whose probability distribution
must be determined from the known probability distributions of its variables.

Let Xi (i = 1 . . . n) be n independent random variables with known probability density functions ϕi(xi),
and let Y be a random variable calculated from Xi through the expression:

Y = f(X1, X2, . . . , Xn) (12)

Random variable Y is the dependent variable and its probability density function ψ(y) must be found.
The probability to find Xi variables simultaneously in the ranges Xi ∈ [xi, xi + dxi] (i = 1 . . . n) is given by:

ϕ1(x1)ϕ2(x2) · · ·ϕn(xn)dx1dx2 · · · dxn (13)

In order to get ψ(y) from this expression, the variable Y must be introduced here. It can be done solving
from (12) one of the independent variables (it does not matter which one is chosen). If X1 is the solved
variable:

X1 = g(Y,X2, . . . , Xn) (14)

where g is some function. Then, X1 becomes the dependent variable and the independent ones are now
Y and Xi (i = 2 . . . n). As previously stated, any of the variables can be chosen as the dependent one.
Nevertheless, convergence problems can arise when the resulting integrals are evaluated. Thus, in this
paper, the dependent variable has been chosen in each case as to avoid convergence problems.

Next, the auxiliary variables Ai are defined as Ai = Xi (i = 2 . . . n) and the variable change from
variables x1, x2, . . . , xn to variables y, a2, . . . , an is introduced in (13) yielding:

ϕ1(g(y, a2, . . . , an))ϕ2(a2) · · ·ϕn(an)|J(y, a2, . . . , an)|dyda2 · · · dan (15)

where J is the Jacobian determinant of the variable change:

J(y, a2, . . . , an) =

∣∣∣∣∣∣∣∣∣
∂x1/∂y ∂x1/∂a2 · · · ∂x1/∂an
∂x2/∂y ∂x2/∂a2 · · · ∂x2/∂an

...
...

. . .
...

∂xn/∂y ∂xn/∂a2 · · · ∂xn/∂an

∣∣∣∣∣∣∣∣∣ (16)

Substituting here (14) and the Ai definitions and taking into account that ∂ai/∂aj = δij (δij is the
Kronecker’s delta) and ∂ai/∂y = 0 (in both cases because Y and Ai (i = 2 . . . n) are independent), the
evaluation of the determinant yields:

J(y, a2, . . . , an) =
∂g(y, a2, . . . , an)

∂y
(17)

Then, (15) becomes:

ϕ1(g(y, a2, . . . , an))ϕ2(a2) · · ·ϕn(an)

∣∣∣∣∂g(y, a2, . . . , an)

∂y

∣∣∣∣ dyda2 · · · dan (18)

This expression represents the probability to find simultaneously the variable Y in the range Y ∈ [y, y+dy]
and the variables Ai in the ranges Ai ∈ [ai, ai + dai] (i = 2 . . . n). In order to get the desired probability
density function ψ(y), the integration over the auxiliary variables is done, and recalling the Ai definitions,
it is finally obtained:

ψ(y) =

∫
· · ·
∫
ϕ1(g(y, x2, . . . , xn))

(
n∏
i=2

ϕi(xi)

)∣∣∣∣∂g(y, x2, . . . , xn)

∂y

∣∣∣∣ dx2 · · · dxn (19)
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The integration extends over the full domain of the auxiliary variables.
One, two or four random variables models are used in this paper. The following is obtained particularizing

(19) for these cases. The functions f and g for a one random variable model are:

y = f(x) ; x = g(y) (20)

And (19) becomes:

ψ(y) = ϕ(g(y))

∣∣∣∣dg(y)

dy

∣∣∣∣ (21)

Where ϕ(x) is the known probability density function of random variable X. No integration is done
because no auxiliary variables exist.

The functions f and g for a two random variables model are:

y = f(x1, x2) ; x1 = g(y, x2) (22)

And (19) becomes:

ψ(y) =

∫
ϕ1(g(y, x2))ϕ2(x2)

∣∣∣∣∂g(y, x2)

∂y

∣∣∣∣ dx2 (23)

The functions f and g for a four random variables model are:

y = f(x1, x2, x3, x4) ; x1 = g(y, x2, x3, x4) (24)

And (19) becomes:

ψ(y) =

∫ ∫ ∫
ϕ1(g(y, x2, x3, x4))ϕ2(x2)ϕ3(x3)ϕ4(x4)

∣∣∣∣
∂g(y, x2, x3, x4)

∂y

∣∣∣∣ dx2dx3dx4 (25)

4.2. Square root of time model

The square root of time (SRT) model is a simple model [5, 29] formulated as:

x = k
√
t (26)

Where x (m) is the depth of the critical chloride concentration capable of depassivating the reinforcement,
k (ms−1/2) is a constant (penetration velocity) and t (s) is exposure time. When the critical chloride
concentration reaches the reinforcement (x = c, being c the concrete cover depth) the depassivation occurs
(t = ti) and corrosion starts. Thus, the depassivation time ti can be calculated as:

ti =
c2

k2
(27)

If k is assumed as a random variable and c as a deterministic one, then a one random variable model is
obtained. Its f and g functions are:

f(k) = ti(k) =
c2

k2
; g(ti) = k(ti) =

c√
ti

(28)

And the probability density function of the depassivation time is calculated with (21) yielding:

ψ(ti) =
1

2
ct
−3/2
i ϕk

(
ct
−1/2
i

)
(29)

where ϕk is the known probability density function of the random variable k. If k and c are assumed as
random variables then a two random variables model is obtained. Choosing c as the dependent variable
equation (23) gives:

ψ(ti) =
1

2
√
ti

∫
kϕc

(
k
√
ti
)
ϕk(k)dk (30)

where ϕc is the known probability density function of random variable c.

7
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4.3. Error function model

The error function (EF) model is a widely used one [30, 31] which is formulated as:

C(x, t) = CS + (C0 − CS)erf

(
x

2
√
Dt

)
(31)

where C(x, t) (kg/m3) is the chloride concentration at depth x (m) and exposure time t (s), CS (kg/m3) is
the constant surface chloride concentration, C0 (kg/m3) is the background concentration, and D (m2/s) is
the chloride diffusion coefficient. Concentrations can also be expressed as % (referred to concrete or binder
mass). When a critical chloride concentration Ccr is reached at the concrete cover depth the depassivation
occurs (t = ti) and corrosion starts. I. e., C(c, ti) = Ccr, and thus ti is given by:

Ccr = CS + (C0 − CS)erf

(
c

2
√
Dti

)
(32)

Depassivation time ti can be solved from this expression as:

ti =
c2

4Dinverf2
(
CS−Ccr
CS−C0

) (33)

where inverf is the inverse function of the error function. If D and CS are assumed as random variables
and Ccr, c, and C0 as deterministic ones a two random variables model is obtained. Choosing D as the
dependent variable the f and g functions are:

f(CS , D) = ti(CS , D) =
c2

4Dinverf2
(
CS−Ccr
CS−C0

) (34)

g(ti, CS) = D(ti, CS) =
c2

4tiinverf2
(
CS−Ccr
CS−C0

) (35)

And the probability density function of the depassivation time is calculated with (23) yielding:

ψ(ti) =

∫
ϕD(g(ti, CS))ϕCS (CS)

∣∣∣∣∂g(ti, CS)

∂ti

∣∣∣∣ dCS (36)

where ϕCS and ϕD are the known probability density functions of the random variables CS and D respec-
tively. No depassivation will occurr if CS < Ccr (g is undefined in this case, according to (35)) and then the
lower limit of integration variable CS must be chosen as CS = Ccr and not as CS = 0. If D, CS , Ccr, and c
are assumed as random variables and C0 as a deterministic one a four random variables model is obtained.
Choosing Ccr as the dependent variable the g function in given by equation (32), and equation (25) yields:

ψ(ti) =

∫ ∫ ∫
ϕCcr (g(ti, D,CS , c))ϕD(D)ϕCS (CS)ϕc(c)

∣∣∣∣
∂g(ti, D,CS , c)

∂ti

∣∣∣∣ dDdCSdc (37)

where ϕCS and ϕc are respectively the known probability density functions of the random variables CS and
c.

4.4. Constant flux model

The constant flux (CF) model has been presented in [32] and it assumes a constant chloride ingress flux
J ( kg

m2s ) and a constant chloride diffusion coefficient D (m2/s). It is formulated as:

C(x, t) = C0 + 2J

√
t

πD
exp

(
− x2

4Dt

)
− Jx

D
erfc

(
x

2
√
Dt

)
(38)

8
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where erfc(x) = 1 − erf(x) is the complement of the error function. Depassivation occurs (t = ti) when
chloride critical concentration Ccr is reached at reinforcement depth (x = c), i. e. C(c, ti) = Ccr, and thus
ti is given by:

Ccr = C0 + 2J

√
ti
πD

exp

(
− c2

4Dti

)
− Jc

D
erfc

(
c

2
√
Dti

)
(39)

Depassivation time ti (f function) cannot be solved analytically from this expression, but can be solved
numerically if necessary. If D and J are assumed as random variables and Ccr, c, and C0 as deterministic
ones a two random variables model is obtained. Choosing J as the dependent variable the g function is:

g(ti, D) = J(ti, D) =
Ccr − C0

2
√

ti
πD exp

(
− c2

4Dti

)
− c

D erfc
(

c
2
√
Dti

) (40)

And the probability density function of the depassivation time is calculated with equation (23) yielding:

ψ(ti) =

∫
ϕJ(g(ti, D))ϕD(D)

∣∣∣∣∂g(ti, D)

∂ti

∣∣∣∣ dD (41)

where ϕJ and ϕD are the known probability density functions of the random variables J and D respectively.
If D, J , Ccr, and c are assumed as random variables and C0 as a deterministic one a four random variables
model is obtained. Choosing Ccr as the dependent variable the g function is given by equation (39), and
equation (25) yields:

ψ(ti) =

∫ ∫ ∫
ϕCcr (g(ti, D, J, c))ϕD(D)ϕJ(J)ϕc(c)

∣∣∣∣
∂g(ti, D, J, c)

∂ti

∣∣∣∣ dDdJdc (42)

where ϕJ and ϕc are respectively the known probability density functions of the random variables J and c.

5. Results and discussion

5.1. Probability distributions

Two examples of representative experimental chloride concentration profiles are shown in Figure 1. They
correspond to cores extracted at the same place but at different ages. One was extracted in 1997 (13 years
age) and the other was extracted in 2014 (30 years age). In most cases, as the ones shown in the Figure, the
presence of a peak can be observed. This is probably due to convective transport processes between surface
and the maximum [33].

Each experimental profile has been fitted to the three presented transport models (SRT, EF, and CF)
in order to get the values of the transport parameters on which they depend (k, D (EF and CF models),
CS , and J). In this way a set of values for each transport parameter is obtained and they can be treated as
random variables.

A representative value [11, 12, 34] for the critical chloride concentration equal to 0.05% referred to
concrete mass has been considered for SRT model. The location x (from the maximum inwards [35]) in the
profile where this concentration is located is searched and then the k value is calculated as k = x/

√
t, where

t is the age of the profile. For EF and CF models, the experimental profiles have been fitted to equations
(31) and (38) respectively, obtaining the corresponding transport parameters. Only the points from the
maximum inwards have been used for the fitting, which is a common practice in profile treatment [35]. One
of the profiles did not met the minimum requirements to be fitted [36] and was discarded. Background
chloride concentration C0 used is shown in Table 1.

Concrete cores have been divided in two groups according to their orientation: exposed to sea and
protected from sea, and the mean value e and the standard deviation (square root of variance) s =

√
v for

the obtained set of values of each transport parameter are shown in Table 4. Number of samples is n = 8 for
each group. A t-Student test shows that mean values for both orientation groups are significantly different
(p = 0.05) for the random variables k, CS , and J . And they are not significantly different for variable D (EF
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%Cl−

(ref. concrete mass)

0

0.05

0.1

0.15
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Figure 1: Experimental chloride concentration profiles from cores extracted at the same place in 1997 (cross, 13 years age) and
in 2014 (circle, 30 years age)

and CF models). Surface concentration CS and chloride ingress flux J are related with exposure conditions
and thus a difference between both groups is expected. It is worth noting also that the mean values of these
variables are higher for the group oriented towards the sea, for which a higher chloride supply is expected.
On the other hand, diffusion coefficient D is more related with concrete properties. As the concrete is the
same in both orientations a difference is not expected. This is confirmed with the t-Student test. The SRT
model uses only one parameter and thus k is influenced by both exposure conditions and concrete properties.
Then, a difference between both groups is expected and observed. Nevertheless, the difference is lower for
k (which includes both effects) than for CS and J (which are more influenced by exposure conditions).
Exposed to protected ratio of mean values is about 1.5 for k, about 1.8 for CS , and about 2.5 for J . Some
authors [37–40] have found a time dependence of D and CS that has been attributed to cement maturation
[37]. In this paper, no time dependence is observed on the transport parameters when a t-Student test is
performed on data from profiles of different ages. This fact can be explained because the first cores were
extracted when the structure was at least 13 years old. An ordinary Portland cement is well maturated at
this age and a variation in transport parameters is not expected.

The experimental probability density functions for the random variables have been calculated as de-
scribed previously. A small number of bins (m = 3) has been considered due to the small number of samples
available (8 samples per group), resulting in a low precision for the experimental probability density func-
tions. Experimental probability density functions are shown in Figures 2, 3, and 4 (histograms) for models
SRT, EF and CF respectively.

As the precision of the experimental probability distributions is not good, it is convenient to use theoret-
ical ones. Data in Table 4 have been used to fit each random variable to the five probability distributions as
previously explained. Parameter ξ of Fréchet distribution has been solved tabulating y = Γ(1−2ξ)/Γ2(1−ξ)
versus ξ (0 < ξ < 1

2 ) and interpolating the ξ value which provides y = v
e2 + 1. Results are shown in Table

5. Only data for the best fitted distributions (see below) for each parameter and orientation is shown.
In order to determine which of the five theoretical distributions is the best choice for each random
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Random Exposure Mean Standard
Model variable to sea value e deviation s

exposed 2.0888 0.3754
SRT k protected 1.4694 0.3494

exposed 1.6091 0.8469
D protected 0.9882 0.4711

EF exposed 1.8976 0.7124
CS protected 1.0245 0.7890

exposed 2.1534 1.2058
D protected 1.2246 0.6200

CF exposed 2.5169 0.9853
J protected 1.0108 0.6462

k in cm/year1/2, D (EF and CF models) in 10−12m2/s, CS in %,

J in 10−9kg/(m2s)

Table 4: Mean value and standard deviation for the set of values of each transport parameter

ϕk(k) (year
1/2/cm)
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0
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ϕk(k) (year
1/2/cm)

0 0.5 1 1.5 2 2.5
0
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0.4

0.6

0.8

1

1.2

k (cm/year 1/2)

Protected from sea

Figure 2: SRT model. Experimental (histogram) and fitted (line) probability density functions of random variable k. Samples
orientation: towards sea (left) and protected from sea (right). Fitted distributions are respectively lognormal and gamma
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Figure 3: EF model. Experimental (histogram) and fitted (line) probability density functions. Random variable D for the
group oriented towards sea (top-left) and for the group protected from sea (top-right), and random variable CS for the group
oriented towards sea (bottom-left) and for the group protected from sea (bottom-right). Fitted distributions are respectively
lognormal, lognormal, beta, and gamma
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Figure 4: CF model. Experimental (histogram) and fitted (line) probability density functions. Random variable D for the
group oriented towards sea (top-left) and for the group protected from sea (top-right), and random variable J for the group
oriented towards sea (bottom-left) and for the group protected from sea (bottom-right). Fitted distributions are respectively
lognormal, lognormal, beta, and gamma
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Model Variable(1) Exposure Distribution(2) Parameters(3)

Exposed LN µ = 0.7207 σ = 0.1783
SRT k Protected G λ = 0.0831 k = 17.6866

Exposed LN µ = −27.2776 σ = 0.4945
D Protected LN µ = −27.7453 σ = 0.4525

EF Exposed B (L = 2.7041) a = 1.4146 b = 0.6012
CS Protected G λ = 0.6076 k = 1.6861

Exposed LN µ = −27.0003 σ = 0.5222
D Protected LN µ = −27.5425 σ = 0.4777

CF Exposed B (L = 3.5861 · 10−9) a = 1.2437 b = 0.5283
J Protected G λ = 4.1317 · 10−10 k = 2.4463

(1) k in cm/year1/2, D (EF and CF models) in m2/s, CS in %, J in kg
m2s

(2) N = normal, LN = lognormal, B = beta, G = gamma, F = Fréchet
(3) L, normal parameters, λ, and σ (Fréchet) have the same units as its variable

Lognormal parameters, a, b, k, and ξ are adimensional

Table 5: Fitted probability distributions for the random variables. Only the best fit for each parameter and orientation is
shown

α

N LN B G F
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0.5

1

1.5
k (SRT) Exposed

Protected
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1.5
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1

1.5
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Figure 5: α values for the fitted distributions. SRT model (top), EF model (middle), and CF model (bottom). Distributions
are: N = normal, LN = lognormal, B = beta, G = gamma, and F = Fréchet
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variable, the following has been calculated:

α =

∫
|ϕtheor(x)− ϕexp(x)|dx (43)

where ϕexp(x) is the experimental probability density function of random variable X and ϕtheor(x) is the fit-
ted theoretical one. Integration extends over the full domain of the variable and it can be solved analytically
if the domain is divided in appropriate intervals in which the integrand sign is constant. Results are shown
in Figure 5. The value of α represents how much the theoretical distribution differs from the experimental
one. Thus, the lower the α value is, the better the fit is. According to data from Figure 5, the best fitted
distributions for the group oriented towards sea are lognormal for k and D (EF and CF models), and beta
for CS and J . And the best fitted distributions for the group protected from sea are lognormal for D (EF
and CF models), and gamma for k and CS . Lower α value for J is obtained for normal distribution, but
this distribution is not acceptable because it yields significant probability outside the domain of the variable
(negative values). The next lower α value is obtained with a gamma distribution, so this distribution is used
for J in the protected group. The best fitted theoretical distributions are also shown in Figures 2, 3, and 4
(lines), where they are compared with their corresponding experimental distributions (histograms).

5.2. Steel depassivation times

The depassivation time probability density functions ψ(ti) of the two groups of samples have been
calculated using the three presented models. The fitted probability density functions of the random variables
k, D (EF and CF models), CS , and J have been used for this purpose. Also, the concrete cover depth c and
the critical chloride concentration Ccr are needed. Experimental values of these variables are not available
for the studied structure and the representative values c = 7cm [5] and Ccr = 0.05% [11, 12, 34] have been
chosen. For each group and for each model two cases have been calculated. In one case c and Ccr have been
considered as deterministic values and in the other case they have been considered as random variables. k,
D (EF and CF models), CS , and J have been considered random in all cases. A normal distribution with
µ = 7cm and σ = 0.5cm has been considered for c [5, 9], and a lognormal distribution with µ = −3.0699
and σ = 0.3853 (that correspond to a mean value of 0.05% and a standard deviation of 0.02%) has been
considered for Ccr [11, 12, 34]. As previously stated, integration extends over the full domain of random
variables. When lognormal and gamma distributions are used, this domain extends to infinity and the
upper integration limit must be bounded in order to evaluate the integral. In these cases the upper limit has
been bounded to achieve a 99.99% probability, i. e., the upper limit have been set to icdf(0.9999), where
icdf is the inverse of the cumulative distribution function. Due to convergence problems during integration,
depassivation time probability densitiy function could not be obtained for the following cases: exposed group
using EF model with 4 random variables, and exposed group using CF model with 4 random variables. The
resulting probability density functions are then integrated (trapezoidal rule with 1000 points in 100 years
range) in order to obtain their corresponding cumulative distribution functions, which provide depassivation
probability as a function of exposure time:

Φ(ti) =

∫ ti

0

ψ(t)dt (44)

The obtained cumulative distribution functions are shown in Figures 6, 7, and 8 for the SRT, EF, and
CF models respectively. The deterministic depassivation time ti,det is also shown in these figures. It has
been calculated using the mean values of the random variables and equations (27), (33), and (39) for SRT,
EF, and CF models respectively.

A different behaviour between exposed samples (lines and symbols) and protected samples (lines) can
be observed in figures 6, 7, and 8. The increase of depassivation probability with time is slower for samples
protected from sea, as expected. The difference between both groups of samples is higher for the SRT model
and it is lower for the EF model. If the cases where c and Ccr have been considered as deterministic (solid
line), are compared with the cases where they have been considered random (dotted line), a small difference
in behaviour is observed between both cases. In this case, the uncertainty due to c and Ccr is less important
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Figure 6: SRT model. Calculated depassivation time cumulative distribution functions
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Figure 7: EF model. Calculated depassivation time cumulative distribution functions

16



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

Exposed. D, J random

Protected. D, J random
Protected. D, J, c, Ccr random

Time ti (year)

0 4 8 12 16 20 24 28

D
ep

a
ss

iv
a

ti
o

n
p

ro
b

a
b

il
it

y
Φ

(t
i)

(%
)

0

10

20

30

40

50

60

70

80

90

Exposed to sea
Deterministic ti

Protected from sea
Deterministic ti

Figure 8: CF model. Calculated depassivation time cumulative distribution functions

than the one due to k, D, and J . Although this difference is small, it can be observed that depassivation
probability increase is faster (specially at short times) when the number of random variables is higher, due
to the increase of uncertainty when more random variables are considered.

Depassivation probability at deterministic times Φ(ti,det) can be interpolated in Figures 6, 7, and 8.
They are shown in Table 6 and they are approximately in the range 30% to 40% for EF and CF models
and in the range 45% to 50% for SRT model. These are high values. This means that if the deterministic
depassivation time is considered for maintenance or repair then there is a high probability of corrosion even
before reparation takes place. This is the reason why some codes [12, 41] recommend taking into account
probability and performing reparations at a time when corrosion probability is still low. Values of 7% [41]
and 10% have been proposed [12]. The depassivation time for a given probability can be interpolated in
figures 6, 7, and 8. Table 6 shows depassivation times for 10% depassivation probability t10%. As expected,
t10% is higher for samples protected from sea. Nevertheless, the difference in t10% between exposed and
protected samples is lower than the difference in the deterministic depassivation times. If the number of
random variables is considered, a slightly lower value of t10% is obtained when the number of random
variables is higher, due to the increase of uncertainty when more random variables are considered.

6. Conclusions

A versatile methodology to estimate the probabilistic depassivation time for a reinforced concrete marine
structure is presented. This methodology allows:

• To choose the model and the limit state function that better represents the event that marks the end
of service life.

• To select the best probabilistic function for the parameters involved in the model, on the basis of
experimental data obtained by testing concrete specimens collected from the structure.
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Model Exposure ti,det Random t10% Φ(ti,det)
to sea (year) variables (year) (%)

k 7.34 46.4
Exposed 11.23 k, c 7.04 47.1

SRT k 13.13 46.9
Protected 22.69 k, c 12.70 47.2

D, CS 5.15 37.8
Exposed 8.52 D, CS , c, Ccr — —

EF D, CS 10.82 33.3
Protected 17.15 D, CS , c, Ccr 9.41 38.3

D, J 6.36 35.3
Exposed 9.04 D, J , c, Ccr — —

CF D, J 12.79 33.7
Protected 17.80 D, J , c, Ccr 10.97 39.9

Table 6: Calculated depassivation times

Three diffusion models have been employed as a limit state function. That is, the square root of time
model, the error function model and the constant flux model.

The abovementioned methodology has been applied to data obtained from a structure exposed during
30 years to an atmospheric marine environment. The probability density functions of the random variables
were obtained from the fitting of the experimental data collected in three different campaigns, 1997, 2004
and 2014. Data were fitted to five theoretical distributions: normal, lognormal, beta, gamma, and Fréchet.
In order to determine which of the theoretical distributions better fits the experimental data, a criteria
represented by the α parameter has been proposed in this work.

The development of a t-Student test shows the need to divide specimen data into two different groups
(exposed to sea and protected from sea) since the mean values of the transport parameters are significantly
different. Also, t-Student test shows no time dependence of transport parameters in this study.

For a given failure probability of 10% (recommended by most concrete codes) probabilistic depassivation
times obtained are lower than the deterministic ones for the three transport models analyzed in this work.
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University Of Ostrava, Ostrava, Czech Republic, 2007.
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