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GRAPHICAL ABSTRACT 
 
A simple route for the synthesis of graphene-flakes has been described based on 
the unusual flexibility of petroleum pitch-derived carbons 
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Abstract 
 
Structural flexibility in a petroleum pitch-derived carbon material has been indirectly 
evaluated using X-ray diffraction (XRD), immersion calorimetry and inelastic neutron 
scattering (INS) measurements. Exposure of the carbon material to an organic solvent 
(e.g., n-nonane) gives rise to a large internal rearrangement, associated with a drastic re-
ordering of the graphitic microdomains. These structural changes are also associated 
with a high flexibility of the internal porous network, as observed by inelastic neutron 
scattering measurements. The internal rearrangement and the structural flexibility could 
be responsible for the excellent performance of this kind of activated carbons in a wide 
variety of adsorption processes. Last but not least, the structural characteristics of these 
carbon materials composed of graphitic microdomains has been used to synthesize 
graphene “egg-like” flakes following a simple procedure based on exfoliation with 
organic solvents. 
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1. Introduction 

Nanoporous materials with a well-developed porous structure and surface chemistry 

constitute one of the main pillars in nanotechnology. These solids include zeolites, 

activated carbons, ordered-mesoporous silicas (OMS), metal-organic frameworks 

(MOF), among others. One of the main concerns in the design and synthesis of these 

nanoporous materials is the knowledge of their porous structure, since the size and the 

shape of the pore cavities will define their performance in a given application (for 

instance in gas adsorption/separation processes, as a sensor, in drug delivery processes, 

as a catalyst, etc.). Traditionally, the porous structure of nanoporous solids has been 

evaluated by gas adsorption at cryogenic temperatures (e.g., N2 at 77 K and Ar at 87 K) 

[1,2]. Assuming a rigid structure for the porous solid, the monolayer formation in the 

surface can be used to estimate the “apparent” surface of the material after application 

of the corresponding mathematical equations (e.g., BET equation). However, it is well 

known that this assumption is not always accurate for certain nanoporous solids due to 

the presence of adsorption-induced deformation phenomena upon an external stimuli 

(e.g., pressure and/or temperature changes, exposure to a certain probe molecule, etc.). 

Whereas this phenomenon has been widely established for MOFs (for instance the gate-

opening effect in ZIF-8 or MIL-53) [3,4], it is sometimes neglected in the evaluation 

and understanding of other porous solids. These structural changes are due to the 

substantial stress that takes place in the inner cavities of the solid upon adsorption (in 

the order of GPa), thus giving rise to contractions, swelling and morphological 

transitions. For instance, Monte Carlo simulations for methane adsorption in slit-shaped 

carbon narrow micropores (0.315 nm in size) provided an adsorption stress or solvation 

pressure ca. 1.8 GPa at 19 MPa [5]. Similar studies of argon in carbon-slit nanopores 

suggest an enhancement of the tangential pressure of ~ 20 000 times the normal bulk 



pressure [6]. Interestingly, these phenomena are not exceptional and have been 

identified for a wide range of materials including activated carbons [5-10], mesoporous 

silicas [11], zeolites [12], etc. Despite the relevance of these adsorption-induced 

phenomena defining the final porous structure under operando conditions and 

consequently, the final performance of the nanoporous system, their presence has been 

traditionally neglected due to the difficulty in assessing these structural changes, 

particularly in amorphous systems such as carbon materials. For instance, in-situ 

dilatometry measurements performed in mesoporous silicas and carbon materials upon 

adsorption suggest that these structural characteristics depends on the adsorbate used, 

the adsorption temperature and the pore size, these changes being rather small (swelling 

not exceeding 1%) [9,13]. These findings have been corroborated by mathematical 

calculations using density functional theory (DFT) and Monte Carlo simulations. 

Recent reports described in the literature point to activated carbons derived from 

petroleum residues as being among the highest performing materials to date for a wide 

range of applications ranging from high-pressure methane storage, CO2 capture, 

benzene and toluene adsorption, energy storage in electric double layer capacitors, etc., 

surpassing conventional activated carbon materials [14-16]. This outstanding 

performance has been rationalized by the presence of a highly developed porous 

structure (narrow micropore volume above 1 cm3/g) and a BET surface exceeding 3200 

m2/g. The crux of the matter is that these metrics obtained for a carbon derived from a 

graphitizable residue cannot be exclusively justified considering a perfectly rigid 

arrangement of graphitic crystallites. Furthermore, the large BET surface area achieved 

exceeds the theoretical value for a single graphene layer (2630 m2/g), shedding a 

shadow on the above-mentioned results. 



The main goal of the present work is to evaluate the presence of structural 

changes in petroleum-pitch derived activated carbons upon adsorption of 

different organic molecules (including crystallite reorientation and 

swelling/contraction phenomena) and to determine if it is this aspect of the 

material that accounts for the exceptionally high adsorption performance. As an 

ancillary result, the unexpectedly high flexibility in these materials will be 

exploited to synthesize graphene. Compared to conventional processes for 

graphene production, e.g., via oxidation followed by exfoliation/thermal 

reduction of graphite, the present proposed method, based on an exfoliation 

treatment with N-methyl-2-pyrrolidone (NMP), constitutes a simple and expedite 

approach. 

 

2. Experimental Section 

2.1. Preparation of the carbon sample 

The activated carbon evaluated in this study was prepared from a petroleum mesophase 

pitch (PP) obtained from a vacuum residue (VR). The mesophase pitch and the KOH 

(KOH:precursor ratio of 6:1 (w/w)) were initially mixed in a ball mill for 30 min, and 

subsequently submitted to an activation treatment in a horizontal furnace at 1073 K for 

2h, under a nitrogen flow (100 mL/min). The as-synthesized material was washed with 

10% HCl solution and distilled water until complete removal of the chloride ions. 

  

2.2. X-ray diffraction measurements 

X-ray diffraction measurements of the activated carbon before and after chemical 

treatment with n-nonane and methylene blue were performed using a Bruker D8-

Advanced equipment with a KRISTALLOFLEX K 760-80F X-ray generator and a 



copper anode (λ= 1.54056 Å). Pre-impregnation with n-nonane was performed using an 

excess of the liquid to saturate the sample, followed by an overnight outgassing 

treatment at 298 K to selectively remove the excess of n-nonane from large pores, as 

described elsewhere [17]. Under these conditions only narrow micropores (those below 

1 nm) remain filled with n-nonane. Methylene blue (MB) pre-impregnation was 

performed in aqueous phase using the standard ASTM method.  

 

2.3. Immersion calorimetry measurements 

Immersion calorimetry measurements were performed in a Tian-Calved C-80D 

calorimeter at 303 K. A full description of the experimental set-up can be found 

elsewhere [18]. Before the immersion calorimetry measurements with benzene and 

alpha-pinene, activated carbons were outgassed at 523 K for 4h.   

 

2.4. INS measurements 

Inelastic neutron scattering (INS) experiments were performed using the TOSCA 

spectrometer at the ISIS Neutron and Muon Pulsed Source, Rutherford Appleton 

Laboratory in the UK [19]. Before the experiment, 1.0 g of activated carbon was pre-

adsorbed with the appropriate amount of liquid n-nonane to completely fill the pore 

cavities (total pore volume was obtained from the N2 adsorption isotherms at 77 K). The 

pre-impregnated sample was wrapped in Al-foil and loaded into the high-pressure 

stainless steel cell supplied by ISIS. INS measurements were done at 4 K. After the first 

experiment with the saturated sample, the system was pumped under vacuum at 298 K 

for 4h to remove n-nonane from large cavities [17]. To end up, the sample was 

pressurized with methane gas (6 MPa) at 275 K for 3h before cooling down to 4 K 

using a closed cycle refrigerator (CCR).  



Computational analysis of INS data was done using the mixed Monte Carlo multiple 

minimization and Large Scale low mode method, as implemented in the MacroModel 

software (Schrödinger), until no additional new structures were obtained. All 

conformations of n-nonane with relative energies ≤ 7.8 kJ/mol were subsequently 

submitted for geometry optimization using the Gaussian 09 suite of programs [20] and 

density functional theory (DFT) at the B3LYP/6-311++G(d,p) level. This led to a new 

set of relative energies (corrected to zero point energies), molecular structures and 

(harmonic) vibrational spectra, which could then be compared with experiment. More 

accurate energies were calculated for the optimized DFT structures, at the MP2/6-

311++G(d,p) level of theory. All energies were corrected for zero point energy using the 

un-scaled DFT harmonic frequencies. The theoretical inelastic neutron scattering (INS) 

transition intensities were derived from the calculated normal mode eigenvectors, and 

the corresponding spectra were simulated using the aCLIMAX program [21].  

 

2.5. Molecular simulations 

Classical Molecular Dynamics simulations were performed using the coarse-grained 

SAFT forcefield [22,23]. An empty rigid graphitic pore of 1 nm was exposed to an 

excess of nonane molecules at 275 K until pore filling was achieved. The resulting 

system was then exposed to a reservoir of methane molecules and the pressure increased 

by compressing the bulk volume until a pressure of 6 MPa was achieved. More 

information can be found in the Supporting Information.   

 

2.6. Preparation of graphene from PP-AC 

PP-AC carbon was dispersed using two different organic solvents, N-methyl-2-

pyrrolidinone (NMP, spectroscopic grade, Aldrich) and N,N-dimethylformamide 



(DMF), at a concentration of 5 mg/ml (200 mL, round-bottomed flask). The dispersion 

was then sonicated (Bransonic Ultrasonic 5510-MTH, 135 W-42 kHz) for 15 min.  

 

2.6. Atomic force microscopy 

The lateral size and the height of the synthesized graphene was measured using AFM 

imaging and profiling by depositing a drop of a water suspension of each sample onto a 

surface of mica. The graphene sheets were imaged using a Dulcinea atomic force 

microscope from Nanotec ElectronicaTM operating under ambient conditions. 

 

3. Results and discussion 

Complete characterization of the PP-AC sample has been described elsewhere [14,15]. 

Briefly, the petroleum-pitch derived activated carbon (PP-AC) selected for this study 

exhibits a BET surface area of 3425 m2/g and a total pore volume of 2.44 cm3/g. The 

pore size distribution obtained from the N2 adsorption data at 77 K and mercury 

porosimetry show the presence of a highly developed porous structure containing 

micropores, mesopores and macropores. The elemental analysis of the VR residue 

shows preferentially hydrogen (10.4%) and sulfur (3.8%) as the main components 

besides carbon (85.2%).   

In a first step, the PP-AC has been evaluated in the adsorption of an aromatic molecule 

such as methylene blue. To this end, the ASTM standard and the equilibrium adsorption 

isotherm have been performed. The amount of MB adsorbed after application of the 

ASTM method gives a final value for MB on PP-AC of 724 mg/g, and in the 

equilibrium process the value goes up to 950 mg/g. To our knowledge, these values are 

far exceeding those reported in the literature for conventional activated carbons (100-

500 mg/g), thus confirming the exceptional performance of these unique petroleum-



pitch derived carbons [24-27]. Interestingly, these adsorption values for MB give rise to 

an estimated surface area of 2300 m2/g (considering that each molecule of MB covers 

an area of 1.3 nm2). Taking into account that MB is a large molecule with a kinetic 

diameter around 1.3-1.4 nm, the aforementioned observation clearly denotes an 

unexpected behavior in the PP-AC. For instance, taking into account that the surface 

area calculated for pores above 1.3 nm is around 1200 m2/g, these results anticipate that, 

unexpectedly, MB is able to access pores below 1.3 nm. 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. XRD pattern for the synthesized PP-AC sample before and after adsorption of 

methylene blue (MB) using and n-nonane following the procedure described in the 

experimental section. 

 
To fully understand the adsorption behavior in PP-AC upon exposure to methylene blue, 

Figure 1 shows the XRD pattern before and after the exposure. The original PP-AC 

exhibits a rather flat profile with a small shoulder at 25º corresponding to the reflection 

of the (002) plane from graphite microdomains, in close agreement with the 
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graphitizable nature of the petroleum residue. However, the low crystallinity of this 

sample clearly denotes the destruction of the structural order after KOH activation, 

probably due to the intercalation of K into the lamellar structure. Contrary to our 

expectation, the incorporation of methylene blue into the porous structure gives rise to 

substantial changes. Methylene blue adsorbed in the PP-AC gives rise to an increase in 

the intensity in the 25.3º XRD line. These results can be explained either due to an 

epitaxial adsorption of MB in the graphitic crystallites of the micropore/mesopore wall 

or to the reorientation of the graphitic carbon domains upon adsorption. Although this 

observation is rare for activated carbons, similar changes in the XRD pattern were 

described by Suzuki et al. upon benzene adsorption on activated carbon fibers [28]. To 

discard any effect due to the epitaxial adsorption of the aromatic ring on the graphitic 

walls, the XRD analysis have been extended to a non-planar and larger organic 

molecule, as n-nonane. As it can be observed in Figure 1, adsorption of n-nonane in the 

carbon structure gives rise to a more drastic effect compared to MB. Adsorption of n-

nonane gives rise to a very significant increase in the intensity of the (002) diffraction 

peak and a shift to lower 2 theta values (20.2º). Furthermore, the XRD pattern also 

shows a broad peak at 43.1º that can be unambiguously attributed to the overlap 

reflections from (100) and (101) in graphite.  

These results clearly anticipate that MB and n-nonane pre-adsorption give rise to a 

rearrangement of the carbon structure with the interlayer spacing ranging from 0.356 

nm to 0.420 nm after MB and n-nonane incorporation, respectively. At this point it is 

important to highlight that these results are unique for petroleum-derived activated 

carbons and clearly reflect the presence of reorientation processes for the graphite 

domains. Presumably, the carbon is able to adapt its skeleton to accommodate the guest 

molecule upon adsorption. At this point it is important to highlight that similar 



experiments in lignocellulose-derived activated carbons (e.g., olive stones derived 

activated carbons) did not give rise to any appreciable change in the XRD profile upon 

MB or n-nonane adsorption. The macroscopic effect of this internal reorientation and 

the associated flexibility can be appreciated in Figure S1, with a clear contraction of the 

PP-AC carbon after incorporation of an aqueous solution containing MB.  

Further evidence of the anomalous adsorption performance in petroleum-pitch activated 

carbon can be obtained after application of immersion calorimetry. In the absence of 

specific interactions at the solid-liquid interface, the heat of immersion (-'Himm) into a 

certain liquid can be correlated with solid surface area available for this molecule [18]. 

To exclude any possibility of specific interaction with the solid surface, two 

hydrocarbon molecules have been selected for the calorimetric measurements: benzene 

(kinetic diameter of 0.37 nm) and alpha-pinene (kinetic diameter of 0.7 nm). Table 1 

shows a comparison of the enthalpy values for the PP-AC and a conventional activated 

carbon (AC) obtained from olive stones (using chemical activation with ZnCl2 followed 

by physical activation with CO2). 

 

Table 1.  Enthalpy of immersion (J/g) for sample PP-AC and a conventional activated 

carbon from olive stones.                     

Sample  Bz D-pinene 

 -'Himm (J/g) -'Himm (J/g) 

PP-AC 278 292 

AC 177 167 

 

In the specific case of the conventional activated carbon (sample AC) the enthalpy of 

immersion for both hydrocarbons remains in between 160-180 J/g, these values being 



very similar to those reported by our research group for carbide-derived carbons and 

physically activated carbon derived from olive stones [29,30]. On the contrary, the 

values achieved for the PP-AC sample are somehow unexpectedly high. The values 

obtained for the petroleum-pitch carbons using both hydrocarbons approach 300 J/g, 

these values being even larger than those reported for materials like zeolites with a rich 

surface chemistry [18]. Consequently, calorimetric results suggest that the exposure of 

this type of petroleum-derived carbon materials to liquid hydrocarbons (either aromatic 

and non-aromatic) does not only imply simple wettability processes. Other phenomena 

must be taken into consideration to explain the high calorimetric values (for instance 

structural changes or graphite domain reorientation).    

To gain further insight into the nature of the structural flexibility in carbon materials 

and the adsorption state of n-nonane in the inner cavities of the carbon sample, PP-AC 

has been evaluated using inelastic neutron scattering (INS) upon exposure to n-nonane 

and after a subsequent exposure to high-pressure methane. INS spectra were measured 

at TOSCA beamline at the Rutherford Appleton Laboratory (UK). INS is especially 

sensitive to the dynamics of hydrogen and hydrogen-bearing groups due to the 

relatively large incoherent neutron cross-section of hydrogen compared to other atomic 

nuclei. Consequently, it is a powerful tool for the evaluation of the vibrational and 

rotational modes of hydrocarbons confined in nanoporous materials, upon external 

stimuli. Figure S2 shows the INS spectra corresponding to the sample saturated with n-

nonane, i.e. PP-AC containing n-nonane in all cavities.  

As it can be observed in the experimental profile, n-nonane adsorbed in the cavities of 

the carbon material shows the characteristic peaks of the un-confined hydrocarbon with 

the high longitudinal acoustic modes (LAM), that is the lowest frequency molecular 

vibrations involving extension of the alkane chains, above 200 cm-1, and the transverse 



acoustic modes (TAM), lower frequency LAM´s and the external modes, below 200 cm-

1 [31,32]. Figure S2 also includes the calculated spectra for n-nonane obtained using the 

mixed Monte Carlo multiple minimization and Large Scale Low mode method, as 

implemented in the MacroModel software. Structural assignments were based primarily 

on the level of correspondence between the experimental and computed wavenumbers, 

and on their calculated relative energies. As observed in Figure S2, the agreement 

between experiment and theory is very good, and this was obtained for the calculated 

minimum energy structure, i.e., even the single molecule ab initio calculations of the 

vibrational frequencies provides an excellent agreement with the INS spectrum. 

Theoretical calculations perfectly predict the strong peak at 240 cm-1, due to the methyl 

torsion, and peaks at 290, 396, 455 and 497 cm-1, attributed to in-plane longitudinal 

acoustic modes. Only out-of-plane transverse acoustic modes below 200 cm-1 exhibit a 

worse fitting with the experimental data. The optimized geometry and harmonic 

vibrational frequencies for the lowest energy structure are given as Electronic 

Supplementary Information (Table S1, S2). 

Figure 2 describes the INS spectrum for the activated carbon PP-AC after an outgassing 

treatment at 298 K for 4h.  

 

 

 

 

 

 

 



Figure 2. Experimental INS spectrum (green trace) of nanoporous activated carbon pre-

impregnated with n-nonane and outgassed at RT for 4h. Theoretical INS spectrum (blue 

trace) of the fundamental modes (0-1) of the lowest energy conformer of n-nonane 

molecule. 

 

Previous studies from our research group have shown that an outgassing treatment 

under these conditions allows the removal of n-nonane from the whole porosity, except 

from narrow micropores (below 1 nm) [33]. As it can be observed in the experimental 

spectra, n-nonane molecules confined in the narrow micropores of the activated carbon 

retain the longitudinal acoustic modes (LAM), while all contributions below 200 cm-1 

are mainly wash-out. These results show that the methyl torsional and in-plane acoustic 

modes of n-nonane confined in narrow micropores remain intact, while out-of-plane 

contributions are somewhat broadened (due to the slight disorder of the confined n-

nonane molecules). To evaluate any possible structural flexibility in sample PP-AC 

upon an external stimuli, INS analysis of confined n-nonane were evaluated after a 

pressurization step with CH4 up to 6 MPa. Figure 3 shows the INS spectra of n-nonane 

confined in narrow micropores, before and after exposure to high-pressure methane. 

Interestingly, the application of high-pressure methane has no effect in the LAM 

acoustic modes (above 200 cm-1). However, a closer look to the low wavenumber 

region (see highlighted area) clearly shows that an external pressurization in the 

reaction chamber allows sharpening of the out-of-plane acoustic modes, preferentially 

those at 194, 176, 165 and 133 cm-1. These results unambiguously denote a certain 

ordering of the confined n-nonane molecules towards the crystalline phase.    



 

 

 

 

 

 

 

Figure 3. INS spectra of n-nonane adsorbed in narrow micropores before and after 

pressurization with 6 MPa CH4. 

 

In summary, INS results show that the bands corresponding to the out-of-plane acoustic 

modes of n-nonane become broader upon confinement in narrow micropores. However, 

the application of an external high-pressure stimulus allows the sharpening of these 

acoustic modes. The ordering of confined n-nonane upon pressure can be explained 

either due to the partial displacement of n-nonane from narrow micropores to wider 

pores or due to the partial swelling of the carbon structure. To evaluate these two 

hypotheses, MD simulations were performed in a model carbon material after 

incorporation of n-nonane in narrow micropores and high-pressure methane in the larger 

cavities and/or the external surface.   

MD simulations predict a double layer for n-nonane adsorbed in narrow micropores (1 

nm) with a packing density rather closed to the solid state. Under these conditions, 

vibrational and rotational modes for n-nonane will be limited in close agreement with 

INS measurements. Incorporation of high-pressure methane (6 MPa) into the large 

carbon cavities (simulated mesopores | 8 nm) gives rise to some methane dissolution in 

n-nonane, but associated with a full preservation of the solid n-nonane stability in 
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narrow micropores (see snapshot in Figure 4; see Supporting information for further 

details), i.e. MD simulation does not predict any change in the n-nonane adsorbed in 

narrow micropores neither in the carbon porous structure (a rigid pore model was 

chosen to avoid ambiguity in terms of potential and the simulation). Consequently, these 

calculations suggest that the sharpening of the acoustic modes after application of a 

high-pressure stimulus must be undoubtedly attributed to the structural flexibility 

(swelling) of the PP-AC activated carbon, which allows somewhat disordered structure 

of n-nonane within micropores to rearrange further towards the crystalline phase. 

 

 

 

 

Figure 4. Snapshot of the MD simulations for a model carbon material containing n-

nonane (green) in small cavities (1 nm) and high-pressure methane (brown) in large 

cavities (8 nm).   

 

To conclude the characterization, sample PP-AC has been evaluated using TEM after 

MB adsorption. One of the main drawbacks for the observation of these samples after 

pre-impregnation with MB concerns the high vacuum in the TEM chamber and high 

energy of the electron beam, preferentially at high magnification. Figure 5 shows TEM 

images from different areas of the carbon surface immediately after focusing (upper 

pictures) and after a few seconds bombardment with the electron beam (lower pictures). 

TEM images clearly show the detrimental effect of the electron beam in the pre-

impregnated sample. Whereas the initial pictures allows observing the carbon skeleton 

(MB adsorbed can not be appreciated), the surface structure changes drastically after a 



few seconds exposure. All pictures show the presence of defective areas due to the 

presence of “explosion-like” processes. We assume that these crater formation must be 

associated with the abrupt desorption of MB from the inner cavities of the PP-AC 

carbon assisted by the electron beam.  

 

 

 

 

 

 

 

 

 

Figure 5. TEM images of the PP-AC sample pre-impregnated with an aqueous solution 

of methylene blue right after focusing (upper section) and after a few seconds under the 

electron beam (lower section).   

 

Interestingly, after the explosion phenomenon TEM images show the formation of a 

new solid structure emerging from the carbon core, most probably attributed to the 

exfoliation of graphite micro-domains or graphene layers (Figure 5). This hypothesis 

will be in close agreement with structural flexibility described above for these 

petroleum-pitch activated carbons and it anticipates the possibility to use these carbon 

materials for the preparation of graphene flakes. However, the presence of some 

amorphous domains coming from the decomposition of the MB molecules after 

irradiation cannot be ruled out. 



To demonstrate the structural flexibility and the weakness of the interaction of the 

lamellae in PP-AC observed with TEM, the carbon sample has been submitted to an 

exfoliation process using two different organic solvents, N,N-dimethylformamide 

(DMF) and N-methyl-2-pyrrolidone (NMP). For the exfoliation process, the 

impregnated sample was sonicated for 15 min and subsequently diluted in ethanol 

before their evaluation using atomic force microscopy (AFM). Figure 6 shows the AFM 

images corresponding to the PP-AC sample exfoliated using NMP. As it can be 

observed, exfoliation gives rise to Pm size graphene flakes (see Figure 6 upper panel). A 

closer look to these graphene flakes (amplification in the middle image) shows the 

presence of surface imperfections or pore cavities around 50-100 nm in size. A 

topological analysis of these flakes along the vertical axes (blue line) reflects that they 

are indeed constituted by 1-3 stacked graphene layers with a height around 1.5 nm. At 

this point it is important to highlight that similar exfoliation experiments using DMF did 

not succeed to produce graphene.  

The morphology of the synthesized graphene samples can be more clearly appreciated 

in Figure S5. AFM pictures clearly show that upon exfoliation i) the graphene particles 

exhibit an average size around 500 nm-1000 nm in diameter, ii) graphene planes contain 

pores with an average size around 50-100 nm, iii) graphene flakes exhibit rough and 

rounded boundaries and iv) topological analysis of these flakes along the vertical axes 

following the blue lines (a-c) show that each of the two-three layers is less than 1 nm 

height (ca. 0.6±0.1 nm), i.e. these are single graphene monolayers. 

                       

 6.00 nm

 0.00 nm

2.0µm

 6.00 nm

 0.00 nm

480nm

 6.00 nm

 0.00 nm

500nm

 



                       

Figure 6. AFM pictures and height profiles corresponding to the exfoliated PP-AC 

activated carbon.  

 

These results suggest that the KOH activation process in these anisotropic samples must 

proceed via potassium intercalation between the graphitic domains followed by an 

activation reaction, i.e. the reaction of KOH with the pitch starting from the periphery of 

the flakes to the core giving rise to the evolution of CO, CO2 and H2 (see ref. [34] for 

further details), thus providing the rough and heterogeneous “egg-like” flake graphene 

structure, as observed with AFM. The “egg-like” flake morphology of these samples is 

supported by SEM images after exfoliation and drying. Figure 7 clearly shows the 

compilation of micron-size graphene layers. 

 

                                  

Figure 7.  SEM image of the petroleum-pitch activated carbon after exfoliation and 

drying. 
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To end up, it is important to highlight that this exfoliation approach was applied to 

other petroleum-pitch derived carbon materials with similar results in terms of 

final graphene-flakes structure and morphology.    

 
4. Conclusions 

This study clearly shows that petroleum-pitch derived carbons are excellent candidates 

for the preparation of graphene through a simple exfoliation process, avoiding the 

drawbacks associated with the conventional routes from graphite based on an initial 

oxidation, followed by a dangerous thermal reduction step. The large versatility of these 

activated carbon samples must be associated to the increased structural flexibility upon 

adsorption, i.e. the ability of the material to adapt to the guest molecule, via an internal 

rearrangement/reordering of the graphite microdomains, as described by XRD. These 

internal structural changes can be responsible for the excellent performance of these 

materials in applications dealing with adsorption and capacitance.     
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