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ABSTRACT 9 

The erosion of the world's coasts and the shortage of sand to mitigate beach erosion is leading 10 

to the increasingly common use of gravel for coastal protection and beach nourishment. 11 

Therefore, in order to determine the amount of gravel required for such actions, it is important 12 

to know perfectly the equilibrium profile of gravel beaches. However, at present, this profile is 13 

obtained from formulas obtained mainly after channel tests, and therefore most of them do 14 

not adapt to the real profiles formed by gravel beaches in nature. In this article, 31 variables 15 

related to sedimentology, waves, morphology and marine vegetation present on the beaches 16 

are studied to determine which are the most influential in the profile. From the study carried 17 

out, it is obtained that these variables are the steepness and probability of occurrence of the 18 

wave perpendicular to the coast, the profile starting slope (between MWL and -2m), the energy 19 

reduction coefficient due to Posidonia oceanica as well as the width of the meadow. Using 20 

these variables, different numerical models were generated to predict accurately the gravel 21 

beach profile, which will lead to a saving in the volume of material used in the order of 1300 22 

m3/ml of beach with respect to current formulations, and a greater certainty that the beach 23 

nourishment carried out will have the desired effect. 24 

Keywords: Cross-shore profile; gravel beaches; Posidonia oceanica; sediment samples; wave 25 

characteristics; numerical models 26 

1. INTRODUCTION 27 

Gravel beaches are an important form of coastal natural defence (Lopez de San Roman Blanco, 28 

2003; Poate et al., 2013), due to the characteristics offered by this type of sediment, such as 29 

hydraulic roughness and permeability (Van Wellen et al., 2000), or their natural ability to 30 

dissipate large amounts of waves energy (e.g., Aminti et al. (2003); Johnson (1987)). As a 31 

result, beach nourishment with coarse-grained material or a mixture of sand and gravel is 32 

becoming more and more frequent (Mason et al., 2007). It is important to highlight the 33 

economic implications that the choice of the equilibrium profile has on these beach 34 

nourishment. Since it has been observed that bad designs can cause the rupture of the berm 35 

and the consequent overflowing of waves during extreme events, producing high social costs 36 
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in the form of damage to coastal properties and infrastructure, flooding of the hinterland and 37 

loss of human life (McCall et al., 2015), hence the importance of good design.  38 

In order to successfully predict the dynamic behaviour of gravel beaches, it is necessary to 39 

identify and represent the equilibrium of key processes that control sediment dynamics in the 40 

swash zone (Puleo et al., 2000). It is important to understand that the balance of the processes 41 

governing this behaviour is different from that of sandy beaches, where, for example, 42 

infiltration is negligible (Baldock and Holmes, 1997). In general, during surf conditions, on 43 

gravel beaches, sediment is carried upwards where it spreads and deposits in the form of a 44 

berm at the top of the beach; this also leads to a steeper slope of the beach face (Austin, 2005; 45 

Carter and Orford, 1993; Jamal et al., 2014). This foreshore accretion and increase in beach 46 

face slope are against the force of gravity, which requires either the uprush and backwash 47 

velocities, or the amounts of sediment transported between uprush and backwash, to be 48 

asymmetric (Aagaard and Hughes, 2006).  49 

The complex processes associated with gravel beaches make it difficult to predict accurately 50 

morphological changes. Various approaches to variable complexity modelling have been 51 

reported, which were generally adopted to describe model families from 1 to 3-D. That is, 52 

models that cover a single parameter or element (winds (Benetazzo et al., 2012); 53 

hydrodynamic processes (Perlin and Kit, 1999; Saengsupavanich et al., 2008); sediment 54 

transport (Fredsoe et al., 1985)); or models that merge several numerical models into one 55 

(Bonaldo et al., 2015). These include parametric models (e.g., Powell (1990)) and process-56 

based models (e.g., Clarke et al. (2004); Jamal et al. (2014); Masselink and Li (2001); Pedrozo-57 

Acuña et al. (2006)). Thus, authors like Powell (1990), Van der Meer (1988) or López et al. 58 

(2016), suggest a power function for the equilibrium profile of gravel beaches, specifically for 59 

the area between mean water level (MWL) and step (Equation 1).  60 

       (1) 61 

Regarding the value of parameter A, many authors have also proposed formulations to obtain 62 

it on sandy beaches, such as Dean (1977), Moore (1982), Bodge (1992) and Pilkey et al. (1993), 63 

which they consider to be exclusively dependent on the median sediment size (D50). However, 64 

there are authors such as Stockberger and Wood (1990) that doubt the dependence between 65 

profile and sediment size. In turn, Boon and Green (1988) states that in addition to sediment 66 

size, parameter A must be influenced by wave energy. More recent authors such as Turker and 67 

Kabdasli (2006) developed a formulation with terms increasingly complex and difficult for the 68 

coastal engineer to handle, introducing the effect of energy dissipation by breaking waves in 69 

their formulation. 70 

At present, the only empirical or parametric models available for obtaining parameters A and B 71 

for coarse-grained profiles are Powell's (1990) and Van der Meer's (1988), based on extensive 72 

channel-scale testing (small scale with anthracite for Powell's profile and large and small scale 73 

with gravel for Van der Meer's). Van der Meer (1988) proposed a value of 0.83 for parameter B 74 

and Equation 2 for parameter A.  75 

   
  

          (2) 76 

where: 77 
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and N is the number of storm waves, Dn50 is the nominal diameter defined as (W50/ρa)
1/3. W50 is 80 

the value of 50% of the mass in the distribution curve and ρa is the density of the material. 81 

Powell (1990) proposed two equations for parameters B (equation 5) and A (equation 6). 82 
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These formulations mainly depend on the median sediment size (D50), as well as significant 88 

wave height (Hs), mean wavelength (Lm) and mean period (Tm). 89 

On the other hand, uncertainty in the data collection of the parameters that are considered as 90 

inputs must be taken into account, e.g. where sediment samples should be taken to determine 91 

the median grain size (D50) or the type of wave to be used (deep water, shallow water or 92 

breaking wave) or the direction of the wave. An inappropriate choice of these variables implies 93 

uncertainties in the definition of parameters A and B and large errors in the final shape of the 94 

designed beach. 95 

Therefore, the objectives of this study are: i) to analyse the variables that may affect the 96 

equilibrium profile of gravel beaches. ii) Develop a methodology that allows us to select the 97 

most important variables. iii) Define and test a model that allows us to obtain parameters A 98 

and B proposed  by López et al. (2016) for the profile between the mean water level and the 99 

Posidonia oceanica meadow, which were obtained through field measurements. 100 

2. STUDY AREA 101 

The study area includes 51 gravel beaches located in the provinces of Alicante and Murcia 102 

(Spain). It is a micro-tidal zone where the astronomical tides oscillate between 20 and 30 cm, 103 

and together with the meteorological tides can reach up to 75 cm (Ecolevante, 2006; EcoMAG, 104 

2009). 105 

In the province of Alicante, we find 34 gravel beaches, which are located mainly in the 106 

northern part of the province (Figure 1a). It is the most mountainous area of the province 107 

where the coastal landscape is formed mainly by rocky cliffs and small coves. From north to 108 

south, the terrain passes from large limestone cliffs to small gravel and silt cliffs. 109 
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In the province of Murcia, the 17 gravel beaches are located in the southwestern area (Figure 110 

1b), where we find mainly cliffs with small beaches. In this area, along with the province of 111 

Alicante, there are important extensions of Posidonia oceanica meadows. 112 

 113 
Figure 1. Location of gravel beaches in the study area. (a) Northern part of the province of Alicante. (b) 114 

South-west of the province of Murcia. 115 

3. METHODOLOGY 116 

The following section describes the process used to select the variables that influence 117 

parameters A and B of the power function of the gravel beach equilibrium profile obtained by 118 

López et al. (2016) for the area situated between the mean water level and the Posidonia 119 

oceanica meadow. Secondly, the procedure followed for modelling them is explained. 120 

3.1. Analysis of variables 121 

For the selection of the influential variables in parameters A and B, 31 variables were analysed 122 

(Table 1), related to morphology, incident waves and beach sedimentology, obtained as 123 

described below. 124 
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Table 1. Analysed variables. The description and meaning of each variable can be seen in supplementary 125 

material 1. 126 

Variable Variable 

Modality (unimodal or bimodal sample) Profile starting slope (mi), between MWL and -2 m 
D10 Iribarren number (CP) 
D50 Surf similarity index (CP) 
D90 Beach width (Ap) 
Wave height in deep water; Ho (MF) Meadow offshore depth (yip) 
Period; Tp (MF) Meadow onshore depth (yfp) 
Probability of occurrence (f MF) Meadow medium depth (ymp) 
Deepwater steepness; Ho/Lo (MF) Meadow width (ApPo) 
Wave height in deep water; Ho (ME) Meadow slope (mp) 
Period; Tp (ME) Plant density (D) 
Probability of occurrence (f ME) Stem height (At) 
Deepwater steepness; Ho/Lo (ME) Kv_Méndez 
Wave height in deep water; Ho (CP) Kv_Cavallaro 
Period; Tp (CP) Kv_Koftis&Prinos 
Probability of occurrence; (f CP) Kv_Maza 
Deepwater steepness; Ho/Lo (CP)  

MF swell most frequent, ME swell most energetic, CP swell perpendicular to the coast, and Lo 
is the deepwater wavelength. 

 127 

Sedimentological data (Modality, D10, D50 and D90) were obtained from the analysis and 128 

processing of the granulometric tests carried out on the different samples obtained in each of 129 

the beaches. The samples were collected by the University of Alicante in 2012 (Alicante) and 130 

2014 (Murcia), at least four samples were taken in each beach so that the obtained 131 

information were representative of the entire beach. 132 

The data referring to maritime climate (wave height, period, probability of occurrence and 133 

direction) were obtained from the data provided by the directional buoys of the "REDEXT" 134 

network and the "REDCOS" network of the Public Organization Puertos del Estado 135 

(http://www.puertos.es). The Valencia 2630 buoy (39.52°N - 0.21°E, at a depth of 260 m - deep 136 

water) was used for the study of incident waves on beaches from the northern limit of the 137 

province of Alicante to Cape Nao (beaches from 1 to 5 of the province of Alicante). Alicante 138 

1616 buoy (38.25°N - 0.41°W, at 52 m depth - intermediate waters) with which beaches from 139 

Cape Nao to Cape of Huertas (beaches from 6 to 34 of the province of Alicante) were studied. 140 

Finally, the Cabo de Palos 2610 buoy (37.65° N - 0.33° W, depth of 230 m - deep water) was 141 

used to study the beaches of the province of Murcia (Figure 1). 142 

For the study of waves on each of the analysed beaches, the AMEVA v1.4.3 program 143 

(IHCantabria, 2013), was used. AMEVA is a software that is formed by a set of functions 144 

developed in Matlab that integrates the different statistical analysis methodologies, with the 145 

purpose of studying and characterizing environmental variables. From this software we 146 

obtained: wave height Hs,12 (wave height exceeded only 12 hours per year) as well as the 147 

associated period (T) and probability of occurrence of each wave direction (f) for each of the 148 

incident directions in each of the beaches. In order to work with all the data in deep water, a 149 

reverse propagation was applied to the data corresponding to the Alicante 1616 buoy 150 
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(because it is the only buoy found in relatively shallow waters), using the corresponding factors 151 

of shoaling and refraction. 152 

Finally, for each of the beaches, the wave height perpendicular to the beach (PC), the wave 153 

height with the highest frequency (MF) and the wave height with the highest energy (ME; 154 

higher wave height), as well as all the elements associated with them (period, frequency, 155 

direction, etc.) were selected. 156 

The characteristics of the Posidonia oceanica meadow were obtained from the Ecolevante 157 

(2006) and EcoMAG (2009) datasheets, obtaining plant density, stem height, leaf length, mean 158 

depth, onshore depth, offshore depth, width and slope of the meadow. From these data, the 159 

energy reduction coefficient Kv was obtained following the formulation proposed by Mendez 160 

and Losada (2004) and the values of the parameters α, β and γ (dependent on the flexibility 161 

characteristics of the plants) proposed by Méndez et al. (1999), Cavallaro et al. (2011), Koftis 162 

and Prinos (2012) and Maza et al. (2013) (Table 2). 163 

Table 2. Parameters α, β and γ to calculate Kv. 164 

Studies α β Υ Range Re 

Méndez et al. (1999)  0.4 4,600 2.9 2,300-20,000 

Cavallaro et al. (2011)  0 2,100 1.7 200-15,500 

Koftis and Prinos (2012)  0.1 2,100 1 1,000 - 3,200 

Maza et al. (2013) 1.61 4,600 1.9 2,000-7,000 

 165 

Finally, before generating models for parameters A and B, a selection of the variables to be 166 

used in the finite elements numerical models was made. To this end, firstly, the analysis of 167 

bivariate correlations was carried out using the SPSS v.20 computational program (IBM, 2011), 168 

studying the relationship of each variable with parameters A and B, with the objective of 169 

reducing the influential variables in both parameters as much as possible. It should be noted 170 

that this analysis only shows linear correlations, therefore a low value does not mean that 171 

there is no relationship between the variable and the study parameter. 172 

3.2. Modelling 173 

Once the most influential variables in both parameters were determined, linear functions and 174 

mathematical models were obtained for the calculation of A and B from these variables. For 175 

this purpose, 90% of the data (46 beaches) were used to generate the models and 10% (5 176 

beaches) were used for validation. Data for validation were randomly selected not to condition 177 

the results. Finally, the results obtained by the generated models were compared with those of 178 

the Van der Meer (1988) and Powell (1990). 179 

3.2.1. Multiple linear regression model 180 

The simple linear regression model is not suitable for modelling Parameters A and B of the 181 

power function of the equilibrium profile, since explaining both generally requires more than 182 

one factor to be considered. It is then necessary to use multiple linear regression models. 183 

file:///C:/Users/jakuzz/Dropbox/ANDER/ESTADO%20DEL%20ARTE_word/tablas.xlsx%23RANGE!_ENREF_19
file:///C:/Users/jakuzz/Dropbox/ANDER/ESTADO%20DEL%20ARTE_word/tablas.xlsx%23RANGE!_ENREF_6
file:///C:/Users/jakuzz/Dropbox/ANDER/ESTADO%20DEL%20ARTE_word/tablas.xlsx%23RANGE!_ENREF_13


7 

In the multiple linear regression model, the independent variable (that may be the 184 

endogenous variable or a transformation of endogenous variables), is a linear function of k 185 

variables corresponding to the explanatory variables (or transformations thereof) and a 186 

random disturbance or error. The model also includes a separate term. If we designate with y 187 

to the dependent factor, by x2, x3, ..., xk to the independent variables and by u to the random 188 

error or disturbance, the multiple linear regression model will be given by Equation 9. Linear 189 

models can also be represented by polynomial functions (Equation 10) or exponential 190 

functions (Equation 11), where the parameters    and    are fixed and unknown. A linear 191 

model can be generated from variables that are polynomial or exponential functions of other 192 

variables. This method of linearization has been defined and applied in the methodologies 193 

published in (Cortés et al., 2000; Villacampa et al., 1999a; Villacampa et al., 1999b) using 194 

mathematical functions, including polynomials and exponential and compositions of 195 

mathematical functions. Specifically, generically, Cortés et al. (2000) works with a set of 196 

variables and their transformations, resulting from the application of mathematical functions 197 

to the variables, to obtain models of linear regression in the new variables. Therefore, the final 198 

independent variables used to predict a dependent one are transformed functions of varying 199 

degrees of the original variables. 200 

                         (9) 201 

               
        

      (10) 202 

                                  (11) 203 

The good fit of the generated linear models was verified by the Pearson's coefficient R2 204 

(Equation 12) and the adjusted Pearson's coefficient        (Equation 13). The main feature of the 205 

adjusted        is that it imposes a penalty when adding new variables to a model. 206 

      
   

   
 (12) 207 

         
           

         
 (13) 208 

where RSS is the regression sum of squares, TSS is the total sum of squares, n is the sample 209 

size and k reflects the number of variables. 210 

Thus, through the linear regression function of the SPSS v.20 computational program (IBM, 211 

2011), various models for parameters A and B were generated. This program allows us to enter 212 

all the desired variables, and by the backward method generates different models eliminating 213 

variables successively until reaching the minimum error. Using this method, linear models for 214 

parameter A and B were generated using all data (except for the 10% that were used for 215 

validation). In addition, models were generated for each type of beach (Table 3) proposed by 216 

Aragonés et al. (2015). 217 

Table 3. Type of gravel beaches according to Aragonés et al. (2015). 218 

Type Characteristics 

Type 1: Sand and Gravel The material is mixed along the entire beach, but the 
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proportion of sand is much greater than the 

proportion of gravel. They are usually bimodal 

beaches whose material comes from both rivers and 

ravines 

Type 2: Sand and Gravel Separated A clear separation exists between the gravel area and 

the sand area, which lies in the swash zone, and the 

sand proportion is far greater than that the gravel 

proportion. These beaches are also usually bimodal 

Type 3: Gravel and Sand The materials are mixed at the beach, but the gravel 

ratio is much higher. These beaches are the only ones 

that are unimodal, and their materials come from 

ravines 

Type 4: Gravel and Sand separated Is distinguished by a clear separation between the two 

materials, with the fraction of gravel being in the area 

of the seashore and the sand fraction in the interior 

region. These beaches are strongly bimodal 

Type 5: Pure Gravel These beaches are generally bimodal, differentiating 

themselves by the absence of sand. 

 219 

Although the model adjustment results are relatively good, the test results are not satisfactory 220 

(supplementary material 2), so in order to try to obtain a better predictive model, as well as to 221 

try to reduce the errors made by the equations obtained with the linear models, it was decided 222 

to use non-linear models.  223 

3.2.2. Finite element numerical model 224 

In the study and modelling of some systems, it is necessary to analyse and determine the 225 

relationship between different variables, of which only experimental data are known. There 226 

are different methodologies in the literature to obtain the relationship between variables from 227 

experimental data. Therefore, models can be defined analytically (mathematical equations) or 228 

numerically. Numerically defined models are defined by their value in a finite number of 229 

points, from which the value can be obtained at any point. 230 

From the set of selected variables that influence parameters A and B, numerical mathematical 231 

models were generated using the numerical methodology developed by Navarro-González and 232 

Villacampa (2012) and Navarro-González and Villacampa (2016). This methodology generates 233 

n-dimensional representation models, and is based on the definition and generation of a 234 

geometric model of finite elements (Villacampa et al., 2009). 235 

In both methodologies, the experimental data are normalized to the n-dimensional hyper-236 

cube, given by         . Each interval [0, 1] is divided into c subintervals (c is called the 237 

complexity of the model). A set of    elements and        nodes is generated, where the 238 

relationship between the independent variables and the dependent variable(s) is calculated. 239 

For example, if we consider a 3-dimensional geometric model with a complexity c = 4, the total 240 

number of elements is 43 = 64. To determine the output data, the model uses an interpolation 241 
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function. The minimized error depends on the methodology used. Thus, in Navarro-González 242 

and Villacampa (2012, 2013) the sum of the squared error (Equation 14) of the values obtained 243 

by the interpolation function at each point (zj) and the initial conditions (Pj) is minimized. While 244 

in the methodology based on the Galerkin method (Navarro-González and Villacampa, 2016), 245 

the error (    -the difference between the solution and its approximation) is minimized by 246 

zeroing the integral defined in Equation 15, where NP is the number of variables in the model, 247 

         is the interpolation function used to determine the value of the model at any point and  248 

      is the selected weight function (collocation method, sub-domain method, Least Square 249 

Method, Galerkin method, method of moments). In order to select the complexity, the 250 

generation and validation data of the model are used. Thus, the lower complexity that offers 251 

better results is selected, in order not to over fit the model. 252 

                       
   

    (14) 253 

                 (15) 254 

Finally, for the evaluation and selection of the best model, the errors made by each of them 255 

were analysed. The errors used are absolute error (equation 16) and Mean Absolute 256 

Percentage Error (MAPE) (equation 17). 257 

           (16) 258 

      
 

 
  

     

  
  

    (17) 259 

Where ri corresponds to the measured values, oi with the values obtained from the network, n 260 

is the number of values and p is the number of free parameters of expression. 261 

Once the model was selected, the volume error per linear metre of beach versus the original 262 

beach profile was analysed, as well as the area and type of beaches where the largest errors 263 

occurred. 264 

4. RESULTS 265 

Table 4 shows the results obtained from the correlation study between the different variables 266 

and parameters A and B, where it is observed that the Iribarren’s number (A = 0.716; B = – 267 

0.389), the Surf Similarity Index (A = 0.716; B = – 0.391), the profile starting slope (A = 0.675; B 268 

= – 0.318) and the meadow width (A = 0.455; B = – 0.508) are the variables that are most 269 

closely related to both parameter A and parameter B. However, to select the variables to be 270 

used in numerical models, variables were discarded as follows: 271 

First, the sediment variables were discarded for two reasons: i) the correlation obtained with 272 

both parameters was relatively low. ii) the variability of the data over a period of one year, 273 

since depending on the season and the area of the beach where the sediment sample is taken, 274 

these may change from gravel to sand at the same point as indicated by Aragonés et al. (2015). 275 
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Secondly, the wave data perpendicular to the coast were selected, specifically the probability 276 

of occurrence (A = – 0.344; B = – 0.341) and the steepness (A = 0.498; B = – 0.298), since they 277 

presented a greater correlation with parameters A and B than the rest of the studied waves. 278 

Although Iribarren’s number and the Surf Similarity Index are the variables that show the 279 

greatest correlation with parameters A and B, it was decided to discard them since these are a 280 

combination of other variables (steepness and slope). Therefore, slope and wave steepness 281 

were used as input independent variables in the models to not condition their combination. 282 

Finally, with regard to the variables related to Posidonia oceanica meadows, the two variables 283 

with the greatest correlation with both parameters of study (A and B) were selected, these 284 

variables are the meadow width (A = – 0.455; B = – 0.508) and the energy reduction coefficient 285 

Kv_Maza (A = 0.412; B = – 0.402). 286 

For all the above reasons, it was decided to use combinations of the following variables for the 287 

generation of the numerical models: the steepness and the probability of occurrence of waves 288 

perpendicular to the coast, the profile starting slope, the meadow width, and the Kv_Maza 289 

coefficient. In addition, given the relationship observed by López et al. (2016) between the 290 

study parameters (A and B) and the beach type, models were also tested with and without this 291 

variable. 292 

Table 4. Correlations between the analysed variables and parameters A and B. 293 

Variable Parameter A Parameter B Variable Parameter A Parameter B 

Modality -0.325 0.246 Profile starting slope 0.675 -0.318 

D10 0.139 -0.223 Iribarren number (CP) 0.716 -0.389 

D50 0.191 -0.286 Surf Similarity Index (CP) 0.716 -0.391 

D90 0.081 -0.106 Beach width 0.108 -0.207 

Ho (MF) 0.068 0.031 Meadow onshore depth 0.258 -0.118 

Tp (MF) 0.126 -0.104 Meadow offshore depth 0.003 -0.027 

f MF 0.063 0.072 Meadow medium depth 0.043 -0.053 

Ho/Lo (MF) 0.120 -0.102 Meadow width 0.455 -0.508 

Ho (ME) -0.032 0.088 Meadow slope -0.265 0.289 

Tp (ME) 0.183 -0.033 Plant density 0.390 -0.317 

f ME -0.121 0.055 Stem height 0.077 0.123 

Ho/Lo (ME) 0.182 -0.029 Kv_ Méndez -0.393 0.202 

Ho (CP) -0.310 0.063 Kv_Cavallaro -0.410 0.394 

Tp (CP) 0.256 -0.152 Kv_Koftis&Prinos -0.362 0.223 

f CP -0.344 0.341 Kv_Maza -0.412 0.402 

Ho/Lo (CP) 0.498 -0.298    

The correlation is significant at level 0.05 (bilateral). 294 

The backward method of the multiple regression analysis of the SPSS v.20 computer program 295 

(IBM, 2011) was used to generated linear models. This method generates models and 296 

progressively eliminates those variables that are less influential, which is why, in this case, all 297 

the studied variables except sedimentological data (for the reasons explained above) were 298 

introduced in the program. Thus, 3 models for parameter A and 2 for parameter B were 299 

obtained without distinguishing between beach types, with R2 values of approximately 0.66 300 

and 0.49, respectively (Figure 2 a,b). When linear models were generated for each beach type, 301 

a single model was obtained for each type with an almost perfect fit (Figure 2 a,b). However, 302 
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when these models were used to predict the parameter A or B in other beaches (Figure 2 c,d) 303 

large errors result, being larger for models with higher fit during calibration (absolute error for 304 

parameter A is 0.036 for the model without beach type variable vs. 0.264 for the beach type 305 

models; for parameter B the absolute error is 0.133 vs. 0.808, respectively). This indicates that 306 

these models have an over-adjustment, and therefore, do not allow us to predict the studied 307 

parameters for beaches with different characteristics than those used to generate the model. 308 

The characteristics and the coefficients of the generated models can be seen in supplementary 309 

material 2. 310 

311 
Figure 2. Linear models. a) Estimated parameter A during calibration. b) Estimated parameter B during 312 

calibration. c) Estimated parameter A during test. d) Estimated parameter B during test. 313 

Regarding the finite element numerical models, three models were generated using different 314 

inputs and complexities (5, 10, 15 and 20). The models and the variables are: 1) Type of beach, 315 

probability of occurrence of the wave perpendicular to the coast (f CP), the steepness of the 316 

wave perpendicular to the coast (Ho/Lo CP), slope and Kv_Maza coefficient. 2) Type of beach, 317 

probability of occurrence of the wave perpendicular to the coast (f CP), the steepness of the 318 

wave perpendicular to the coast (Ho/Lo CP), slope, Posidonia meadow width and Kv_Maza 319 

coefficient. 3) Probability of occurrence of the wave perpendicular to the coast (f CP), the 320 

steepness of the wave perpendicular to the coast (Ho/Lo CP), slope, Posidonia meadow width 321 

and Kv_Maza coefficient. As can be seen in Figure 3, for both parameter A and B, the errors 322 

decrease as the complexity increases, and when the beach type variable or meadow width are 323 

added as input. Further analysis of the results shows that the smallest errors occur for 324 
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complexities 15 and 20, with little difference between the two. For parameter A, the smallest 325 

errors occur for Model_2 with a MAPE of 13.9% and 8.0%, and an absolute error of 0.015 and 326 

0.010, respectively. For parameter B, the best model is also Model_2, with a MAPE of 4.1% and 327 

3.1%, and an absolute error of 0.029 and 0.023, respectively. 328 

 329 
Figure 3. Errors resulting during finite element numerical model calibration. a and b) Parameter A. c and 330 

d) Parameter B. 331 

On the other hand, if the results obtained for test are analysed, it can be seen that errors are 332 

similar to those committed during model calibration (Figure 4). However, it is noted that the 333 

model that does not include the beach type variable (Model_3) generated fewer error than the 334 

other two for parameter A. For parameter B the best fir is obtained by Model_1 (without 335 

meadow width variable). Therefore, it is complex to select one model due to the different 336 

results between calibration and test. Thus, first, we select complexity, remaining with a 337 

complexity of 15, since the difference between 15 and 20 is minimal and a lower complexity 338 

implies a shorter computation time. Secondly, in order to select the more suitable model, it is 339 

decided to obtain the volume error from each one or a combination of them. 340 
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 341 
Figure 4. Errors committed during finite element numerical model test. a and b) Parameter A. c and d) 342 

Parameter B. 343 

Figure 5a shows the volume error during calibration and test after the combination of different 344 

A and B numerical models. Both on calibration and testing, the errors of the different models 345 

are very similar. For calibration, the combination of Model_3 for A and Model_3 for B is the 346 

one that makes the greatest error, with an increase of 34.8% with respect to the best model 347 

obtained from the combination of Model_2 for parameter A and Model_1 for parameter B. 348 

With regard to the test, again it is the combination of Model_2 (parameter A) and Model_1 349 

(parameter B) that produces the minimum error, while the rest of models imply an increase of 350 

26-30%. Therefore, Model_2 for parameter A and Model_1 for parameter B as the optimal 351 

models were selected. 352 

Once the model was chosen, the errors were analysed for each type of beach (Figure 5b and 353 

5c), and it was observed that the greatest absolute error occurs in type 1 and type 2 beaches, 354 

being 1.8 times higher than the one related to the rest of the other beaches types (0.015 – 355 

0.020). However, when analysing the MAPE it is observed that type 4 beaches are 356 

characterized by the largest errors (39.2%), followed very closely by type 1 beaches (13.9%), 357 

while type 3 and type 5 beaches make the smallest error (3.9% and 4.8%, respectively). 358 
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 359 
Figure 5. a) Volume error per ml beach for calibration and test. b) MAPE and (c) Absolute error by type 360 

of beach according to Aragonés et al. (2015) for the selected numerical model. 361 

As for the distribution of the error along the profile, as shown in Figure 6, the greatest error 362 

occurs in the deepest part of the profile. The profile obtained from the modelled parameters 363 

generally tends to be below the real profile and the López et al. (2016) EBP (Equilibrium beach 364 

profile), with an average value of 0.28 m (Figure 6c), with a maximum value of 0.97 m on the 365 

Tiestos beach (Figure 6a) and a minimum of 0.004 m on the Covaticas beach (Figure 6b). 366 
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 367 
Figure 6. Comparison of real, López et al. (2016) EBP and modelled profiles. a) Los Tiestos beach. b) 368 

Covaticas beach. c) Llobella beach. 369 

Finally, the results of the model were compared with the results obtained by applying Van der 370 

Meer and Powell formulations. In Figure 7a and 7b, it can be seen how the values of 371 

parameters A and B obtained by both formulations are very different from those values set in 372 

each of the beaches by López et al. (2016). This difference has an average absolute error for 373 

parameter A of 2.003 for Van der Meer (1988) and 0.288 for Powell (1990), and 0.157 and 374 

0.168 for parameter B, respectively. These errors in obtaining these parameters mean an 375 

average error of volume (difference between the real and estimated profile) of 20917 m3/ml 376 

beach for Van der Meer (1988) and 1417 m3/ml beach for Powell (1990). This means an 377 

increase of 20810 and 1310 m3/ml compared to the selected numerical model (Model_2 for 378 

parameter A and Model_1 for parameter B) and 20884 and 1384 m3/ml versus the real profile 379 

data (Figure 7c). In other words, the volume of gravel required for regeneration using the new 380 

method (finite element numerical model) is about 80 - 5 times less than with the current 381 
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methods (Van de Meer (1988) and Powell (1990), respectively), with the resulting economic 382 

and material savings. 383 

 384 
Figure 7. a) Parameter A obtained by Van der Meer (1988) and Powell (1990) versus the parameter 385 

proposed by López et al. (2016). b) Parameter B obtained by Van der Meer (1988) and Powell (1990) 386 

versus the parameter proposed by López et al. (2016). c) Comparison of volume error for each model. 387 

5. DISCUSSION 388 

Due to the increasing use of gravel for beach nourishment all around the world, it is necessary 389 

to define accurately the equilibrium beach profile in order to determine the volume of 390 

material. At present, for the determination of this profile there are two profiles proposed by 391 

Van der Meer (1988) and Powell (1990), which were obtained through channel tests. This is 392 

why these formulations present great errors when compared to the real profile of a gravel 393 

beach as demonstrated by López et al. (2016), and as has also noted in this study. 394 

The cross-shore profiles used in this study come from bathymetric data taken in a single period 395 

of the year. However, these profiles can be considered valid if we take into account that, as 396 

Aragonés et al. (2016) studied, the longshore transport of sediments is not relevant in the 397 

equilibrium profile, since after comparing the equilibrium profile obtained as the average of 22 398 

years of precision profiles (at least two per year) with the bathymetry profile obtained in a 399 

single period, it was observed that the difference was less than 8%. In addition, according to 400 

López et al. (2016) the profiles used in this study can be considered as the equilibrium profile 401 
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given that: i) the beach width variation is less than 1 m/year, i. e. the beaches are stable. ii) 402 

From depth -6 m, the profile between 1987 and 2006 hardly changed (< 30 cm). Therefore, the 403 

intermediate zone of the profile must be stable and can be assimilated to the equilibrium 404 

profile. 405 

Once it was established that the profiles could be considered as the equilibrium profile, the 406 

variables involved in its formation were analysed to determine which the most influential 407 

variables were. Thus, in the correlation analysis (Table 4) it was observed that the variables 408 

that presented a greater relationship with the parameters that define the equilibrium profile 409 

were the combination of slope, wave height and wave period perpendicular to the coast, as 410 

well as the energy reduction coefficient proposed by Maza et al. (2013). However, it was 411 

decided to use them individually in the models so as not to condition their combination. From 412 

this analysis, it is surprising that sediment sizes do not influence the profile. This may be due, 413 

as indicated by López et al. (2016), to its great variability throughout the year at the same 414 

point, because due to the movement of sediment for the formation of beach berm during 415 

storms (Baldock et al., 2005) the size varies depending on the time of year in which the 416 

samples are taken. For these two reasons (correlations and sample variability), these variables 417 

were not used in the numerical models. Likewise, the possible influence of the type of gravel 418 

beach (Aragonés et al., 2015) on the values of the parameters A and B was taken into account, 419 

so models were generated with and without the beach type variable. 420 

Once the variables were analysed, linear models were carried out jointly and individually for 421 

the different types of beaches (Figure 2). From the results, it is observed that the fit during the 422 

calibration of the models is almost perfect, but the validation of the same generates big errors, 423 

possibly due to an over-adjustment of the models, which prevents predicting results when 424 

using values of the variables different from those used during model calibration. Therefore, it 425 

was decided to use numerical models. Figure 4 shows that the numerical models generated 426 

are capable of reproducing and qualitatively estimating the cross-shore profile of each type of 427 

beach. (Aragonés et al., 2015). When these errors are compared with the errors produced by 428 

the formulas currently used, it is observed that there is a great difference. Current formulas 429 

present a much larger volume error than the generated models (Figure 7) in the order of 80 430 

and 5 times higher for Van der Meer (1988) and Powell (1990), respectively. This may be due 431 

to the fact that these formulas, as mentioned above, were obtained by channel tests at 432 

different scales, and therefore do not take into account the possible local effects such as the 433 

presence of Posidonia oceanica. For example, the three-dimensional structure of rhizomes 434 

form a certain reinforcement for the sandy sediment of the submerged beach which, along 435 

with the roots and leaves, hinder the sedimentary movements of the seabed, consolidating the 436 

sandy substratum and making the submerged beach profile be more vertical than usual 437 

(Medina et al., 2001). 438 

On the other hand, the results were analysed by type of beach, to study the effect of the 439 

models depending on whether the beach was made up of a thinner or thicker size, given that 440 

the bed shear is due to inertia effects and that it varies linearly with the medium grain size. 441 

Interestingly, the results show that the selected A and B models are more accurate on type 3 442 

beaches. Type 1 and 4 beaches are the ones with the biggest errors, either absolute error or 443 

MAPE (Figure 5). Validation with beaches within the study area is consistent with the results of 444 
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the models on the other beaches (Figure 4). In addition, when we analyse in detail the 445 

adjustment of the equilibrium profile on the real profile, we can observe that the numerical 446 

models represent almost perfectly the real profile in the closest part of the coastline, while as 447 

we move away from the coast, the obtained profile tends to be deeper than the real one. This 448 

may be due to the presence of Posidonia oceanica meadows at the end of the profile, since the 449 

Posidonia meadow acts as a reef or rocky slab by modifying the slope of the profile in this area 450 

and making it more or even completely flat, a feature that is not possible to represent by the 451 

power function (Figure 6). This is why most authors propose profiles composed of several 452 

curves (Bernabeu et al., 2003; Powell, 1990; Van der Meer, 1988), which generally range from 453 

the mean water level to the step and from the step to the bottom. In the case of the study 454 

area, the curves range from the mean water level to the beginning of the Posidonia oceanica 455 

meadow, and from the latter to the end of the meadow. 456 

The fact that the modelled profile is deeper than the actual profile implies that in the study of 457 

a beach nourishment the volume of material needed for it would be underestimated. 458 

However, this error is in the order of 1300 m3/ml less than the volume underestimated by 459 

other models such as Powell (1990). This in turn implies a lower erosion of the dry beach 460 

during the formation/stabilization of the profile, which knowing the model error could be 461 

corrected by pouring more material than required according to the model, about 70-80 m3 462 

more material per ml of beach. 463 

Although the model represents a step forward in modelling the profile of gravel beaches 464 

between the mean water level and the step or Posidonia meadow (in our case), the model can 465 

still be improved, especially in profile prediction. For this purpose, important factors that are 466 

not explained by the model and that can improve the model's behaviour must be taken into 467 

account. Some of these factors are: i) turbulence of percolation depending on the beach 468 

typology; ii) vertical velocity under breaking waves (Pedrozo-Acuña et al., 2008), and iii) the 469 

ground consolidation by Posidonia oceanica (Medina et al., 2001). 470 

6. CONCLUSIONS 471 

The results obtained show that the finite element numerical models generated can accurately 472 

predict both parameter A and parameter B, for the modelling of the cross-shore gravel 473 

beaches profile (from MWL to Posidonia oceanica meadow) according to the Aragonés et al. 474 

(2015) classification. The results show that the combination of both models (parameter A and 475 

B) is more accurate in predicting type 3 beaches while in type 1 and 4 beaches the worst fits 476 

are obtained. The validation carried out with 10% of the beaches considered within the study 477 

area shows that the model is valid both for the chosen system and for those international 478 

areas with similar characteristics to those studied here. However, once the cross-shore profile 479 

has been analysed, it can be seen that it is in the final part of the same where the greatest 480 

errors are observed, predicting a slightly deeper profile than the real profile. This is possibly 481 

due to the stabilization effect of Posidonia oceanica roots against sediment erosion. 482 

Nevertheless, due to the results obtained, it can be concluded that coastal engineers for the 483 

construction of this type of beaches can use the proposed models. Considering that knowing 484 

the model error, more material will have to be poured than calculated one, in order to avoid 485 

the loss of beach width due to the formation of the profile after nourishment. Furthermore, it 486 
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will allow us to ensure the well-being of the marine flora near the area of actuation. Since, if 487 

we define the profile with a formula or model that gives us a more vertical profile than the 488 

equilibrium profile, this profile during its formation will tend to the equilibrium profile and 489 

therefore it will be more flat. This could cause the grounding of vegetation and its subsequent 490 

death, causing a total destabilization of the profile and ecosystem of the area of action. 491 

 492 
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