

Accepted Manuscript

Distributed computational model for shared processing on
Cyber-Physical System environments

Higinio Mora , José Francisco Colom , David Gil ,
Antonio Jimeno Morenilla

PII: S0140-3664(17)30042-7
DOI: 10.1016/j.comcom.2017.07.009
Reference: COMCOM 5535

To appear in: Computer Communications

Received date: 11 January 2017
Revised date: 26 May 2017
Accepted date: 19 July 2017

Please cite this article as: Higinio Mora , José Francisco Colom , David Gil ,
Antonio Jimeno Morenilla , Distributed computational model for shared processing on Cyber-Physical
System environments, Computer Communications (2017), doi: 10.1016/j.comcom.2017.07.009

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service
to our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please
note that during the production process errors may be discovered which could affect the content, and
all legal disclaimers that apply to the journal pertain.

http://dx.doi.org/10.1016/j.comcom.2017.07.009
http://dx.doi.org/10.1016/j.comcom.2017.07.009

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Highlights
 A computation model to distribute the application workload over the CPS is proposed.

 The scheduling method dynamically shares the tasks among the computing nodes of the CPS.

 This approach facilitates the networking and integration of heterogeneous computer devices.

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Distributed computational model for shared

processing on Cyber-Physical System environments

Higinio Mora
a,*

, José Francisco Colom
a
, David Gil

b
, Antonio Jimeno Morenilla

c

a
Specialized Processor Architecture Laboratory, Department of Computer Science Technology

and Computation, University of Alicante, 03690 Alicante, Spain
b
Lucentia Research Group, Department of Computer Science Technology and Computation,

University of Alicante, 03690 Alicante, Spain
c
UniCAD Research Group, Department of Computer Science Technology and Computation,

University of Alicante, 03690 Alicante, Spain

hmora@ua.es; fjcolom@dtic.ua.es; dgil@dtic.ua.es; jimeno@dtic.ua.es

* Corresponding Author: Dr. Higinio Mora, hmora@ua.es

Specialized Processor Architecture Laboratory, Department of Computer Science Technology

and Computation, University of Alicante, 03690 Alicante, Spain

Tel. +34 96 590 3400 - Fax +34 96 590 3464

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

A B S T R A C T

Cyber-Physical Systems typically consist of a combination of mobile devices, embedded systems and

computers to monitor, sense, and actuate with the surrounding real world. These computing elements are

usually wireless, interconnected to share data and interact with each other, with the server part and also

with cloud computing services. In such a heterogeneous environment, new applications arise to meet

ever-increasing needs and these are an important challenge to the processing capabilities of devices. For

example, automatic driving systems, manufacturing environments, smart city management, etc. To meet

the requirements of said application contexts, the system can create computing processes to distribute the

workload over the network and/or a cloud computing server. Multiple options arise in relation to what

network nodes should support the execution of the processes. This paper focuses on this problem by

introducing a distributed computational model to dynamically share these tasks among the computing

nodes and considering the inherent variability of the context in these environments. Our novel approach

promotes the integration of the computing resources, with externally supplied cloud services, to fulfill

modern application requirements. A prototype implementation for the proposed model has been built and

an application example has been designed to validate the proposal in a real working environment.

Keywords.- Cyber-Physical Systems, Internet of Things, Mobile computing, Modeling, Distributed

computation

1. Introduction

The expansion of embedded systems into new

application areas such as healthcare, automotive, robotics,

home automation or smart cities has led to the

development of the Internet of Things (IoT). This new

paradigm consists in connecting any device with actuating,

sensing, and computation capabilities [1, 2]. The growing

presence of wireless communication technologies, such as

wireless local area network (Wi-Fi), Long-Term Evolution

communications (LTE) and Radio-frequency Identification

(RFID), allows for the connection of devices to internet

and remote monitoring and management through cloud

applications. Ubiquitous possibilities enabled by IoT

offers the ability to measure, infer and understand

environmental indicators in said applications areas.

One step further is the introduction of more intelligent

and interactive operations under the architecture of the IoT

paradigm, resulting in Cyber-Physical Systems (CPS) [3].

These elements are networked to monitor, sense, and

actuate physical elements in the real world and to work

together as a system. The proliferation of connected

devices in a communicating-actuating network creates

smart environments where sensors and actuators blend

seamlessly with the environment around us, and the

information is shared across platforms [4].

Computing nodes in a CPS environment can be very

heterogeneous in what concerns computing power and

other capabilities. They are generally network-enabled

small-sized computers ranging from nodes, with advanced

sensing/actuating capabilities but very limited processing

and storage resources, to powerful multi-core technologies

with high storage capacity. In addition, other computers

can cooperate in the network: servers, desktop and laptop

computers (full-sized, not embedded computers),

smartphones, and others.

In such a heterogeneous environment, as the one

exposed by CPS, there are multiple options to consider

when deciding which network nodes should support the

execution of the processing tasks: sensor and actuators

nodes can support additional processing with current

technologies; local servers, desktop and mobile computers

could also provide part of their resources for distributed

system goals; and, furthermore, cloud computing services

can be hired for additional computing power.

To be able to select the adequate CPS nodes, different

factors need to be taken into account. In terms of network

efficiency, it is preferable to bring the computing work

near to data sources and users. Performance is another key

issue: simple processing at a high data transfer flow rate is

generally better performed by local devices (sensor or

actuator), whenever possible; on the other hand, intensive

processing at a low data transfer flow rate can be

effectively done by powerful remote computers. Physical

constraints are also an important aspect that needs to be

addressed: some system components are able to integrate

data from different sources, so sending the data flow

through the network becomes mandatory. Other relevant

factors include energy consumption in battery-powered

devices [5], QoS (Quality of Service) requirements [6],

available bandwidth [7], and monetary cost of the cloud

services, among others.

The selection of the network node to be used for each

distributed task could be done at the design stage.

However, in a CPS, the high variability of the context

generally recommends making decisions during execution

time. Firstly, the flow rates of data transfers can be highly

variable in time, depending on the input nature: for

example, night video can be compressed more than

daylight video using some compression techniques.

Secondly, computing nodes can dynamically join or leave

the network: incorporation of new sensors or actuators can

dramatically increase data processing, but servers with free

resources can alleviate the possible overload produced by

this increase. The free resources provided by those servers

for distributed systems can also be variable, depending on

other tasks that must be carried out by the server. Last but

not least, the available network bandwidth can vary

depending on active network applications, usable

technologies, or geographical location.

In general, there is an interesting open issue for

efficient resource planning in the design of infrastructures

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

for CPS applications where there are heterogeneity of the

environment and available computational resources. In this

kind of execution contexts, the first step is to find the

feasible options for scheduling based on the dynamic

nature of the system. In addition, the computers may be

doing their own work, apart from the tasks of the

distributed application. Among the feasible options, some

scheduling decisions may be more suitable than others

depending on several aspects related with the overall

application performance and/or user preferences. In

addition, the cloud computing paradigm adds further

elements to properly perform this scheduling process.

Advances in this area will allow for the proper sharing

of computational cost of application processing among the

devices networked, and the design of systems able to

deploy advanced applications for providing additional

added-value services to users.

This research tackles this problem. The objective of

this work is to properly distribute the processing workload

among the available computing nodes in a CPS taking into

account the dynamic nature of the context observed in

these environments and the desired preferences at the

design stage. The main contribution of this work is the

proposal of a formal model that will be able to quantify the

available resources of each node and the computing power

required by the tasks of the CPS application. On this

foundation, it will be possible to model CPS

environments, working on heterogeneous devices, and to

design a method to find the suitable distribution of tasks.

In addition, the overall design of CPS applications can be

undertaken by following a framework which combines this

formal model with a convenient application

characterization.

This approach favors the integration of heterogeneous

computer devices and even of external cloud services to

meet the application requirements. Moreover, this

integration is achieved in a flexible way: utility computing

is used only when required depending on the CPS context,

and sensor computing resources are preserved for their

intended demanding tasks. In other words, different

activities are distributed throughout the network, taking

the best of both worlds: local execution with own

computing resources and remotely supplied cloud services.

The proposed solution brings a novel contribution by

providing a coarse-grained data flow framework to

successfully design a distributed application in dynamic

CPS environments.

The rest of the paper is organized as follows. First, a

review of related research areas and their relevant

solutions is presented. Next, the model is described by

formally defining the problem and providing a conceptual

view of the solution. Section 4 describes a deployment

method of the model by introducing a framework. Section

5 presents a study case: an example of a distributed

application where the proposed approach is suitable. The

experimental design and tests are made, taking the study

case as reference, and the feasibility of the solution is

verified. Finally, relevant conclusions and future directions

of this research are outlined.

2. Related work

The following subsections discuss the state-of-the-art

of the aspects related to this research. A final subsection is

added, which outlines the contributions to previous work.

2.1 Distributed systems

Distributed computing is a field of computer science

studying distributed systems. The components of a

distributed system are located on networked computers,

communicating and coordinating their actions by means of

exchanging messages to meet a common goal. The

development of these systems has madured through

internet and cloud services. One of the most important

research areas has to do with the so-called ubiquitous

computing [8, 9], leading to various related concepts that

emphasize different aspects of this type of computing:

pervasive networking [10], pervasive computing [11],

edge computing [12], and collective computing [13],

among others.

One of the pillars of ubiquitous computing starts with

the development of the mobile computing, which has to do

with the use of portable devices equipped with one or

more wireless interfaces and the exchange of data among

them (mobile networking). This paradigm manages large

amounts of data [14] and introduces more information

dependent on the position (location-sensitive) in

computing, resulting in a set of systems context-aware

[15]. The evolution and progressive specialization of the

devices (for example, towards the wearable computing),

incorporating sensing and actuating capabilities, has led to

the wireless sensor networks [16]. When the emphasis is

done on the objects that embed these devices, more recent

concepts arise, such as Internet of Things (IoT) (emphasis

on global connectivity [1]) and cyber-physical systems

(CPS) (attention to integration with physical processes

[17]).

Applications of CPS have a great potential to improve

citizens' quality of life. CPS will be operating in an

environment with distributed elements, with the result that

these applications are distributed and parallel in nature due

to the wide variety of physical and cyber interactions

involved. Extensive research is being done in distributed

architectures for specific domains. For example, recent

proposals can be found for robotics [18], industrial [19],

smart driving [20], e-health [21] or smart cities [22-24]

among many others.

The main challenges of these systems are those

related to modelling and design tasks, interconnection and

interoperability of heterogeneous devices, security issues,

QoS, scheduling and control of the system [17, 25, 26].

There are a lot of research focused on all these topics. On

this last matter, the problem is defined as resource

provisioning in highly distributed systems.

2.2. Distributed processing

The scheduling problem attracts many research

interest in the development of current CPS environments

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

since the proper distribution of the processing plays an

essential role in the leveraging of the resources of CPS

environments. An effective scheduling process enhances

the whole performance of the system in handling advanced

applications which overcome the capabilities of the

individual nodes.

Scheduling and control problems in highly

heterogeneous CPS may be considered as a family of NP-

complete optimization problems in general cases as well as

in constrained cases. In these systems, an arbitrary number

of threads can be scheduled depending on the physical

attributes of the system. In addition, there are usually

frequent restrictions imposed by the application needs,

such as QoS, latency or power consumption [25, 27].

Since CPS are a kind networked systems, the starting

point to address this problem could be found in the set of

methods for scheduling tasks on distributed computing

systems. In strongly-coupled systems, the processing

elements are in high speed networks and they are inter-

connected through a network topology. Usually, this

network has a very high bandwidth and the time cost due

to communication delay is negligible. There are recent

scheduling proposals for this kind systems both for similar

[28] and for heterogeneous [29] computing components. A

particular case is the multicore processing system where

the cores are built in the same integrated circuit and they

have similar [30] or different features [31]. In order to

include the unpredictability and extra delay provided by

the network, other approaches for distributing the

computation in heterogeneous cluster systems can be

applied. The objective for task scheduling depends on

system requirements such as energy cost, schedule length,

throughput, economic cost, etc. [32-34]. Advanced job

scheduling systems such as 'Slurm Workload Manager'

(http://slurm.schedmd.com/) could also be considered to

perform the scheduling work.

However, the CPSs are highly distributed

architectures and they can be considered as very weakly-

coupled computer systems where the heterogeneity of

connected devices as well as their dynamic behavior make

it very difficult to apply the previous methods. Further

research is needed to adapt the job-based scheduling

methods to embedded devices and types of applications

involved in the CPS environments to fully utilize the

nodes and to achieve performance improvements. As a

result, there are a recent number of solutions proposed for

task scheduling in CPS environments. Table 1 summarizes

the recent works on this topic and remarks the main

contributions and ideas for implementing them.

Table 1. Distributing processing recent contributions.

Work Main contributions

Mixed scheduling [27] Combines distributed scheduling algorithms with the game theory ideas.

TAOPN [35] Time-constrained aspect-oriented Petri net to model and scheduling tasks.

Payload-Size and Deadline-Aware [36] Traffic-sensitive real-time scheduling algorithm.

Multi-layered scheduling [37] Multi-layered scheduling scheme for time and control critical tasks.

Adaptive Dynamic Scheduling for automotive CPS [38] Adapt. dynamic scheduling to adjust the exec. on different criticality levels.

High performance real-time scheduling [39] Changing the system’s criticality to achieve fair scheduling of functions

whose criticality levels are larger than or equal to the system’s criticality

Distributed data traffic scheduling [40] Scheduling strategy considering transmission time delays.

Modas [41] Distribute agent algorithm to achieve multi-QoS requirements.

Effective scheduling for CPS society [42] Scheduling strategy considering physical systems society factors.

Data Traffic Scheduling [43] Traffic scheduling by system dynamics modelling

Crowdsourcing in Cyber-Physical Systems [44] Cross-layer optimization framework to solve a finite-queue-aware CPS

service maximization problem by stochastic methods.

New task modeling [45] New periodic, fault-tolerant CPS task model.

Flat Semi-Dormant Multi-Controllers [46] Considers an arbitrated networked control systems and a wakeup

mechanism on the communication system

Comprehensive resource scheduling strategy [47] Dynamic multi-priority scheduling at node network and at comp. center.

Most of the previous works are focused on real-time

[27, 35-39, 42, 45] and other performance criteria [40, 41,

43, 44, 46, 47]. As they corroborate, the standard

scheduling algorithms for distributed systems cannot

satisfy the requirements in CPS environments. There are

network physical factors involved that cause migration

delay time between servicing node to serviced node. In

addition, the independent functioning of the nodes which

could have their own workload makes those schemes

difficult to apply in practice. The current proposals for

CPS environments provide different contributions and aim

to include additional methods to overcome these issues

such as different criticality level of the tasks [37-39, 47],

mathematical techniques [27, 35, 44], agents [41], and

control mechanisms [46]. Other works deal with network

and physical dynamic issues [36, 40, 42, 43].

2.3. Cloud-Aided Distributed processing

Cloud computing refers to both the applications

delivered as services over the Internet and the hardware

and software in the data centers that provide those

services. The data center hardware and software is what

we will call a cloud, and the service being sold is utility

computing.

Cloud computing can also be used to extend the

limited computational resources available in the CPS and

other mobile devices. In this way, Mobile Cloud

Computing (MCC) trend is especially relevant. MCC is an

emerging distributed computing paradigm that aims to

augment the resources of mobile devices by leveraging the

resources and services of remote cloud [48]. The most

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

common uses of this paradigm are primarily targeted to

extend the battery life of mobile platforms [49], without

considering the versatility that the remote computers can

provide to extend the computing power of devices. Recent

approaches already consider the increase in performance

as one of the most important contributions of MCC to the

mobile computing [50, 51]. The two main changes can be

summarized as (i) the homogenization of devices’

computing capabilities since they can run applications

regardless of their native hardware and (ii) the overcome

of the limitations of nodes in execution of advanced

applications.

In this way, MCC leverages applications requiring

integration of data coming from geographically distant

computers and it is a key paradigm for developing and

support IoT and CPS modern applications. Therefore,

advanced applications can take advantage of both the

central cloud and the CPS nodes to finish the computing

tasks in the system [44]. This scheme can be generalized

to move the workload to other dedicated processing

centers near where the data are acquired. These scenarios

correspond with the deployment of Cloudlets, Mobile

Edge Computing and even Fog Computing infrastructures

[12]. All these architectures perform the computation by

sharing the application tasks among the local devices and

other platform, where this latter can be a variety of

platforms at several network layers.

2.3 Findings

After reviewing the previous work, some findings can

be drawn to justify and summarize our contributions to the

state-of-the-art:

 One of the key aspects of the evolution of CPS

systems has been to expose the acquired data and

computing capability of the devices to the outside.

Networking these devices allows designing advanced

application and achieving more ambitious goals.

 How to enable the CPS nodes to efficiently

collaborate to accomplish more computing tasks is a

very challenging problem and an important issue to

improve the CPS applications.

 Conventional task scheduling schemes in embedded

real-time systems are unable to satisfy performance

requirements of CPS due to its task diversity and

system heterogeneity. There is much research work

still to be done in this area.

 Recent proposals try to overcome the performance

drawbacks by means approaching the cloud

computing resources to the nodes of the CPS that are

going to consume it. An interesting research line arise

in relation to CPS and cloud computing integration.

The scheduling mechanism based on sharing the

processing between distributed devices of the CPS and

cloud computing resources seems to be a promising way to

increase the capabilities of the system and to achieve

greater overall performance. The efficiently dynamic

allocation of tasks is a very important and difficult topic

on CPS environments. In this way, the knowledge of

potential applications and the resource requirements for

each task can open ways for developing new methods for

enabling this collaboration and joint computation in an

online and distributed fashion. This research work

develops this idea by proposing a computational model to

distribute the processing along the whole system and meet

the applications’ requirements. The key novelty of this

model lies in considering the computing capabilities,

features and current workload of all devices to perform the

scheduling of the tasks.

3. Distributed computational model

A model of computation is defined in this section

based on data flow processing between tasks that run in a

parallel and distributed way. This model aims to leverage

the computing infrastructure for distributing the

application tasks. The model introduces a formal method

for modelling CPS environments and enables to define the

efficient distribution of tasks according to some objective

function. The notation introduced is used to define the

targeted applications in a precise way, and the main

components on which the proposed solution is based.

To illustrate the basic idea, Fig. 1 draws an example

of the overall system in different time instants. This

example corresponds to a simplified version of a smart

lighting application for smart cities. In this application, the

street urban lamps are switch on or off depending on the

presence of humans or vehicles in the street [23]. The

application decomposition and the specific tasks described

by the example have been taken from the state-of-the-art

research works on human detection from images and

videos [52]. This example application is made of seven

tasks in a pipeline and three computing platforms: a smart

sensor, a mobile device and a cluster server.

The figure shows three possible distribution of the

tasks for this application which configure system states

where the tasks are principally made by one of the

platforms. In Fig. 1.a, the smart sensor is responsible for

the initial tasks from capturing data (i.e. samples, frames)

and preprocessing them by extracting the relevant features.

Next, another device of the CPS environment made a

middle task and then, the processed data is sent to the

cloud for completing the work. The behabiour can be

common in environments consisting of embedded smart

cameras capable of executing some image processing

methods and extract meaning from streaming video [53].

Fig. 1.b shows the scenario where the sensor device

captures the data, and the majority of the tasks are made

by another device of the CPS. Last, the outputs produced

are sent to the cloud server for processing the predictive

analysis. Finally, in the scenario depicted in Fig. 1.c, the

devices of the CPS make little work of the application, and

the most part is performed by the cloud platform. This

scheme is mandatory in CPS systems where the

acquisition devices do not have enough processing power

to run complex algorithms [54].

The transition between the possible scenarios must be

done according to available resources and the processing

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

costs, so that, the costly tasks are preferable to be

processed on the resource-rich platforms (cloud systems in

the example). Thus, if the devices of the CPS are not under

intensive processor use, they can compute the application

workload (Fig. 1.a and Fig. 1.b); in contrast, when they are

heavily loaded with other user activities, the data are sent

to the server for further processing (Fig. 1.c).

In general, data flow switching between computers

can be decided for each task according to a variety of

criteria, not only the availability of computing resources.

For example, for some mission critical real-time modes (as

the ones described in [55]), keeping the data flow inside

the embedded device will be preferred, as running without

external resources could be more easily predictable in

terms of performance. However, loading tasks into a

server, if available, will be chosen when the possibility of

correlating streams from several hosts is a desirable

aspect. In addition, overall system resilience can be

achieved as a secondary effect, due to the multiplicity of

computers supporting tasks and the capacity to switch

between them in a dynamic way.

The presented work contributes with a formal model

that provides some advantages. First, it allows

characterizing a set of applications with common features

shown by CPS: those applications are made of several

digital signal processing tasks sharing data flows, with the

possibility to be run on a heterogeneous subset of

computers, including intelligent sensors, cloud services

and other computers. Second, the formal model provides a

framework to define resource utilization, that will be used

for a double purpose: represent the state of each CPS node

in terms of resource utilization (computer load) and

establish a way to specify the impact of the different

application tasks on the CPS node (tasks requirements).

Third, it leverages an architecture that flexibly hosts

different solutions for system monitoring and scheduling,

allowing versatile adaptation to the application

characteristics.

Fig. 1. Behavioral model built from a smart sensor, mobile phone and cloud. (a) Workload mainly processed on smart

sensor; (b) Workload mainly processed on mobile device; (c) Workload mainly processed on the cloud

3.1. Target applications

The CPS applications targeted by the proposed model

are characterized by the following features: (a) the

application gets input data from the physical surrounding

that need to be processed; (b) the work to be done can be

decomposed into a set of individual tasks or processes,

sharing data flows through the network and therefore,

running in a parallel and distributed way; and (c) the

results of the processing are translated into a set of actions

that are performed by storage or actuator nodes.

In other words, those distributed applications can be

represented by a directed graph A = {T, F} where:

 T is the vertex set and represents the set of tasks

required for data capturing, processing, storing and

actuating.

 F is the edge set and represents the data flows

exchanged between tasks.

capture

filter

codification

feature
extraction

behavioural
model

pattern
recognition

predictive
analysis

input data raw input data raw input data raw

samples samples samples

preprocessed
stream

preprocessed
stream

preprocessed
stream

features features features

patterns patterns patterns

inferred data inferred data inferred data

(a) (b) (c)

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Fig. 2. Task and data flow decomposition for an example

distributed system

The data flow diagram shown in Fig. 2 depicts the

previous distributed application modelled according to this

principle. The data from presence sensors are analyzed in

accordance with a specified operating method and it shows

some common operations in the area of data processing

from digital signals in a possible CPS context.

The task and data flow decomposition represented by

the directed graph A is designed by means an application

partitioning method and the desirable granularity unit.

This granularity unit determines the size unit of the

application that can be offloaded to other platforms of the

network [56]. A coarse-grained allows a high-level of

abstraction and simpler mechanisms but increases the need

for communicating application details and

synchronization. In contrast, a fine-grained offers more

opportunities for offloading but it needs much more

scheduling work. The desirable granularity unit for

outsourcing should be as small as possible to provide the

highest flexibility, but small sizes imply higher

management cost. In this way, the granularity unit for the

distributed model could be variable depending on the

features of the target platform for offloading. That is, little

parts of the application can be outsourced for fast

execution on surrounding platforms of the CPS and other

intensive parts for offloading to external specialized

platforms. The optimal partitioning is an NP-complete

problem [51], in order to avoid time-consuming in

automatic analysis of the code, the construction of the

graph A for each application may be made in the design

stage. The proposed characterization for CPS

environments is based on a coarse-grained data flow

approach which is a natural paradigm for describing digital

signal processing applications for concurrent

implementation on parallel hardware [57].

3.2. Resource specification

Following with the domain characterization, we

define C as a set of computer elements where different

instances of tasks in T can be potentially run. The C set is

formed by the computing platforms of the CPS and the

accessible cloud resources. This is the operating network

where the system can be deployed.

This model could handle a dynamic computing power

by including at design time the kind of potential devices

that can exists at any time in the network. Let Λ be the

different types of CPS nodes. For example: sensing nodes,

wearables, mobile phones, laptops, server clusters,

computer systems, etc. In this way, each device of C is

defined as a type of Λ. Fig. 3 shows an example of the

different types of nodes, coming from the deployed

infrastructure, the available devices and the hired cloud

resources.

To distribute resources in an efficient way, the

resource utilization of the platforms must be properly

characterized. Let Ω be the set of all possible required

parameters of the CPS applications.

Ω = {p1, p2, … } (1)

where each pi represents a performance parameter such as

‘transfer rate’, ‘processor load’, ‘memory use’, ‘battery

consumption’, etc.

Next, the proposed model introduces L as a vector

domain of the subset of the n relevant features for

quantifying the required resources of a specific application

‘App’.

LApp≡Ωn (2)

Thus, the list of parameters of LApp depends on the

‘App’ application requirements. Therefore, the list can be

different for each application. This approach provides

flexibility to face application contexts with different

requirements and opens several possibilities for sharing

the workload.

samples

processed stream

features

predictionscommands

capture

filter

feature
extraction

behavioural
model

predictive
analysis

pattern
recognition

light
actuator

visualizationstorage

input data raw

codification

paterns

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Fig. 3. Different sources of computing resources for the distributed system

The list of features is defined previously according to

the CPS application needs. These are generally referred to

computing resources, but other kind of components or user

experience factors as energy consumption could be

considered for practical convenience. For example, if

some application A requires a specific capture device,

present only in some computers, a component ‘Capture
device’ can be added. In this way, the intention is that all

the necessary requirements are included in L from the

beginning. The next example shows the L vector defined

as a vector with four components, with the following

semantics:

LApp = Memory use ⨯ Transfer rate ⨯ Processor load ⨯
Battery consumption

Once the L vector has been modelled by selecting the

key resources for the target application, the resource

utilization of the available CPS nodes can be represented

as a vector of n-components. The lc,time vector defined by

expression (3) quantifies its load in a time instant, and

therefore its ability to run tasks in T.

∀ c ∈ C, lc,time = 〈p1, p2, …, pn〉 ∈ L (3)
where pj ∈ ℝ ⋃ {0}

The utilization of each component pj is expressed as a non-

negative relative value according its availability for

running the tasks in T. The value ‘0’ means maximum

resource availability and the values equal or greater than

‘1’ means that this resource cannot be accessed. In this

way, the computer load is formally quantified as a tuple

describing the fraction of relevant resources currently in

use. Obviously, these values are different for each time

instant, depending on the different activities in which the

device is involved and the CPS context. For multi-

application scenarios where several requirements and L-

vectors exist, at each instant, the devices construct the

union of the vectors for all distributed applications. Each

application takes into account only its corresponding

subset of features.

By characterizing the current computer load (current

state) with relative values, the computer shows its ability

to run the tasks in a homogeneous and comparable way,

from the point of view of the different features modelled

by L. For example, a dedicated server for the CPS

application will generally show low values for ‘Processor

load’, excepting situations near overload. However, a user

device such as a smartphone will show high values for this

feature if it is busy just with some user activity, showing

its inability to run heavy tasks (in this case, from the

‘Processor load’ point of view) from T.

Of course, a suitable method is required to estimate

the relative value to each component of L. These methods

must be light processes to avoid, wherever possible,

interfering with the device operation and, in addition, they

should be compatible for the devices of each kind of node

in Λ. The next paragraphs describe some examples for the

previous resources of L.

The ‘Memory use’ component value can be computed

just by dividing the amount of memory assigned to

processes by the total amount of memory available.

Generally, this information can be provided by the

operating system.

The method to quantify the ‘Transfer rate’
component will take into account the characteristics of the

interconnecting network. The current transfer rate can be

known by each device, just by monitoring the network

interface. However, in order to get a relative value, the

total bandwidth available for the device is required. In a

CPS where computing nodes are mobile and connected

through standard wireless networks, knowing the total free

bandwidth is not a trivial issue. First, in those standard

networks, the bandwidth is shared among the

interconnected devices, and second, the position of the

mobile devices affects to the available bandwidth. For

those cases, one feasible approach is to consider an

estimation of the total bandwidth based on the average

Platform
model

sensors wereables laptops server clustermobile phones
distributed

tasks instances instances instances instances instances

Network

capture
codification

filter
feature ext.

predic. analysis
behavioral model

pattern recog.
visualization

actuator
storage

depending on
deployed

infrastructure
depending on available devices

depending on
hired cloud

infrastructure

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

values retrieved on periodic checking performed by the

devices.

To properly set the component ‘Processor load’ one

approach is to consider the average number of processes

that are in a runnable state during the last minute. In the

case of a multiprocessor computer with two cores, could

reasonably accept up to two processes at a time, from the

processor load point of view. A ‘1’ value for the

‘Processor load’ component in this device means that it is

supporting the maximum processor load (two processes

average), and a new task requiring more processor load

should not be accepted. Therefore, a good ‘Processor
load’ quantification can be obtained by dividing the

average number of processes in a runnable state during the

last minute, by the number of cores, and taking the

minimum of 1 and this quotient. From this approach can

be deducted the processor utilization rate regardless

number of cores.

Finally, the ‘Battery consumption’ component can be

set in different ways. One possibility is to consider the

battery discharge rate (percent of charge consumed per

time unit), which ranges from a minimum value when the

device is idle to a maximum value when the device is

using all the battery consuming resources in an intensive

way. In this case, the ‘Battery consumption’ component

can be computed by dividing the current discharge rate by

the maximum discharge rate, previously subtracting the

minimum discharge rate from numerator and denominator.

Since the key features for the application are set from

the beginning, several types of L could be defined to cover

different types of applications running on the CPS

environment. In this way, multi-application scenarios can

be defined. The variability of the applications is not

expected to be very high in a controlled CPS environment.

For example, in a smart city, the types of distributed

applications can be restricted to a small set according to

the service provided. So that, a new task cannot arrive

demanding new features in L.

In addition, operating conditions could be included

implicitly in the formulation to make the scheduler work

according to efficiency criteria and follow scheduling

preferences about the computing resource consumption of

the devices. For example, if some device’s resource need

to be reserved for private use only, its component of L

vector can be set to ‘1’.

Once the L components are set and the obtaining

methods for each of them are established, the effect in a

device when a new task arrives needs to be defined by the

model. As general case, when a new task is run on a node

of a CPS, this computer will experiment an increase of its

load described in terms of the components of L. For each

computer in C and each task in T, this load increase must

be estimated taking into account the task requirements.

These requirements are modelled using a matrix R, where

each element rt,c ∊ L quantify the requirements (load

increase) of a task t ∊ T in a device c ∊ C.

The vector rt,c effectively models the feasibility of a

device (c) for a given task (t). Its values can be obtained

empirically by testing each task on each device. However,

in many cases, some values can be deduced from the

results got in some reference computer c0 for each kind of

device in Λ. As a trivial example, if a task t1 holds

rt1,c0 = 0.5 for the Memory use feature, in a computer c0

with 1GB, it will reasonably hold rt1,c2 = 0.25 for an

equivalent computer c2 with 2GB. Other computing

resources will imply other calculations, and in some cases,

empiric test will be required, as in the case of the

processor load in a computer equipped with powerful

GPU. The device type classification of Λ will help in order

to assume a pre-estimated rt,c for those computers

belonging to a defined profile or device class.

To illustrate how the task requirements are modelled,

the next example considers a simple CPS made of a

single-core intelligent sensor with a camera (c1) and a

laptop with N cores (c2) but without a proper camera. The

sensor device allows up to P processes using the capture

interface. For simplicity, the cores of c1 and c2 are

assumed equivalent. The application is made of two tasks:

t1, which is an image capture task, and t2, which

implements a heavy image processing algorithm. For the

application convenience L is defined as ‘L = Processor
load ⨯ Camera availability’. As a result of a test, it has

been found that t1 increment the processor load (one core)

by 10%, and t2 produce an increase of 50% in the

processor load (one core). In this example, the tasks

requirements can be defined by the following R matrix:

 = (
 0 1 1 0 1 1
 0 1 0 0

)

From the content of the R matrix, it can be deduced

that c1 is feasible for t1, and c1 and c2 are feasible for t2. As

another example, considering ‘L = Processor load’, a

laptop computer with a powerful GPU will generally show

a low rt,c for tasks t requiring heavy image processing; in

other words, this quantifies the degree in which the

computer with GPU is feasible for image processing

services.

The definition or R allows to configure the amount of

resources dedicated to the CPS tasks by a device. For

example, setting a value of 1 for the ‘Memory use’
component when a task requires the 50% of the total

memory, configures a device to dedicate only the 50% of

its memory to the CPS tasks.

3.3. Proposed solution design

The proposed solution consists in managing the

application's tasks and its data flow along the computation

nodes of the network according to the available resources,

the processing needs, and the user preferences. This

management system is made of two main components: (1)

special proxy local processes running on each computation

node of the network, we call them switches, and (2), a

system controller which maintains a view of the overall

system, and offers several framework services as

discovering new nodes, monitoring tasks, and planning the

source and target computer for each required data flow.

These works are made in a centralized way in order to

minimize the management communication costs and

saving shared resources.

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Fig. 4. Diagram of the proposed solution and the elements of the management system.

The system controller can be deployed in the cloud or

in another computer of the CPS with enough resources and

close to the rest of the nodes.

Fig. 4 shows a high-level view of the proposed

solution. The main elements of this component are

described as follows:

3.3.1. Computer monitor and discovering service

The CPS system is an open environment where new

devices can appear. To manage this dynamic operation, a

discovery service is added to conduct the following key

capabilities: register a new device and unregister it when it

does not available.

When a new device arrives to the CPS, the discovery

device service register it in the system and retrieves its

hardware inventory by using the SSH (Linux, UNIX) or

SMB or WMI (Windows) protocol. To handle different

performance features, a new table has been added to the

system to keep the base performance load increase for

each type of device. Thus, a matrix K is defined where

each element kt,c ∊ L quantify the requirements of a task t
∊ T in a type of device c ∊ Λ. The values in kt,c model the

performance load increase for a base device representative

of each type of node. For example, the base performance

load increase for the ‘memory use’ parameter can be

calculated in MB; the base performance load increase for

the ‘processor load’ parameter can be calculated in

1Ghz/core; etc. Then, when a new device arrives to the

environment, a new column in the R matrix to store the

specific load increase for that device is created by

combining the base requirements of K with the hardware

features of the device.

The computer monitor feeds the global status model

with the relevant parameters, lc,time ∊ L, from all computers

c ∊ C each time instant. Different strategies can be applied

here, taking into account the asynchronous nature of

networks and the type of node. One possibility is to make

all nodes to respond to a periodic request from the

controller component. Secondly, the periodic request can

be customized for each type of node. In this case, the last

lc received is used for scheduling. Other solution is to

share a global clock signal by using, for example, Network

Time Protocol (NTP). Broadcast communication should be

used where possible.

The computer monitor also integrates computer

unavailability when it happens without unregistering, their

resources are required by their intended priority function

or any other user defined restriction become in place.

Some parameters may be subject to short abnormal

fluctuations due to performance peaks. For example, a

smart camera has a consumption peak when takes a frame.

If the performance parameters are required at this time, the

resource utilization of this platform does not adequately

report the normal consumption state of the device. A

suitable procedure to avoid outlier values on performance

parameters is to store the data vectors lc,time in a history

database. This information is used as an input for a

feasibility predictive model, so the scheduling can be

performed not only based on the result of direct measures,

but also on mined knowledge.

3.3.2. Predictive model

Following the notation introduced in Subsection 3.2,

now it is time to predict the load of each computer from C

when running a specific task of T. For this reason, an

internal binary operator is defined in L and it is

represented using the symbols ⊕ and ∑⊕ for the

accumulation. The operation specifies the procedure for

adding the task requirements to the current device load,

allowing to deduce the load of the device if a task of the

application is run on it. The formal definition of this

operator is expressed by equation (4).

⊕: L2 ⟶ L (4)

This operator calculates the device load predicted if a

task t is assigned to a computer c. As shown in expression

(5), the inputs of this operator are the resource utilization

vector L of the computer (lc,time) and the increase of load if

the computer run this task (rt,c). The output of this operator

is the resource utilization of the computer for the next

cycle when the task t is assigned to computer c.

computation node

switch

computation node

switch

···

Computer Supporting
Platforms

target
computer

discovery
service

data transfer
rate

system load

Network Services

predictive
model

scheduler

history

computer
monitor

global status
model

Controller

Network

suitability
preferences

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

lc, time’ = lc,time ⊕ rt,c (5)

where lc, time’ is the load predicted for the next cycle if the

task t is assigned to computer c.

The implementation of ⊕ will depend on the nature

of the L component considered. In most of the cases, this

operator is just an addition of the current load and the

increased load in executing the new task. For example, the

‘memory use’ is the most obvious example of this

calculation. In other cases, the predictive calculation

considers additional factors to increase the accuracy for

the prediction. This is the case of the ‘Transfer rate’
parameter where the available bandwidth of a wireless

network may experience shifts in each instant because of

the effect of mobility among other reasons.

Let us take the following case as a combined example

of L with different calculation methods: L = Transfer rate
⨯ Memory use. Now, let l = (l1, l2), r = (r1, r2), where l ∊
L be the current load of a computer, and r ∊ L be the

requirements of a task in this computer. Then,

l ⊕ r = (

)

where B is the total bandwidth available when the r1 was

determined, and Btime is the total bandwidth available in

the current time.

The quality of the prediction made by this operator

lies in the accuracy of the requirements modelled by R. In

addition, it can be improved by integrating history

information through advanced machine learning

techniques that allow to estimate the future performance

from past behaviour; this approach is more appropriate for

components that can be greatly influenced by external

factors, as total free bandwidth in a shared medium

network. In general, a sophisticated implementation for ⊕

will require more information.

3.3.3. Scheduling

The main element in the system controller, as shown

in Fig. 4, is the scheduler component. It uses the model

and information provided by the remaining controller

components in order to decide the target computer for each

required data flow.

Two functions, feasibility and a suitability, are

defined to perform the scheduling of the tasks. In first

place, the feasibility function models the real possibility of

a device to work with a given load and points out the

overload cases. The expressions (6) and (7) define this

function.

feasibility: C x T → {True False} (6)

That is, for a given c ∈ C t ∈ T, at each time instant the

feasibility function obtains:

feasibility c t = {
True if ∀p ∈ 〈l ⊕ r 〉 p 1

 alse ot erwise
 (7)

This information is used for the scheduler module to

decide if a computer node can process a task. Then, a first

approximation of the scheduling problem can be stated by

finding a correspondence function as:

sc edule: T → C (8)

satisfying the following expression (for each given time

instant):

∀ t ∈ T c ∈ C feasibility c t (9)

The CPS application could include some execution

requirements to the system such as time constraints or

optimum use of resources. To meet this kind of conditions,

the scheduling process becomes a NP-complete problem

which it can only be resolved by heuristic or search

algorithms [58]. Instead, this work is focused on providing

agile and effective solutions for the general case, where

the most important issue is that each task of the

application can be processed by some device of the

system. In this way, the scheduler module proposes a

possible scheduling order. When a new task arrives, the

work just consists in checking the feasibility function for

the nearest device to the data source for this task. The cost

of this operation mode is linear with the list of application

tasks T.

Secondly, a step forward in efficient scheduling can

be set by considering configuration preferences in

processing the tasks. This approach provides criteria for

scheduling by means some suitability information

modelled by the function described in expression (10).

suitability: Λ x T → [0 1]⊂ℝ (10)

This function quantifies, in an increasing preference-

scale, the preference for processing a task t ∈ T in a type

of device d ∈ Λ of the CPS environment. Then, instead of

just a feasibility function, the scheduling method can find

the correspondence that maximizes the value of the

following expression:

∑ suitability c t ∀ ∈ ∈ (11)

The suitability information is stored using a new

matrix S, where each element st,c represents the value for

suitability(c, t). Thus, the values in st,c effectively model

the suitability of a device for a given task, and then,

although there are several feasible devices to perform a

task, the more suitable will be selected in first place. Now,

the scheduling method checks the feasibility function for

the available devices in a decreasing suitability order. The

cost of this operation mode is linear with the product of

the available devices of the system C by the application

tasks T. An improved design consists in sorting each row

of the S matrix to provide the list of suitable devices for

each task in decreasing order.

Continuing with the example above ―the CPS which

consists of an intelligent sensor (c1) and a laptop (c2)― the

task t2 can be processed both in c1 and in c2. The matrix S

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

defines the suitability of performing the processing for

each task and computer. For example:

 = (
0 0
0 2 1

)

shows that the task t1 is better processed in c1 while the

task t2 is better processed in c2.

The data of the matrix S can be set by the application

designer according to the CPS properties, the

configuration of the devices and the user preferences. In

addition, these data can be updated dynamically according

to the evolution of the vector set L. That is, when the

computer load of a device raises, its preference for

scheduling may decrease. For example, if the remaining

battery is low for a device, the preference level of this

device would fall.

The matrix S drives the scheduling method of this

architecture. For each task, the devices can be ordered by

preference rate and then the feasibility of each

combination can be checked. In this way, the feasible

combination with best rate will be selected in first place.

Note that this method is designed specifically for a CPS or

IoT environments. Thus, it focuses on the ‘things’ and not

on the overall aspects of the application.

This approach considers the dynamic nature of the

CPS environments because the things can change its

operation conditions and preferences, and eventually,

appear/disappear in/from the system. When a new device

goes in/out the system, the matrices R and S are

expanded/contracted with the data. The feasibility and

suitability functions work with the available devices and

the new data for distributing the application workload.

In this point, other strategies and policies focused on

the application could be addressed, mainly by adapting the

successful results from previous and future research. As a

result of our previous research on distributed and mobile

systems, a proposal combining imprecise computing

strategies with cloud computing is introduced in [59], and

it can be used for the scheduler component.

3.3.4. Data flow control

All task instances get their input data flow from either

a switch process or from sensor/acquiring devices. The

output data flow is also sent to a switch process, or used

directly for performing a proper action (using storage or

actuator devices). Each switch process directs the data

flow to the corresponding target task instance, located in

the same or different computer.

Generally, the decision is taken by the controller

component, which maintains a representation of the

overall system and runs the scheduling algorithm. If the

controller is not available (for example, because of

network or host failure), the switch process runs a fallback

procedure, using only local information.

The control flow of a switch process is shown in Fig.

5. One interesting point in the figure is the value of the N

threshold and the size of the data block. In general, the

size of the data block will be variable and it can be

specified in different ways. For example, for a video

capture process, one block can include a fixed number of

frames, or the number of frames captured during a fixed

time period (discontinuous capture makes the difference).

The higher the block size and N threshold, the lower the

use of resources by the management system, and therefore,

better efficiency can be achieved.

By contrast, decreasing these values improves the

accuracy of the system controller, as it allows to maintain

a more accurate picture of the global status, and therefore,

more appropriate decisions can be taken. The proposed

operation model needs the configuration and the

collaboration of the computational elements, as well as the

deployed applications in the CPS. In the next section, the

framework for designing the systems is described.

Fig. 5. Flow diagram showing the control data flow of a switch process

Task
ti

Switch N = 0
set fallback

Platform
Read data

block N > threshold

N = 0

N = N + 1

Controller
available

Get Platform
from Controller

Fallback
Platform

Send data block
to Platform

Read data
block

PROCESS Write data
block

yes

yes

local communication

no

no

NETWORK

Network or local
communication

Sensor or
previous switch

Sensor or
previous switch

APPLICATION RUNNING

PLATFORM SCHEDULLING

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

By contrast, decreasing these values improves the

accuracy of the system controller, as it allows to maintain

a more accurate picture of the global status, and therefore,

more appropriate decisions can be taken. The proposed

operation model needs the configuration and the

collaboration of the computational elements, as well as the

deployed applications in the CPS. In the next section, the

framework for designing the systems is described.

4. Distributed application framework

The design of applications for CPS under the

proposed model consist of three main steps: (a) task and

data flow decomposition; (b) resource planning and (c)

deployment and empirical adjustments. Fig. 6 shows a

general overview with the inputs and outputs of each

design stage.

Fig. 6. Distributed application design scheme

4.1. Task and data flow decomposition

There are different ways in which the overall activity

of the application can be decomposed in different tasks,

sharing data flows, in order to build A = {T, F}. This

decomposition depends mostly on the application area. For

example, some common examples of distributed tasks in

predictive analysis applications are data capture, feature

vector extraction, building predictive models, pattern

matching, data flow correlation, raising alerts, logging, etc.

[60]. In addition, the availability of already implemented

components can also be considered; it could be desirable

to reuse existing software (legacy, open source, etc.) to

implement some application subproblems; this software

would implement a distributed task of the application.

Generally, the tasks get input data from the output of

other tasks. However, initial tasks get the input directly

from capture devices. Similarly, final tasks use their

output to feed a physical action (for example, switching-on

a lamp or raising an alarm) or just to send data to storage

devices for logging and further analysis. This model

allows to combine several strategies or implementations in

order to put a more robust solution in place. For example,

well-known, extensively tested techniques can be

complemented with experimental tools working in

parallel.

4.2. Resource planning

In the distributed system, each task can be run on a

different computer c ∊ C, with different capabilities. In

order to determine the most suitable computer where to

run each task, a number of factors must be taken into

account (components for the domain L): computing

resources available in user devices, battery consumption in

mobile devices, network bandwidth availability and

latency, real-time requirements for some tasks, capture and

data flow integration imperatives, etc. Most of these

factors change over time; for example, the computing

resources available in a specific computer or the free

network bandwidth.

For each computer, the fraction of its resources which

can be dedicated, as a maximum, to the tasks in T, must
be quantified; in other words, a proper semantics must be

defined for the values of the different components in L.

Therefore, lc,i will show the fraction of the resources

available for the application in a time instant i. In addition,

the requirements of the application must be defined in

terms of rt,c (requirements for each task t in each computer

c). As explained in Subsection 3.2.2, this can be done by

combining empiric test and deductive results.

4.3. Framework deployment and empirical adjustments

The implementation of the different tasks of the

distributed application must be properly deployed on the

required computers, along with the modules and services

of the proposed model. For each computer or computer

profile, the resources defined in the previous section must

be properly configured. After that, the performance of the

key computers under each profile should be carefully

measured. It is necessary to check that the computer has

always enough resources for meeting the requirements for

its intended functions. In addition, the distributed

application must offer results as expected, switching data

flows between computers according to defined conditions.

The resource planning step should be reviewed and

adjusted until the overall system performs as expected;

proper system modelling and simulation can help in the

successful completion of this step.

5. Case study: distributed intrusion detection system

A case study of a distributed application is presented

in this section. The presented application is suitable for the

proposed model and designed according to the described

framework. The aim of this case is to show an example in

a real domain where some advantages from the proposed

ideas can be obtained. The design of a Distributed

Intrusion Detection System (DIDS) by following the

proposed method, and further deployment using the

framework, is approached.

INPUTS OUTPUTS DESING STAGES

(a) Task and dataflow
decomposition

(b) Resource planning

(c) Deployment and
empirical adjustments

Application requirements

Implementations
State of the art techniques

Data flow diagram

Cloud market

Network architecture

Configuration & Test

Platform configuration:
• Sensors
• Smartphones
• Wereables
• Laptops

• Desktops
• Workstations
• Cloud servers
• Server clusters

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Security is a big concern in IoT and CPS [61]. One of

the main approaches to information security and cyber

security has been the development and deployment of

Intrusion Detection Systems (IDS), also in the context of

IoT and particularly for CPS [62]. An IDS dynamically

monitors the actions taken in a given environment, and

decides whether these actions are symptomatic of an attack

or constitute a legitimate use of the environment [63].

Since the initial proposal of this approach, a lot of

intrusion detection tools, techniques, projects, and

products have been developed. Data mining and machine

learning have been at the core of many of these results.

Nowadays, there is also an increasing interest in IDS topic

as shown by the recent advances in anomaly detection

[64], wireless sensor networks [65], CPS [66], smart grids

[67], among many others.

5.1. Task and data flow decomposition

The proposed DIDS is designed by selecting and

combining a number of existing IDS solutions. The first

stage is the task and data flow decomposition. Fig. 7

shows the data flow diagram for a possible DIDS.

Fig. 7. Possible task and data flow decomposition for a

generic DIDS

As can be seen, the capture task generates a packet

flow, feeding two different IDS approaches. On one hand,

misuse detection and alert analysis is applied; this will be

implemented by standard well-proven tools. On the other

hand, anomaly detection is performed; state-of-the-art

techniques will be put in place for evaluation and further

research. Anomaly detection involves some complex

processes that can be run in parallel in a distributed way:

filtering (extracting headers from packets), extracting

features and building a stored behavioural model to be

used for further anomaly detection. Table 2 describe

details of the application tasks and data flows.

Table 2. Possible task and data flow decomposition for a

generic DIDS

T (tasks)

Capture

filter

feature extraction

anomaly detection

behavioural model

misuse detection

alert analysis

F (flows)

packets1 (capture; filter)

packets2 (capture; misuse detection)

headers (filter; feature extraction)

features1 (feature extraction; behavioural model)

features2 (feature extraction; anomaly detection)

alerts (misuse detection; alert analysis)

The DIDS described in Fig. 7 has been implemented

by using some state-of-the-art tools and techniques. The

objective is not to build a full operative IDS, but to

illustrate the proposed method and test the feasibility of

the proposed framework. Table 3 summarizes the tools

deployed and relevant projects referenced for that purpose.

Table 3: Tools and projects on which the experimental

DIDS is based

Task Tool/Project

Capture Tcpdump/Libpcap

Filter TShark (part of the Wireshark®

network analyser)

Feature extraction MINDS (Minnesota INtrusion

Detection System)

Behavioural model Snort.AD

Anomaly detection Snort.AD

Misuse detection Snort®

Alert analysis Hadoop®

Tcpdump with the corresponding Libpcap is a

traditional option commonly used for capturing network

traffic [68]. Our IDS runs Tcpdump to capture all

incoming and outgoing traffic going through the network

interface, with the exception of the data produced by the

IDS tasks: otherwise, IDS would process data generated

by itself, what may be considered useless and time

consuming in most of the possible environments. The

captured traffic will be further processed in two different

ways: anomaly detection and misuse detection [69].

In ‘anomaly detection’, TShark is used to extract

headers from network traffic in a proper format to be

further processed for feature extraction. TShark is a

command line interface in the Wireshark suite

(https://www.wireshark.org/). The features are extracted

from packet headers using an R script. The behavioral

model and anomaly detection is built as a variation of the

one provided in Snort.AD project

(http://anomalydetection.info/), working in a standalone

way (not integrated with Snort).

In ‘misuse detection’, a Snort sensor supplies a

powerful list of rules to match network traffic against

them. One typical drawback of misuse detection in general

and Snort in particular, is the generation of many false

positives that should be properly reviewed by an expert.

Some of the solutions proposed in the literature include

further alert analysis, using cloud big data clusters. For

this reason, a Hadoop cluster for correlating alert

messages has finally been deployed.

filter
misuse

detection

capture

feature
extraction

alert
analysis

behavioural
model

anomaly
detection

packets1 packets2

headers alerts

features1 features2

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

5.2. Resource planning

The described method can be used to properly

distribute IDS tasks, considering security requirements and

variable availability of computing resources. The

presented approach favors the integration of limited

computing resources in CPS, with externally supplied

cloud services, in order to meet IDS requirements.

A simple CPS consisting of a wearable and a mobile

phone device is considered in this case study. This type of

device is currently very popular and common among

citizens. They generally incorporate a lot of sensing

features and most of the time they are idle. Therefore, they

encompass the ideal target devices for distributed CPS

applications and they should be used for supporting them.

In addition, a cloud server is added to the framework to

perform part of the processing cost. The wearable device

and the mobile roles will be accomplished by low-cost,

single-core, credit-card sized computers: Raspberry Pi,

with an ARMv6-compatible processor and 512MB of

main memory. For the server a desktop computer, with an

Intel® Core
TM

 i5 CPU and 6GB of main memory, will be

employed. The computers are interconnected in a standard

wireless local area network.

For pointing out the feasibility of the approach, we

will take into consideration only the three tasks shown in

Fig. 8. In addition, we will just consider transfer rate and

processor load as the relevant performance parameters.

T = {filter(t1), feature extraction(t2), anomaly detection(t3)}
F = {packets(t1, t2), features(t2, t3)}
C = {wearable(c1); mobile(c2); cloud(c3)}
L = Transfer rate ⨯ Processor load

The requirements of the tasks for each computer are

stated by the matrix R, where the element rt,c ∊ L specifies

the required transfer rate and processor load for task t in

the computer c.

 = (

 0 0 2 0 0 2 0 1
 0 3 0 0 3 0 0 3 0 1

 0 1 1 0 1 1 0 1 0 2
)

5.2.1. Task requirements

In order to determine the values for the components of

each rt,c of the matrix R, empiric test has been conducted.

For example, the transfer rate depends on the task and the

maximum transfer rate allowed by the network

(bandwidth). As all the computers in the experimental

environments share the same network, the same estimation

is shared by all computers, but is different for each task.

Regarding to the processor load, it has been observed

that when the c2 computer (mobile) runs t2, (feature

extraction), the processor load (average number of

processes in a runnable state) increases in 0.5 processes; as

it is a single-core computer (only one process average

should be accepted as a maximum), we estimate 0.5 as the

requirement for the feature extraction task in the mobile

device, in relation to processor load. In contrast, the

feature extraction task does not heavily increase the load

of the multi-core processor in the cloud server (only 0.1

point is estimated).

Some tasks are directly discarded for certain

computers. In those cases, we estimate 1, so the task will

never be assigned to those computers. For example, the

task 3 (anomaly detection) will never be run on the

wearable or mobile devices, as we consider that they are

always too much expensive from the computing resources

point of view.

However, other tasks can be computed in several

types of computer. For example, the task 2 (feature

extraction) could be processed in the three computers,

because these systems could have resources enough for it.

The decision on where to process this task could come

from the user preferences or other aspects of the

distributed architecture. For example, the wearable (c1)

owner wants to minimize the utilization of his/her device

for saving battery; then, he/she configures it for low

utilization. In addition, the mobile device (c2) is a better

option over outsourcing the work to the cloud, because of

the derived cost savings.

These conditions are particular for each CPS case, and

they configure the scheduler work. The information

needed is coded in the suitability matrix S, which specifies

the preferences for processing the tasks. In this way, the

suitability information is included into the model. For

example, let the next matrix S be an example of the

suitability data for the case study application.

 = (
0 1 0 0
0 1 0 0
0 0 1

)

As shown, the mobile computer (c2) is preferable to

the other computers for processing the tasks 1 and 2. In

addition, for task 3, the only suitable platform is the cloud

(c3). From these data, the distributed architecture of the

CPS can decide among the feasible options for performing

the scheduling work.

5.3. Deployment and empirical adjustments

A prototype of the proposed framework is provided in

this subsection in order to perform some tests and adjust

framework parameters for showing the viability of our

approach. A minimalist implementation of the prototype

has been made in order to focus on how the model works

and not to interfere with the normal execution of the

devices.

The implementation is based mostly on Bash

scripting, and Secure Shell (SSH) as a communication

mechanism for all services. To begin with, a script has

been built for each task in the experimental DIDS. These

scripts take input and output file names as arguments, and

these file names are used inside the script to properly feed

the tools in Table 3. Additionally, a prototype for the two

main components of the framework must be provided: the

controller mechanism and one switch process per task

instance.

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

The initial startup of the computing nodes is done

through a main program. This program reads a textual

representation of A = {T, F}, C, and the R matrix. From this

input, it runs the corresponding task instances by calling

the task scripts, and also a switch process per task

instance. The communication between task instances and

the corresponding switch process is made through standard

Unix FIFO streams, as shown in Fig. 8, due to its simple

implementation and interoperability.

Fig. 8. Processes created in three computer profiles for a simple DIDS

The figure shows a schema of the processes created in

the three example computer profiles, for a part of the

simplified version of the experimental DIDS. The

prototyped switch process periodically contacts the

controller to find out the target computer for the

corresponding data flow, following the algorithm in Fig. 5.

This is done by using SSH to remotely call a command in

the controlling computer. If the controlling computer is not

available (it does not respond), the fallback decision is

taken, namely local transfer of the flow. The data transfer

is done by using dd along with ssh common commands.

The prototyped controller is made of a set of

simplified processes that roughly implement those

represented in Fig. 4. New computers are added by

providing a script which, remotely invoked, registers the

corresponding rt,c according to the computer profile. The

prototyped computer monitor finds out current data

transfer rate and system load average by remotely running

vnstat and top/uptime commands, respectively on the

target computer; the results are added into a history file.

The system load average as calculated by top/uptime is the

average number of processes that are using the CPU,

waiting to use the CPU, or waiting for some I/O access.

A variable data block size is chosen, corresponding to

all the data captured during 60 seconds. This may seem a

lot of time, as it poses a severe limitation: decisions made

by the framework scheduler can only be taken once a

minute. The reason for such a long period is the time

required by the implementation of the feature extraction

process in our single-core wearable test computer: it adds

a constant time of 40 seconds to process any data block,

including empty data blocks. However, this should not be

a limitation in a real environment: the feature extraction

process can be heavily optimized (those additional seconds

are not spent when running feature extraction in other

platforms), and nowadays is common to find multicore

architectures also in mobile sensors. As we have defined

such a long time for a variable size block, we set the

threshold value to 0 (revisit Fig. 5), so scheduling

decisions are taken every single block.

5.4. Simulation results & discussion

Fig. 9 depicts a representative example of the

simulation results. The three upper diagrams show the

‘load average’ of the wearable, mobile and cloud computer

respectively. The bottom diagram represents the ‘data

transfer rate’ along the network. The average is taken over

the last minute. As can be seen, the devices are usually

running user applications such as music, video

reproduction, and incoming calls (colored areas in the two

upper diagrams corresponding to c1 and c2 computers). At

the beginning of the test, the tasks are launched on the

wearable device (c1) to be processed. Other scenarios can

be designed with similar results. When the framework is

disabled, the wearable device cannot take over the tasks of

the DIDS application. Over the minutes 17 and 27 the

computer load overcomes the capacity of the device. This

situation may result in mp3 reproduction errors or in

malfunction of the tasks. When the framework is enabled,

according to R and S matrices, the tasks are sent to the

other computers. The tasks 1 and 2 are initially sent to be

processed on the computer c2 and the task 3 is sent to the

cloud computer node (c3). However, over the minute 21 an

mp4 reproduction starts in computer c2. After that, the

system load raises until reaching 1 system load average.

Cloud platform

Wearable platform

filter.sh

fifo
headers_out_0

switch

fifo
headers_in_0

fifo
features_out_0

switch

fifo
features_in_0

···features.rcapture

packets

data flow

posible
data flow paths

fifo
features_out_0

switch

fifo
features_in_0

···features.r

fifo
features_out_1

switch

fifo
features_in_1

···features.r

fifo
features_out_2

switch

fifo
features_in_2

···features.r

fifo
headers_in_1

fifo
headers_in_2

fifo
headers_in_0

···
···

···
···

Mobile platform

features.r

fifo
features_out_0

switch

fifo
features_in_0

detection.sh

fifo
alerts_out_0

switch

fifo
alerts_in_0

······

fifo
headers_in_0

fifo
features_out_0

switch

fifo
features_in_0

···

fifo
features_out_1

switch

fifo
features_in_1

···

fifo
features_out_2

switch

fifo
features_in_2

···

fifo
headers_in_1

fifo
headers_in_2

···
···

···

detection.sh

detection.sh

detection.sh

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Fig. 9. System load average and data transfer rate

At this point, the framework scheduler instructs the

switch process to send packet headers to the server

computer, where the corresponding server task will extract

the features. Consequently, the feature extraction task is

not running anymore on this device, and the system load

average goes decreasing. This decrease in load allows the

video stream to be properly played.

We have conducted the same experiment several

times, and despite the random nature of the user behaviour

simulation, the essential result remains the same:

successful switching of the packet header flows, freeing

processor time of the devices c1 and c2 when required by

user tasks. The simulation results in Fig. 9 show a

reduction in the load average due to the transfer of part of

the processing to the server node. The computing cost

produced by the switch and the controller processes are

assumable, while the processing along the network devices

can be shared if necessary. As long as we properly extend

L with relevant components, this model can be also

applied to offloading strategies in mobile computers

supplied with batteries.

Sending packet headers to an external server implies

bandwidth use. This is reflected in the lower diagram of

Fig. 9. Obviously the traffic flow is increased by a fraction

of the analysed flow (the traffic between DIDS tasks is not

captured for analysis). In our test environment, this

increase in the data transfer rate can be perfectly assumed,

since our wireless network support a bandwidth of several

megabytes per second. However, in a real environment,

complex scheduling policies must be put in place, taking

into account other factors as variable free bandwidth in

wireless networks with shared transmission medium,

energy consumption and user preferences, among others.

Those complex strategies fit into the L definition and the

⊕ operator for prediction.

The experiments show that the provided formal model

can be adapted to a great set of applications to be

distributed over a number of heterogeneous nodes found in

0

1

2

3

4

5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37

Task 1 Task 2 Task 3

0

1

2

3

4

5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37

Enabled

Disabled

0

1

2

3

4

5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37

Sent to
Mobile

Sent to
Server

Sent to
Server

Framework activity: Averages:
Sy

st
em

lo
a

d
 a

ve
ra

ge
(l

a
st

m
in

u
te

)
Sy

st
em

lo
a

d
 a

ve
ra

g
e

(la
st

m
in

ut
e)

Sy
st

em
lo

ad
 a

ve
ra

ge
(l

as
t

m
in

u
te

)

D
a

ta
 tr

a
n

sf
er

 r
a

te
(k

b
it

/s
 in

 la
st

m
in

u
te

)
Mp3 audio reproduction

Mp4 video reproduction

Incoming call

0

100

200

300

400

500

600

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37

0

1

0

1

0

1

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

CPS. By properly defining L, the scheduling process will

take decisions based on relevant performance metrics; by

properly defining R, the suitability of the devices for the

different tasks is modelled, and this information can be

used for optimal or suboptimal decision computation. By

establishing a procedure ⊕, the result of simple or

sophisticated prediction models can be incorporated to the

design, in order to improve the goodness of the scheduling

results. Finally, by suitably configuring S, the scheduler

can take into consideration the preferences and particular

operating conditions of the available devices.

6. Conclusions

In this work, we have designed a novel resource

definition framework and a method that allows convenient

distribution of the application tasks on CPS environments.

Thse contexts are mainly characterized by the diversity

and dynamic availability of the computing elements

involved. The proposal takes into account feasibility and

suitability aspects such as the configuration preferences,

variable availability of computing resources in CPS

devices, personal and enterprise computers, and additional

capabilities coming from cloud services. In addition, the

framework supports solutions based on multiple

technologies and approaches, combining well-known

effective techniques with the latest research results. As a

secondary effect, the framework also provides failure

tolerance by supporting multiple instances of the different

tasks required for the overall distributed application.

This approach offers an application independent

solution for integrating computing resources in a flexible

way and combining the scheduling possibilities for sharing

the processing cost among the CPS nodes: cloud resources

are used only when necessary, minimizing utility

computing costs and security problems but preserving

local resources when those are required for critical

processes.

The experiments conducted provide a proof-of-

concept prototype of the model and show the feasibility of

the method for distributing the application tasks in a CPS

environment.

For future research work, further effort must be

invested in building a proper predictive model of the

available resources, addressed to provide valuable

information for increasing the effectiveness of the

scheduler component. This a very important challenge for

avoiding overload scenarios and properly leveraging the

deployed infrastructure.

Another future work line has to do with the network

performance analysis for obtaining accurate response

times and available bandwidth for sharing the dataflows

and tasks in CPS environments.

In addition, for the proposed further research, the

experimental design should be completed, integrating

other relevant factors, as main memory usage, storage

requirements and energy consumption.

References

[1] J. Gubbi, R. Buyya, S. Marusic, M. Palaniswami, Internet of

Things (IoT): A vision, architectural elements, and future

directions, Future Generation Computer Systems 29 (7) (2013)

1645-1660. doi: 10.1016/j.future.2013.01.010.
[2] D. Gil, A. Ferrández, H. Mora, J. Peral, Internet of Things: A

Review of Surveys Based on Context Aware Intelligent Services.

Sensors 16 (2016), 1069. doi: 10.3390/s16071069.
[3] J. Wan, M. Chen, F. Xia, D. Li, K. Zhou, From machine-to-

machine communications towards cyber-physical systems,

Computer Science and Information Systems 10 (3) (2013) 1105-
1128. doi: 10.2298/CSIS120326018W.

[4] Y. Chen, G.M. Lee, L. Shu, N. Crespi, Industrial Internet of

Things-Based Collaborative Sensing Intelligence: Framework and
Research Challenges. Sensors 16 (2016), 215. doi:

10.3390/s16020215.

[5] S. T. Kouyoumdjieva, G. Karlsson, Energy-aware opportunistic
mobile data offloading under full and limited cooperation,

Computer Communications, 84 (2016), 84-95. doi:

10.1016/j.comcom.2016.02.008.
[6] K.-J. Park, J. Kim, H. Lim, Y. Eun, Robust path diversity for

network quality of service in cyber-physical systems, IEEE

Transactions on Industrial Informatics 10 (4) (2014) 2204-2215.
doi: 10.1109/TII.2014.2351753.

[7] N. Nasser, R. Miller, A. Esmailpour, A.-E. M. Taha, T. Bejaoui,
Optimized bandwidth allocation in broadband wireless access

networks, Wireless Communications & Mobile Computing 15 (17)

(2015) 2111-2124. doi: 10.1002/wcm.2479.
[8] G. D. Abowd, E. D. Mynatt, Charting past, present, and future

research in ubiquitous computing, ACM Transactions on

Computer-Human Interaction 7 (1) (2000) 29-58. doi:
10.1145/344949.344988.

[9] C. Keller, T. Schlegel, Model based and service oriented

interaction for ubiquitous environments ACM International Joint
Conference on Pervasive and Ubiquitous Computing, 2016, 429-

434, doi: 10.1145/2968219.2971358.

[10] F. Xiao, G. Ge, L. Sun, R. Wang, An energy-efficient data
gathering method based on compressive sensing for pervasive

sensor networks, Pervasive and Mobile Computing, (2017) doi:

j.pmcj.2017.02.005.
[11] M. R. Ogiela, L. Barolli, New paradigms for information and

services management in grid and pervasive computing, Future

Generation Computer Systems, 67 (2017) 227-229. doi:
10.1016/j.future.2016.10.011.

[12] M. Satyanarayanan, The Emergence of Edge Computing,

Computer, 50 (1) (2017) 30 – 39, doi: 10.1109/mc.2017.9.
[13] G. D. Abowd, Beyond Weiser: From Ubiquitous to Collective

Computing, Computer, 49 (1) (2016) 17 – 23. doi:

10.1109/mc.2016.22.
[14] J. Lanza et al., Managing Large Amounts of Data Generated by a

Smart City Internet of Things Deployment, International Journal

on Semantic Web and Information Systems, 12(4), (2016) 1-21.
doi: 10.4018/ijswis.2016100102.

[15] T. A. Cherfia, F. Belala, K. Barkaoui, A bigraph-based framework

for specification and analysis of context-aware systems,
International Journal of Critical Computer-Based Systems, 6 (4)

(2017) 322-342. doi: 10.1504/ijccbs.2016.081808.

[16] S. Abdollahzadeh, N. J. Navimipour, Deployment strategies in the
wireless sensor network: A comprehensive review, Computer

Communications, 91–92, (2016), 1-16. doi:

10.1016/j.comcom.2016.06.003.
[17] F. Hu, Y. Lu, A. V. Vasilakos, Q. Hao, R. Ma, Y. Patil, T. Zhang,

J. Lu, X. Li, N. N. Xiong, Robust cyber-physical systems:

Concept, models, and implementation, Future Generation
Computer Systems, 56 (2016), 449–475. doi:

10.1016/j.future.2015.06.006.

[18] H. Tang, L. Li, N. Xiao, Smooth Sensor Motion Planning for

Robotic Cyber Physical Social Sensing (CPSS). Sensors 17(2)

(2017), 393. doi: 10.3390/s17020393.

[19] C. Chen, J. Yan, N. Lu, Y. Wang, X. Yang, X. Guan, Ubiquitous
monitoring for industrial cyber-physical systems over relay-

assisted wireless sensor networks, IEEE Transactions on Emerging

Topics in Computing 3 (3) (2015) 352-362. doi:
10.1109/TETC.2014.2386615.

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

[20] D. B. Rawat, S. Reddy, N. Sharma, B. B. Bista, S. Shetty, Cloud-

assisted GPS-driven dynamic spectrum access in cognitive radio
vehicular networks for transportation cyber physical systems,

IEEE Wireless Communications and Networking Conference,

2015, 1942-1947. doi: 10.1109/WCNC.2015.7127765.
[21] L. Y. Mano et al., Exploiting IoT technologies for enhancing

Health Smart Homes through patient identification and emotion

recognition, Computer Communications, 89–90, (2016), 178-190.
doi: 10.1016/j.comcom.2016.03.010.

[22] H. Mora Mora, V. Gilart Iglesias, D. Gil, A. Sirvent Llamas, A

computational architecture based on RFID sensors for traceability
in smart cities, Sensors 15 (6) (2015) 13591-13626. doi:

10.3390/s150613591.

[23] L. R. Adrian, L. Ribickis, Intelligent power management device
for street lighting control incorporating long range static and non-

static hybrid infrared detection system, in: 16th European

Conference on Power Electronics and Applications (EPE-ECCE

Europe), 2014, 1-5. doi: 10.1109/EPE.2014.6911008.

[24] V. Gilart Iglesias, H. Mora, R. Prez del Hoyo, C. García Mayor, A

computational method based on radio frequency technologies for
the analysis of accessibility of disabled people in sustainable cities,

Sustainability 7 (11) (2015) 14935-14963. doi:

10.3390/su71114935.
[25] P. J. Mosterman, J. Zander, Cyber-physical systems challenges: a

needs analysis for collaborating embedded software systems,

Software & Systems Modeling, 15 (1) (2016), 5-16. doi:
10.1007/s10270-015-0469-x.

[26] E.A. Lee, The Past, Present and Future of Cyber-Physical Systems:
A Focus on Models. Sensors, 15(3) (2015), 4837-4869. doi:

10.3390/s150304837.

[27] B. Shen, X. Zhou, M. Kim, Mixed scheduling with heterogeneous
delay constraints in cyber-physical systems, Future Generation

Computer Systems, 61 (2016), 108–117. doi:

10.1016/j.future.2015.10.021.

[28] D. Dereniowski, W. Kubiak, Shared multi-processor scheduling,

European Journal of Operational Research, 261 (2017) 503–514.

doi: 10.1016/j.ejor.2017.03.002.
[29] B. Andersson, G. Raravi, Real-time scheduling with resource

sharing on heterogeneous multiprocessors, Real-Time Systems, 50

(2), (2014) 270–314. doi: 10.1007/s11241-013-9195-z.
[30] Z. Zhang, J. M. Chang, A Cool Scheduler for Multi-Core Systems

Exploiting Program Phases, IEEE Transactions on Computers, 63

(5) (2014), 1061 – 1073. doi: 10.1109/tc.2012.283.
[31] T. M. Birhanu, Z. Li, H. Sekiya, N. Komuro, Y.-J. Choi, Efficient

Thread Mapping for Heterogeneous Multicore IoT Systems,

Mobile Information Systems, 2017 (2017), ID 3021565, doi:
10.1155/2017/3021565.

[32] N. Kumar, D.P. Vidyarthi, An Energy Aware Cost Effective

Scheduling Framework for Heterogeneous Cluster System, Future
Generation Computer Systems, (71) (2017), 73-88. doi:

10.1016/j.future.2017.01.015.

[33] H. Kanemitsu, M. Hanada, H. Nakazato, Clustering-Based Task
Scheduling in a Large Number of Heterogeneous Processors, IEEE

Transactions on Parallel and Distributed Systems, (27) (11) (2016)

3144 – 3157. doi: 10.1109/tpds.2016.2526682.
[34] M. Mäsker, L. Nagel, A. Brinkmann, F. Lotfifar, M. Johnson,

Smart Grid-aware scheduling in data centres, Computer

Communications 96 (2016) 73–85. doi:
10.1016/j.comcom.2016.04.021.

[35] Z. Qian, H. Yu, A TAOPN Approach to Modeling and Scheduling

Cyber-Physical Systems, International Conference on Information
Science and Applications (ICISA), 2013. doi:

10.1109/icisa.2013.6579475.

[36] M. Haferkamp, B. Sliwa, C. Ide, C. Wietfeld, Payload-Size and
Deadline-Aware scheduling for time-critical Cyber Physical

Systems, Wireless Days, (2017) doi: 10.1109/wd.2017.7918106.

[37] R. Schneider, D. Goswami, A. Masrur, M. Becker, S. Chakraborty,
Multi-layered scheduling of mixed-criticality cyber-physical

systems, Journal of Systems Architecture 59 (2013) 1215-1230.

doi: 10.1016/j.sysarc.2013.09.003.
[38] G. Xie, G. Zeng, Z. Li, R. Li, K. Li, Adaptive Dynamic

Scheduling on Multi-functional Mixed-Criticality Automotive

Cyber-Physical Systems, IEEE Transactions on Vehicular
Technology, 99 (2017). doi: 10.1109/tvt.2017.2674302.

[39] G. Xie, G. Zeng, L Liu, R. Li, K. Li, High performance real-time

scheduling of multiple mixed-criticality functions in
heterogeneous distributed embedded systems, Journal of Systems

Architecture, 70, (2016) 3–14. doi: 10.1016/j.sysarc.2016.04.008.

[40] C. Qu, W. Chen, J. Bin Song, H. Li, Distributed data traffic
scheduling with awareness of dynamics state in cyber physical

systems with application in smart grid, IEEE Transactions on

Smart Grid 6 (6) (2015), 2895-2905. doi:
10.1109/tsg.2015.2399247.

[41] L. Songxi, W. Qinghua, W. Han, F. Yuanliang, P. Hui, Z. Gonglin,

P. Haibo, Traffic scheduling with sustainable Cyber Physical
Systems applying in smart grid, International Green and

Sustainable Computing Conference, 2016, doi:

10.1109/igcc.2016.7892587.
[42] S. Park, J-H. Kim, G. Fox, Effective real-time scheduling

algorithm for cyber physical systems society, Future Generation

Computer Systems, 32 (2014) 253–259. doi:

10.1016/j.future.2013.10.003.

[43] H. Li, Z. Han, A. D. Dimitrovski, Z. Zhang, Data Traffic

Scheduling for Cyber Physical Systems With Application in
Voltage Control of Distributed Generations: A Hybrid System

Framework, IEEE Systems Journal, 8 (2) (2014) 542 – 552. doi:

10.1109/jsyst.2013.2260915.
[44] M. Li, P. Li, Crowdsourcing in Cyber-Physical Systems:

Stochastic Optimization With Strong Stability, IEEE Transactions

on Emerging Topics in Computing, 1(2) (2013), 218 – 231. doi:
10.1109/tetc.2013.2273358.

[45] J. Lee, K. G. Shin, Development and use of a new task model for
cyber-physical systems: A real-time scheduling perspective, The

Journal of Systems and Software 126 (2017) 45–56. doi:

10.1016/j.jss.2017.01.004.
[46] H. Gong, R. Li, J. An, W. Chen, K. Li, Scheduling Algorithms of

Flat Semi-Dormant Multi-Controllers for a Cyber-Physical

System, IEEE Transactions on Industrial Informatics, (99) (2017).

doi: 10.1109/tii.2017.2690939.

[47] C. Liu, L. Zhang, D. Zhang, Task Scheduling in Cyber-Physical

Systems, Intl. Conf. on Ubiquitous Intelligence and Computing,
2014. doi: 10.1109/uic-atc-scalcom.2014.97.

[48] P. Nawrocki, W. Reszelewski, Resource usage optimization in

Mobile Cloud Computing, Computer Communications, 99 (2017)
1-12. doi: 10.1016/j.comcom.2016.12.009.

[49] A. Saarinen et al, SmartDiet: offloading popular apps to save

energy, ACM Sigcomm Computer Communication Review, 42
(4), (2012) 297-298. doi: 10.1145/2342356.2342418.

[50] K. Akherfi, M. Gerndt, H. Harroud, Mobile cloud computing for

computation offloading: Issues and challenges, Applied
Computing and Informatics, (2016), doi:

10.1016/j.aci.2016.11.002.

[51] Khan M. A., A survey of computation offloading strategies for
performance improvement of applications running on mobile

devices, Journal of Network and Computer Applications, 56

(2015) 28–40. doi: 10.1016/j.jnca.2015.05.018.
[52] D. T. Nguyen, W. Li, P. O. Ogunbona, Human detection from

images and videos: A survey, Pattern Recognition, 51 (2016),

148–175, 2016. doi: 10.1016/j.patcog.2015.08.027.
[53] W. Wolf, B. Ozer, T. Lv, Smart cameras as embedded systems,

Computer, 35 (2002), 48 – 53. doi: 10.1109/MC.2002.1033027.

[54] M.A. Alsmirat, I. Obaidat, Y. Jararweh, M. Al-Saleh, A security
framework for cloud-based video surveillance system, Multimed

Tools Appl (2017). doi:10.1007/s11042-017-4488-1.

[55] K. Kang, M.-Y. Nam, L. Sha, Model-based analysis of wireless
system architectures for real-time applications, IEEE Transactions

on Mobile Computing 12 (2) (2013) 219-232. doi:

10.1109/TMC.2011.260.
[56] J. Liu, E. Ahmed, M. Shiraz, A. Gani, R. Buyya, A. Qureshi,

Application partitioning algorithms in mobile cloud computing:

Taxonomy, review and future directions, Journal of Network and
Computer Applications, 48 (2015) 99–117. doi:

10.1016/j.jnca.2014.09.009.

[57] L. A. J. Marzulo, T. A. O. Alves, F. M. G. Franca, V. S. Costa,
Couillard: Parallel programming via coarse-grained data-flow

compilation, Parallel Computing 40 (10) (2014) 661-680. doi:

10.1016/j.parco.2014.10.002.
[58] Y.-S. Chen, H. C. Liao, T.-H. Tsai, Online real-time task scheduling

in heterogeneous multicore system-on-a-chip, IEEE Transactions

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

on Parallel and Distributed Systems, 24 (1), (2013) 118–130. doi:

10.1109/tpds.2012.114
[59] H. Mora, D. Gil, J. F. Colom, M. T. Signes, Flexible framework

for real-time embedded systems based on mobile cloud computing

paradigm, Mobile Information Systems 2015 (2015) id. 652462.
doi: 10.1155/2015/652462.

[60] JF Colom, H Mora, D Gil, MT Signes-Pont, Collaborative

building of behavioural models based on internet of things,
Computers & Electrical Engineering, 58 (2017). doi:

10.1016/j.compeleceng.2016.08.019.

[61] J. Guo, I.-R. Chen, J.J.P. Tsai, A survey of trust computation
models for service management in internet of things systems,

Computer Communications, 97, (2017), 1-14. doi:

10.1016/j.comcom.2016.10.012.
[62] C. Zimmer, B. Bhat, F. Mueller, S. Mohan, Time-based intrusion

detection in cyber-physical systems, in: 1st ACM/IEEE

International Conference on Cyber-Physical Systems, 2010, pp.

109-118. doi: 10.1145/1795194.1795210.

[63] W. El-Hajj, M. Al-Tamimi, F. Aloul, Real traffic logs creation for

testing intrusion detection systems, Wireless Communications &
Mobile Computing 15 (14) (2015) 1851-1864. doi:

10.1002/wcm.2471.

[64] R. Singh, H. Kumar, R. K. Singla, An intrusion detection system
using network traffic profiling and online sequential extreme

learning machine, Expert Systems with Applications 42 (22)

(2015) 8609-8624. doi: 10.1016/j.eswa.2015.07.015.
[65] M. Riecker, S. Biedermann, R. El Bansarkhani, M. Hollick,

Lightweight energy consumption-based intrusion detection system
for wireless sensor networks, International Journal of Information

Security 14 (2) (2015) 155-167. doi: 10.1007/s10207-014-0241-1.

[66] R. Mitchell, I.-R. Chen, A survey of intrusion detection techniques
for cyber-physical systems, ACM Computing Surveys 46 (4)

(2014). doi: 10.1145/2542049.

[67] M. A. Faisal, Z. Aung, J. R. Williams, A. Sanchez, Data-stream-

based intrusion detection system for advanced metering

infrastructure in smart grid: A feasibility study, IEEE Systems

Journal 9 (1) (2015) 31-44. doi: 10.1109/JSYST.2013.2294120.
[68] V-H. Tran, Q. De Coninck, B. Hesmans, R. Sadre, O.

Bonaventure, Observing real Multipath TCP traffic, Computer

Communications, 94, (2016) 114-122. doi:
10.1016/j.comcom.2016.01.014.

[69] D. S. Punithavathani, K. Sujatha, J. M. Jain, Surveillance of

anomaly and misuse in critical networks to counter insider threats
using computational intelligence, Cluster Computing-the Journal

of Networks Software Tools and Applications 18 (1) (2015) 435-

451. doi: 10.1007/s10586-014-0403-y.

