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Highlights 
 A computation model to distribute the application workload over the CPS is proposed. 

 The scheduling method dynamically shares the tasks among the computing nodes of the CPS. 

 This approach facilitates the networking and integration of heterogeneous computer devices. 
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A B S T R A C T  
 

Cyber-Physical Systems typically consist of a combination of mobile devices, embedded systems and 

computers to monitor, sense, and actuate with the surrounding real world. These computing elements are 

usually wireless, interconnected to share data and interact with each other, with the server part and also 

with cloud computing services. In such a heterogeneous environment, new applications arise to meet 

ever-increasing needs and these are an important challenge to the processing capabilities of devices. For 

example, automatic driving systems, manufacturing environments, smart city management, etc. To meet 

the requirements of said application contexts, the system can create computing processes to distribute the 

workload over the network and/or a cloud computing server. Multiple options arise in relation to what 

network nodes should support the execution of the processes. This paper focuses on this problem by 

introducing a distributed computational model to dynamically share these tasks among the computing 

nodes and considering the inherent variability of the context in these environments. Our novel approach 

promotes the integration of the computing resources, with externally supplied cloud services, to fulfill 

modern application requirements. A prototype implementation for the proposed model has been built and 

an application example has been designed to validate the proposal in a real working environment. 

 

Keywords.- Cyber-Physical Systems, Internet of Things, Mobile computing, Modeling, Distributed 

computation 

 

1. Introduction 

 

The expansion of embedded systems into new 

application areas such as healthcare, automotive, robotics, 

home automation or smart cities has led to the 

development of the Internet of Things (IoT). This new 

paradigm consists in connecting any device with actuating, 

sensing, and computation capabilities [1, 2]. The growing 

presence of wireless communication technologies, such as 

wireless local area network (Wi-Fi), Long-Term Evolution 

communications (LTE) and Radio-frequency Identification 

(RFID), allows for the connection of devices to internet 

and remote monitoring and management through cloud 

applications. Ubiquitous possibilities enabled by IoT 

offers the ability to measure, infer and understand 

environmental indicators in said applications areas. 

One step further is the introduction of more intelligent 

and interactive operations under the architecture of the IoT 

paradigm, resulting in Cyber-Physical Systems (CPS) [3]. 

These elements are networked to monitor, sense, and 

actuate physical elements in the real world and to work 

together as a system. The proliferation of connected 

devices in a communicating-actuating network creates 

smart environments where sensors and actuators blend 

seamlessly with the environment around us, and the 

information is shared across platforms [4]. 

Computing nodes in a CPS environment can be very 

heterogeneous in what concerns computing power and 

other capabilities. They are generally network-enabled 

small-sized computers ranging from nodes, with advanced 

sensing/actuating capabilities but very limited processing 

and storage resources, to powerful multi-core technologies 

with high storage capacity. In addition, other computers 

can cooperate in the network: servers, desktop and laptop 

computers (full-sized, not embedded computers), 

smartphones, and others. 

In such a heterogeneous environment, as the one 

exposed by CPS, there are multiple options to consider 

when deciding which network nodes should support the 

execution of the processing tasks: sensor and actuators 

nodes can support additional processing with current 

technologies; local servers, desktop and mobile computers 

could also provide part of their resources for distributed 

system goals; and, furthermore, cloud computing services 

can be hired for additional computing power. 

To be able to select the adequate CPS nodes, different 

factors need to be taken into account. In terms of network 

efficiency, it is preferable to bring the computing work 

near to data sources and users. Performance is another key 

issue: simple processing at a high data transfer flow rate is 

generally better performed by local devices (sensor or 

actuator), whenever possible; on the other hand, intensive 

processing at a low data transfer flow rate can be 

effectively done by powerful remote computers. Physical 

constraints are also an important aspect that needs to be 

addressed: some system components are able to integrate 

data from different sources, so sending the data flow 

through the network becomes mandatory. Other relevant 

factors include energy consumption in battery-powered 

devices [5], QoS (Quality of Service) requirements [6], 

available bandwidth [7], and monetary cost of the cloud 

services, among others. 

The selection of the network node to be used for each 

distributed task could be done at the design stage. 

However, in a CPS, the high variability of the context 

generally recommends making decisions during execution 

time. Firstly, the flow rates of data transfers can be highly 

variable in time, depending on the input nature: for 

example, night video can be compressed more than 

daylight video using some compression techniques. 

Secondly, computing nodes can dynamically join or leave 

the network: incorporation of new sensors or actuators can 

dramatically increase data processing, but servers with free 

resources can alleviate the possible overload produced by 

this increase. The free resources provided by those servers 

for distributed systems can also be variable, depending on 

other tasks that must be carried out by the server. Last but 

not least, the available network bandwidth can vary 

depending on active network applications, usable 

technologies, or geographical location. 

In general, there is an interesting open issue for 

efficient resource planning in the design of infrastructures 
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for CPS applications where there are heterogeneity of the 

environment and available computational resources. In this 

kind of execution contexts, the first step is to find the 

feasible options for scheduling based on the dynamic 

nature of the system. In addition, the computers may be 

doing their own work, apart from the tasks of the 

distributed application. Among the feasible options, some 

scheduling decisions may be more suitable than others 

depending on several aspects related with the overall 

application performance and/or user preferences. In 

addition, the cloud computing paradigm adds further 

elements to properly perform this scheduling process. 

Advances in this area will allow for the proper sharing 

of computational cost of application processing among the 

devices networked, and the design of systems able to 

deploy advanced applications for providing additional 

added-value services to users. 

This research tackles this problem. The objective of 

this work is to properly distribute the processing workload 

among the available computing nodes in a CPS taking into 

account the dynamic nature of the context observed in 

these environments and the desired preferences at the 

design stage. The main contribution of this work is the 

proposal of a formal model that will be able to quantify the 

available resources of each node and the computing power 

required by the tasks of the CPS application. On this 

foundation, it will be possible to model CPS 

environments, working on heterogeneous devices, and to 

design a method to find the suitable distribution of tasks. 

In addition, the overall design of CPS applications can be 

undertaken by following a framework which combines this 

formal model with a convenient application 

characterization. 

This approach favors the integration of heterogeneous 

computer devices and even of external cloud services to 

meet the application requirements. Moreover, this 

integration is achieved in a flexible way: utility computing 

is used only when required depending on the CPS context, 

and sensor computing resources are preserved for their 

intended demanding tasks. In other words, different 

activities are distributed throughout the network, taking 

the best of both worlds: local execution with own 

computing resources and remotely supplied cloud services. 

The proposed solution brings a novel contribution by 

providing a coarse-grained data flow framework to 

successfully design a distributed application in dynamic 

CPS environments. 

The rest of the paper is organized as follows. First, a 

review of related research areas and their relevant 

solutions is presented. Next, the model is described by 

formally defining the problem and providing a conceptual 

view of the solution. Section 4 describes a deployment 

method of the model by introducing a framework. Section 

5 presents a study case: an example of a distributed 

application where the proposed approach is suitable. The 

experimental design and tests are made, taking the study 

case as reference, and the feasibility of the solution is 

verified. Finally, relevant conclusions and future directions 

of this research are outlined. 

 

2. Related work 

 

The following subsections discuss the state-of-the-art 

of the aspects related to this research. A final subsection is 

added, which outlines the contributions to previous work. 

 

2.1 Distributed systems 

 

Distributed computing is a field of computer science 

studying distributed systems. The components of a 

distributed system are located on networked computers, 

communicating and coordinating their actions by means of 

exchanging messages to meet a common goal. The 

development of these systems has madured through 

internet and cloud services. One of the most important 

research areas has to do with the so-called ubiquitous 

computing [8, 9], leading to various related concepts that 

emphasize different aspects of this type of computing: 

pervasive networking [10], pervasive computing [11], 

edge computing [12], and collective computing [13], 

among others. 

One of the pillars of ubiquitous computing starts with 

the development of the mobile computing, which has to do 

with the use of portable devices equipped with one or 

more wireless interfaces and the exchange of data among 

them (mobile networking). This paradigm manages large 

amounts of data [14] and introduces more information 

dependent on the position (location-sensitive) in 

computing, resulting in a set of systems context-aware 

[15]. The evolution and progressive specialization of the 

devices (for example, towards the wearable computing), 

incorporating sensing and actuating capabilities, has led to 

the wireless sensor networks [16]. When the emphasis is 

done on the objects that embed these devices, more recent 

concepts arise, such as Internet of Things (IoT) (emphasis 

on global connectivity [1]) and cyber-physical systems 

(CPS) (attention to integration with physical processes 

[17]). 

Applications of CPS have a great potential to improve 

citizens' quality of life. CPS will be operating in an 

environment with distributed elements, with the result that 

these applications are distributed and parallel in nature due 

to the wide variety of physical and cyber interactions 

involved. Extensive research is being done in distributed 

architectures for specific domains. For example, recent 

proposals can be found for robotics [18], industrial [19], 

smart driving [20], e-health [21] or smart cities [22-24] 

among many others. 

The main challenges of these systems are those 

related to modelling and design tasks, interconnection and 

interoperability of heterogeneous devices, security issues, 

QoS, scheduling and control of the system [17, 25, 26]. 

There are a lot of research focused on all these topics. On 

this last matter, the problem is defined as resource 

provisioning in highly distributed systems. 

 

2.2. Distributed processing 

 

The scheduling problem attracts many research 

interest in the development of current CPS environments 
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since the proper distribution of the processing plays an 

essential role in the leveraging of the resources of CPS 

environments. An effective scheduling process enhances 

the whole performance of the system in handling advanced 

applications which overcome the capabilities of the 

individual nodes. 

Scheduling and control problems in highly 

heterogeneous CPS may be considered as a family of NP-

complete optimization problems in general cases as well as 

in constrained cases. In these systems, an arbitrary number 

of threads can be scheduled depending on the physical 

attributes of the system. In addition, there are usually 

frequent restrictions imposed by the application needs, 

such as QoS, latency or power consumption [25, 27]. 

Since CPS are a kind networked systems, the starting 

point to address this problem could be found in the set of 

methods for scheduling tasks on distributed computing 

systems. In strongly-coupled systems, the processing 

elements are in high speed networks and they are inter-

connected through a network topology. Usually, this 

network has a very high bandwidth and the time cost due 

to communication delay is negligible. There are recent 

scheduling proposals for this kind systems both for similar 

[28] and for heterogeneous [29] computing components. A 

particular case is the multicore processing system where 

the cores are built in the same integrated circuit and they 

have similar [30] or different features [31]. In order to 

include the unpredictability and extra delay provided by 

the network, other approaches for distributing the 

computation in heterogeneous cluster systems can be 

applied. The objective for task scheduling depends on 

system requirements such as energy cost, schedule length, 

throughput, economic cost, etc. [32-34]. Advanced job 

scheduling systems such as 'Slurm Workload Manager' 

(http://slurm.schedmd.com/) could also be considered to 

perform the scheduling work. 

However, the CPSs are highly distributed 

architectures and they can be considered as very weakly-

coupled computer systems where the heterogeneity of 

connected devices as well as their dynamic behavior make 

it very difficult to apply the previous methods. Further 

research is needed to adapt the job-based scheduling 

methods to embedded devices and types of applications 

involved in the CPS environments to fully utilize the 

nodes and to achieve performance improvements. As a 

result, there are a recent number of solutions proposed for 

task scheduling in CPS environments. Table 1 summarizes 

the recent works on this topic and remarks the main 

contributions and ideas for implementing them. 

 

 

Table 1. Distributing processing recent contributions. 

Work Main contributions 

Mixed scheduling [27] Combines distributed scheduling algorithms with the game theory ideas. 

TAOPN [35] Time-constrained aspect-oriented Petri net to model and scheduling tasks. 

Payload-Size and Deadline-Aware [36] Traffic-sensitive real-time scheduling algorithm. 

Multi-layered scheduling [37] Multi-layered scheduling scheme for time and control critical tasks. 

Adaptive Dynamic Scheduling for automotive CPS [38] Adapt. dynamic scheduling to adjust the exec. on different criticality levels. 

High performance real-time scheduling [39] Changing the system’s criticality to achieve fair scheduling of functions 

whose criticality levels are larger than or equal to the system’s criticality 

Distributed data traffic scheduling [40] Scheduling strategy considering transmission time delays. 

Modas [41] Distribute agent algorithm to achieve multi-QoS requirements. 

Effective scheduling for CPS society [42] Scheduling strategy considering physical systems society factors. 

Data Traffic Scheduling [43] Traffic scheduling by system dynamics modelling 

Crowdsourcing in Cyber-Physical Systems [44] Cross-layer optimization framework to solve a finite-queue-aware CPS 

service maximization problem by stochastic methods. 

New task modeling [45] New periodic, fault-tolerant CPS task model. 

Flat Semi-Dormant Multi-Controllers [46] Considers an arbitrated networked control systems and a wakeup 

mechanism on the communication system 

Comprehensive resource scheduling strategy [47] Dynamic multi-priority scheduling at node network and at comp. center. 

Most of the previous works are focused on real-time 

[27, 35-39, 42, 45] and other performance criteria [40, 41, 

43, 44, 46, 47]. As they corroborate, the standard 

scheduling algorithms for distributed systems cannot 

satisfy the requirements in CPS environments. There are 

network physical factors involved that cause migration 

delay time between servicing node to serviced node. In 

addition, the independent functioning of the nodes which 

could have their own workload makes those schemes 

difficult to apply in practice. The current proposals for 

CPS environments provide different contributions and aim 

to include additional methods to overcome these issues 

such as different criticality level of the tasks [37-39, 47], 

mathematical techniques [27, 35, 44], agents [41], and 

control mechanisms [46]. Other works deal with network 

and physical dynamic issues [36, 40, 42, 43]. 

 

2.3. Cloud-Aided Distributed processing 

 

Cloud computing refers to both the applications 

delivered as services over the Internet and the hardware 

and software in the data centers that provide those 

services. The data center hardware and software is what 

we will call a cloud, and the service being sold is utility 

computing. 

Cloud computing can also be used to extend the 

limited computational resources available in the CPS and 

other mobile devices. In this way, Mobile Cloud 

Computing (MCC) trend is especially relevant. MCC is an 

emerging distributed computing paradigm that aims to 

augment the resources of mobile devices by leveraging the 

resources and services of remote cloud [48]. The most 
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common uses of this paradigm are primarily targeted to 

extend the battery life of mobile platforms [49], without 

considering the versatility that the remote computers can 

provide to extend the computing power of devices. Recent 

approaches already consider the increase in performance 

as one of the most important contributions of MCC to the 

mobile computing [50, 51]. The two main changes can be 

summarized as (i) the homogenization of devices’ 

computing capabilities since they can run applications 

regardless of their native hardware and (ii) the overcome 

of the limitations of nodes in execution of advanced 

applications. 

In this way, MCC leverages applications requiring 

integration of data coming from geographically distant 

computers and it is a key paradigm for developing and 

support IoT and CPS modern applications. Therefore, 

advanced applications can take advantage of both the 

central cloud and the CPS nodes to finish the computing 

tasks in the system [44]. This scheme can be generalized 

to move the workload to other dedicated processing 

centers near where the data are acquired. These scenarios 

correspond with the deployment of Cloudlets, Mobile 

Edge Computing and even Fog Computing infrastructures 

[12]. All these architectures perform the computation by 

sharing the application tasks among the local devices and 

other platform, where this latter can be a variety of 

platforms at several network layers. 

 

2.3 Findings 

 

After reviewing the previous work, some findings can 

be drawn to justify and summarize our contributions to the 

state-of-the-art: 

 

 One of the key aspects of the evolution of CPS 

systems has been to expose the acquired data and 

computing capability of the devices to the outside. 

Networking these devices allows designing advanced 

application and achieving more ambitious goals. 

 How to enable the CPS nodes to efficiently 

collaborate to accomplish more computing tasks is a 

very challenging problem and an important issue to 

improve the CPS applications. 

 Conventional task scheduling schemes in embedded 

real-time systems are unable to satisfy performance 

requirements of CPS due to its task diversity and 

system heterogeneity. There is much research work 

still to be done in this area. 

 Recent proposals try to overcome the performance 

drawbacks by means approaching the cloud 

computing resources to the nodes of the CPS that are 

going to consume it. An interesting research line arise 

in relation to CPS and cloud computing integration. 

 

The scheduling mechanism based on sharing the 

processing between distributed devices of the CPS and 

cloud computing resources seems to be a promising way to 

increase the capabilities of the system and to achieve 

greater overall performance. The efficiently dynamic 

allocation of tasks is a very important and difficult topic 

on CPS environments. In this way, the knowledge of 

potential applications and the resource requirements for 

each task can open ways for developing new methods for 

enabling this collaboration and joint computation in an 

online and distributed fashion. This research work 

develops this idea by proposing a computational model to 

distribute the processing along the whole system and meet 

the applications’ requirements. The key novelty of this 

model lies in considering the computing capabilities, 

features and current workload of all devices to perform the 

scheduling of the tasks. 

 

3. Distributed computational model 

 

A model of computation is defined in this section 

based on data flow processing between tasks that run in a 

parallel and distributed way. This model aims to leverage 

the computing infrastructure for distributing the 

application tasks. The model introduces a formal method 

for modelling CPS environments and enables to define the 

efficient distribution of tasks according to some objective 

function. The notation introduced is used to define the 

targeted applications in a precise way, and the main 

components on which the proposed solution is based. 

To illustrate the basic idea, Fig. 1 draws an example 

of the overall system in different time instants. This 

example corresponds to a simplified version of a smart 

lighting application for smart cities. In this application, the 

street urban lamps are switch on or off depending on the 

presence of humans or vehicles in the street [23]. The 

application decomposition and the specific tasks described 

by the example have been taken from the state-of-the-art 

research works on human detection from images and 

videos [52]. This example application is made of seven 

tasks in a pipeline and three computing platforms: a smart 

sensor, a mobile device and a cluster server. 

The figure shows three possible distribution of the 

tasks for this application which configure system states 

where the tasks are principally made by one of the 

platforms. In Fig. 1.a, the smart sensor is responsible for 

the initial tasks from capturing data (i.e. samples, frames) 

and preprocessing them by extracting the relevant features. 

Next, another device of the CPS environment made a 

middle task and then, the processed data is sent to the 

cloud for completing the work. The behabiour can be 

common in environments consisting of embedded smart 

cameras capable of executing some image processing 

methods and extract meaning from streaming video [53]. 

Fig. 1.b shows the scenario where the sensor device 

captures the data, and the majority of the tasks are made 

by another device of the CPS. Last, the outputs produced 

are sent to the cloud server for processing the predictive 

analysis. Finally, in the scenario depicted in Fig. 1.c, the 

devices of the CPS make little work of the application, and 

the most part is performed by the cloud platform. This 

scheme is mandatory in CPS systems where the 

acquisition devices do not have enough processing power 

to run complex algorithms [54]. 

The transition between the possible scenarios must be 

done according to available resources and the processing 
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costs, so that, the costly tasks are preferable to be 

processed on the resource-rich platforms (cloud systems in 

the example). Thus, if the devices of the CPS are not under 

intensive processor use, they can compute the application 

workload (Fig. 1.a and Fig. 1.b); in contrast, when they are 

heavily loaded with other user activities, the data are sent 

to the server for further processing (Fig. 1.c). 

In general, data flow switching between computers 

can be decided for each task according to a variety of 

criteria, not only the availability of computing resources. 

For example, for some mission critical real-time modes (as 

the ones described in [55]), keeping the data flow inside 

the embedded device will be preferred, as running without 

external resources could be more easily predictable in 

terms of performance. However, loading tasks into a 

server, if available, will be chosen when the possibility of 

correlating streams from several hosts is a desirable 

aspect. In addition, overall system resilience can be 

achieved as a secondary effect, due to the multiplicity of 

computers supporting tasks and the capacity to switch 

between them in a dynamic way. 

The presented work contributes with a formal model 

that provides some advantages. First, it allows 

characterizing a set of applications with common features 

shown by CPS: those applications are made of several 

digital signal processing tasks sharing data flows, with the 

possibility to be run on a heterogeneous subset of 

computers, including intelligent sensors, cloud services 

and other computers. Second, the formal model provides a 

framework to define resource utilization, that will be used 

for a double purpose: represent the state of each CPS node 

in terms of resource utilization (computer load) and 

establish a way to specify the impact of the different 

application tasks on the CPS node (tasks requirements). 

Third, it leverages an architecture that flexibly hosts 

different solutions for system monitoring and scheduling, 

allowing versatile adaptation to the application 

characteristics. 

 

 

 
Fig. 1. Behavioral model built from a smart sensor, mobile phone and cloud. (a) Workload mainly processed on smart 

sensor; (b) Workload mainly processed on mobile device; (c) Workload mainly processed on the cloud 

 

 

 

3.1. Target applications 

 

The CPS applications targeted by the proposed model 

are characterized by the following features: (a) the 

application gets input data from the physical surrounding 

that need to be processed; (b) the work to be done can be 

decomposed into a set of individual tasks or processes, 

sharing data flows through the network and therefore, 

running in a parallel and distributed way; and (c) the 

results of the processing are translated into a set of actions 

that are performed by storage or actuator nodes. 

In other words, those distributed applications can be 

represented by a directed graph A = {T, F} where: 

 

 T is the vertex set and represents the set of tasks 

required for data capturing, processing, storing and 

actuating. 

 F is the edge set and represents the data flows 

exchanged between tasks. 

capture

filter

codification

feature
extraction

behavioural
model

pattern
recognition

predictive
analysis

input data raw input data raw input data raw

samples samples samples

preprocessed
stream

preprocessed
stream

preprocessed
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features features features

patterns patterns patterns

inferred data inferred data inferred data

(a) (b) (c)
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Fig. 2. Task and data flow decomposition for an example 

distributed system 

 

The data flow diagram shown in Fig. 2 depicts the 

previous distributed application modelled according to this 

principle. The data from presence sensors are analyzed in 

accordance with a specified operating method and it shows 

some common operations in the area of data processing 

from digital signals in a possible CPS context. 

The task and data flow decomposition represented by 

the directed graph A is designed by means an application 

partitioning method and the desirable granularity unit. 

This granularity unit determines the size unit of the 

application that can be offloaded to other platforms of the 

network [56]. A coarse-grained allows a high-level of 

abstraction and simpler mechanisms but increases the need 

for communicating application details and 

synchronization. In contrast, a fine-grained offers more 

opportunities for offloading but it needs much more 

scheduling work. The desirable granularity unit for 

outsourcing should be as small as possible to provide the 

highest flexibility, but small sizes imply higher 

management cost. In this way, the granularity unit for the 

distributed model could be variable depending on the 

features of the target platform for offloading. That is, little 

parts of the application can be outsourced for fast 

execution on surrounding platforms of the CPS and other 

intensive parts for offloading to external specialized 

platforms. The optimal partitioning is an NP-complete 

problem [51], in order to avoid time-consuming in 

automatic analysis of the code, the construction of the 

graph A for each application may be made in the design 

stage. The proposed characterization for CPS 

environments is based on a coarse-grained data flow 

approach which is a natural paradigm for describing digital 

signal processing applications for concurrent 

implementation on parallel hardware [57]. 

 

3.2. Resource specification 

 

Following with the domain characterization, we 

define C as a set of computer elements where different 

instances of tasks in T can be potentially run. The C set is 

formed by the computing platforms of the CPS and the 

accessible cloud resources. This is the operating network 

where the system can be deployed. 

This model could handle a dynamic computing power 

by including at design time the kind of potential devices 

that can exists at any time in the network. Let Λ be the 

different types of CPS nodes. For example: sensing nodes, 

wearables, mobile phones, laptops, server clusters, 

computer systems, etc. In this way, each device of C is 

defined as a type of Λ. Fig. 3 shows an example of the 

different types of nodes, coming from the deployed 

infrastructure, the available devices and the hired cloud 

resources. 

To distribute resources in an efficient way, the 

resource utilization of the platforms must be properly 

characterized. Let Ω be the set of all possible required 

parameters of the CPS applications. 

 

Ω = {p1, p2, … } (1) 
 

where each pi represents a performance parameter such as 

‘transfer rate’, ‘processor load’, ‘memory use’, ‘battery 

consumption’, etc. 

Next, the proposed model introduces L as a vector 

domain of the subset of the n relevant features for 

quantifying the required resources of a specific application 

‘App’. 

 

LApp≡Ωn (2) 
 

Thus, the list of parameters of LApp depends on the 

‘App’ application requirements. Therefore, the list can be 

different for each application. This approach provides 

flexibility to face application contexts with different 

requirements and opens several possibilities for sharing 

the workload. 

  

samples

processed stream

features

predictionscommands

capture

filter

feature
extraction

behavioural
model

predictive
analysis

pattern
recognition

light
actuator

visualizationstorage

input data raw

codification

paterns



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

 

 

 
Fig. 3. Different sources of computing resources for the distributed system 

 

The list of features is defined previously according to 

the CPS application needs. These are generally referred to 

computing resources, but other kind of components or user 

experience factors as energy consumption could be 

considered for practical convenience. For example, if 

some application A requires a specific capture device, 

present only in some computers, a component ‘Capture 
device’ can be added. In this way, the intention is that all 

the necessary requirements are included in L from the 

beginning. The next example shows the L vector defined 

as a vector with four components, with the following 

semantics: 

 

LApp = Memory use ⨯ Transfer rate ⨯ Processor load ⨯ 
Battery consumption 
 

Once the L vector has been modelled by selecting the 

key resources for the target application, the resource 

utilization of the available CPS nodes can be represented 

as a vector of n-components. The lc,time vector defined by 

expression (3) quantifies its load in a time instant, and 

therefore its ability to run tasks in T. 

 

∀ c ∈ C, lc,time = 〈p1, p2, …, pn〉 ∈ L (3) 
where pj ∈ ℝ ⋃ {0} 

 
The utilization of each component pj is expressed as a non-

negative relative value according its availability for 

running the tasks in T. The value ‘0’ means maximum 

resource availability and the values equal or greater than 

‘1’ means that this resource cannot be accessed. In this 

way, the computer load is formally quantified as a tuple 

describing the fraction of relevant resources currently in 

use. Obviously, these values are different for each time 

instant, depending on the different activities in which the 

device is involved and the CPS context. For multi-

application scenarios where several requirements and L-

vectors exist, at each instant, the devices construct the 

union of the vectors for all distributed applications. Each 

application takes into account only its corresponding 

subset of features. 

By characterizing the current computer load (current 

state) with relative values, the computer shows its ability 

to run the tasks in a homogeneous and comparable way, 

from the point of view of the different features modelled 

by L. For example, a dedicated server for the CPS 

application will generally show low values for ‘Processor 

load’, excepting situations near overload. However, a user 

device such as a smartphone will show high values for this 

feature if it is busy just with some user activity, showing 

its inability to run heavy tasks (in this case, from the 

‘Processor load’ point of view) from T. 

Of course, a suitable method is required to estimate 

the relative value to each component of L. These methods 

must be light processes to avoid, wherever possible, 

interfering with the device operation and, in addition, they 

should be compatible for the devices of each kind of node 

in Λ. The next paragraphs describe some examples for the 

previous resources of L. 

The ‘Memory use’ component value can be computed 

just by dividing the amount of memory assigned to 

processes by the total amount of memory available. 

Generally, this information can be provided by the 

operating system. 

The method to quantify the ‘Transfer rate’ 
component will take into account the characteristics of the 

interconnecting network. The current transfer rate can be 

known by each device, just by monitoring the network 

interface. However, in order to get a relative value, the 

total bandwidth available for the device is required. In a 

CPS where computing nodes are mobile and connected 

through standard wireless networks, knowing the total free 

bandwidth is not a trivial issue. First, in those standard 

networks, the bandwidth is shared among the 

interconnected devices, and second, the position of the 

mobile devices affects to the available bandwidth. For 

those cases, one feasible approach is to consider an 

estimation of the total bandwidth based on the average 
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values retrieved on periodic checking performed by the 

devices. 

To properly set the component ‘Processor load’ one 

approach is to consider the average number of processes 

that are in a runnable state during the last minute. In the 

case of a multiprocessor computer with two cores, could 

reasonably accept up to two processes at a time, from the 

processor load point of view. A ‘1’ value for the 

‘Processor load’ component in this device means that it is 

supporting the maximum processor load (two processes 

average), and a new task requiring more processor load 

should not be accepted. Therefore, a good ‘Processor 
load’ quantification can be obtained by dividing the 

average number of processes in a runnable state during the 

last minute, by the number of cores, and taking the 

minimum of 1 and this quotient. From this approach can 

be deducted the processor utilization rate regardless 

number of cores. 

Finally, the ‘Battery consumption’ component can be 

set in different ways. One possibility is to consider the 

battery discharge rate (percent of charge consumed per 

time unit), which ranges from a minimum value when the 

device is idle to a maximum value when the device is 

using all the battery consuming resources in an intensive 

way. In this case, the ‘Battery consumption’ component 

can be computed by dividing the current discharge rate by 

the maximum discharge rate, previously subtracting the 

minimum discharge rate from numerator and denominator. 

Since the key features for the application are set from 

the beginning, several types of L could be defined to cover 

different types of applications running on the CPS 

environment. In this way, multi-application scenarios can 

be defined. The variability of the applications is not 

expected to be very high in a controlled CPS environment. 

For example, in a smart city, the types of distributed 

applications can be restricted to a small set according to 

the service provided. So that, a new task cannot arrive 

demanding new features in L. 

In addition, operating conditions could be included 

implicitly in the formulation to make the scheduler work 

according to efficiency criteria and follow scheduling 

preferences about the computing resource consumption of 

the devices. For example, if some device’s resource need 

to be reserved for private use only, its component of L 

vector can be set to ‘1’. 

Once the L components are set and the obtaining 

methods for each of them are established, the effect in a 

device when a new task arrives needs to be defined by the 

model. As general case, when a new task is run on a node 

of a CPS, this computer will experiment an increase of its 

load described in terms of the components of L. For each 

computer in C and each task in T, this load increase must 

be estimated taking into account the task requirements. 

These requirements are modelled using a matrix R, where 

each element rt,c ∊ L quantify the requirements (load 

increase) of a task t ∊ T in a device c ∊ C. 

The vector rt,c effectively models the feasibility of a 

device (c) for a given task (t). Its values can be obtained 

empirically by testing each task on each device. However, 

in many cases, some values can be deduced from the 

results got in some reference computer c0 for each kind of 

device in Λ. As a trivial example, if a task t1 holds  

rt1,c0 = 0.5 for the Memory use feature, in a computer c0 

with 1GB, it will reasonably hold rt1,c2 = 0.25 for an 

equivalent computer c2 with 2GB. Other computing 

resources will imply other calculations, and in some cases, 

empiric test will be required, as in the case of the 

processor load in a computer equipped with powerful 

GPU. The device type classification of Λ will help in order 

to assume a pre-estimated rt,c for those computers 

belonging to a defined profile or device class. 

To illustrate how the task requirements are modelled, 

the next example considers a simple CPS made of a 

single-core intelligent sensor with a camera (c1) and a 

laptop with N cores (c2) but without a proper camera. The 

sensor device allows up to P processes using the capture 

interface. For simplicity, the cores of c1 and c2 are 

assumed equivalent. The application is made of two tasks: 

t1, which is an image capture task, and t2, which 

implements a heavy image processing algorithm. For the 

application convenience L is defined as ‘L = Processor 
load ⨯ Camera availability’. As a result of a test, it has 

been found that t1 increment the processor load (one core) 

by 10%, and t2 produce an increase of 50% in the 

processor load (one core). In this example, the tasks 

requirements can be defined by the following R matrix: 

 =  (
 0 1 1    0 1   1  
 0   1    0     0 

) 

From the content of the R matrix, it can be deduced 

that c1 is feasible for t1, and c1 and c2 are feasible for t2. As 

another example, considering ‘L = Processor load’, a 

laptop computer with a powerful GPU will generally show 

a low rt,c for tasks t requiring heavy image processing; in 

other words, this quantifies the degree in which the 

computer with GPU is feasible for image processing 

services. 

The definition or R allows to configure the amount of 

resources dedicated to the CPS tasks by a device. For 

example, setting a value of 1 for the ‘Memory use’ 
component when a task requires the 50% of the total 

memory, configures a device to dedicate only the 50% of 

its memory to the CPS tasks. 

 
3.3. Proposed solution design 

 

The proposed solution consists in managing the 

application's tasks and its data flow along the computation 

nodes of the network according to the available resources, 

the processing needs, and the user preferences. This 

management system is made of two main components: (1) 

special proxy local processes running on each computation 

node of the network, we call them switches, and (2), a 

system controller which maintains a view of the overall 

system, and offers several framework services as 

discovering new nodes, monitoring tasks, and planning the 

source and target computer for each required data flow. 

These works are made in a centralized way in order to 

minimize the management communication costs and 

saving shared resources. 
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Fig. 4. Diagram of the proposed solution and the elements of the management system. 

 

The system controller can be deployed in the cloud or 

in another computer of the CPS with enough resources and 

close to the rest of the nodes. 

Fig. 4 shows a high-level view of the proposed 

solution. The main elements of this component are 

described as follows: 

 

3.3.1. Computer monitor and discovering service 

 

The CPS system is an open environment where new 

devices can appear. To manage this dynamic operation, a 

discovery service is added to conduct the following key 

capabilities: register a new device and unregister it when it 

does not available. 

When a new device arrives to the CPS, the discovery 

device service register it in the system and retrieves its 

hardware inventory by using the SSH (Linux, UNIX) or 

SMB or WMI (Windows) protocol. To handle different 

performance features, a new table has been added to the 

system to keep the base performance load increase for 

each type of device. Thus, a matrix K is defined where 

each element kt,c ∊ L quantify the requirements of a task t 
∊ T in a type of device c ∊ Λ. The values in kt,c model the 

performance load increase for a base device representative 

of each type of node. For example, the base performance 

load increase for the ‘memory use’ parameter can be 

calculated in MB; the base performance load increase for 

the ‘processor load’ parameter can be calculated in 

1Ghz/core; etc. Then, when a new device arrives to the 

environment, a new column in the R matrix to store the 

specific load increase for that device is created by 

combining the base requirements of K with the hardware 

features of the device. 

The computer monitor feeds the global status model 

with the relevant parameters, lc,time ∊ L, from all computers 

c ∊ C each time instant. Different strategies can be applied 

here, taking into account the asynchronous nature of 

networks and the type of node. One possibility is to make 

all nodes to respond to a periodic request from the 

controller component. Secondly, the periodic request can 

be customized for each type of node. In this case, the last 

lc received is used for scheduling. Other solution is to 

share a global clock signal by using, for example, Network 

Time Protocol (NTP). Broadcast communication should be 

used where possible. 

The computer monitor also integrates computer 

unavailability when it happens without unregistering, their 

resources are required by their intended priority function 

or any other user defined restriction become in place. 

Some parameters may be subject to short abnormal 

fluctuations due to performance peaks. For example, a 

smart camera has a consumption peak when takes a frame. 

If the performance parameters are required at this time, the 

resource utilization of this platform does not adequately 

report the normal consumption state of the device. A 

suitable procedure to avoid outlier values on performance 

parameters is to store the data vectors lc,time in a history 

database. This information is used as an input for a 

feasibility predictive model, so the scheduling can be 

performed not only based on the result of direct measures, 

but also on mined knowledge. 

 

3.3.2. Predictive model 

 

Following the notation introduced in Subsection 3.2, 

now it is time to predict the load of each computer from C 

when running a specific task of T. For this reason, an 

internal binary operator is defined in L and it is 

represented using the symbols ⊕ and ∑⊕ for the 

accumulation. The operation specifies the procedure for 

adding the task requirements to the current device load, 

allowing to deduce the load of the device if a task of the 

application is run on it. The formal definition of this 

operator is expressed by equation (4). 

 

⊕: L2 ⟶ L (4) 
 

This operator calculates the device load predicted if a 

task t is assigned to a computer c. As shown in expression 

(5), the inputs of this operator are the resource utilization 

vector L of the computer (lc,time) and the increase of load if 

the computer run this task (rt,c). The output of this operator 

is the resource utilization of the computer for the next 

cycle when the task t is assigned to computer c. 
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lc, time’ = lc,time ⊕ rt,c (5) 
 

where lc, time’ is the load predicted for the next cycle if the 

task t is assigned to computer c. 

The implementation of ⊕ will depend on the nature 

of the L component considered. In most of the cases, this 

operator is just an addition of the current load and the 

increased load in executing the new task. For example, the 

‘memory use’ is the most obvious example of this 

calculation. In other cases, the predictive calculation 

considers additional factors to increase the accuracy for 

the prediction. This is the case of the ‘Transfer rate’ 
parameter where the available bandwidth of a wireless 

network may experience shifts in each instant because of 

the effect of mobility among other reasons. 

Let us take the following case as a combined example 

of L with different calculation methods: L = Transfer rate 
⨯ Memory use. Now, let l = (l1, l2), r = (r1, r2), where l ∊ 
L be the current load of a computer, and r ∊ L be the 

requirements of a task in this computer. Then, 

 

l ⊕ r = (
             

     
      ) 

 

where B is the total bandwidth available when the r1 was 

determined, and Btime is the total bandwidth available in 

the current time. 

The quality of the prediction made by this operator 

lies in the accuracy of the requirements modelled by R. In 

addition, it can be improved by integrating history 

information through advanced machine learning 

techniques that allow to estimate the future performance 

from past behaviour; this approach is more appropriate for 

components that can be greatly influenced by external 

factors, as total free bandwidth in a shared medium 

network. In general, a sophisticated implementation for ⊕ 

will require more information. 

 

3.3.3. Scheduling 

 

The main element in the system controller, as shown 

in Fig. 4, is the scheduler component. It uses the model 

and information provided by the remaining controller 

components in order to decide the target computer for each 

required data flow. 

Two functions, feasibility and a suitability, are 

defined to perform the scheduling of the tasks. In first 

place, the feasibility function models the real possibility of 

a device to work with a given load and points out the 

overload cases. The expressions (6) and (7) define this 

function. 

 

feasibility: C x T → {True  False} (6) 
 

That is, for a given c ∈ C  t ∈ T, at each time instant the 

feasibility function obtains: 

 

feasibility c t     = {
True if ∀p ∈ 〈l      ⊕ r   〉 p  1 

 alse ot erwise                                     
 (7) 

This information is used for the scheduler module to 

decide if a computer node can process a task. Then, a first 

approximation of the scheduling problem can be stated by 

finding a correspondence function as: 

 

sc edule: T → C (8) 
 

satisfying the following expression (for each given time 

instant): 

 

∀ t ∈ T c ∈ C feasibility  c t      (9) 
 

The CPS application could include some execution 

requirements to the system such as time constraints or 

optimum use of resources. To meet this kind of conditions, 

the scheduling process becomes a NP-complete problem 

which it can only be resolved by heuristic or search 

algorithms [58]. Instead, this work is focused on providing 

agile and effective solutions for the general case, where 

the most important issue is that each task of the 

application can be processed by some device of the 

system. In this way, the scheduler module proposes a 

possible scheduling order. When a new task arrives, the 

work just consists in checking the feasibility function for 

the nearest device to the data source for this task. The cost 

of this operation mode is linear with the list of application 

tasks T. 

Secondly, a step forward in efficient scheduling can 

be set by considering configuration preferences in 

processing the tasks. This approach provides criteria for 

scheduling by means some suitability information 

modelled by the function described in expression (10). 

 

suitability: Λ x T → [0 1]⊂ℝ (10) 
 

This function quantifies, in an increasing preference-

scale, the preference for processing a task t ∈ T in a type 

of device d ∈ Λ of the CPS environment. Then, instead of 

just a feasibility function, the scheduling method can find 

the correspondence that maximizes the value of the 

following expression: 

 

∑ suitability c t ∀ ∈   ∈  (11) 
 

The suitability information is stored using a new 

matrix S, where each element st,c represents the value for 

suitability(c, t). Thus, the values in st,c effectively model 

the suitability of a device for a given task, and then, 

although there are several feasible devices to perform a 

task, the more suitable will be selected in first place. Now, 

the scheduling method checks the feasibility function for 

the available devices in a decreasing suitability order. The 

cost of this operation mode is linear with the product of 

the available devices of the system C by the application 

tasks T. An improved design consists in sorting each row 

of the S matrix to provide the list of suitable devices for 

each task in decreasing order. 

Continuing with the example above ―the CPS which 

consists of an intelligent sensor (c1) and a laptop (c2)―  the 

task t2 can be processed both in c1 and in c2. The matrix S 
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defines the suitability of performing the processing for 

each task and computer. For example: 

 =  (
0  0
0 2 1

) 

shows that the task t1 is better processed in c1 while the 

task t2 is better processed in c2. 

The data of the matrix S can be set by the application 

designer according to the CPS properties, the 

configuration of the devices and the user preferences. In 

addition, these data can be updated dynamically according 

to the evolution of the vector set L. That is, when the 

computer load of a device raises, its preference for 

scheduling may decrease. For example, if the remaining 

battery is low for a device, the preference level of this 

device would fall. 

The matrix S drives the scheduling method of this 

architecture. For each task, the devices can be ordered by 

preference rate and then the feasibility of each 

combination can be checked. In this way, the feasible 

combination with best rate will be selected in first place. 

Note that this method is designed specifically for a CPS or 

IoT environments. Thus, it focuses on the ‘things’ and not 

on the overall aspects of the application. 

This approach considers the dynamic nature of the 

CPS environments because the things can change its 

operation conditions and preferences, and eventually, 

appear/disappear in/from the system. When a new device 

goes in/out the system, the matrices R and S are 

expanded/contracted with the data. The feasibility and 

suitability functions work with the available devices and 

the new data for distributing the application workload. 

In this point, other strategies and policies focused on 

the application could be addressed, mainly by adapting the 

successful results from previous and future research. As a 

result of our previous research on distributed and mobile 

systems, a proposal combining imprecise computing 

strategies with cloud computing is introduced in [59], and 

it can be used for the scheduler component. 
 

3.3.4. Data flow control 
 

All task instances get their input data flow from either 

a switch process or from sensor/acquiring devices. The 

output data flow is also sent to a switch process, or used 

directly for performing a proper action (using storage or 

actuator devices). Each switch process directs the data 

flow to the corresponding target task instance, located in 

the same or different computer. 

Generally, the decision is taken by the controller 

component, which maintains a representation of the 

overall system and runs the scheduling algorithm. If the 

controller is not available (for example, because of 

network or host failure), the switch process runs a fallback 

procedure, using only local information. 

The control flow of a switch process is shown in Fig. 

5. One interesting point in the figure is the value of the N 

threshold and the size of the data block. In general, the 

size of the data block will be variable and it can be 

specified in different ways. For example, for a video 

capture process, one block can include a fixed number of 

frames, or the number of frames captured during a fixed 

time period (discontinuous capture makes the difference). 

The higher the block size and N threshold, the lower the 

use of resources by the management system, and therefore, 

better efficiency can be achieved. 

By contrast, decreasing these values improves the 

accuracy of the system controller, as it allows to maintain 

a more accurate picture of the global status, and therefore, 

more appropriate decisions can be taken. The proposed 

operation model needs the configuration and the 

collaboration of the computational elements, as well as the 

deployed applications in the CPS. In the next section, the 

framework for designing the systems is described. 

 

 
Fig. 5. Flow diagram showing the control data flow of a switch process 
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By contrast, decreasing these values improves the 

accuracy of the system controller, as it allows to maintain 

a more accurate picture of the global status, and therefore, 

more appropriate decisions can be taken. The proposed 

operation model needs the configuration and the 

collaboration of the computational elements, as well as the 

deployed applications in the CPS. In the next section, the 

framework for designing the systems is described. 

 

4. Distributed application framework 

 

The design of applications for CPS under the 

proposed model consist of three main steps: (a) task and 

data flow decomposition; (b) resource planning and (c) 

deployment and empirical adjustments. Fig. 6 shows a 

general overview with the inputs and outputs of each 

design stage. 

 

 
Fig. 6. Distributed application design scheme 

 

4.1. Task and data flow decomposition 

 

There are different ways in which the overall activity 

of the application can be decomposed in different tasks, 

sharing data flows, in order to build A = {T, F}. This 

decomposition depends mostly on the application area. For 

example, some common examples of distributed tasks in 

predictive analysis applications are data capture, feature 

vector extraction, building predictive models, pattern 

matching, data flow correlation, raising alerts, logging, etc. 

[60]. In addition, the availability of already implemented 

components can also be considered; it could be desirable 

to reuse existing software (legacy, open source, etc.) to 

implement some application subproblems; this software 

would implement a distributed task of the application. 

Generally, the tasks get input data from the output of 

other tasks. However, initial tasks get the input directly 

from capture devices. Similarly, final tasks use their 

output to feed a physical action (for example, switching-on 

a lamp or raising an alarm) or just to send data to storage 

devices for logging and further analysis. This model 

allows to combine several strategies or implementations in 

order to put a more robust solution in place. For example, 

well-known, extensively tested techniques can be 

complemented with experimental tools working in 

parallel. 

 

4.2. Resource planning 

 

In the distributed system, each task can be run on a 

different computer c ∊ C, with different capabilities. In 

order to determine the most suitable computer where to 

run each task, a number of factors must be taken into 

account (components for the domain L): computing 

resources available in user devices, battery consumption in 

mobile devices, network bandwidth availability and 

latency, real-time requirements for some tasks, capture and 

data flow integration imperatives, etc. Most of these 

factors change over time; for example, the computing 

resources available in a specific computer or the free 

network bandwidth. 

For each computer, the fraction of its resources which 

can be dedicated, as a maximum, to the tasks in T, must 
be quantified; in other words, a proper semantics must be 

defined for the values of the different components in L. 

Therefore, lc,i will show the fraction of the resources 

available for the application in a time instant i. In addition, 

the requirements of the application must be defined in 

terms of rt,c (requirements for each task t in each computer 

c). As explained in Subsection 3.2.2, this can be done by 

combining empiric test and deductive results. 

 

4.3. Framework deployment and empirical adjustments 

 

The implementation of the different tasks of the 

distributed application must be properly deployed on the 

required computers, along with the modules and services 

of the proposed model. For each computer or computer 

profile, the resources defined in the previous section must 

be properly configured. After that, the performance of the 

key computers under each profile should be carefully 

measured. It is necessary to check that the computer has 

always enough resources for meeting the requirements for 

its intended functions. In addition, the distributed 

application must offer results as expected, switching data 

flows between computers according to defined conditions. 

The resource planning step should be reviewed and 

adjusted until the overall system performs as expected; 

proper system modelling and simulation can help in the 

successful completion of this step. 

 

5. Case study: distributed intrusion detection system 

 

A case study of a distributed application is presented 

in this section. The presented application is suitable for the 

proposed model and designed according to the described 

framework. The aim of this case is to show an example in 

a real domain where some advantages from the proposed 

ideas can be obtained. The design of a Distributed 

Intrusion Detection System (DIDS) by following the 

proposed method, and further deployment using the 

framework, is approached. 
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Security is a big concern in IoT and CPS [61]. One of 

the main approaches to information security and cyber 

security has been the development and deployment of 

Intrusion Detection Systems (IDS), also in the context of 

IoT and particularly for CPS [62]. An IDS dynamically 

monitors the actions taken in a given environment, and 

decides whether these actions are symptomatic of an attack 

or constitute a legitimate use of the environment [63]. 

Since the initial proposal of this approach, a lot of 

intrusion detection tools, techniques, projects, and 

products have been developed. Data mining and machine 

learning have been at the core of many of these results. 

Nowadays, there is also an increasing interest in IDS topic 

as shown by the recent advances in anomaly detection 

[64], wireless sensor networks [65], CPS [66], smart grids 

[67], among many others. 

 

5.1. Task and data flow decomposition 

 

The proposed DIDS is designed by selecting and 

combining a number of existing IDS solutions. The first 

stage is the task and data flow decomposition. Fig. 7 

shows the data flow diagram for a possible DIDS. 

 
Fig. 7. Possible task and data flow decomposition for a 

generic DIDS 

 

As can be seen, the capture task generates a packet 

flow, feeding two different IDS approaches. On one hand, 

misuse detection and alert analysis is applied; this will be 

implemented by standard well-proven tools. On the other 

hand, anomaly detection is performed; state-of-the-art 

techniques will be put in place for evaluation and further 

research. Anomaly detection involves some complex 

processes that can be run in parallel in a distributed way: 

filtering (extracting headers from packets), extracting 

features and building a stored behavioural model to be 

used for further anomaly detection. Table 2 describe 

details of the application tasks and data flows. 

 

Table 2. Possible task and data flow decomposition for a 

generic DIDS 

T (tasks) 

Capture 

filter 

feature extraction 

anomaly detection 

behavioural model 

misuse detection 

alert analysis 

F (flows) 

packets1 (capture; filter) 

packets2 (capture; misuse detection) 

headers (filter; feature extraction) 

features1 (feature extraction; behavioural model) 

features2 (feature extraction; anomaly detection) 

alerts (misuse detection; alert analysis) 

 

The DIDS described in Fig. 7 has been implemented 

by using some state-of-the-art tools and techniques. The 

objective is not to build a full operative IDS, but to 

illustrate the proposed method and test the feasibility of 

the proposed framework. Table 3 summarizes the tools 

deployed and relevant projects referenced for that purpose. 

 

Table 3: Tools and projects on which the experimental 

DIDS is based 

 

Task Tool/Project 

Capture Tcpdump/Libpcap 

Filter TShark (part of the Wireshark® 

network analyser) 

Feature extraction MINDS (Minnesota INtrusion 

Detection System) 

Behavioural model Snort.AD 

Anomaly detection Snort.AD 

Misuse detection Snort® 

Alert analysis Hadoop® 

 

Tcpdump with the corresponding Libpcap is a 

traditional option commonly used for capturing network 

traffic [68]. Our IDS runs Tcpdump to capture all 

incoming and outgoing traffic going through the network 

interface, with the exception of the data produced by the 

IDS tasks: otherwise, IDS would process data generated 

by itself, what may be considered useless and time 

consuming in most of the possible environments. The 

captured traffic will be further processed in two different 

ways: anomaly detection and misuse detection [69]. 

In ‘anomaly detection’, TShark is used to extract 

headers from network traffic in a proper format to be 

further processed for feature extraction. TShark is a 

command line interface in the Wireshark suite 

(https://www.wireshark.org/). The features are extracted 

from packet headers using an R script. The behavioral 

model and anomaly detection is built as a variation of the 

one provided in Snort.AD project 

(http://anomalydetection.info/), working in a standalone 

way (not integrated with Snort). 

In ‘misuse detection’, a Snort sensor supplies a 

powerful list of rules to match network traffic against 

them. One typical drawback of misuse detection in general 

and Snort in particular, is the generation of many false 

positives that should be properly reviewed by an expert. 

Some of the solutions proposed in the literature include 

further alert analysis, using cloud big data clusters. For 

this reason, a Hadoop cluster for correlating alert 

messages has finally been deployed. 

 

  

filter
misuse

detection

capture

feature
extraction

alert
analysis

behavioural
model

anomaly
detection

packets1 packets2

headers alerts

features1 features2
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5.2. Resource planning 

 

The described method can be used to properly 

distribute IDS tasks, considering security requirements and 

variable availability of computing resources. The 

presented approach favors the integration of limited 

computing resources in CPS, with externally supplied 

cloud services, in order to meet IDS requirements. 

A simple CPS consisting of a wearable and a mobile 

phone device is considered in this case study. This type of 

device is currently very popular and common among 

citizens. They generally incorporate a lot of sensing 

features and most of the time they are idle. Therefore, they 

encompass the ideal target devices for distributed CPS 

applications and they should be used for supporting them. 

In addition, a cloud server is added to the framework to 

perform part of the processing cost. The wearable device 

and the mobile roles will be accomplished by low-cost, 

single-core, credit-card sized computers: Raspberry Pi, 

with an ARMv6-compatible processor and 512MB of 

main memory. For the server a desktop computer, with an 

Intel® Core
TM

 i5 CPU and 6GB of main memory, will be 

employed. The computers are interconnected in a standard 

wireless local area network. 

For pointing out the feasibility of the approach, we 

will take into consideration only the three tasks shown in 

Fig. 8. In addition, we will just consider transfer rate and 

processor load as the relevant performance parameters. 

 
T = {filter(t1), feature extraction(t2), anomaly detection(t3)} 
F = {packets(t1, t2), features(t2, t3)} 
C = {wearable(c1); mobile(c2); cloud(c3)} 
L = Transfer rate ⨯ Processor load 

 

The requirements of the tasks for each computer are 

stated by the matrix R, where the element rt,c ∊ L specifies 

the required transfer rate and processor load for task t in 

the computer c. 

 

 =  (

 0   0 2  0   0 2  0   1 
 0 3 0    0 3 0    0 3 0 1 

 0 1 1  0 1 1  0 1 0 2 
) 

 

5.2.1. Task requirements 

 

In order to determine the values for the components of 

each rt,c of the matrix R, empiric test has been conducted. 

For example, the transfer rate depends on the task and the 

maximum transfer rate allowed by the network 

(bandwidth). As all the computers in the experimental 

environments share the same network, the same estimation 

is shared by all computers, but is different for each task. 

Regarding to the processor load, it has been observed 

that when the c2 computer (mobile) runs t2, (feature 

extraction), the processor load (average number of 

processes in a runnable state) increases in 0.5 processes; as 

it is a single-core computer (only one process average 

should be accepted as a maximum), we estimate 0.5 as the 

requirement for the feature extraction task in the mobile 

device, in relation to processor load. In contrast, the 

feature extraction task does not heavily increase the load 

of the multi-core processor in the cloud server (only 0.1 

point is estimated). 

Some tasks are directly discarded for certain 

computers. In those cases, we estimate 1, so the task will 

never be assigned to those computers. For example, the 

task 3 (anomaly detection) will never be run on the 

wearable or mobile devices, as we consider that they are 

always too much expensive from the computing resources 

point of view. 

However, other tasks can be computed in several 

types of computer. For example, the task 2 (feature 

extraction) could be processed in the three computers, 

because these systems could have resources enough for it. 

The decision on where to process this task could come 

from the user preferences or other aspects of the 

distributed architecture. For example, the wearable (c1) 

owner wants to minimize the utilization of his/her device 

for saving battery; then, he/she configures it for low 

utilization. In addition, the mobile device (c2) is a better 

option over outsourcing the work to the cloud, because of 

the derived cost savings. 

These conditions are particular for each CPS case, and 

they configure the scheduler work. The information 

needed is coded in the suitability matrix S, which specifies 

the preferences for processing the tasks. In this way, the 

suitability information is included into the model. For 

example, let the next matrix S be an example of the 

suitability data for the case study application. 

 

 =  (
0 1 0  0  
0 1 0  0  
0 0 1

) 

 

As shown, the mobile computer (c2) is preferable to 

the other computers for processing the tasks 1 and 2. In 

addition, for task 3, the only suitable platform is the cloud 

(c3). From these data, the distributed architecture of the 

CPS can decide among the feasible options for performing 

the scheduling work. 

 

5.3. Deployment and empirical adjustments 

 

A prototype of the proposed framework is provided in 

this subsection in order to perform some tests and adjust 

framework parameters for showing the viability of our 

approach. A minimalist implementation of the prototype 

has been made in order to focus on how the model works 

and not to interfere with the normal execution of the 

devices. 

The implementation is based mostly on Bash 

scripting, and Secure Shell (SSH) as a communication 

mechanism for all services. To begin with, a script has 

been built for each task in the experimental DIDS. These 

scripts take input and output file names as arguments, and 

these file names are used inside the script to properly feed 

the tools in Table 3. Additionally, a prototype for the two 

main components of the framework must be provided: the 

controller mechanism and one switch process per task 

instance. 
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The initial startup of the computing nodes is done 

through a main program. This program reads a textual 

representation of A = {T, F}, C, and the R matrix. From this 

input, it runs the corresponding task instances by calling 

the task scripts, and also a switch process per task 

instance. The communication between task instances and 

the corresponding switch process is made through standard 

Unix FIFO streams, as shown in Fig. 8, due to its simple 

implementation and interoperability. 

 

 
Fig. 8. Processes created in three computer profiles for a simple DIDS 

 

The figure shows a schema of the processes created in 

the three example computer profiles, for a part of the 

simplified version of the experimental DIDS. The 

prototyped switch process periodically contacts the 

controller to find out the target computer for the 

corresponding data flow, following the algorithm in Fig. 5. 

This is done by using SSH to remotely call a command in 

the controlling computer. If the controlling computer is not 

available (it does not respond), the fallback decision is 

taken, namely local transfer of the flow. The data transfer 

is done by using dd along with ssh common commands. 

The prototyped controller is made of a set of 

simplified processes that roughly implement those 

represented in Fig. 4. New computers are added by 

providing a script which, remotely invoked, registers the 

corresponding rt,c according to the computer profile. The 

prototyped computer monitor finds out current data 

transfer rate and system load average by remotely running 

vnstat and top/uptime commands, respectively on the 

target computer; the results are added into a history file. 

The system load average as calculated by top/uptime is the 

average number of processes that are using the CPU, 

waiting to use the CPU, or waiting for some I/O access. 

A variable data block size is chosen, corresponding to 

all the data captured during 60 seconds. This may seem a 

lot of time, as it poses a severe limitation: decisions made 

by the framework scheduler can only be taken once a 

minute. The reason for such a long period is the time 

required by the implementation of the feature extraction 

process in our single-core wearable test computer: it adds 

a constant time of 40 seconds to process any data block, 

including empty data blocks. However, this should not be 

a limitation in a real environment: the feature extraction 

process can be heavily optimized (those additional seconds 

are not spent when running feature extraction in other 

platforms), and nowadays is common to find multicore 

architectures also in mobile sensors. As we have defined 

such a long time for a variable size block, we set the 

threshold value to 0 (revisit Fig. 5), so scheduling 

decisions are taken every single block. 

 

5.4. Simulation results & discussion 

 

Fig. 9 depicts a representative example of the 

simulation results. The three upper diagrams show the 

‘load average’ of the wearable, mobile and cloud computer 

respectively. The bottom diagram represents the ‘data 

transfer rate’ along the network. The average is taken over 

the last minute. As can be seen, the devices are usually 

running user applications such as music, video 

reproduction, and incoming calls (colored areas in the two 

upper diagrams corresponding to c1 and c2 computers). At 

the beginning of the test, the tasks are launched on the 

wearable device (c1) to be processed. Other scenarios can 

be designed with similar results. When the framework is 

disabled, the wearable device cannot take over the tasks of 

the DIDS application. Over the minutes 17 and 27 the 

computer load overcomes the capacity of the device. This 

situation may result in mp3 reproduction errors or in 

malfunction of the tasks. When the framework is enabled, 

according to R and S matrices, the tasks are sent to the 

other computers. The tasks 1 and 2 are initially sent to be 

processed on the computer c2 and the task 3 is sent to the 

cloud computer node (c3). However, over the minute 21 an 

mp4 reproduction starts in computer c2. After that, the 

system load raises until reaching 1 system load average.  
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Fig. 9. System load average and data transfer rate 

 

At this point, the framework scheduler instructs the 

switch process to send packet headers to the server 

computer, where the corresponding server task will extract 

the features. Consequently, the feature extraction task is 

not running anymore on this device, and the system load 

average goes decreasing. This decrease in load allows the 

video stream to be properly played. 

We have conducted the same experiment several 

times, and despite the random nature of the user behaviour 

simulation, the essential result remains the same: 

successful switching of the packet header flows, freeing 

processor time of the devices c1 and c2 when required by 

user tasks. The simulation results in Fig. 9 show a 

reduction in the load average due to the transfer of part of 

the processing to the server node. The computing cost 

produced by the switch and the controller processes are 

assumable, while the processing along the network devices 

can be shared if necessary. As long as we properly extend 

L with relevant components, this model can be also 

applied to offloading strategies in mobile computers 

supplied with batteries. 

Sending packet headers to an external server implies 

bandwidth use. This is reflected in the lower diagram of 

Fig. 9. Obviously the traffic flow is increased by a fraction 

of the analysed flow (the traffic between DIDS tasks is not 

captured for analysis). In our test environment, this 

increase in the data transfer rate can be perfectly assumed, 

since our wireless network support a bandwidth of several 

megabytes per second. However, in a real environment, 

complex scheduling policies must be put in place, taking 

into account other factors as variable free bandwidth in 

wireless networks with shared transmission medium, 

energy consumption and user preferences, among others. 

Those complex strategies fit into the L definition and the 

⊕ operator for prediction. 

The experiments show that the provided formal model 

can be adapted to a great set of applications to be 

distributed over a number of heterogeneous nodes found in 
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CPS. By properly defining L, the scheduling process will 

take decisions based on relevant performance metrics; by 

properly defining R, the suitability of the devices for the 

different tasks is modelled, and this information can be 

used for optimal or suboptimal decision computation. By 

establishing a procedure ⊕, the result of simple or 

sophisticated prediction models can be incorporated to the 

design, in order to improve the goodness of the scheduling 

results. Finally, by suitably configuring S, the scheduler 

can take into consideration the preferences and particular 

operating conditions of the available devices. 

 

6. Conclusions 

 

In this work, we have designed a novel resource 

definition framework and a method that allows convenient 

distribution of the application tasks on CPS environments. 

Thse contexts are mainly characterized by the diversity 

and dynamic availability of the computing elements 

involved. The proposal takes into account feasibility and 

suitability aspects such as the configuration preferences, 

variable availability of computing resources in CPS 

devices, personal and enterprise computers, and additional 

capabilities coming from cloud services. In addition, the 

framework supports solutions based on multiple 

technologies and approaches, combining well-known 

effective techniques with the latest research results. As a 

secondary effect, the framework also provides failure 

tolerance by supporting multiple instances of the different 

tasks required for the overall distributed application. 

This approach offers an application independent 

solution for integrating computing resources in a flexible 

way and combining the scheduling possibilities for sharing 

the processing cost among the CPS nodes: cloud resources 

are used only when necessary, minimizing utility 

computing costs and security problems but preserving 

local resources when those are required for critical 

processes. 

The experiments conducted provide a proof-of-

concept prototype of the model and show the feasibility of 

the method for distributing the application tasks in a CPS 

environment. 

For future research work, further effort must be 

invested in building a proper predictive model of the 

available resources, addressed to provide valuable 

information for increasing the effectiveness of the 

scheduler component. This a very important challenge for 

avoiding overload scenarios and properly leveraging the 

deployed infrastructure. 

Another future work line has to do with the network 

performance analysis for obtaining accurate response 

times and available bandwidth for sharing the dataflows 

and tasks in CPS environments. 

In addition, for the proposed further research, the 

experimental design should be completed, integrating 

other relevant factors, as main memory usage, storage 

requirements and energy consumption. 
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