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Abstract 

The direct electron transfer (DET) to redox proteins has become a central topic in the 

development of biotechnological devices. The present work explores the mechanisms of 

the direct electrochemistry between cytochrome c and a conducting polymer, PEDOT-

PSS. This polymer has been electrosynthesized from its monomers in aqueous solution 

on gold electrodes and its capabilities for DET to cyt c have been examined by 

electrochemical and spectroelectrochemical methods. The polymer was electrodeposited 

with controlled thickness and we determined the electron transfer rate constant for cyt c 

oxidation was about 2 orders of magnitude higher than those obtained at conventional 

electrodes. Spectroelectrochemical measurements allowed to evaluate the redox state of 

the polymer as a function of the potential and, in addition, the observation of intrinsic cyt 

c redox activity upon electron transfer from the conducting polymer. During the oxidation 

process of this protein, lysine residues placed near the heme crevice interact 

electrostatically with the anionic polyelectrolyte PSS. This interaction favors the 

orientation of the heme group towards the chains of PEDOT backbone, which is the 

eventual responsible for the electron transfer to the protein. 
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1. Introduction 

The direct electron transfer (DET) from conducting materials to redox proteins has been 

examined extensively for years due to its fundamental interest in biochemistry 

mechanistic studies1,2. Nowadays, this charge transfer process is a central issue in the 

development of nanobiotechnological devices, such as biosensors for health monitoring 

or enzymatic fuel cells3–6. 

Among redox proteins, cytochrome c (cyt c) is probably one of the most extensively 

explored compound due to its key role in the respiratory chain7–13. Cyt c is a water soluble 

heme protein, with spherical shape and near 3 nm in diameter, which has the function of 

accepting electrons from cyt c reductase and delivering them to cyt c oxidase in the 

mitochondrial inner-membrane14. Intensive research has shown it is not easy to achieve 

DET to cyt c at solid electrode surfaces, since the redox-active heme centre is wrapped 

by the peptide chain and protected from the solvent15,16. It is known that Cyt c adsorbs 

strongly on conventional metal electrodes like Pt, Hg, Au or Ag17 and conformational 

changes suffered by the protein (unfolding and/or denaturation) lead to slow electron-

transfer kinetics18,19. This difficulty has been overcome by using electrode modifiers such 

as metal oxides, advanced carbon materials, DNA or lipid membranes20–26. In particular, 

the modification of surfaces with organic thin films like self-assembled monolayers 

(SAM), has been extensively used to manipulate the electrode surface, promoting the 

appropriate orientation of the protein and thus enhancing its electroactivity27–36. 

Conducting polymers prepared by electrochemical methods constitute a class of organic 

modifiers that offer high versatility in several biotechnological applications of proteins. 

These materials have been used as enzyme immobilizers, DNA biosensors, electronic 

transducers in biosensors or drug delivery systems among others37–39. Due to its 

adaptability and ease of preparation, conducting polymers have been also used as 
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promoters of DET to several redox proteins and, particularly, to cyt c. Polyaniline (PANI) 

is, probably, the most studied synthetic conducting material, but the lack of electrical 

conductivity observed at neutral pH hampers its use in biological systems. Self-doped 

polyanilines could be adopted for this application but due to their low activity for DET 

reactions, they were mainly used as protein entrappers in combination with carbon 

materials40–42. Similar application can be found for pyrrole and thiophene-based 

conducting polymers despite they seemed more adequate than PANI since both are 

electroactive at physiological pH. In most cases, polypyrrole and polythiophene films 

serve merely as the matrix to embed nanostructures (gold nanoparticles, carbon 

nanotubes, graphene, etc.) that are employed for DET to proteins in sensor applications43–

46. Little number of fundamental studies based exclusively on conducting polymers (i.e. 

in the absence of other promoters) can be found in relation to the direct electron transfer 

to proteins. 

Poly(3,4-ethylenedioxythiophene) doped with poly-styrene sulfonate (PEDOT-PSS) is 

one of the most successful conducting polymers in terms of practical applications. Its 

ability to form thin and homogeneous films, optical transparency in the visible light 

region, high electrical conductivity and good physical and chemical stability in air, made 

this polymer very common in a wide range of applications47. PEDOT-PSS can be 

electrodeposited on suitable electrodes from aqueous solution containing EDOT 

monomer. The solubility in water of EDOT is rather low but the addition of PSS acting 

as surfactant and doping agent solves the problem48. 

The present paper explores the modification of metal electrode with PEDOT-PSS 

prepared by electrochemical methods from aqueous solutions and its use to the study of 

the direct electron transfer of cyt c. The combination of vibrational spectroscopy and 

electrochemistry experiments allow to gain information on the molecular processes 
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involved during the doping of PEDOT-PSS. The ability of PEDOT-PSS to induce a 

proper orientation of the protein for DET was explored by the spectroelectrochemical 

technique. 

 

2. Experimental 

Cytochrome c (cyt c) from horse heart (98%), 3,4-ethylendioxythiophene (EDOT) (97%), 

poly(sodium 4-styrenesulfonate) (PSS) and deuterium oxide (99.9 atom % D) were 

purchased from Sigma-Aldrich, whereas potassium dihydrogen phosphate and 

dipotassium hydrogen phosphate were from Merck. All the reagents were of analytical 

grade. The solutions were prepared with ultrapure water obtained from an Elga Labwater 

Purelab system (18.2 MΩ cm). 

The phosphate buffer solution (PBS, pH 7) was a mixture 0.15 M K2HPO4 + 0.10 M 

KH2PO4. EDOT electropolymerization was carried out in aqueous medium prepared by 

dissolving 1.46 g PSS in 10.0 mL ultrapure water, 50 μL EDOT monomer were then 

added and the resulting solution was stirred in an ultrasonic bath during 30 minutes. The 

composition of the final mixture for electropolymerization was 0.15 % (w/w) PSS and 47 

mM EDOT monomer. 

Cyclic voltammetry experiments were carried out using a Wenking ST 72 Potentiostat 

from Bank Elektronik, a wave programmer from EG&G PARC and an eDAQ-410 digital 

recorder equipped with eDAQ-EChart data acquisition software. The electrochemical 

cells were purged by bubbling N2 for 20 min, and the inert atmosphere was maintained 

during all the experiments. All the potentials were measured against a reversible hydrogen 

electrode (RHE) immersed in the same electrolyte and are presented in that scale. A 
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platinum wire was used as the counter electrode and a 0.080 cm2 polycrystalline gold 

sphere as the working electrode.  

X-ray photoelectron spectroscopy (XPS, K-ALPHA, Thermo Scientific) was used to 

analyse the sample surface. All spectra were collected using Al-K  radiation (1486.6 eV), 

monochromatized by a twin crystal monochromator, yielding a focused X-ray spot 

(elliptical in shape with a major axis length of 400 µm) at 3 mA x 12 kV. The alpha 

hemispherical analyser was operated in the constant energy mode with survey scan pass 

energies of 200 eV to measure the whole energy band and 50 eV in a narrow scan to 

selectively measure individual elements. XPS data were analysed with Avantage 

software. A smart background function was used to approximate the experimental 

backgrounds and surface elemental composition were calculated from background-

subtracted peak areas. Charge compensation was achieved with the system flood gun that 

provides low energy electrons and low energy argon ions from a single source. The 

experimental curves were adjusted using a combination of Lorentz (30%) and Gaussian 

(70%) functions. 

In situ FT-IR spectroscopy was performed in a Nicolet Thermo 5700 spectrometer 

equipped with a liquid nitrogen-cooled mercury-cadmium telluride, MCT, detector. The 

three-electrode spectroelectrochemical cell was equipped with a prismatic CaF2 window 

bevelled at 60°. The working solution was bubbled with Ar flow for 20 min and the inert 

atmosphere was maintained during all the experiments. The counter electrode was a gold 

ring and a reversible hydrogen electrode (RHE) was used as the reference one. The 

working electrode was a mirror-polished gold disc. In situ FTIR spectra were collected in 

the external reflection-absorption mode at 8 cm-1 resolution. Typically, 100 to 500 

interferograms were processed with OMNIC data acquisition software to obtain both the 

background and the sample spectrum. 
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3. Results and Discussion 

3.1. Electrochemical synthesis of PEDOT-PSS 

Fig. 1 shows the electrochemical oxidation of EDOT on a gold substrate in aqueous 

solution containing PSS.  
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Figure 1: Cyclic voltammograms recorded during the potentiodynamic growth of a 

PEDOT-PSS film on a gold electrode from an aqueous solution containing 47 mM 

EDOT + 0.15% PSS aqueous solution. Scan rate 100 mV s-1. (a) first cycle; (b) 

successive potential cycles. 
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The first potential cycle is presented in Fig. 1a, where a featureless voltammetric profile 

is recorded until a potential value above 1.45 V is reached. This point corresponds to the 

onset of EDOT monomer oxidation and, consequently, to the formation of PEDOT. The 

inversion potential was set at 1.6 V in order to obtain a suitable growth rate of polymeric 

material. On subsequent potential scans (see Fig. 1b), it is observed the presence of a 

current plateau in the potential region between 0.6 V and 1.4 V, showing capacitive 

character and increasing voltammetric charge. This feature is assigned to the growth of 

PEDOT-PSS on the electrode surface. The charge of the capacitive current can be related 

with the mass of PEDOT-PSS deposited on the gold surface. This has been done by taking 

a double layer capacitance of 67.7 F g-1 for this material, as it was determined by Bobacka 

and coworkers49. Therefore, in this case, cyclic scanning of the potential provides a 

unique tool to in situ monitor the amount of deposited polymer. 

The chemical composition of the deposited layer was determined by means of XPS 

spectroscopy. Fig. 2 shows the photoelectronic spectrum of the S 2p region for a PEDOT-

PSS film. The presence of two major bands corresponding to different sulphur species 

with different oxidation states is clearly observed. Both signals can be deconvoluted into 

two contributions, showing a characteristic separation between the 2p3/2 and 2p1/2 spin-

split doublets of 1.18 eV. The low energy signal, with a S 2p3/2 contribution peaking at 

163.8 eV, is assigned to sulphur atoms located at thiophene rings in EDOT monomers50. 

On the other hand, the S 2p3/2 contribution to the higher binding energy signal (167.9 eV) 

is attributed to sulphur in a higher oxidation state and, consequently, corresponds to those 

sulfonate groups contained in the PSS dopant anion51. The analysis of both S 2p signals 

shows that the sulfonate/thiophene ratio in electrodeposited PEDOT-PSS films is closed 

to 3.5. 
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Figure 2. High resolution XPS signal for S 2p obtained from a PEDOT-PSS film 

electrodeposited on a gold substrate. 

 

 

3.2. Electrochemical characterization of the direct electron transfer between cyt c and 

PEDOT-PSS 

It is known that cyt c molecules in bulk solution do not transfer charge significantly to 

metal electrodes. In fact, Fig. 3 shows the steady state cyclic voltammogram of a bare 

gold electrode immersed in 5 mg mL-1 cyt c solution, where no redox features showing 

electrochemical activity of this macromolecule can be distinguished (dotted line in Fig. 

3). On the contrary, a PEDOT-PSS film shows a clear-cut ability to serve as an active 

substrate for cyt c oxidation. The oxidation of ferrocytochrome c to ferricytochrome c 

occurs under the anodic peak centred at 0.67 V and the reduction counter process appears 

as a cathodic feature peaking at 0.61 V (see solid line). If no cyt c is added to the working 

solution, a PEDOT-PSS film of the same thickness shows only capacitative current in the 

potential region comprised between 0.4 V and 1.0 V (dashed curve). 
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Figure 3. Steady state cyclic voltammograms recorded for bare gold (dotted line) and 

0.11 µm PEDOT-PSS/gold (solid line) electrodes in PBS solution containing 5 mg mL-1 

cyt c. Dashed line is de CV for a 0.11 µm layer of PEDOT-PSS on gold in PBS, pH 7, 

with no cyt c added.  Scan rate 100 mV s-1 in all cases. 

 

 

Once the ability of PEDOT to transfer charge to cyt c has been established, the effect of 

polymer thickness on the electrochemical process will be analysed in depth. Fig. 4 shows 

steady-state cyclic voltammograms recorded in the same 5 mg mL-1 cyt c solution for 

gold electrodes modified with PEDOT-PSS films of increasing thickness. All the 

voltammetric curves show the characteristic pair of redox peaks accompanying the 

reversible electrochemical oxidation of the protein iron centre. Such evidence opens the 

question of finding out the most suitable PEDOT thickness or, in other words, the deposit 

showing better electrochemical kinetics. 
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Figure 4. Steady state cyclic voltammograms recorded in PBS containing 5 mg mL-1 

cyt c. The electrode was a gold substrate covered with PEDOT films of increasing 

thickness: (a) 0.02, (b) 0.09, (c) 0.18, (d) 0.36 and (e) 0.71 µm. Scan rate 100 mV s-1. 

 

 

To achieve this, an analysis of voltammetric peak currents and peak separations as a 

function of the polymer thickness was carried out. Fig. 5a shows the peak-to-peak 

separation of the redox process and, as observed, there is a minor effect of polymer 

thickness on cyt c electron transfer kinetics. Ep recorded at extremely thin PEDOT-PSS 

films (<40 nm) show a marked irreversibility, but peak separation stays between 60 and 

65 mV in most cases, which represents a quasireversible process. Consequently, the 

electrochemical reversibility of the cyt c electron transfer seems not significantly affected 

when occurring at PEDOT films with thickness between 0.04 and 0.7 μm. From the 

results presented in Fig. 5, an average heterogeneous transfer rate constant, kº, for the 

electrochemical reaction can be determined by means of Nicholson’s method.52 The kº 

value amounts to 0.049 cm s-1, as obtained from the average value of peak separation 
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between 0.04 and 0.7 μm (ΔEp = 62 mV, SD 2 mV). This number indicates that the 

electron transfer reaction is faster through the PEDOT-PSS modified electrode than for 

other widely used electrodes such as ITO, carbon materials or chemically-modified gold 

substrates, for which typical values in the order of 10-3-10-4 cm s-1 are reported24,53–56. 
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Figure 5. Effect of PEDOT layer thickness on: (a) separation between redox peaks, and 

(b). cyt c redox anodic peak current density. Working solution: 5 mg mL-1 cyt c in PBS, 

pH 7. 
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The plot in Fig. 5b shows how the recorded current density of the anodic redox peak is 

almost zero in the absence of deposited polymer but it rises significantly in the presence 

of thin PEDOT-PSS films. In fact, it seems that the current density decreases for deposits 

thicker than 0.1 μm. It is believed that thicker films show a non-uniform vertical 

conductivity, which could be at the origin of the observed effect. In this context, it is 

worth mentioning that the existence of a vertical conductivity gradient at PEDOT-PSS 

inserted within a SiO2 matrix was already suggested in previous works48. As expected, 

the redox current involved in the redox process increases proportionally to the 

concentration of protein in PBS but, remarkably, the measured current does not depend 

on the amount of electrodeposited polymer (see figure S1 of the supporting information). 

 

3.3. In situ FTIR study on the direct electron transfer between cyt c and PEDOT  

Several conducting polymers such as those obtained from aniline, pyrrole and their 

monomer derivatives show interesting redox properties that can be characterized at 

molecular level by the so-called electrochemical in situ spectroscopies. Among them, in 

situ FTIR spectroscopy constitutes a unique tool to monitor the effect of the applied 

potential on the vibrational features of polymer redox active centres. Chemically 

reversible redox transitions in conducting polymers usually involve interconversion of 

functional groups and, consequently, significant absorption changes in the infrared region 

of the electromagnetic spectra. PEDOT-PSS is, nevertheless, one of the widely used, less 

studied conducting polymers by in situ FTIR spectroscopy. Just a few contributions 

devoted to the analysis of the effect of the applied potential on the absorption spectrum 

can be found in the literature 57–59. In situ FTIR spectroscopy will be used in the present 
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work to gain insight on fundamental aspects of the direct electron transfer occurring 

between cyt c and PEDOT-PSS. Accordingly, it is firstly required a vibrational 

characterization of PEDOT-PSS redox transitions in the absence of cyt c. Fig. 6a shows 

a set of in situ FTIR spectra obtained in PBS for a gold electrode covered with an 

electrodeposited 0.04 μm PEDOT-PSS layer. The modified electrode was immersed in 

the spectroelectrochemical cell containing PBS test solution at 0.2 V and then pressed 

against the CaF2 window. A set of 100 interferograms was acquired at this potential to be 

used as the reference spectrum and, then, the potential was scanned sequentially up to 

1.3V. Sets of 100 sample interferograms were collected every 100 mV step and referred 

to the spectrum at 0.2 V. The resulting differential spectra are depicted in Fig. 6a. There, 

each single spectrum represents changes in vibrational modes occurring at increasing 

sample potentials relative to the unique reference spectrum. In this way, positive-going 

(upward) bands can be assigned to the weakening or extinction of vibrational modes at 

the sample potential while negative-going (downward) bands to their strengthening. At 

this point, it should be noted that PSS contained within PEDOT matrix is not redox-active 

and, consequently, it is expected that its vibrational modes will show zero or negligible 

intensity in the normalized differential FTIR spectra. 

The first spectrum in Fig. 6a was obtained at a sample potential of 0.6 V. There, three 

obvious negative-going bands are detected at 1535, 1420 and 1250 cm-1, in addition to 

two positive-going bands at 1470 and 1365 cm-1. The band at 1535 cm-1 can be assigned 

to the antisymmetric C–C stretching mode within oxidized thiophene rings60–63. Fig. 6b 

shows how the integrated band intensity of this feature increases almost linearly at 

increasing potentials. From this behaviour, it is derived that the electrochemical injection 

of positive charge within the polymer backbone results in a significant and gradual 

activation of vibrational modes coming from oxidized (polaronic) structures of the 



15 
 

PEDOT-PSS. Since there is no degradation of the polymer within the potential window 

employed in the experiment, the almost linear trend replicates the growing oxidative 

doping level of the deposited material. Furthermore, the intensity stabilization from 1.2 

V means that the complete oxidation of the polymer has been achieved at this potential 

and overoxidation of the polymer structure could occur beyond such limit. 

 

Table 1. Proposed assignments for the in situ FTIR bands of reduced and oxidized 

forms of PEDOT-PSS 

PEDOT Structure Frequency/cm-1 Assignment Refs. 

Reduced

 

   

1470 Aromatic C–C ring str. 59,62,64,65 

1365 Aromatic C–C ring str. 60,61,64,65 

   

 
 

 

Oxidized

 

   

1535 Cα–Cβ antisymm str. 60–63,66 

1420 Cα–Cβ symm str. 60,62,64,66 

1250 Cα=Cα symm str. 61,66 

   

 

 

On the contrary, the intensity of the two positive-going bands (which are related to a pair 

of ring-stretching vibrations of thiophene, typical of five-membered heterocycle 

compounds 65 remains almost constant upon positive charge injection. This result strongly 

suggests that the two vibrational modes coming from the reduced state of the polymeric 



16 
 

material vanish at the early stages of electrochemical oxidation and, consequently, it 

seems that a sudden loss of the aromatic character of thiophene rings takes place at very 

low potentials, above 0.2V. 

Changes in band frequency at increasing potentials have been also depicted for the 1535 

cm-1 absorption in Fig. 6c. The clear frequency shift observed, with a tuning rate close to 

30 cm-1 V-1, resembles an electrochemical Stark effect67. It is known that most thiophene-

based conjugated polymers, including also EDOT-based materials, present IR bands 

whose positions are almost independent on the applied potential. In some particular cases, 

frequency shifts at increasing doping levels were found, but always associated to specific 

families of thiophene derivatives68–70. No clear explanation of this phenomenon has been 

offered in the literature to date, although it is believed that electronic transitions between 

different charged moieties upon oxidation (specifically polaron to bipolaron transitions) 

could be at the origin of the observed energy shift. Along with the antisymmetric C-C 

stretching in oxidized EDOT units, the parent symmetric vibration appears as a negative 

absorption peaking at 1420 cm-1 in the spectra of Fig. 6a. Finally, the low frequency 

feature at 1250 cm-1 can be attributed to an inter-ring C–C stretching vibration61,63. All 

these assignments have been summarized in Table 1. Vibrational modes coming from C–

S bonds in thiophene rings appear at frequencies below those of the CaF2 window cut-off 

and, consequently, are undetectable in our experiments. 
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Figure 6. (a) In situ FTIR spectra collected for a thin (0.04 μm) deposit of PEDOT on a 

gold electrode in PBS. Reference spectrum obtained at 0.2 V. 100 interferograms at 

each potential. (b) . Integrated intensity of the Cα–Cβ antisymmetric stretching against 

the applied potential. (c) Dependence of the Cα–Cβ antisymmetric stretching frequency 

on the applied potential 

 

 

Once the assignments of the main in situ infrared features have been carried out, the 

question of how the electron transfer between PEDOT-PSS and cyt c modifies the 

recorded spectra can be addressed. The spectroelectrochemical response of a PEDOT-
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PSS layer was tested in working solutions containing either PBS (Fig. 7a) or cyt c in PBS 

(Fig. 7b). In order to increase the signal-to-noise ratio, reference (0.5 V) and sample (0.7 

V) potentials were adjusted around the cyt c redox transition and five potential steps 

between reference and sample potentials were carried out. The 500-interferogram 

resulting spectra were co-added in order to obtain a unique computed spectrum with 

enhanced quality in each working solution. 
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Figure 7. (a) In situ FTIR spectra recorded in PBS for a 0.04 μm PEDOT layer 

deposited on gold. (b) In situ FTIR spectra for a 0.04 μm PEDOT deposit in PBS 

containing 1 mg mL-1 cyt c. Reference: 0.5 V. Sample: 0.7 V. 500 interferograms at 

each potential. 

 

 

It can be observed that both spectra are dominated by bands assigned to the redox 

transitions of the conjugated polymer backbone, in addition to a strong positive band at 

around 1640 cm-1 coming from the unbalanced O-H bending of water molecules and 
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associated to the swell-shrink process of PEDOT. It is also worth noting in the spectrum 

of Fig. 7a that positive features vanish at 1365 and 1470 cm-1 (see Fig. 6a for comparison). 

This is because the reference spectrum was acquired here at a higher potential (0.5 V 

instead of 0.2 V). The aromatic character of thiophene rings was already lost at 0.5 V and, 

as a result, only negative-going bands can be observed, since they simply show 

intensification of the oxidation process at 0.7 V with respect to 0.5 V. Therefore, it is 

derived that positive bands at 1515 and 1390 cm-1 in Fig. 7b come unambiguously from 

the reduced state of cyt c and not from PEDOT-PSS. The former feature is clearly 

identified as the amide II band71 and the latter integrates the amide III region72. On the 

other hand, the negative band at around 1430 cm-1 is overlapped with the PEDOT Cα–Cβ 

symmetric stretching and it can be attributed to the intensification of the C-H bending at 

aminoacid side chains occurring upon oxidation32,71,72. Another major feature in the 

spectrum of Fig. 7b involves the amide I infrared region, between 1600-1700 cm-1, which 

is modulated by the secondary structure of the protein and is really distorted by the H2O 

bending vibration. 

To clarify cyt c infrared transitions appearing in this spectral region, additional 

experiments were performed using deuterated water as the solvent. In these experiments, 

the unbalanced D2O absorption due to polymer swelling may disturb the frequency region 

at around 1200 cm-1. Fig. 8 shows a set of spectra for PEDOT-PSS modified electrodes 

acquired at sample potentials of 0.7 V in PBS/D2O solutions, either in the absence or in 

the presence of cyt c. 
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Figure 8. In situ FTIR spectra collected for a 0.04 μm PEDOT layer in: (a) PBS/D2O 

solution; (b) 1 mg mL-1 cyt c in PBS/D2O solution; (c) 3 mg mL-1 cyt c in PBS/D2O 

solution. Sample 0.7 V. Reference 0.5 V. 500 interferograms at each potential. (d) 

Deconvolution of the amide I band from spectrum c. 
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In addition to the IR absorptions assigned to polymer vibrational transitions, spectra 

collected in the presence of protein (Fig. 8b and 8c) show negative bands at 1605 cm-1 

coming from the ν37
 stretching vibration of the heme group and positive bands at 1565 

cm-1. This latter feature is assigned to the complex amide II absorption which, in the 

present case, appears interfered by PEDOT vibrational bands. In spite of this, the key 

feature for the two spectra collected in the presence of cyt c is the appearance of a clear-

cut, positive amide I band centred at 1655 cm-1. As shown in Fig. 8d, this multiple 

absorption results from the combination of several CO, CN and CCN vibrational 

transitions coming from the oxidized state of the protein73, namely type III β-turn at 1685 

cm-1, type II β-turn and α-helix at 1660 cm-1 and extended β-strand at 1639 cm-1. A further 

contribution at 1622 cm-1 is usually assigned to side chain interactions not associated with 

the secondary structure of cyt c31,34,74,75.  

The relative intensity between type III and type II β-turn infrared absorptions has been 

used by Ataka and Heberle to reveal the orientation of cyt c during the redox transfer to 

electrodes modified with SAMs72. It was established that hydrophobic SAMs favoured 

the approach of cyt c through the type III β-turn, while more hydrophilic (OH-terminated) 

SAMs tend to face type II β-turns toward the electrode surface. The pre-eminence of the 

latter band in Fig. 8d strongly suggests that PEDOT-PSS behaves as a hydrophilic SAM 

and favours the approach of the heme group in an angle close to the surface normal. Such 

an orientation promotes the direct electron transfer between cyt c and the gold electrode 

modified with PEDOT.  

On the other hand, it is known that cyt c does not undergo significant conformational 

changes when switched from the oxidized to the reduced state. Consequently, differential 

bands observed in the infrared spectra of Fig. 8 should be attributed mainly to changes in 
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the orientation of cyt c on the electrode surface, which are induced externally through the 

reversible electrochemical oxidation-reduction process. In an ideal case, applying higher 

potentials to the electrode would result in the generation of a larger number of polaronic 

moieties along hyper-conjugated PEDOT-PSS chains. However, due to some structural 

heterogeneity shown by conducting polymers, injected charge appears usually at more 

localized polymer fragments76 . Changes in protein orientation (perceived in the form of 

a combined positive band at 1655 cm-1) are therefore limited to the interaction with 

PEDOT in the immediacy of those active (oxidized) polymer centres. Obviously, those 

orientation changes can be detected because of the successful charge transfer to cyt c. On 

the basis of horse cyt c crystal structure (entry 1HRC of Protein Data Bank, PBD), the 

most probable orientation of the protein with respect to the electrode surface during the 

electron transfer seems that one presented in Fig. 9.  
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Figure 9. Preferred orientation of cyt c during the electron transfer to a PEDOT layer, 

as deduced from the combination of crystal structure data and in situ FTIR results. Lys 

13, 27, 72 and 86 residues interacting with negatively-charged PSS chains are 

represented in blue colour. The electro-active heme group, which interacts with PEDOT 

rings, is represented in red colour. Cyt c structure created by Swiss PDB Viewer 4.1.0 

with crystallographic data taken from the Protein Data Bank (PDB entry 1HRC). 

 

 

Several authors have shown that positively charged residues located at the surface of the 

cyt c protein, mainly Lys residues, play a major role in the electron transfer process. Those 

specific protein positions can operate as binding sites that facilitate the electron transfer 

to partners like cytochrome c oxidase, for which lysine residues 8, 13, 27, 72, 79 and 86 

participate in binding, while the remainder lysine centres are not essential for ET.72,77 

The arrangement proposed in Fig. 9 explains the higher intensity shown by type II β-turn 

(residues 32-38) and short stranded β-sheet (comprising residues 37-40 and 57-59) in the 

deconvoluted spectra of amide I band. The presence of ionizable groups in His 33, Arg 

38 and Lys 39 provides a net positive charge in this protein segment at pH 7 78,79 and the 
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electrochemical injection of positive charge through the PEDOT backbone could induce 

additional electrostatic repulsions pulling the segment away from the conducting polymer 

interface. This effect is detected as a vanishing of the corresponding vibrational modes in 

the FTIR spectrum of Fig. 8a. On the other hand, it is remarkable the absence of 

differential infrared bands coming from type III β-turn (residues 14-19 and 67-70). Such 

a behaviour reveals that these protein sites remain unmodified upon oxidation and, 

probably, they are preferred positions for the protein to interact with the conducting 

polymer. As shown in Fig. 9, the proposed orientation favours the approach of cyt c to 

the surface through positively-charged Lys 13, 27, 72 and 86, which seem active residues 

facilitating the electron transfer from the conducting polymer to the heme group. The 

interaction of positive Lys residues with the polymer substrate seems favoured by the 

excess of dopant PSS anions relative to EDOT monomers (ratio close to 4:1, as deduced 

from XPS data in Fig. 2). In addition, the alignment proposed in Fig. 9 agrees with that 

reported previously for cyt c adsorbed on bare gold electrodes77. It was demonstrated that 

this particular configuration hampers the direct electron transfer to cyt c due to the 

suppressed rotation of the adsorbed protein. Since, in the present case, the electron 

transfer takes place from a PEDOT-PSS layer under similar protein alignment, the 

rotation of cyt c should be not confined after its interaction with this particular conducting 

substrate. 

4. Conclusions 

We explored the direct electrochemistry of cytochrome c promoted by the conducting 

polymer PEDOT-PSS. This material was synthesized from aqueous solution and retains 

its conductive state at physiological pH. It provides several advantages over conventional 

chemical modifiers (such as SAM films or metallic oxides): PEDOT-PSS is 

straightforward to synthesize, it can be deposited on any conducting substrate and its 
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properties, like morphology or thickness, are easily tunable. We demonstrated electrodes 

modified with PEDOT-PSS are able to bring charge to cyt c in solution. The electron 

transfer rate is about two orders of magnitude higher than those obtained with either 

conventional or SAM-modified electrodes. 

The redox state of the polymer was monitored by in situ FTIR spectroscopy. The injection 

of positively charged polaronic species produces quinoid domains in the PEDOT 

backbone. The doped (and therefore conducting) polymer state extends over a wider 

potential window (0.2-1.2 V) than that required to induce redox transformations in cyt c 

(0.5-0.9 V). 

PEDOT-PSS presents IR-active vibrational modes interfering with those associated to 

intrinsic cyt c redox processes. Under suitable experimental conditions, it was possible to 

remove vibrational interferences on the amide I band of cyt c. During the oxidation, lysine 

residues involved in the cyt c coupling processes with their cognate partners (i.e. Lys 13, 

27, 72 and 86) interact electrostatically with PSS polyelectrolyte, the anionic dopant. This 

kind of interaction favors the orifice in the crevice containing the heme group to be 

oriented towards electroactive PEDOT chains, thus facilitating the electron transfer. 

Supporting Information 

The electrochemical response of cyt c with different PEDOT-modified electrodes 

(thickness ranging 0.04-0.70 μm) using several protein concentrations (1, 2, 5, 10 mg mL-

1 in PBS) is presented in the Supporting Information. 
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