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Abstract Staff-lines removal is an important prepro-

cessing stage for most Optical Music Recognition sys-

tems. Common procedures to solve this task involve

image processing techniques. In contrast to these tradi-

tional methods based on hand-engineered transforma-

tions, the problem can also be approached as a classifi-

cation task in which each pixel is labeled as either staff

or symbol, so that only those that belong to symbols are

kept in the image. In order to perform this classification

we propose the use of Convolutional Neural Networks,

which have demonstrated an outstanding performance

in image retrieval tasks. The initial features of each

pixel consist of a square patch from the input image

centered at that pixel. The proposed network is trained

by using a dataset which contains pairs of scores with
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and without the staff lines. Our results in both binary

and grayscale images show that the proposed technique

is very accurate, outperforming both other classifiers

and the state-of-the-art strategies considered. In addi-

tion, several advantages of the presented methodology

with respect to traditional procedures proposed so far

are discussed.

Keywords Music staff-lines removal · Optical Music

Recognition · Pixel classification · Convolutional

Neural Networks

1 Introduction

Music is an important part of the cultural heritage,

which represents a key element for understanding the

social and artistic trends of a specific period of history.

That is why a large number of music documents have

been carefully preserved over the centuries, scattered

across cathedrals, museums and historical archives.

Massive digitization is an indispensable step for the

preservation of these documents, and it sets the basis

towards the development of tools that would facilitate

the access, search and study of these sources. In addi-

tion, it would open several opportunities to apply Music

Information Retrieval algorithms [26], which may be of

great interest for the musicology community since these

algorithms might be able to go beyond what a human

can achieve after years of study.

Manual transcription of music, however, is an ex-

pensive task because it has to be carried out by music

experts. Moreover, the complexity of music notation in-

evitably leads to burdensome software for music score

edition, in which a long transcription process becomes

tedious and prone to errors. As a consequence, the de-
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velopment of automatic transcription systems is gaining

importance over the last years.

Optical Music Recognition (OMR) is the field of

computer science devoted to understanding the musical

information contained in the image of a music score [2].

The process aims at importing a scanned music score

and exporting its musical content into some machine-

readable format (Fig. 1).

(a) Example of input score for an OMR system

(b) Symbolic representation of the input score

Fig. 1 The task of Optical Music Recognition (OMR) is to
analyze an image containing a music score to export its mu-
sical content into some machine-readable format.

From a morphological point of view, music hardly

has what we might consider low-level entities — like

characters in text or phonemes in speech — but rather

isolated symbols. Consequently, the recognition of mu-
sical documents might be seen similar to the task of

Optical Character Recognition.

However, the complexity of musical notation is higher

than other similar domains (eg., text), reflected in many

ways such as the fact of finding symbols with a double

nature (rhythm and harmony) and the possibility of

finding several symbols sharing the same vertical po-

sition (chords, dynamics, ligatures, etc.). These issues

lead to discard continuous recognition models and fo-

cus on segmentation plus classification approaches. In

this sense, although research has been conducted on the

recognition of isolated music symbols [20], OMR com-

prises a greater challenge since their detection and seg-

mentation is not a trivial matter. One of the important

aspects to consider is the presence of the staff, the set

of five parallel lines that appear in sheet music to indi-

cate the pitch of the notes. These lines are necessary for

human readability, yet they complicate the automatic

isolation of music symbols and removing them is a key

step in the resolution of the OMR task.

Only a few works have taken advantage of specific

features of printed notation to approach the problem

maintaining the staff lines [18,3]. However, the estab-

lished OMR pipeline includes the staff-line detection

and removal task [21] to remove the staff lines while

keeping as much as possible the symbol information

(Fig. 2).

(a) Example of input score for an OMR system

(b) Input score after staff lines removal

Fig. 2 Example of a perfect staff lines removal process.

In this paper we propose the use of convolutional

neural networks to solve this task. This approach is in-

spired by the work of Calvo Zaragoza et al. [4], in which

this process is carried out as a classification task at pixel

level. We show this time that the use of this kind of net-

works is able to outperform specific strategies based on

image processing, as well as conventional classifiers. In

addition, for the first time we extend the applicability

of this strategy to deal with grayscale images.

The rest of the paper is organized as follows: Sec-

tion 2 puts into context our contribution; Section 3 de-

scribes our approach; a comprehensive experimentation

is showed in Section 4; Section 5 analyzes the pros and

cons of this strategy, according to results obtained; fi-

nally, Section 6 concludes the present work and high-

lights some interesting lines of future research.

2 Background

Although staff lines detection and removal may be seen

as a simple task, it is often difficult to get accurate re-

sults. This is mainly due to sheet deformations such

as discontinuities, skewing or paper degradation (espe-

cially in ancient documents). In addition, musical doc-

uments are very heterogeneous so it has been extremely

difficult to develop methods that are able to work on

any kind of scores. A comprehensive review of the first
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attempts considered for this task can be consulted in

the work of Dalitz et al. [6]. More recently, however,

many other methods has been proposed.

Dos Santos Cardoso et al. [7] proposed a method

that considers the staff-lines as connecting paths be-

tween the two margins of the score. Then, the score is

modeled as a graph so that staff detection is solved as a

maximization problem. This strategy was improved and

extended to be used on gray-scale scores [19]; Dutta

et al. [8] developed a method that considers the staff

line segment as a horizontal connection of vertical black

runs with uniform height, which were validated using

neighboring properties; in the work of Piatkowska et

al. [17], a Swarm Intelligence algorithm is applied to

detect the staff line patterns; Su et al. [24] started es-

timating properties of the staves like height and space.

Then, they tried to predict the direction of the lines

and fit an approximate staff, which is posteriorly ad-

justed; Geraud [11] developed a method that entails

a series of morphological operators directly applied to

the image of the score to remove staff lines; Montagner

et al. [16] proposed to learn image operators, following

the work of Hirata [13], whose combination is able to

remove staff lines. On the other hand, some studies ad-

dressed the whole OMR problem by developing their

own, case-directed staff removal process [22,25].

As presented above, several procedures for staff de-

tection and removal have been proposed in the litera-

ture. Although in many cases most of them show a very

good performance, they are far from optimal when the

style of the score changes, as they rely on character-

istics that are particular to a given style. Conversely,

a data-driven strategy for staff removal has been re-

cently considered, which consists of a classifier that dis-

criminates if an ink pixel belongs to a symbol or to a

staff line [4]. A supervised learning algorithm can be

trained using the neighboring pixels as feature vector.

Then, the foreground pixels of the image are queried so

that those classified as staff are removed. Although this

strategy achieved a fair performance, it reported room

for improvement regarding the accuracy since it did not

reached a state-of-the-art performance. In the presented

study we propose to extend and further evaluate this

approach by using more appropriate classification tech-

niques.

In recent years, Convolutional Neural Networks (CNN)

have shown a great ability in classification tasks when

dealing with images, and generally with signals [5]. This

study aims at using this kind of networks for pixel clas-

sification in the context of staff lines removal. One of

the main advantages of these networks is that they are

able to learn the intrinsic representation of the input

Fig. 3 Example of feature extraction with a square patch.
The center pixel (marked in red) is the one to be classified.
The pixel of this example must classified as symbol because
if belongs to the stem of a half note.

data and, therefore, there is no need of hand-crafted

feature extraction.

3 Staff-Line Removal with Convolutional

Neural Networks

As mentioned above, the staff-lines removal problem is

tackled here from the point of view of a classification

task. Basically, the strategy is to query each pixel of the

image to either keep it because it belongs to a musical

symbol or remove it because it belongs to a staff line.

To do this, we use representative data of each pixel

of interest and a CNN trained to distinguish between

these two classes.

3.1 Input data

Although OMR systems have to deal with color pages, a

typical image preprocessing step is to binarize them [21].

In this study we do not need to assume such condi-

tion. However, we consider two different scenarios: one

in which the images have been previously binarized and

another in which the images are presented in grayscale

format. As we will see later, our approach is equally

applicable regardless of the scenario chosen.

The neural networks to be trained must distinguish

if a foreground pixel belongs to a staff or to a sym-

bol. For that we assume that the region surrounding

the pixel of interest contains enough information to dis-

criminate between these two cases. Hence, the input to

the network will be a portion of the input image cen-

tered at the pixel of interest (see Fig. 3).

Figure 4 shows several examples of input data for

each class (symbol and staff). For the sake of visualiza-

tion, these examples show 28 × 28 windows. Note that

the label of each patch depends on the pixel located in

the center.
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It is clear that different sizes of the surrounding re-

gion could be taken into account so this parameter will

be experimentally evaluated.

(a) Samples of staff class

(b) Samples of symbol class

Fig. 4 Examples of samples from both staff and symbol
classes if 28 × 28 windows are considered.

In order to obtain a proper training set, this feature

extraction process is applied to the foreground pixels

of a dataset of scores labeled with and without staff

lines. Given a foreground pixel in the position (i, j), a

square patch is extracted from the score that contains

staff lines (i.e., the original one), whereas the value in

the position (i, j) of the score without staff lines is used

to obtain the actual label that can be either staff or

symbol. No further feature extraction is performed on

this portion of image because this task is expected to

be assumed by the neural network.

3.2 Convolutional Neural Networks

The main advantage of using machine learning for the

staff-line detection and removal problem lies in its abil-

ity to generalize, in comparison to systems based on

hand-crafted image processing strategies. While the lat-

ter focus on singular aspects of the documents to be

analyzed—being therefore very difficult to adapt them

to other types of documents of different epoch, nota-

tion, or style—techniques based on supervised learning

only need labeled examples of new documents to gen-

erate a model adapted to the new environment.

Convolutional Neural Networks (CNN) significantly

outperform traditional techniques in a wide range of

image recognition tasks [15]. These networks take ad-

vantage of local connections, shared weights, pooling,

and many connected layers that eventually learn a data

representation suitable for the task at hand.

Since the topology of a CNN can be quite varied,

we decided to carry out an exhaustive search of a suit-

able configuration for the problem at issue. However,

in order to reduce the search space, we have designed

a CNN in which i) each convolutional layer consists of

3 × 3 filters and 2 × 2 max-pooling (VGG-alike [23]);

ii) only one fully-connected layer is added at the end of

the network, with 64 units and 50 % of dropout; and

iii) only square input images are considered. The rest

of the configuration parameters (size of the input layer,

depth of the network, number of filters per layer and

type of activations) will be assessed empirically.

The learning of the network weights is performed by

means of stochastic gradient descent [1] with a batch

size of 32, considering the adaptive learning rate pro-

posed in [28] (default parameterization) and the cross-

entropy loss function.

Once the CNN has learned how to distinguish be-

tween staff and symbol patches, it can be used to re-

move the staff lines of any input image. To do so, each

pixel of that image can be forwarded with its patch

through the network, and those pixels classified as staff

will eventually be removed.

4 Experiments

Taking advantage of the ICDAR 2013 Competition on

Music Scores [10] staff removal contest, we follow its

same experimental set-up to assure a fair comparison

with other studies and provide reproducible research.

This corpus contains pairs of scores with and without

staff lines. Therefore, this dataset provides available

data for training the network, as well as testing data

for evaluating our approach. In addition, this contest

will allows us to test our method against state-of-the-

art staff removal strategies.

The corpora used in this contest is organized in train

and test sets, with 4, 000 and 2, 000 samples respec-

tively. This dataset assumes that the scale has been

normalized so that the space between lines is of 26 pix-

els. The test set is further divided into three subsets

(TS1, TS2, and TS3) based on the deformations ap-

plied to the scores: 3D distortions in TS1 (500 scores),

local noise in TS2 (500 scores), and both 3D distor-

tion and local noise in TS3 (1000 scores). Each sample

consists of an image of a handwritten score with its cor-

responding ground-truth (the score without staves). On

average, the number of foregrounds pixels per score is

around 500, 000, with 200, 000 staff pixels.

The train set is used to train the CNN that classifies

between staff and symbol pixels. A part of this set is

used as validation data to select the most appropriate

epoch to stop the learning process and prevent over-

fitting.

The test corpora, which is not seen during training,

is used to measure the performance. As in the compe-

tition, the performance metric is the F-measure or F1
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score:

F1 =
2 · TP

2 · TP + FP + FN

where TP , FP and FN stand for true positives (symbol

pixels classified as symbol), false positives (staff pixels

classified as symbol) and false negatives (symbol pixels

classified as staff), respectively.

4.1 Network tuning

As mentioned before, some of the configuration param-

eters of the network are going to be adjusted experi-

mentally. In order to clarify which configuration con-

stitutes the most suitable topology, we carry out an

experiment using only the training set of the contest.

Given that there are enough data, 400 000 samples are

used to perform the training of the network, chosen ran-

domly among all the pages of the training set, whereas

the rest are used as validation set.

There are a number of parameters to be tuned in

the aforementioned CNN model. For this, we have per-

formed a comprehensive experimentation in order to

tune these parameters by means of a grid search over:

– Size of input patches: odd values (because of the

central pixel) from 7x7 to 29x29.

– Depth of the network (number of convolutional plus

max-pooling blocks): 1, 2, 3.

– Number of filters per convolutional layer: 16, 32, 64.

– Activation function: Rectified Linear Unit (ReLU)

and hyperbolic tangent (tanh).

Note that some combinations of input size and depth

of the network are not compatible because of the con-

secutive use of pooling steps.

Since the number of configurations becomes huge,

this first study focuses on finding the optimal parame-

ters for the binary format of the dataset. We shall as-

sume that the best configuration for the binary images

of the contest will also achieve good results in other

scenarios.

Table 1 shows the F1 accuracy attained for this case.

As can be observed, the different parameters may have

some impact on the results but not in a very pronounced

way. Unless for very specific cases, all of them achieve

a performance higher than 97 %.

For the subsequent experiments, we shall select the

configuration that reports the best result in the val-

idation set. Therefore, the CNN chosen to solve the

staff-line detection problem, hereinafter referred to as

StaffNet, is that consisting of 2 layers of 32 3× 3 filters

plus 2×2 max-pooling, followed by a fully-convolutional

layer of 64 units. Activations are computed with a tanh

function. The input patches must be of size 21 × 21,

centered at the pixel to be classified as either staff or

symbol. A graphical representation of StaffNet can be

seen in Fig. 5.

4.2 Comparison with other works

This section details the evaluation methodology carried

out to test our proposal against the state-of-the-art,

namely the participants of the aforementioned contest.

Reader can find a detailed description about each par-

ticipant in the competition report in [27].

Specifically, we run three different experiments. The

first one is focused on reproducing the contest assum-

ing binary images as input. Similarly, the second exper-

iment repeats the same but using the grayscale version

of the images of the contest. In the last experiment, an-

other dataset that depicts several deformations on the

image is considered, in order to test the robustness of

the methods.

4.2.1 Experiment with binary images

Table 2 shows the results (average F1) achieved by the

participants of the contest against the proposed net-

work, considering the binary images of the dataset. We

also include the use of conventional classifiers, namely

Nearest Neighbor (NN), Support Vector Machines (SVM)

and Random Forest (RaF), which were considered in a

previous work for solving the same task [4].

It is clear to see that StaffNet outperforms other

classification methods, and it represents a remarkable

leap in the whole accuracy.

LRDE method also achieves a remarkable perfor-

mance, even outperforming our method in TS1. It might

be that the 3D distortions (that appear in TS1) are

harder to handle by our network. Nevertheless, the global

accuracy of StaffNet is still higher. The rest of the meth-

ods generally show a noticeably worse performance.

These results confirm that the classification approach

using StaffNet is indeed a extremely accurate strategy

that deserves further consideration. Note that, in this

case, the accuracy is not so related to the supervised

learning paradigm since other classifiers considered are

far from the best performances.

4.2.2 Experiment with grayscale images

As mentioned above, staff-lines removal strategies usu-

ally consider a binary image as input. This assumption,

however, is not advisable in real-case scenarios. Bina-

rization is a complex process for which it is difficult to
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Filters per layer

16 32 64

Depth Input relu tanh relu tanh relu tanh

1

07x07 97.42 97.75 97.79 97.82 97.67 97.78

09x09 98.29 98.27 98.08 98.14 98.39 98.34

11x11 98.21 98.12 98.17 98.21 97.81 98.34

13x13 96.07 98.00 98.01 98.05 97.32 98.21

15x15 96.55 96.52 97.36 97.88 98.35 96.49

17x17 98.18 97.84 96.19 96.06 96.22 96.19

19x19 97.78 98.28 96.08 96.21 98.04 97.91

21x21 97.69 97.93 97.62 98.28 96.25 98.26

23x23 98.36 98.13 95.97 97.40 97.72 98.24

25x25 96.11 98.03 98.40 98.51 96.02 96.08

27x27 98.15 97.66 96.11 98.21 97.12 95.91

29x29 96.09 95.95 95.86 98.10 98.24 95.93

2

11x11 98.36 98.39 98.59 98.54 98.59 98.71

13x13 98.29 98.11 98.40 98.40 98.56 98.44

15x15 97.75 98.74 98.68 98.75 98.82 98.82

17x17 98.41 98.54 98.78 98.37 98.68 98.70

19x19 98.65 98.11 98.77 98.68 98.59 98.85

21x21 98.48 98.65 98.75 98.71 98.85 98.35

23x23 98.39 98.27 98.80 99.08 98.61 98.88

25x25 98.33 98.71 98.67 98.80 98.51 98.90

27x27 97.38 98.65 98.53 98.69 98.73 98.86

29x29 98.69 98.78 98.70 98.52 98.55 98.69

3

23x23 98.58 98.58 98.68 98.89 98.38 98.84

25x25 98.84 98.75 98.87 98.76 98.96 98.78

27x27 97.96 98.55 98.60 98.54 98.11 98.72

29x29 98.68 98.69 98.80 98.80 98.93 98.89

Table 1 F1 (%) obtained on the validation set for the different network parameters evaluated. Value in bold represent the
configuration with the highest performance. Depth indicates the number of convolutional plus max-pooling blocks of the model.

Inputs
1@21x21

Feature
maps
32@21x21

Feature
maps
32@10x10

Feature
maps
32@8x8

Feature
maps
32@4x4

Convolution
3x3 kernel

Max-pooling
2x2 kernel

Convolution
3x3 kernel

Max-pooling
2x2 kernel

Hidden
units
64

Outputs
2

Flatten Fully
connected

Fig. 5 Graphical representation of the StaffNet, consisting of 2 layers of 32 3× 3 filters plus 2× 2 max-pooling, followed by a
fully-convolutional layer of 64 units. Activations are computed with a tanh function. The input patches must be of size 21×21
centered at the pixel to be classified as either staff or symbol.

achieve perfect results, especially when the conditions

of the document are not ideal.

The dataset provided in the contest also contains

a synthetic grayscale version of the scores. Fortunately,

our approach can be easily extended to deal with grayscale

images with no further effort. The only thing to change

is the training data, which now consists of grayscale

patches of the score centered at the pixel to be classi-

fied.

Only two of the methods submitted to the contest

focused on dealing with grayscale images: LRDE-gray

and INESC-gray. Table 3 show the results obtained by

these participants, compared to those obtained by our

CNN.
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Method TS1 TS2 TS3 Global

Contest participants

TAU 85.72 81.72 82.29 83.01

NUS 69.85 96.25 67.43 75.24

NUASI-lin 94.77 94.76 93.81 94.29

NUASI-skel 94.11 93.67 92.78 93.34

LRDE-bin 97.73 96.86 96.98 97.14

INESC-bin 89.29 97.72 88.52 91.01

Baseline 87.01 96.91 89.90 90.93

Conventional classifiers

NN 91.07 96.06 90.58 92.07

SVM 94.10 98.08 94.00 95.04

RaF 93.89 97.78 93.39 94.61

StaffNet 97.67 98.85 97.49 97.87

Table 2 F1 (%) comparison among the participants in the ICDAR / GREC 2013 staff removal contest, the classifiers of a
previous work on staff-line removal, and our method based on CNN (StaffNet) for the binary format of the images. Values in
bold represent the best average accuracy in each set.

Method TS1 TS2 TS3 Global

LRDE-gray 92.16 79.47 81.53 82.85

INESC-gray 38.50 52.11 38.87 42.09

NN 89.65 85.48 85.36 86.46

SVM 92.56 88.84 89.78 90.24

RaF 92.14 86.51 86.50 87.91

StaffNet 98.91 99.29 98.64 98.87

Table 3 F1 (%) comparison among the participants in the
ICDAR / GREC 2013 staff removal contest, the classifiers of
a previous work on staff-line removal, and our method based
on CNN (StaffNet) for the grayscale format of the images.
Values in bold represent the best average accuracy in each
set.

It is clear that the performance of the participants

decrease remarkably, especially with the INESC method.

LRDE is able to maintain a fair accuracy in TS1, but

its performance is much worse in TS2 and TS3. Fur-

thermore, our method does improve its recognition by

feeding the network with grayscale images. This seems

to be related to the supervised learning paradigm since

the other classifiers also boost their performance (yet

to a lesser extent).

4.2.3 Experiment with distortions

The last experiment focuses on verifying the adaptabil-

ity of the model to different distortions. It is obvious

that, in this case, data-driven strategies have advan-

tages because they are presented with information of

the specific domain on which they are going to be ap-

plied. It should be noted, however, that traditionally

the staff-line removal task have not been been taking

into account the great heterogeneity that can be found

in musical documents, thus leading to solutions that are

not generalizable. We want to demonstrate precisely

that it is more profitable to use approaches based on

supervised learning, which are more adaptable to other

domains by just modifying the training set.

For this experiment we use the MUSCIMA corpus [9],

a dataset initially intended for writer identification in

musical scores. Fortunately, since this task is hampered

by staff lines, the dataset is presented with both original

and non-staff examples, allowing us to have a ground-

truth readily available. This dataset is composed of 50

writers, each of whom wrote 20 identical scores, and

to which they subsequently applied several distortions.

Since the writer recognition is not interesting for the

task of staff-line detection and removal, we are using

the dataset with only the first writer. Therefore, we

have 20 images for each of the following distortions:

– Ideal: no distortion applied to the samples.

– Curvature: staves are curved along the x-axis.

– Interrupted: there might be gaps in the staff line

segments.

– Kanungo: the degradation model proposed by Ka-

nungo et al. [14] is applied to the whole score.

– Rotated: the score is rotated with respect to the

x-axis.

– Thickness (1): the thickness of the staff lines is uni-

formly increased.

– Thickness (2): the thickness of the staff lines is not

regular but depicts different values along the seg-

ments.
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– Typeset: it mimics a printing mechanism in which

little portions of the staff are printed independently.

– Speckles: spurious points are added randomly to the

image.

– Y-variation: staff lines are not straight but are placed

at different heights.

More details about the distortions and how they

were created can be found in the work of Fornes et

al. [9].

We ran a new series of new experiments consider-

ing only the methods that better behave in the con-

tests, namely INESC and LRDE, as well as SVM as

representative of other supervised learning method. We

then compare their results against those obtained by

StaffNet.

Table 4 reports the performance of the evaluated

methods in the new experiment. Some images were re-

jected by LRDE, that is, nothing is detected (cells marked

with a dash). To calculate its average, we have assumed

the most beneficial option for LRDE, which is that

these cells are not taken into account.

StaffNet INESC LRDE SVM

Ideal 99.25 97.87 97.59 98.51

Curvature 99.12 97.43 — 97.97

Interrupted 99.81 85.83 — 97.82

Kanungo 98.57 96.29 95.25 96.63

Rotated 99.26 96.89 — 98.22

Thickness (1) 98.52 95.40 — 95.63

Thickness (2) 97.96 97.44 96.36 95.85

Typeset 99.29 97.72 95.18 98.29

Speckles 99.16 97.60 94.00 97.38

Y-variation 99.10 97.92 71.06 95.75

Global 99.00 96.04 91.57 97.21

Table 4 F1 (%) comparison among our method, LRDE, IN-
ESC and SVM methods for the different distortions of the
MUSCIMA dataset. Values in bold represent the best aver-
age accuracy in each set. A dash mark (—) is used when the
method in the column rejects the dataset of the row (no pixel
is categorized in any of its images).

These results reflect the same trend depicted in pre-

vious experiments. StaffNet represents a competitive

advantage for the problem of staff-line removal, includ-

ing the case of dealing with different conditions. It can

be observed that LRDE, a method that produced ex-

cellent results for some data, is seriously harmed by dis-

tortions of the input images. INESC, however, is still

able to maintain a good performance, yet far from the

best performance. SVM can obtain good results as it

is also based on learning but, in any case, its results

systematically below those obtained by StaffNet.

5 Discussion

Several experiments were presented in the previous sec-

tion, with the objective of determining if our approach

provides a significant improvement with respect to pre-

vious methods for the staff-line removal task. Table 5

shows a summary of such experiments.

Experiment StaffNet INESC LRDE SVM

ICDAR 2013 (bin) 97.87 91.01 97.14 95.04

ICDAR 2013 (gr) 98.87 42.09 82.85 90.24

MUSCIMA 99.00 96.04 91.57 97.21

Table 5 Summary of the F1 (%) obtained in the evaluated
experiments considering StaffNet, LRDE, INESC and SVM
methods.

As it can be appreciated, the main problem of the

classical methods — represented in this case by INESC

and LRDE — is that they depict an irregular behavior,

which varies depending on the features of the specific

corpus. That is why it is essential that the problem of

staff-line removal is approached with supervised learn-

ing algorithms.

All the experiments carried out dealt with staves of

a similar notation (modern), and yet the fact of chang-

ing certain characteristics of the documents has already

led to unexpected performances in the classical meth-

ods. If one is to consider different types of notation and

styles, this phenomenon could be even more serious.

Using heuristic methods may be a good idea if the

intention is to solve the problem for a particular archive.

However, if the intention is to develop methods that can

be generalizable, the supervised scenario is the most

feasible solution at the moment. Table 5 suggests, how-

ever, that it is not enough to consider this paradigm but

the most appropriate techniques must be used. As this

regard, we have shown that StaffNet leads to a competi-

tive advantage with respect to other supervised learning

schemes like SVM, RaF or NN.

As an illustrative example of these goodnesses, let

us consider a new type of musical document. To train

StaffNet (and SVM), we are going to consider the ground-

truth depicted in Fig. 6. Specifically, this image is of size

1000 × 250, which contains enough samples to train a

classifier from scratch.
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Then, a staff-line removal process is applied over

the piece of manuscript shown in Fig. 7(a), which de-

picts Early notation from old music manuscripts. Fi-

nally, Fig. 7(b), 7(c) and 7(d) show the performed staff-

lines removal in the considered input image by StaffNet,

INESC and SVM methods, respectively (LRDE is not

included because it rejects the image).

This example illustrates that not only the proposed

approach can actually work better for different docu-

ment types, but that this improvement is important.

This can be seen, for example, in the case of symbols

broken by other methods, or remaining noise that can

be easily confused by musical symbols like the dot.

(a) Piece of manuscript of Early notation

(b) Manually generated ground-truth

Fig. 6 Qualitative assessment of the staff-line removal meth-
ods on Early notation from old music manuscripts.

Once the goodness of the approach has been dis-

cussed, it is important to mention that its obvious draw-

back is that it requires an appropriate labeled corpus.

Yet to this respect, each pixel of an image is a sample

of the training set. Therefore, the manual labeling of

just a relatively small piece of a score may represent a

training set of enough size, as has been demonstrated

in the previous example. Furthermore, once a new type

of document is to be processed, it is usually cheaper

to manually create a labeled corpus than developing

a complete new strategy for staff-line removal. In this

sense, all experiments have been performed by training

the network with data of the same type of document

that is eventually presented at the test time. Other-

wise, the performance of the model may vary and it

cannot be expected that it achieves the performance

shown above, unless with scores of similar characteris-

tics. This interesting question will be discussed in future

work.

6 Conclusions

This work develops a novel approach to face the mu-

sic staff removal task, which aims at removing the staff

lines from an image of a music score while maintain-

ing the symbol information. This step represents a key

(a) Piece of manuscript of Early notation

(b) Staff-line removal with StaffNet

(c) Staff-line removal with INESC

(d) Staff-line removal with SVM

Fig. 7 Qualitative assessment of the staff-line removal meth-
ods on Early notation from old music manuscripts.

stage in most OMR systems. In the literature, staff re-

moval is usually approached by means of image process-

ing techniques based on the intrinsics of music scores.

In contrast, we propose to model the problem as an im-

age classification task that can be solved using a CNN.

In this context, each foreground pixel is labeled as ei-

ther staff or symbol using a square neighborhood as

features. Then, the network can be trained using pairs

of scores with and without staff lines.

According to our experiments, the approach has demon-

strated to be suitable for this task, since the proposed

CNN surpassed most of the traditional methods even

without applying a post-processing stage (for instance,

isolated pixels classified as staff could have been re-

moved). Our method depicted an extremely compet-

itive performance, achieving the highest accuracy in

most of the test sets considered (and almost the same

accuracy in the other one), and the highest accuracy on

average. In addition, we also discussed several advan-

tages of this approach for which conventional methods

are not applicable, such as its adaptability to any type

of music score.

As a future work, it would be interesting to consider

data augmentation techniques to generate more train-

ing data depicting different conditions. This is expected

to make the neural network generalize better [29]. How-
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ever, this is not a trivial matter as, for the task at hand,

the augmentation should be analyzed carefully since

distortions in music documents are far beyond simple

scaling or rotation.

On the other hand, we are interested in the use of

fine-tuning strategies to adapt a trained network to pro-

cess different styles or notations using only a few labeled

samples [12].
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sic staff removal with supervised pixel classification. In-
ternational Journal on Document Analysis and Recogni-
tion (IJDAR), pages 1–9, 2016.

5. Dan Ciresan, Ueli Meier, and Jürgen Schmidhuber.
Multi-column deep neural networks for image classifica-
tion. In 2012 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pages 3642–3649. IEEE,
2012.

6. Christoph Dalitz, Michael Droettboom, Bastian Pranzas,
and Ichiro Fujinaga. A Comparative Study of Staff Re-
moval Algorithms. IEEE Trans. Pattern Anal. Mach.
Intell., 30(5):753–766, 2008.

7. J. Dos Santos Cardoso, A. Capela, A. Rebelo, C. Guedes,
and J. Pinto da Costa. Staff Detection with Stable Paths.
IEEE Trans. Pattern Anal. Mach. Intell., 31(6):1134–
1139, June 2009.

8. A. Dutta, U. Pal, A. Fornes, and J. Llados. An Effi-
cient Staff Removal Approach from Printed Musical Doc-
uments. In 2010 20th International Conference on Pat-
tern Recognition (ICPR), pages 1965–1968, Aug 2010.

9. Alicia Fornés, Anjan Dutta, Albert Gordo, and Josep
Lladós. CVC-MUSCIMA: a ground truth of handwrit-
ten music score images for writer identification and staff
removal. International Journal on Document Analysis
and Recognition, 15(3):243–251, 2012.

10. Alicia Fornés, Van Cuong Kieu, Muriel Visani, Nicholas
Journet, and Anjan Dutta. The ICDAR/GREC 2013
Music Scores Competition: Staff Removal. In 10th In-
ternational Workshop on Graphics Recognition, Current
Trends and Challenges GREC 2013, Bethlehem, PA,
USA, August 20-21, 2013, Revised Selected Papers, pages
207–220, 2013.
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