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ABSTRACT. The reaction of chiral N-tert-butanesulfinyl aldimines with β-keto acids under basic 

conditions at room temperature proceeds with high levels of diastereocontrol, leading to β-amino 

ketones in high yields. Based on DFT calculations, an eight-membered cyclic transition state 

involving coordination of the lithium atom to the oxygens of carboxylate and sulfinyl units was 

proposed, being in agreement with the observed experimental diastereomeric ratios. The synthesis 

of the piperidine alkaloid (–)-pelletierine was successfully undertaken in order to demonstrate the 

utility of this methodology.   

 

KEYWORDS. Chiral sulfinyl imines, β-keto acids, β-amino ketones, diastereoselective Mannich 

reaction, DFT calculations. 
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INTRODUCTION 

Coupling of enolizable carbonyl compounds with imines, the so-called Mannich reaction, render β-

amino carbonyl compounds.1 These are interesting molecular systems because they can be 

converted into polyfunctionalized molecules and act as versatile building-blocks.2 Highly efficient 

methodologies to perform the stereoselective version of these transformations have been developed 

in recent years by means of chiral organic and organometallic catalytic systems.3 The 

stereoselective Mannich reactions are also performed with stoichiometric amounts of chiral 

reagents. In these reactions, the stereochemical information could be provided by a chiral imine,4 in 

which most commonly a chiral auxiliary is a substituent of the iminic nitrogen, or by a chiral 

nucleophile derived from aldehydes, ketones, esters or enol ethers.5 Among chiral imines, those 

derived from tert-butanesulfinamide have been extensively used as electrophiles over the past 

decade in many synthetic transformations,6 due mainly to the ready availability of both enantiomers 

of tert-butanesulfinamide at reasonable prices, the easy deprotection of the resulting amine under 

mild acidic conditions and the possibility of recycling the chiral auxiliary.7 Davis reported the 

synthesis of β-amino carbonyl compounds in a two-step process by reaction of the corresponding 

sulfinyl imine (both, p-toluene and tert-butane derivatives) with the potassium enolate of N-

methoxy N-methylacetamide at low temperature, and subsequent addition of an organometallic 

reagent to the resulting β-amino Weinreb amide.8 The same reaction products were also obtained by 

direct addition of the corresponding methyl ketone enolate to the sulfinyl imine at low temperature 

(Scheme 1A).9 Enolates of methyl ketones should be prepared with stoichiometric amounts of 

strong bases at low temperature in order to avoid autocondensation, that representing a limitation of 

this methodology. On the other hand, β-keto acids have been used as surrogate enolates in different 

processes,10 among then decarboxylative Mannich-reactions by reacting with different imines. 

Considering these transformations, as far as we know, there are only two examples of  nucleophilic 

additions of β-keto acids to activated N-tert-butanesulfinyl imines: the La(OTf)3 catalyzed addition 

to N-tert-butanesulfinyl α-imino esters (Scheme 1B)11 and the nickel catalyzed addition to a 

trifluoroacetaldehyde derivative (Scheme 1C).12 Based on our experience on nucleophilic additions 

to N-tert-butanesulfinyl imines of homochiral enolates resulting from the diastereoselective addition 

of dialkylzinc reagents to cyclic α,β-unsaturated enones (Scheme 1D)13 and of diethyl malonate 

under basis conditions,14 we herein report our approach to the stereoselective synthesis of β-amino 

carbonyl compound derivatives from dicarbonyl compounds as pronucleophiles. 
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Scheme 1. Examples of N-tert-butanosulfinyl imines in Mannich-type reactions. 

 

  

RESULTS AND DISCUSSION 

The coupling of the N-tert-butanesulfinyl imine derived from 3-phenylpropanal 1a and different 

acetoacetate esters 2 under basic conditions was first studied. The applied reaction conditions were 

identical to those we found to work well in the case of this type of imines and dimethyl malonate.14 

The expected compounds 3 were obtained in variable yields, the nucleophilic addition taking place 

in an almost total diastereoselective fashion. With regard to the second stereogenic center, an 

equimolecular amount of both possible epimers was obtained, due to the presence of an acidic 

proton at that center, so epimerization occurs very fast under the basic reaction conditions (Scheme 

2). Unfortunately, all the attempts to carry out the decarboxylation of compounds 3 in order to 

produce a β-amino carbonyl compound lead to a complex mixture of reaction products. For 
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instance, α,β-unsaturated compounds 4 and 5 were the major components of these mixtures when 

the tert-butyl ester derivative 3b was the starting material (Scheme 2).  

 

Scheme 2. Base-promoted coupling of sulfinyl imine 1a and different acetoacetate esters 2. 
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Considering the previously commented results and that β-keto acids have been successfully used as 

surrogate enolates,10 we decided to study the decarboxylative Mannich-reaction using these 

compounds. For that reason, we took the imine derived from (R)-tert-butanesulfinamide and 3-

phenylpropanal 1a, along with the most challenging acetyl acetic acid (6a) among β-keto acids, as 

model compounds for the optimization of the reaction conditions. It is worth to mention that acetyl 

acetic acid (6a) is especially unstable and undergoes decarboxylation very easily at room 

temperature, and this could be the reason why it has not been used in the reactions with N-tert-

butanesulfinyl α-imino esters (Scheme 1B)11 and the trifluoroacetaldehyde derivative (Scheme 

1C).12 Although many assays were undertaken, only the most significant ones are compiled in Table 

1. Thus, the reaction of imine 1a with 3 equivalents of keto acid 6a at room temperature for 12 

hours under solvent-free conditions led to an almost 1:5 mixture of both expected diastereoisomers 

7a and 8a. Unfortunately, starting imine 1a was not consumed completely in spite of working with 

an excess of keto acid 6a, and a significant amount of tert-butanesulfinamide was also formed, 

presumably through a β-elimination process from the expected Mannich adducts 7a and 8a (Table 

1, entry 1). Decomposition by decarboxylation at room temperature of 6a could explain that the 

reaction did not go to completion after 12 hours. Compounds 7a and 8a were not found working in 

a THF solution with the same reaction mixture (Table 1, entry 2) and low conversion was also 

observed in ethyl acetate in the presence of 1.5 equivalents of sodium bicarbonate (Table 1, entry 

3). When the reaction was carried out in the presence of a stronger base such as potassium tert-

butoxide, total conversion occurred and tert-butanesulfinamide was found to be the only reaction 

product that we could identified from the crude reaction mixture (Table 1, entry 4). The reaction did 
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not proceed in methanol with 3 equivalents of triethylamine (Table 1, entry 5), but total conversion 

occurred when 6 equivalents of sodium methoxide in methanol were used. Importantly, β-amino 

ketone derivatives 7a (48%) and 8a (29%) were now the major reaction products, and by contrary 

to what we found in the previous entries, the one resulting from the nucleophilic attack to the Si-

face of imine 7a is now predominant (Table 1, entry 6). Deprotonation of keto acid 6a with strong 

bases prevents its decomposition. The diastereoselectivity was highly improved when keto acid 6a 

was deprotonated first with n-BuLi in dry THF at low temperature and after that, the resulting 

system reacted with the imine 1a at room temperature (Table 1, entry 7). However, no reaction took 

place when lithium hydroxide was used as a base in THF (Table 1, entry 8). The reaction working 

with 6 equivalents of a 2M lithium hydroxide solution in methanol led to total conversion but also 

to a lower diastereoselectivity (Table 1, entry 9). The diastereoselectivity was improved again when 

imine 1a reacted for 12 h at room temperature with a solution of 1.5 equivalents of keto acid 6a in 

THF and 1.5 equivalents of a 2M lithium hydroxide methanol solution. However, almost half of the 

starting imine 1a remained unreactive (Table 1, entry 10). The best result was obtained working in 

THF at room temperature with 1.5 equivalents of keto acid 6a and 2.0 equivalents of lithium 

hydroxide from a 2M solution in methanol. After just 30 minutes, compound 7a was produced in a 

highly diastereoselective fashion (97:3 dr) in quantitative yields (Table 1, entry 13). When the 

deprotonation step was performed with a 1M THF solution of lithium ethoxide, the results were 

rather similar but in a slightly lower diastereoselectivity (Table 1, entry 14). Finally, lithium 

hydroxide in methanol seemed to be superior to sodium methoxide in methanol in the deprotonation 

step of keto acid 6a (Table 1, compare entries 11 and 12), and prolonged reaction times are not 

beneficial for this reaction, since yield and diastereoselectivity were higher after 30 minutes than 

after 16 hours (Table 1, compare entries 12 and 13). 
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Table 1. Optimization of the reaction of imine 1a and β-keto acid 6a 

 
Entry                          Reaction conditions                                                      1a/7a/8a/t-BuSONH2

a 

1 1a (0.2 mmol), 6a (0.6 mmol), 23 ºC, 12 h 31/6/33/30 

2 1a (0.2 mmol), 6a (0.6 mmol), THF (0.2 mL), 23 ºC, 12 h 77/--/--/23 

3 1a (0.2 mmol), 6a (0.6 mmol), NaHCO3 (0.3 mmol), AcOEt (1 mL), 23 ºC, 12 h 79/3/5/13 

4 1a (0.2 mmol), 6a (0.6 mmol), KOt-Bu (0.3 mmol), THF (0.4 mL), 23 ºC, 12 h --/--/--/100 

5 1a (0.2 mmol), 6a (0.6 mmol), Et3N (0.6 mmol), MeOH (0.2 mL), 23 ºC, 12 h 100/--/--/-- 

6 1a (0.2 mmol), 6a (0.6 mmol), NaOMe/MeOH (2M, 1.2 mmol), 0 to 23 ºC, 12 h --/48/29/23 

7 
1) 6a (0.4 mmol), n-BuLi (2M, 0.6 mmol), THF (2 mL), -78 to 23 ºC 
2) 1a (0.2 mmol), 23 ºC, 12 h 

11/84/5/-- 

8 
1) 6a (0.3 mmol), LiOH (0.3 mmol), THF (2 mL), 0 to 23 ºC 
2) 1a (0.2 mmol), 23 ºC, 12 h 

100/--/--/-- 

9 1a (0.2 mmol), 6a (0.6 mmol), LiOH/MeOH (2M, 1.2 mmol), 0 to 23 ºC, 16 h --/44/34/22 

10 
1) 6a (0.3 mmol), LiOH/MeOH (2M, 0.3 mmol), THF (2 mL), 0 to 23 ºC  
2) 1a (0.2 mmol), 23 ºC, 12 h 

45/53/2/-- 

11 
1) 6a (0.3 mmol), NaOMe/MeOH (2M, 0.4 mmol), THF (2 mL), 0 to 23 ºC  
2) 1a (0.2 mmol), 23 ºC, 16 h 

--/45/10/45 

12 
1) 6a (0.3 mmol), LiOH/MeOH (2M, 0.45 mmol), THF (2 mL), 0 to 23 ºC  
2) 1a (0.2 mmol), 23 ºC, 16 h 

10/58/9/23 

13 
1) 6a (0.3 mmol), LiOH/MeOH (2M, 0.4 mmol), THF (2 mL), 0 to 23 ºC  
2) 1a (0.2 mmol), 23 ºC, 0.5 h 

--/97/3/-- 

14 
1) 6a (0.3 mmol), LiOEt/THF (1M, 0.4 mmol), 0 to 23 ºC  
2) 1a (0.2 mmol), 23 ºC, 0.5 h 

--/95/5/-- 

a Reaction products ratio was determined by 1H-NMR analysis of the crude reaction mixtures.  

 

We studied next the scope of the reaction of N-tert-butanesulfinyl imines 1 with different β-keto 

acids 6, by applying the optimized conditions shown in Table 1, entry 13. Two different sets of 

reaction times were applied, depending of the type of imine 1: the reaction time was 1 hour for 

aliphatic imines (although most of the reactions were over after 30 minutes) and 5 hours in the case 

of the sterically hindered imine derived from isobutyraldehyde and also for aromatic imines (Table 

2). The expected β-amino ketone derivatives 7 were obtained in high yields (quantitative yields in 

most of the cases) with excellent diastereoselectivities (trace amounts of minor diastereoisomers 8 

were detected but not isolated). The reaction was also performed on a gram-scale for the imine 
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derived from decanal 1c (4.0 mmol) and β-keto acid 6a, giving rise to amino ketone derivative 7c in 

82% isolated yield (Table 2). The poorest yields were found working with the β-keto acid 6d (R2 = 

t-Bu), with values ranging from 80 to 94% (Table 2, compounds 7q-t). The configuration of the 

newly created stereogenic centre in compounds 7 was primary assigned by comparing the specific 

rotation and the NMR data of 7g with those provided in the literature for its enantiomer,8b and later 

confirmed by crystal X-ray analysis (see the Supporting Information) of the solid compounds 7h
15 

and 7u.16 We assume that the nucleophilic attack took always place to the Si-face of the imines with 

RS configuration in compounds 7 (Table 2). 

 

Table 2. Scope of the Mannich-type coupling of imines 1 and keto acids 6a
 

O

R2

O
NH

R1

S
t-Bu

R2

O

6a (R2 = Me)

6b (R2 = Et)

6c (R2 = i-Pr)

6d (R2 = t-Bu)

6e (R2 = Ph)

7

O

1) LiOH/MeOH (2M, 0.5 mmol), THF, 0 to 23 ºC

, (0.2 mmol), 23 ºC, 1 h

HO

(0.4 mmol)
N

HR1

S

1a [R1 = Ph(CH2)2], 1b [R
1 = CH3(CH2)7]

1c [R1 = CH3(CH2)8], 1d [R
1 = i-Pr], 1e [R1 = i-PrCH2]

1f [R1 = Br(CH2)4], 1g [R1 = Ph], 1h [R1 = 4-BrC6H4]

O

t-Bu2)

 

 
a Reactions were carried out starting from 0.2 mmol of the corresponding imine 1. Isolated yields after column 
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chromatography purification are given in parenthesis. b This reaction was carried out starting from 4.0 mmol of the 

imine derived from decanal 1c. c Reaction time: 5 h.  

 

Unfortunately, the coupling reactions did not worked well with β-keto acids bearing substituents at 

2-position. For instance, the reaction of imine 1a with 2-methyl-3-oxobutanoic acid (6f) under the 

optimized reaction conditions led after 5 hours to the expected compound 7y, which was isolated as 

mixture of epimers in 22% yield (Scheme 3). 

 

Scheme 3. Reaction of sulfinyl imine 1a with 2-methyl-3-oxobutanoic acid (6f). 

 

 

Enantiomerically pure β-amino ketone derivatives are interesting building blocks in the synthesis of 

alkaloids and other compounds with potential biological activity. The utility of the here presented 

methodology is demonstrated in the straightforward synthesis of piperidine alkaloid (–)-pelletierine, 

using 3-oxobutanoic acid (6a) and the N-tert-butanesulfinyl imine derived from 4-bromopentanal 

(1f)17 as starting materials. Thus, the base-promoted decarboxylative-Mannich coupling of these 

reagents led to β-amino ketone derivative 7f, which was not isolated and treated with a 6M 

hydrochloric acid solution at 0 ºC for 4.5 hours. The resulting acidic aqueous phase containing the 

ammonium salt was basified to produce the free amine and further extracted with dichloromethane. 

To the new organic phase was added a saturated aqueous sodium bicarbonate solution, and the 

reaction mixture was vigorously stirred at room temperature overnight. Combined GC/MS showed 

the formation of (–)-pelletierine, which was finally isolated as its hydrochloride derivative (see 

Supporting Information for NMR spectra of the crude material) upon addition of a solution of 

hydrogen chloride in diethyl ether solution and further removal of volatile solvents, in 66% overall 

yield. All these transformations were easily followed by TLC and no column chromatography 

purification was necessary at any moment (Scheme 4). 

 

Scheme 4. Synthesis of (-)-pelletierine from sulfinyl imine 1e and 3-oxobutanoic acid (6a). 
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We performed density-functional theory (DFT) calculations in order to understand the origins of the 

stereocontrol of this reaction, as well as the features of each elementary step associated with the 

Mannich-like/decarboxylation sequence. We focused our calculations on a model reaction in the 

presence of lithium hydroxide and tetrahydrofuran as solvent, and took imine 1i as the model (E)-

imine (Scheme 5). After reaction with 3-oxobutanoic acid 6a, under the above-indicated conditions, 

imine 1i can yield diastereomeric β-aminoketones 7z and 8b, in which the (R) configuration of the 

sulfur atom is the source of chiral induction to the new C-C bond. This model reaction captures the 

essential features that control the stereochemical outcome of the process studied experimentally in 

detail, namely the 1a+6a→7a+8a reaction (Table 1). 

 

Scheme 5. Model reaction considered in the DFT studies. 

 

  

As far as the stereochemistry of the new C-C bond is concerned, since the decarboxylation step 

destroys the chiral information of the α-carbon atom of 3-oxobutiric acid, only the two prochiral 

faces of (E)-imines 1 determine the final stereochemical outcome (Figure 1). In principle, the Si 

attack of the nucleophiles 6 (actually, their carboxylate lithium salts) should result in the formation 

of 7, in which the new chiral carbon atom has (R) configuration, whereas the Re attack would lead 

to (S)-diastereomers 8. In this latter case, coordination of the sulfoxamide moiety to the lithium 

cation should generate a significant steric congestion between the R2 group (tert-butyl in the 
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experimental system, methyl in the computational model reaction) and the nucleophile. Therefore, 

preferential formation of (R) diastereomers 7 should be expected according to this preliminary 

analysis. 

 

Figure 1. Model trajectories for the nucleophilic attacks on the Si and Re prochiral faces of (E)-

imines 1. 

 

 

DFT calculations18 at the B3LYP/6-31+G(d) level19 including Grimme’s D3 correction for the 

dispersion energy20 and polarization continuum model (PCM)21 for unspecific solvent effects (THF 

was used in the continuum dielectric approach) yielded the reaction profiles gathered in Figure 2. 

Two discrete molecules of THF were included in the calculations in order to saturate the tetrahedral 

coordination ability of lithium (I). Interestingly, when the nitrogen atom of the imine was installed 

close to the Li(I) center and one molecule of THF was pushed away, the nitrogen was not able to 

coordinate to the cationic center during the optimization. Instead, the second molecule of THF 

interacted more efficiently thus providing a tetrahedral all-oxygen environment around the metal. 

This coordination pattern was kept along the reaction coordinates leading to C-C adducts INT2(R) 

and INT2(S).  

 

Figure 2. Computational profiles [B3LYP-D3(PCM=THF)/6-31+G(d) level of theory] associated 

with the nucleophilic attack of lithium 2-oxobutyrate on model (E)-imine 1i. Two discrete 

molecules of THF were considered along the reaction coordinates leading to diastereomeric 

intermediates INT2. Numbers in parenthesis correspond to the relative Gibbs energies (in kcal/mol) 
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with respect to starting complex INT1. Bond distances are given in Å. The steric clash associated 

with the proximity between the acetyl and S-methyl groups in TS1(S) is highlighted in red. 

 

 

 

In these simulations the cyclic geometries of transition structures are determined by the preferential 

coordination of two molecules of solvent, the oxygen of the sulfinamide moiety and the carboxylate 

group to the lithium cation. In addition, the (E)-configuration of the starting imine folds the cyclic 

array thus yielding an extended boat structure, which is completely different to the six-membered 

chair conformation associated with the Zimmerman-Traxler22 arrangement. In the case of TS1(R) 

(Figure 2), the S-Me group (S-t-Bu in the experiments) lies away of the cyclic structure and the 

proton migration from the starting enol to the carboxy moiety has been completed. The critical 

C···C bond distance is close to 2 Å, an expected value for aldol-like reactions involving complex 

lithium enolates.23 The chief geometric features of TS1(S) are similar to those of its (R)-congener, 

with the exception of the steric clash generated by the S-Me group and the acetyl group coming 

from the 2-oxobutirate. As a consequence, TS1(S) lies 2.9 kcal/mol above TS1(R). This difference 

in Gibbs energy corresponds to a INT2(R):INT(S) kinetic ratio of 99.3:0.7, a result in qualitative 

agreement with the 7a:8a ratio of 97:3 obtained in the experimental studies (Table 1, entry 13). 
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In summary, β-amino ketone derivatives were prepared from N-tert-butanesulfinyl aldimines and β-

keto acids with high diastereoselectivity in excellent yields, working under basic conditions in THF 

at room temperature. The robustness of this method was proved working in a gram-scale with the 

same levels of stereoselectivity and chemical yield, and a straightforward synthesis of piperidine 

alkaloid (-)-pelletierine demonstrated also the potential utility in synthesis of this procedure.  In 

addition, and in order to explain the stereochemical outcome of these processes, an eight-membered 

cyclic transition state, which is in agreement with the experimental results, has been proposed based 

on DFT calculations. Since these reactions are stereospecific, the configuration of newly created 

stereogenic centre bearing the nitrogen atom is determined by the configuration of the sulphur atom 

of the starting sulfinyl imine. 

 

EXPERIMENTAL SECTION 

General Remarks: (RS)-tert-Butanesulfinamide was a gift of Medalchemy (> 99% ee by chiral 

HPLC on a Chiracel AS column, 90:10 n-hexane/i-PrOH, 1.2 mL/min, λ=222 nm). TLC was 

performed on silica gel 60 F254, using aluminum plates and visualized with phosphomolybdic acid 

(PMA) stain. Flash chromatography was carried out on handpacked columns of silica gel 60 (230- 

400 mesh). Melting points are uncorrected. Optical rotations were measured using a polarimeter 

with a thermally jacketted 5 cm cell at approximately 20 ºC and concentrations (c) are given in 

g/100 mL. Infrared analyses were performed with a spectrophotometer equipped with an ATR 

component; wavenumbers are given in cm-1. Low-resolution mass spectra (EI) were obtained at 70 

eV; and fragment ions in m/z with relative intensities (%) in parentheses. High-resolution mass 

spectra (HRMS) were also carried out in the electron impact mode (EI) at 70 eV using a quadrupole 

mass analyzer or in the electrospray ionization mode (ESI) using a TOF analyzer. 1H NMR spectra 

were recorded at 300 or 400 MHz for 1H NMR and 75 or 100 MHz for 13C NMR, using CDCl3 as 

the solvent and TMS as internal standard (0.00 ppm). The data are being reported as: s = singlet, d = 

doublet, t = triplet, q = quadruplet, h = septuplet, m = multiplet or unresolved, br s = broad signal, 

coupling constant(s) in Hz, integration. 13C NMR spectra were recorded with 1H-decoupling at 100 

MHz and referenced to CDCl3 at 77.16 ppm. DEPT-135 experiments were performed to assign CH, 

CH2 and CH3. Compounds 1a,24 1b,25 1c,26 
1d,27 1e,28 1f,29

 1g
27

 and 1h
30 were prepared from the 

corresponding aldehyde and  (RS)-tert-butanesulfinamide in THF in the presence of two equivalents 

of titanium tetraethoxide. Compounds 6a-e were prepared by hydrolysis of the corresponding β-

ketoester 2. 
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General Procedure for the Reaction of β-Keto Esters 2 with N-tert-Butanesulfinyl Imine 1a. 

Synthesis of Compounds 3: A heterogeneous mixture of the corresponding β-keto ester 2 (4.0 

mmol), NaHCO3 (118 mg, 2.0 mmol), and sulfinyl imine 1a (237 mg, 1.0 mmol) was stirred at rt 

for 72 h. The resulting mixture was hydrolyzed with H2O (10 mL), acidified with 2M HCl (2 mL), 

and extracted with AcOEt (3 × 15 mL). The organic phase was dried with anhydrous MgSO4, and 

the solvent evaporated (15 Torr). The residue was purified by column chromatography (silica gel, 

hexane/EtOAc) to yield products 3. Yields, physical and spectroscopic data follow. 

(3R,RS)-Ethyl 2-Acetyl-3-amino-N-(tert-butanesulfinyl)-5-phenylpentanoate (3a): The 

representative procedure was followed by using β-keto ester 2a (520 mg, 0.51 mL, 4.0 mmol). 

Purification by column chromatography (hexane/AcOEt, 4:1) yielded 3a (213 mg, 0.58 mmol, 58%) 

as a yellow oil (1:1 mixture of diastereoisomers); Rf 0.27 (hexane/EtOAc, 1:1); IR ν (film) 2959, 

2927, 1732, 1713, 1455, 1363, 1235, 1157, 1062, 732, 700 cm–1; δH 7.33–7.10 (m, 10H), 4.45 (d, J 

= 9.9 Hz, 1H), 4.38 (d, J = 9.9 Hz, 1H), 4.32–4.08 (m,4H), 4.08 (d, J = 4.3 Hz, 1H), 4.00 (d, J = 4.7 

Hz, 1H), 3.87–3.67 (m, 2H), 2.93–2.75 (m, 2H), 2.72–2.53 (m, 2H), 2.26 (s, 3H), 2.19 (s, 3H), 

2.33–2.04 (m, 2H), 1.98–1.69 (m, 2H) 1.34–1.18 (m, 6H), 1.26 (s, 9H), 1.25 (s, 9H); δC 203.5, 

202.8, 169.0, 168.7, 141.2, 141.2 (C), 128.6, 128.55, 126.2 (CH), 63.4, 63.2 (CH), 61.9, 61.7 (CH2), 

56.4 (C), 56.3, 55.9 (CH), 35.5, 35.4, 32.7, 32.7 (CH2), 30.7 (CH3), 30.6, 22.9, 14.2, 14.1 (CH3); 

LRMS (EI) m/z 246 (M+–t-BuSONH2, 3%), 204 (10), 201 (14), 200 (29), 158 (17), 157 (13), 129 

(25), 128 (12), 117 (10), 91 (100), 65 (10); HRMS (EI): Calculated for C13H13O2 [M+–(t-

BuSONH2+EtO)] 201.0916; found 201.0918. 

(3R,RS)-tert-Butyl 2-Acetyl-3-amino-N-(tert-butanesulfinyl)-5-phenylpentanoate (3b): The 

representative procedure was followed by using β-keto ester 2b (632 mg, 0.672 mL, 4.0 mmol). 

Purification by column chromatography (hexane/AcOEt, 4:1) yielded 3b (225 mg, 0.57 mmol, 

57%) as a yellow oil (1:1 mixture of diastereoisomers); Rf 0.42 and 0.33 (hexane/EtOAc, 1:1); IR ν 

(film) 2976, 2931, 1712, 1454, 1367, 1252, 1144, 1026, 843, 748, 696 cm–1; δH 7.34–7.10 (m, 10H), 

4.43 (d, J = 9.9 Hz, 1H), 4.28 (d, J = 9.6 Hz, 1H), 4.03 (d, J = 4.5 Hz, 1H), 3.95 (d, J = 4.5 Hz, 1H), 

3.83–3.62 (m, 2H), 2.91–2.74 (m, 2H), 2.74–2.54 (m, 2H), 2.25 (s, 3H), 2.19 (s, 3H), 2.20–1.86 (m, 

2H), 1.88–1.69 (m, 2H), 1.48 (s, 9H), 1.42 (s, 9H), 1.26 (s, 9H), 1.25 (s, 9H); δC 204.1, 202.6, 

168.1, 168.0, 141.4, 141.3 (C), 128.6, 128.55, 126.2, 126.1 (CH), 83.3, 82.8 (C), 64.65, 63.8 (CH), 

56.35 (C), 56.3, 55.5 (CH), 35.1, 34.8, 32.75, 32.5 (CH2), 30.7, 30.35, 28.1, 28.0, 22.9 (CH3); 

LRMS (EI) m/z 218 [M+–(C4H9+t-BuSONH), 25%], 201 (25), 200 (47), 174 (17), 129 (15), 117 

(20), 104 (15), 91 (100), 57 (28), 56 (27); HRMS (EI): Calculated for C13H14O3 [M+–(C4H9+t-

BuSONH)] 218.0943; found 218.0938. 

(3R,RS)-Benzyl 2-Acetyl-3-amino-N-(tert-butanesulfinyl)-5-phenylpentanoate (3c): The 

representative procedure was followed by using β-keto ester 2c (769 mg, 0.692 mL, 4.0 mmol). 

Page 13 of 26

ACS Paragon Plus Environment

The Journal of Organic Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Purification by column chromatography (hexane/AcOEt, 4:1) yielded 3c (146 mg, 0.34 mmol, 34%) 

as a yellow oil (1:1 mixture of diastereoisomers); Rf 0.44 and 0.33 (hexane/EtOAc, 1:1); IR ν (film) 

2962, 1718, 1622, 1454, 1363, 1213, 1161, 1076, 895, 746, 696 cm–1; δH 7.42-7.03 (m, 20H), 5.28–

5.14 (m, 4H), 4.42 (d, J = 9.9 Hz, 1H), 4.33 (d, J = 10.1 Hz, 1H), 4.11 (d, J = 4.1 Hz, 1H), 4.05 (d, J 

= 4.7 Hz, 1H), 3.88–3.68 (m, 2H), 2.90–2.70 (m, 2H), 2.68–2.46 (m, 2H), 2.23 (s, 3H), 2.17 (s, 3H), 

2.16–1.79 (m, 2H), 1.79–1.63 (m, 2H), 1.22 (s, 9H), 1.21 (s, 9H); δC 203.2, 202.6, 168.7, 168.4, 

141.1, 141.0, 135.0, 134.9 (C), 128.8, 128.7, 128.5, 128.4, 126.1 (CH), 67.7, 67.5 (CH2), 63.3, 63.1 

(CH), 56.4 (C), 56.4, 56.0 (CH), 35.5, 32.7, 32.6 (CH2), 30.7, 30.6, 22.8 (CH3); LRMS (EI) m/z 218 

[M+–(C7H7+t-BuSONH), 3%], 217 (22), 200 (8), 199 (50), 157 (20), 92 (9), 91 (100), 77 (9), 65 

(11); HRMS (EI): Calculated for C13H13O3 [M
+–(C7H7+t-BuSONH2)] 217.0865; found 217.0865. 

 

Reaction of β-Keto Acid 6a with N-tert-Butanesulfinyl Imine 1a in NaOMe/MeOH. Synthesis 

of Compounds 7a and 8a: To a mixture of 3-oxobutanoic acid (6a, 61.2 mg, 0.6 mmol), and 

sulfinyl imine 1a (48 mg, 0.2 mmol) was added a 2M solution of NaOMe in MeOH (1.2 mL, 2.4 

mmol) at 0 ºC. The resulting mixture was stirred at rt for 12 h. After that, it was hydrolyzed with a 

mixture of H2O (5 mL) and brine (5 mL), and extracted with AcOEt (3 × 15 mL). The organic 

phase was dried with anhydrous MgSO4, and the solvent evaporated (15 Torr). The residue was 

purified by column chromatography (silica gel, hexane/EtOAc, 5:1) to yield products 7a (28.3 mg, 

0.096 mmol, 48%) and 8a (17.1 mg, 0.058 mmol, 29%). Physical and spectroscopic data follow. 

(4R,RS)-4-Amino-N-(tert-butanesulfinyl)-6-phenylhexan-2-one (7a): Yellow oild; [α]D
20 –30.7 (c 

= 1.04, CH2Cl2); Rf 0.14 (hexane/EtOAc, 1:3); IR ν (film) 2954, 2867, 1710, 1603, 1497, 1454, 

1410, 1362, 1161, 1050, 746, 699 cm–1; δH 7.34–7.11 (m, 5H), 4.15 (d, J = 9.3 Hz, 1H), 3.62–3.44 

(m, 1H), 2.95 (dd, J = 17.8, 5.5 Hz, 1H), 2.85–2.70 (m, 2H), 2.70–2.53 (m, 1H), 2.12 (s, 3H), 2.08–

1.89 (m, 1H), 1.86-1.71 (m, 1H), 1.23 (s, 9H); δC 208.3, 141.5 (C), 128.5, 128.45, 126.1 (CH), 56.1 

(C), 53.4 (CH), 49.0, 37.4, 32.5 (CH2), 31.1, 22.8 (CH3); LRMS (EI) m/z 239 (M+–C4H8, 27%), 181 

(37), 118 (12), 117 (100), 91 (49), 57 (30), 43 (26), 41 (9); HRMS (ESI): Calculated for 

C16H26NO2S (M++H) 296.1684, found 296.1681. 

(4S,RS)-4-Amino-N-(tert-butanesulfinyl)-6-phenylhexan-2-one (8a): Yellow oild; [α]D
20 –75.8 (c 

= 1.06, CH2Cl2); Rf 0.26 (hexane/EtOAc, 1:3); IR ν (film) 2952, 2867, 1710, 1603, 1496, 1454, 

1408, 1363, 1176, 1046, 749, 700 cm–1; δH 7.32–7.16 (m, 5H), 3.96 (d, J = 5.5 Hz, 1H), 3.71–3.59 

(m, 1H), 2.99 (dd, J = 17.7, 9.3 Hz, 1H), 2.84–2.62 (m, 2H), 2.56 (dd, J = 17.7, 4.0 Hz, 1H), 2.19–

2.06 (m, 1H), 2.13 (s, 3H), 1.91–1.76 (m, 1H), 1.20 (s, 9H); δC 207.9, 141.3 (C), 128.6, 128.5, 

126.1 (CH), 55.9 (C), 52.0 (CH), 49.8, 36.1, 32.35 (CH2), 30.75, 22.7 (CH3); LRMS (EI) m/z 239 
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(M+–C4H8, 27%), 181 (37), 118 (12), 117 (100), 91 (49), 57 (30), 43 (26), 41 (9); HRMS (ESI): 

Calculated for C16H26NO2S (M++H) 296.1684, found 296.1676. 

 

General Procedure for the Reaction of β-Keto Acids 6 with N-tert-Butanesulfinyl Imines 1. 

Synthesis of Compounds 7: To a solution of the corresponding β-keto acid 6 (0.3 mmol) in THF (2 

mL) was added a 2M solution of LiOH in MeOH (0.2 mL, 0.4 mmol) at 0 ºC. The reaction mixture 

was allowed to reach rt and then the corresponding imine 1 (0.2 mmol) was added and stirring was 

continued for 1 or 5 h (see Table 2). The resulting mixture was hydrolyzed with H2O (10 mL), and 

extracted with AcOEt (3 × 15 mL). The organic phase was dried with anhydrous MgSO4, and the 

solvent evaporated (15 Torr). The residue was purified by column chromatography (silica gel, 

hexane/EtOAc) to yield products 7. Yields, physical and spectroscopic data follow. 

(4R,RS)-4-Amino-N-(tert-butanesulfinyl)-6-phenylhexan-2-one (7a): The representative 

procedure was followed by using β-keto acid 6a (30.6 mg, 0.3 mmol) and imine 1a (48 mg, 0.2 

mmol). Purification by column chromatography (hexane/AcOEt, 1:2) yielded 7a (57.9 mg, 0.196 

mmol, 98%) as a yellow oil; physical and spectroscopic data have been given above. 

(4R,RS)-4-Amino-N-(tert-butanesulfinyl)dodecan-2-one (7b): The representative procedure was 

followed by using β-keto acid 6a (30.6 mg, 0.3 mmol) and imine 1b (49 mg, 0.2 mmol). 

Purification by column chromatography (hexane/AcOEt, 1:2) yielded 7b (59.5 mg, 0.196 mmol, 

98%) as a yellow oil; [α]D
20 –45.5 (c = 1.05, CH2Cl2); Rf 0.22 (hexane/EtOAc, 1:3); IR ν (film) 

2922, 2855, 1712, 1458, 1411, 1362, 1165, 1048, 889 cm–1; δH 3.98 (d, J = 8.9 Hz, 1H), 3.57–3.44 

(m, 1H), 2.87 (dd, J = 17.4, 5.5 Hz, 1H), 2.76 (dd, J = 17.8, 4.9 Hz, 1H), 2.14 (s, 3H), 1.73–1.21 

(m, 14H), 1.18 (s, 9H), 0.85 (t, J = 5.8 Hz, 3H); δC 208.3, 55.9 (C), 53.7 (CH), 49.1, 35.7, 31.9 

(CH2), 31.1 (CH3), 29.55, 29.3, 26.2 (CH2), 22.7, 14.2 (CH3); LRMS (EI) m/z 247 (M+–C4H8, 13%), 

190 (11), 189 (100), 84 (9), 70 (14), 57 (28), 43 (29), 41 (12); HRMS (ESI): Calculated for 

C16H34NO2S (M++H) 304.2310, found 304.2305. 

(4R,RS)-4-Amino-N-(tert-butanesulfinyl)tridecan-2-one (7c): The representative procedure was 

followed by using β-keto acid 6a (612 mg, 6.0 mmol) and imine 1c (1.0378 g, 4.0 mmol). 

Purification by column chromatography (hexane/AcOEt, 1:2) yielded 7c (1.0415 g, 3.28 mmol, 

82%) as a yellow oil; [α]D
20 –45.3 (c = 1.19, CH2Cl2); Rf 0.20 (hexane/EtOAc, 1:3); IR ν (film) 

2924, 2854, 1711, 1462, 1412, 1363, 1169, 1049, 897 cm–1; δH 3.99 (d, J = 9.0 Hz, 1H), 3.59–3.44 

(m, 1H), 2.89 (dd, J = 17.7, 5.5 Hz, 1H), 2.78 (dd, J = 17.7, 4.9 Hz, 1H), 2.16 (s, 3H), 1.66-1.23 (m, 

16H), 1.20 (s, 9H), 0.88 (t, J = 6.7 Hz, 3H); δC 208.25, 55.9 (C), 53.7 (CH), 49.2, 35.7, 31.95 

(CH2), 31.1 (CH3), 29.6, 29.35, 29.3, 26.25 (CH2), 22.75, 14.2 (CH3); LRMS (EI) m/z 261 (M+–

C4H8, 13%), 204 (12), 203 (100), 84 (9), 70 (15), 57 (27), 43 (37), 41 (11); HRMS (EI): Calculated 

for C13H27NO2S (M+–C4H8) 261.1762, found 261.1761. 
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(4S,RS)-4-Amino-N-(tert-butanesulfinyl)-5-methylhexan-2-one (7d): The representative 

procedure was followed by using β-keto acid 6a (30.6 mg, 0.3 mmol) and imine 1d (35 mg, 0.2 

mmol). Purification by column chromatography (hexane/AcOEt, 1:2) yielded 7d (28.9 mg, 0.124 

mmol, 62%) as a yellow oil; [α]D
20 –67.0 (c = 1.01, CH2Cl2); Rf 0.15 (hexane/EtOAc, 1:3); IR ν 

(film) 2960, 2873, 1716, 1625, 1521, 1468, 1411, 1363, 1166, 1029, 904, 690 cm–1; δH 3.91 (d, J = 

8.9 Hz, 1H), 3.38–3.30 (m, 1H), 2.83 (d, J = 5.3 Hz, 2H), 2.18 (s, 3H), 1.98-1.88 (m, 1H), 1.21 (s, 

9H), 0.92 (d, J = 6.7 Hz, 3H), 0.89 (d, J = 6.8 Hz, 3H); δC 208.4 (C), 59.1 (CH), 56.2 (C), 46.4 

(CH2), 32.1 (CH), 31.1, 22.9, 19.4 (CH3), 18.82(CH3); LRMS (EI) m/z 177 (M+–C4H8, 21%), 119 

(100), 113 (20), 86 (16), 71 (10), 70 (12), 57 (61), 56 (22), 55 (13), 44 (19), 43 (94), 41 (26); 

HRMS (ESI): Calculated for C11H24NO2S (M++H) 234.1528, found 234.1520. 

(4R,RS)-4-Amino-N-(tert-butanesulfinyl)-6-methylheptan-2-one (7e): The representative 

procedure was followed by using β-keto acid 6a (30.6 mg, 0.3 mmol) and imine 1e (37.8 mg, 0.2 

mmol). Purification by column chromatography (hexane/AcOEt, 1:2) yielded 7e (48.5 mg, 0.196 

mmol, 98%) as a yellow wax; [α]D
20 –46.8 (c = 1.02, CH2Cl2); Rf 0.15 (hexane/EtOAc, 1:3); IR ν 

(film) 3222, 2958, 1710, 1458, 1417, 1390, 1364, 1168, 1142, 1039, 900 cm–1; δH 3.98 (d, J = 9.8 

Hz, 1H), 3.66–3.51 (m, 1H), 2.92 (dd, J = 17.9, 5.6 Hz, 1H), 2.79 (dd, J = 17.8, 4.3 Hz, 1H), 2.15 

(s, 3H), 1.81–1.65 (m, 1H), 1.69–1.54 (m, 1H), 1.28–1.14 (m, 1H), 1.20 (s, 9H), 0.90 (d, J = 6.6 Hz, 

3H), 0.89 (d, J = 6.5 Hz, 3H); δC 208.4, 56.0 (C), 52.1 (CH), 49.5, 44.85 (CH2), 31.2 (CH3), 24.8 

(CH), 23.2, 22.7, 21.5 (CH3); LRMS (EI) m/z 191 (M+–C4H8, 18%), 191 (18), 133 (100), 91 (10), 

86 (13), 77 (11), 71 (14), 70 (10), 69 (13), 57 (51), 44 (11), 43 (81), 41 (21); HRMS (ESI): 

Calculated for C12H26NO2S (M++H) 248.1684, found 248.1680. 

(4R,RS)-4-Amino-8-bromo-N-(tert-butanesulfinyl)octan-2-one (7f): The representative procedure 

was followed by using β-keto acid 6a (30.6 mg, 0.3 mmol) and imine 1f (53.6 mg, 0.2 mmol). 

Purification by column chromatography (hexane/AcOEt, 1:2) yielded 7f (64.0 mg, 0.196 mmol, 

98%) as a yellow oil; [α]D
20 –38.0 (c = 1.01, CH2Cl2); Rf 0.12 (hexane/EtOAc, 1:3); IR ν (film) 

2946, 1710, 1459, 1362, 1254, 1168, 1051, 907, 731 cm–1; δH 4.02 (d, J = 9.1 Hz, 1H), 3.58–3.45 

(m, 1H), 3.41 (t, J = 6.6 Hz, 2H), 2.92 (dd, J = 17.9, 5.6 Hz, 1H), 2.81 (dd, J = 17.9, 4.6 Hz, 1H), 

2.16 (s, 3H), 1.93–1.79 (m, 2H), 1.70–1.42 (m, 4H), 1.21 (s, 9H); δC 208.2, 56.01 (C), 53.5 (CH), 

49.1, 34.65, 33.7, 32.2 (CH2), 31.1 (CH3), 24.8 (CH2), 22.7 (CH3); LRMS (EI) m/z 271 (M+–C4H9, 

13%), 269 (13%), 213 (100), 211 (99), 172 (13), 84 (14), 57 (62), 43 (54), 41 (20); HRMS (EI): 

Calculated for C8H16
79BrNO2S (M+–C4H8) 269.0085, found 269.0083. 

(4S,RS)-4-Amino-N-(tert-butanesulfinyl)-4-phenylbutan-2-one (7g): The representative 

procedure was followed by using β-keto acid 6a (30.6 mg, 0.3 mmol) and imine 1g (41.8 mg, 0.2 

mmol). Purification by column chromatography (hexane/AcOEt, 1:2) yielded 7g (46.0 mg, 0.172 
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mmol, 86%) as a yellow solid; mp 73–74 ºC (hexane/CH2Cl2); [α]D
20 –96.3 (c = 1.06, CH2Cl2); Rf 

0.17 (hexane/EtOAc, 1:3); IR ν (film) 3205, 2957, 1704, 1455, 1421, 1362, 1277, 1159, 1046, 890, 

774, 704 cm–1; δH 7.33 (m, 5H), 4.83–4.74 (m, 1H), 4.66 (d, J = 4.6 Hz, 1H), 3.08–2.96 (m, 2H), 

2.13 (s, 3H), 1.20 (s, 9H); δC 207.5, 140.9 (C), 128.7, 127.95, 127.4 (CH), 55.7 (C), 55.3 (CH), 

50.65 (CH2), 30.9, 22.7 (CH3); LRMS (EI) m/z 211 (M+–C4H8, 15%), 153 (47), 148 (11), 147 (87), 

105 (13), 104 (21), 77 (11), 59 (12), 57 (42), 43 (100), 41 (14); HRMS (ESI): Calculated for 

C14H22NO2S (M++H) 268.1371, found 268.1362. 

(4S,RS)-4-Amino-4-(4-bromophenyl)-N-(tert-butanesulfinyl)butan-2-one (7h): The 

representative procedure was followed by using β-keto acid 6a (30.6 mg, 0.3 mmol) and imine 1h 

(57.6 mg, 0.2 mmol). Purification by column chromatography (hexane/AcOEt, 1:2) yielded 7h 

(67.8 mg, 0.196 mmol, 98%) as a yellow solid; mp 89–90 ºC (hexane/CH2Cl2); [α]D
20 –73.4 (c = 

1.03, CH2Cl2); Rf 0.17 (hexane/EtOAc, 1:3); IR ν (film) 3203, 2954, 1715, 1592, 1485, 1412, 1362, 

1288, 1161, 1045, 1011, 902, 815 cm–1; δH 7.51–7.42 (m, 2H), 7.25–7.17 (m, 2H), 4.79–4.70 (m, 

1H), 4.68 (d, J = 4.5 Hz, 1H), 3.07–2.93 (m, 2H), 2.14 (s, 3H), 1.20 (s, 9H); δC 207.2, 140.0 (C), 

131.9, 129.2 (CH), 121.85, 55.8 (C), 54.7 (CH), 50.4 (CH2), 30.9, 22.7 (CH3); LRMS (EI) m/z 291 

(M+
−C4H9, 7%), 289 (6%), 233 (16), 231 (15), 227 (44), 225 (45), 184 (14), 182 (11), 57 (60), 43 

(100), 41 (15); HRMS (ESI): Calculated for C14H21
79BrNO2S (M++H) 346.0476, found 346.0472. 

(5R,RS)-5-Amino-N-(tert-butanesulfinyl)-7-phenylheptan-3-one (7i): The representative 

procedure was followed by using β-keto acid 6b (34.8 mg, 0.3 mmol) and imine 1a (48 mg, 0.2 

mmol). Purification by column chromatography (hexane/AcOEt, 1:2) yielded 7i (59.3 mg, 0.192 

mmol, 96%) as a yellow solid; mp 52–53 ºC (hexane/CH2Cl2); [α]D
20 –31.8 (c = 1.02, CH2Cl2); Rf 

0.34 (hexane/EtOAc, 1:3); IR ν (film) 3265, 2937, 1699, 1454, 1361, 1116, 1064, 942, 748, 703 

cm–1; δH 7.33–7.11 (m, 5H), 4.25 (d, J = 9.2 Hz, 1H), 3.63–3.45 (m, 1H), 2.92 (dd, J = 17.6, 5.5 Hz, 

1H), 2.86–2.69 (m, 2H), 2.68–2.54 (m, 1H), 2.48–2.33 (m, 2H), 2.07–1.90 (m, 1H), 1.87–1.71 (m, 

1H), 1.24 (s, 9H), 1.02 (t, J = 7.3 Hz, 3H); δC 211.2, 141.5 (C), 128.5, 128.5, 126.1 (CH), 56.1 (C), 

53.6 (CH), 47.75, 37.5, 37.05, 32.6 (CH2), 22.8, 7.5 (CH3); LRMS (EI) m/z 253 (M+
−C4H8, 28%), 

181 (33), 118 (12), 117 (100), 91 (47), 57 (63), 41 (9); HRMS (ESI): Calculated for C17H28NO2S 

(M++H) 310.1841, found 310.1831. 

(5R,RS)-5-Amino-N-(tert-butanesulfinyl)tridecan-3-one (7j): The representative procedure was 

followed by using β-keto acid 6b (34.8 mg, 0.3 mmol) and imine 1b (49 mg, 0.2 mmol). 

Purification by column chromatography (hexane/AcOEt, 1:2) yielded 7j (56.5 mg, 0.178 mmol, 

89%) as a yellow oil; [α]D
20 –41.0 (c = 1.05, CH2Cl2); Rf 0.46 (hexane/EtOAc, 1:3); IR ν (film) 

2925, 2855, 1710, 1458, 1411, 1363, 1051, 897, 671 cm–1; δH 4.06 (d, J = 8.9 Hz, 1H), 3.57–3.43 

(m, 1H), 2.84 (dd, J = 17.4, 5.4 Hz, 1H), 2.73 (dd, J = 17.4, 4.9 Hz, 1H), 2.41 (q, J = 7.3 Hz, 2H), 
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1.65–1.20 (m, 14H), 1.18 (s, 9H), 1.01 (t, J = 7.3 Hz, 3H), 0.85 (t, J = 6.9 Hz, 3H); δC 211.1, 55.9 

(C), 53.85 (CH), 47.8, 37.1, 35.7, 31.9, 29.55, 29.3, 26.2 (CH2), 22.75 (CH3), 22.7 (CH2), 14.2, 7.55 

(CH3); LRMS (EI) m/z 247 (M+–C4H8, 13%), 190 (11), 189 (100), 84 (9), 70 (14), 57 (28), 43 (29), 

41 (12); HRMS (ESI): Calculated for C16H34NO2S (M++H) 304.2310, found 304.2305. 

(5S,RS)-5-Amino-N-(tert-butanesulfinyl)-6-methylheptan-3-one (7k): The representative 

procedure was followed by using β-keto acid 6b (34.8 mg, 0.3 mmol) and imine 1d (35 mg, 0.2 

mmol). Purification by column chromatography (hexane/AcOEt, 1:2) yielded 7k (28.9 mg, 0.194 

mmol, 97%) as a yellow oil; [α]D
20 –67.0 (c = 1.01, CH2Cl2); Rf 0.15 (hexane/EtOAc, 1:3); IR ν 

(film) 2960, 2873, 1716, 1625, 1521, 1468, 1411, 1363, 1166, 1029, 904, 690 cm–1; δH 3.91 (d, J = 

8.9 Hz, 1H), 3.38–3.30 (m, 1H), 2.83 (d, J = 5.3 Hz, 2H), 2.18 (s, 3H), 1.98-1.88 (m, 1H), 1.21 (s, 

9H), 0.92 (d, J = 6.7 Hz, 3H), 0.89 (d, J = 6.8 Hz, 3H); δC 208.4 (C), 59.1 (CH), 56.2 (C), 46.4 

(CH2), 32.1 (CH), 31.1, 22.9, 19.4 (CH3), 18.82(CH3); LRMS (EI) m/z 261 (M+
−C4H8, 13%), 197 

(9), 190 (12), 189 (100), 142 (10), 84 (9), 70 (14), 57 (63), 41 (11); HRMS (ESI): Calculated for 

C17H36NO2S (M++H) 318.2467, found 318.2467. 

(5S,RS)-5-Amino-N-(tert-butanesulfinyl)-5-phenylpentan-3-one (7l): The representative 

procedure was followed by using β-keto acid 6b (34.8 mg, 0.3 mmol) and imine 1g (41.8 mg, 0.2 

mmol). Purification by column chromatography (hexane/AcOEt, 1:2) yielded 7l (46.0 mg, 0.196 

mmol, 98%) as a yellow solid; mp 57–58 ºC (hexane/CH2Cl2); [α]D
20 –92.2 (c = 1.03, CH2Cl2); Rf 

0.36 (hexane/EtOAc, 1:3); IR ν (film) 3218, 2979, 1707, 1455, 1354, 1278, 1048, 888, 762, 702 

cm–1; δH 7.40–7.24 (m, 5H), 4.83–4.74 (m, 2H), 3.06–2.89 (m, 2H), 2.41 (dd, J = 7.3, 1.8 Hz, 1H), 

2.38 (dd, J = 7.3, 1.7 Hz, 1H), 1.21 (s, 9H), 1.00 (t, J = 7.3 Hz, 3H); δC 210.4, 141.1 (C), 128.7, 

127.9, 127.4 (CH), 55.7 (C), 55.4 (CH), 49.4, 37.0 (CH2), 22.7, 7.5 (CH3); LRMS (EI) m/z 225 

(M+
−C4H8, 8%), 161 (37), 153 (27), 121 (7), 105 (7), 104 (13), 57 (100), 41 (7); HRMS (ESI): 

Calculated for C15H24NO2S (M++H) 282.1528, found 282.1515. 

(5R,RS)-5-Amino-N-(tert-butanesulfinyl)-2-methyl-7-phenylheptan-3-one (7m): The 

representative procedure was followed by using β-keto acid 6c (39 mg, 0.3 mmol) and imine 1a (48 

mg, 0.2 mmol). Purification by column chromatography (hexane/AcOEt, 1:2) yielded 7m (63.4 mg, 

0.196 mmol, 98%) as a yellow oil; [α]D
20 –33.0 (c = 1.07, CH2Cl2); Rf 0.50 (hexane/EtOAc, 1:3); IR 

ν (film) 2966, 1705, 1496, 1455, 1363, 1173, 1054, 736, 697 cm–1; δH 7.33–7.13 (m, 5H), 4.32 (d, J 

= 9.2 Hz, 1H), 3.62–3.47 (m, 1H), 2.97 (dd, J = 17.8, 5.6 Hz, 1H), 2.89–2.71 (m, 2H), 2.70–2.46 

(m, 2H), 2.03 – 1.86 (m, 1H), 1.85–1.68 (m, 1H), 1.24 (s, 9H), 1.07 (d, J = 6.9 Hz, 3H), 1.07 (d, J = 

6.8 Hz, 3H); δC 214.5, 141.5 (C), 128.5, 128.5, 126.0 (CH), 56.0 (C), 53.6 (CH), 45.8 (CH2), 41.6 

(CH), 37.4, 32.6 (CH2), 22.8, 18.0 (CH3); LRMS (EI) m/z 267 (M+
−C4H8, 23%), 249 (12), 203 (9), 
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181 (27), 134 (11), 118 (11), 117 (100), 91 (51), 71 (31), 57 (27), 43 (29), 41 (11); HRMS (ESI): 

Calculated for C18H30NO2S (M++H) 324.1997, found 324.1993. 

(5R,RS)-5-Amino-N-(tert-butanesulfinyl)-2-methyltridecan-3-one (7n): The representative 

procedure was followed by using β-keto acid 6c (39 mg, 0.3 mmol) and imine 1b (49 mg, 0.2 

mmol). Purification by column chromatography (hexane/AcOEt, 1:2) yielded 7n (64.3 mg, 0.194 

mmol, 97%) as a yellow oil; [α]D
20 –37.8 (c = 1.04, CH2Cl2); Rf 0.57 (hexane/EtOAc, 1:3); IR ν 

(film) 2925, 2855, 1707, 1466, 1363, 1176, 1051, 912, 731 cm–1; δH 4.14 (d, J = 8.9 Hz, 1H), 3.58–

3.48 (m, 1H), 2.91 (dd, J = 17.6, 5.6 Hz, 1H), 2.81 (dd, J = 17.6, 4.6 Hz, 1H), 2.57 (h, J = 6.9 Hz, 

1H), 1.65–1.23 (m, 14H), 1.21 (s, 9H), 1.10 (s, 3H), 1.08 (s, 3H), 0.88 (t, J = 6.8 Hz, 3H); δC 214.5, 

55.9 (C), 53.9 (CH), 45.9 (CH2), 41.7 (CH), 35.6, 31.9, 29.6, 29.3, 26.3 (CH2), 22.8 (CH3), 22.7 

(CH2), 18.0, 14.2 (CH3); LRMS (EI) m/z 275 (M+
−C4H8, 15%), 211 (14), 190 (12), 189 (100), 142 

(18), 84 (10), 71 (39), 70 (16), 57 (29), 43 (36), 41 (14); HRMS (ESI): Calculated for C18H38NO2S 

(M++H) 332.2623, found 332.2620. 

(5S,RS)-5-Amino-N-(tert-butanesulfinyl)-2,6-dimethylheptan-3-one (7o): The representative 

procedure was followed by using β-keto acid 6c (39 mg, 0.3 mmol) and imine 1d (35 mg, 0.2 

mmol). Purification by column chromatography (hexane/AcOEt, 1:2) yielded 7o (50.3 mg, 0.190 

mmol, 95%) as a yellow oil; [α]D
20 –62.8 (c = 1.04, CH2Cl2); Rf 0.48 (hexane/EtOAc, 1:3); IR ν 

(film) 2961, 2873, 1705, 1467, 1385, 1364, 1175, 1056, 904, 733 cm–1; δH 4.10 (d, J = 8.8 Hz, 1H), 

3.42–3.27 (m, 1H), 2.98–2.76 (m, 2H), 2.60 (h, J = 7.0 Hz, 1H), 2.00–1.86 (m, 1H), 1.22 (s, 9H), 

1.12 (s, 3H), 1.09 (s, 3H), 0.92 (d, J = 6.7 Hz, 3H), 0.89 (d, J = 6.8 Hz, 3H); δC 214.5 (C), 59.2 

(CH), 56.1 (C), 43.0 (CH2), 41.6, 31.8 (CH), 22.8, 19.4, 18.8, 18.15, 18.1 (CH3); LRMS (EI) m/z 

205 (M+
−C4H8, 24%), 144 (29), 141 (23), 119 (100), 114 (10), 72 (19), 71 (63), 70 (15), 69 (11), 57 

(48), 56 (22), 55 (16), 43 (98), 41 (30); HRMS (ESI): Calculated for C13H28NO2S (M++H) 

262.1841, found 262.1836. 

(5S,RS)-5-Amino-N-(tert-butanesulfinyl)-2-methyl-5-phenylpentan-3-one (7p): The 

representative procedure was followed by using β-keto acid 6c (39 mg, 0.3 mmol) and imine 1g 

(41.8 mg, 0.2 mmol). Purification by column chromatography (hexane/AcOEt, 1:2) yielded 7p 

(63.4 mg, 0.196 mmol, 98%) as a yellow solid; mp 50–51 ºC (hexane/CH2Cl2);  [α]D
20 –93.4 (c = 

1.02, CH2Cl2); Rf 0.50 (hexane/EtOAc, 1:3); IR ν (film) 3210, 2970, 1708, 1456, 1352, 1278, 1046, 

896, 758, 698 cm–1; δH 7.41–7.22 (m, 5H), 4.86 (d, J = 4.4 Hz, 1H), 4.84–4.72 (m, 1H), 3.07 (dd, J 

= 17.1, 4.7 Hz, 1H), 2.96 (dd, J = 17.1, 7.5 Hz, 1H), 2.52 (h, J = 6.9 Hz, 1H), 1.21 (s, 9H), 1.04 (s, 

3H), 1.02 (s, 3H); δC 213.6, 141.15 (C), 128.6, 127.8 (CH), 127.35 (CH), 55.6 (C), 55.45 (CH), 

47.45 (CH2), 41.7 (CH), 22.7, 17.8 (CH3); LRMS (EI) m/z 239 (M+
−C4H8, 9%), 175 (30), 153 (28), 
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135 (10), 105 (9), 104 (15), 71 (100), 57 (24), 43 (36), 41 (12); HRMS (ESI): Calculated for 

C16H26NO2S (M++H) 296.1684, found 296.1682. 

(5R,RS)-5-Amino-N-(tert-butanesulfinyl)-2,2-dimethyl-7-phenylheptan-3-one (7q): The 

representative procedure was followed by using β-keto acid 6d (43.2 mg, 0.3 mmol) and imine 1a 

(48 mg, 0.2 mmol). Purification by column chromatography (hexane/AcOEt, 1:2) yielded 7q (63.4 

mg, 0.188 mmol, 94%) as a yellow wax; [α]D
20 –30.4 (c = 1.00, CH2Cl2); Rf 0.55 (hexane/EtOAc, 

1:3); IR ν (film) 2954, 2865, 1703, 1477, 1455, 1364, 1054, 946, 747, 699 cm–1; δH 7.33–7.12 (m, 

5H), 4.42 (d, J = 9.3 Hz, 1H), 3.64–3.47 (m, 1H), 2.99 (dd, J = 18.0, 5.6 Hz, 1H), 2.87 (dd, J = 

17.9, 4.1 Hz, 1H), 2.85–2.71 (m, 1H), 2.69–2.53 (m, 1H), 2.05–1.84 (m, 1H), 1.82–1.64 (m, 1H), 

1.25 (s, 9H), 1.11 (s, 9H); δC 216.1, 141.6 (C), 128.5, 128.5, 126.0 (CH), 56.0 (C), 53.9 (CH), 44.5 

(C), 42.3, 37.3, 32.7 (CH2), 26.3, 22.9 (CH3); LRMS (EI) m/z 281 (M+
−C4H8, 33%), 217 (12), 206 

(11), 181 (30), 134 (14), 118 (11), 117 (100), 91 (52), 85 (14), 57 (88), 41 (15); HRMS (ESI): 

Calculated for C19H32NO2S (M++H) 338.2154, found 338.2155. 

(5R,RS)-5-Amino-N-(tert-butanesulfinyl)-2,2-dimethyltridecan-3-one (7r): The representative 

procedure was followed by using β-keto acid 6d (43.2 mg, 0.3 mmol) and imine 1b (49 mg, 0.2 

mmol). Purification by column chromatography (hexane/AcOEt, 1:2) yielded 7r (56.0 mg, 0.162 

mmol, 81%) as a yellow oil; [α]D
20 –36.2 (c = 1.08, CH2Cl2); Rf 0.66 (hexane/EtOAc, 1:3); IR ν 

(film) 2925, 2855, 1702, 1465, 1364, 1176, 1052, 905 cm–1; δH 4.23 (d, J = 9.0 Hz, 1H), 3.62–3.43 

(m, 1H), 2.94 (dd, J = 17.8, 5.5 Hz, 1H), 2.85 (dd, J = 17.8, 4.5 Hz, 1H), 1.63–1.22 (m, 14H), 1.21 

(s, 9H), 1.13 (s, 9H), 0.88 (t, J = 6.9 Hz, 3H); δC 216.0, 55.9 (C), 54.2 (CH), 44.5 (C), 42.4, 35.5, 

31.9, 29.6, 29.3 (CH2), 26.3, 22.8 (CH3), 22.75 (CH2), 14.2 (CH3); LRMS (EI) m/z 289 (M+
−C4H8, 

17%), 225 (19), 214 (10), 190 (12), 189 (100), 142 (22), 85 (19), 70 (16), 57 (96), 43 (19), 41 (19); 

HRMS (ESI): Calculated for C19H40NO2S (M++H) 346.2780, found 346.2780. 

(5S,RS)-5-Amino-N-(tert-butanesulfinyl)-2,2,6-trimethylheptan-3-one (7s): The representative 

procedure was followed by using β-keto acid 6d (43.2 mg, 0.3 mmol) and imine 1d (35 mg, 0.2 

mmol). Purification by column chromatography (hexane/AcOEt, 1:2) yielded 7s (48 mg, 0.174 

mmol, 87%) as a yellow oil; [α]D
20 –61.7 (c = 1.05, CH2Cl2); Rf 0.55 (hexane/EtOAc, 1:3); IR ν 

(film) 3172, 2963, 1703, 1478, 1465, 1364, 1006, 916, 715 cm–1; δH 4.11 (d, J = 8.8 Hz, 1H), 3.40–

3.29 (m, 1H), 2.96 (dd, J = 17.9, 5.4 Hz, 1H), 2.85 (dd, J = 17.9, 5.0 Hz, 1H), 2.01–1.88 (m, 1H), 

1.22 (s, 9H), 1.15 (s, 9H), 0.91 (d, J = 6.8 Hz, 3H), 0.88 (d, J = 6.8 Hz, 3H); δC 215.8 (C), 59.3 

(CH), 56.1 (C), 44.6 (C), 39.4 (CH2), 31.5 (CH), 26.45, 22.9, 19.4, 18.8 (CH3); LRMS (EI) m/z 219 

(M+
−C4H8, 15%), 155 (13), 144 (17), 128 (13), 119 (56), 85 (21), 72 (14), 71 (11), 70 (12), 69 (13), 

57 (100), 56 (13), 55 (13), 43 (45), 41 (25); HRMS (ESI): Calculated for C14H30NO2S (M++H) 

276.1997, found 276.1990. 

Page 20 of 26

ACS Paragon Plus Environment

The Journal of Organic Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



(5S,RS)-5-Amino-N-(tert-butanesulfinyl)-2,2-dimethyl-5-phenylpentan-3-one (7t): The 

representative procedure was followed by using β-keto acid 6d (43.2 mg, 0.3 mmol) and imine 1g 

(41.8 mg, 0.2 mmol). Purification by column chromatography (hexane/AcOEt, 1:2) yielded 7t (49.5 

mg, 0.160 mmol, 80%) as a yellow solid; mp 75–76 ºC (hexane/CH2Cl2);  [α]D
20 –88.9 (c = 1.06, 

CH2Cl2); Rf 0.55 (hexane/EtOAc, 1:3); IR ν (film) 3089, 2979, 1700, 1476, 1459, 1363, 1177, 1043, 

916, 764, 701 cm–1; δH 7.41–7.24 (m, 5H), 4.91 (d, J = 4.3 Hz, 1H), 4.82–4.70 (m, 1H), 3.12 (dd, J 

= 17.2, 4.4 Hz, 1H), 2.94 (dd, J = 17.2, 7.8 Hz, 1H), 1.22 (s, 9H), 1.06 (s, 9H); δC 215.1, 141.3 (C), 

128.65, 127.9, 127.5 (CH), 55.7 (C), 55.6 (CH), 44.6 (C), 44.1 (CH2), 26.0, 22.8 (CH3); LRMS (EI) 

m/z 253 (M+
−C4H8, 7%), 189 (18), 153 (18), 104 (13), 85 (46), 57 (100), 41 (12); HRMS (ESI): 

Calculated for C17H28NO2S (M++H) 310.1841, found 310.1833. 

(3R,RS)-3-Amino-N-(tert-butanesulfinyl)-1,5-diphenylpentan-1-one (7u): The representative 

procedure was followed by using β-keto acid 6e (49.2 mg, 0.3 mmol) and imine 1a (48 mg, 0.2 

mmol). Purification by column chromatography (hexane/AcOEt, 1:2) yielded 7u (61.5 mg, 0.172 

mmol, 86%) as a yellow solid; mp 40–41 ºC (hexane/CH2Cl2);  [α]D
20 –39.1 (c = 1.01, CH2Cl2); Rf 

0.40 (hexane/EtOAc, 1:2); IR ν (film) 3191, 2962, 1680, 1449, 1355, 1211, 1057, 1005, 959, 895, 

753, 727, 687 cm–1; δH 7.96–7.86 (m, 2H), 7.61–7.49 (m, 1H), 7.50–7.37 (m, 2H), 7.33–7.21 (m, 

2H), 7.23–7.12 (m, 3H), 4.35 (d, J = 9.0 Hz, 1H), 3.86–3.68 (m, 1H), 3.41 (d, J = 5.5 Hz, 2H), 

2.91–2.75 (m, 1H), 2.75–2.59 (m, 1H), 2.15–1.96 (m, 1H), 1.99–1.81 (m, 1H), 1.25 (s, 9H); δC 

199.5, 141.55, 137.05 (C), 133.5, 128.7, 128.55, 128.5, 128.2, 126.1 (CH), 56.2 (C), 53.9 (CH), 

44.4, 37.5, 32.6 (CH2), 22.9 (CH3); LRMS (EI) m/z 301 (M+
−C4H8, 15%), 181 (43), 134 (12), 133 

(12), 121 (12), 118 (12), 117 (100), 116 (11), 105 (99), 91 (86), 78 (11), 77 (40), 57 (41), 43 (16), 

41 (14); HRMS (ESI): Calculated for C21H28NO2S (M++H) 358.1841, found 358.1834. 

(3R,RS)-3-Amino-N-(tert-butanesulfinyl)-1-phenylundecan-1-one (7v): The representative 

procedure was followed by using β-keto acid 6e (49.2 mg, 0.3 mmol) and imine 1b (49 mg, 0.2 

mmol). Purification by column chromatography (hexane/AcOEt, 1:2) yielded 7v (71.6 mg, 0.196 

mmol, 98%) as a yellow oil; [α]D
20 –46.0 (c = 1.08, CH2Cl2); Rf 0.51 (hexane/EtOAc, 1:2); IR ν 

(film) 2924, 1685, 1448, 1363, 1212, 1050, 900, 752, 688 cm–1; δH 7.98–7.91 (m, 2H), 7.61–7.51 

(m, 1H), 7.50–7.41 (m, 2H), 4.16 (d, J = 8.8 Hz, 1H), 3.81–3.67 (m, 1H), 3.41 (dd, J = 17.3, 4.8 Hz, 

1H), 3.34 (dd, J = 17.3, 5.9 Hz, 1H), 1.75–1.53 (m, 2H), 1.49–1.23 (m, 12H), 1.22 (s, 9H), 0.86 (t, J 

= 7.0 Hz, 3H); δC 199.5, 137.1 (C), 133.4, 128.7, 128.2 (CH), 56.0 (C), 54.2 (CH), 44.5, 35.7, 31.9, 

29.6, 29.4, 29.3, 26.3 (CH2), 22.8 (CH3), 22.8 (CH2), 14.21 (CH3); LRMS (EI) m/z 309 (M+
−C4H8, 

8%), 190 (12), 189 (100), 142 (18), 121 (27), 120 (10), 105 (99), 84 (10), 77 (32), 70 (17), 57 (37), 

43 (9), 41 (14); HRMS (ESI): Calculated for C21H36NO2S (M++H) 366.2467, found 366.2465. 
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(3S,RS)-3-Amino-N-(tert-butanesulfinyl)-4-methyl-1-phenylpentan-1-one (7w): The 

representative procedure was followed by using β-keto acid 6e (49.2 mg, 0.3 mmol) and imine 1d 

(35 mg, 0.2 mmol). Purification by column chromatography (hexane/AcOEt, 1:2) yielded 7w (31.9 

mg, 0.108 mmol, 54%) as a yellow wax; [α]D
20 –67.8 (c = 0.99, CH2Cl2); Rf 0.40 (hexane/EtOAc, 

1:2); IR ν  (film) 2959, 1681, 1597, 1448, 1364, 1211, 1053, 896, 749, 689 cm–1; δH 8.00–7.90 (m, 

2H), 7.61–7.52 (m, 1H), 7.50–7.42 (m, 2H), 4.12 (d, J = 8.7 Hz, 1H), 3.62–3.47 (m, 1H), 3.43 (dd, J 

= 17.2, 5.0 Hz, 1H), 3.34 (dd, J = 17.2, 5.8 Hz, 1H), 2.14–1.96 (m, 1H), 1.23 (s, 9H), 0.97 (d, J = 

6.8 Hz, 3H), 0.92 (d, J = 6.8 Hz, 3H); δC 199.6 (C), 137.1 (C), 133.45 (CH), 128.8 (CH), 128.2 

(CH), 59.6 (CH), 56.3 (C), 41.5 (CH2), 31.8 (CH), 22.9 (CH3), 19.5 (CH3), 18.7 (CH3); LRMS (EI) 

m/z 239 (M+
−C4H8, 10%), 221 (11), 188 (18), 175 (11), 121 (28), 119 (100), 105 (99), 77 (33), 72 

(13), 57 (28), 56 (18), 43 (10), 41 (12); HRMS (EI): Calculated for C12H17NO2S (M+–C4H8) 

239.0980, found 239.0970. 

(3S,RS)-3-Amino-N-(tert-butanesulfinyl)-1,3-diphenylpropan-1-one (7x): The representative 

procedure was followed by using β-keto acid 6e (49.2 mg, 0.3 mmol) and imine 1g (41.8 mg, 0.2 

mmol). Purification by column chromatography (hexane/AcOEt, 1:2) yielded 7x (45.5 mg, 0.138 

mmol, 69%) as a yellow wax;  [α]D
20 –69.1 (c = 1.03, CH2Cl2); Rf 0.42 (hexane/EtOAc, 1:2); IR ν 

(film) 2958, 1681, 1597, 1449, 1363, 1258, 1205, 1026, 919, 749 cm–1; δH 7.97–7.86 (m, 2H), 7.62–

7.51 (m, 1H), 7.50–7.23 (m, 7H), 4.97 (dt, J = 8.1, 4.2 Hz, 1H), 4.86 (d, J = 4.1 Hz, 1H), 3.60 (dd, J 

= 17.4, 4.4 Hz, 1H), 3.49 (dd, J = 17.4, 7.9 Hz, 1H), 1.22 (s, 9H); δC 198.65, 141.1, 136.6 (C), 

133.7, 128.8, 128.2, 128.0, 127.6 (CH), 55.7 (C) 55.45 (CH), 46.0 (CH2), 22.75 (CH3); LRMS (EI) 

m/z 273 (M+
−C4H8, 3%), 209 (11), 153 (49), 106 (15), 105 (100), 104 (9), 77 (24), 57 (14); HRMS 

(ESI): Calculated for C19H24NO2S (M++H) 330.1528, found 330.1522. 

(4R,RS)-4-Amino-N-(tert-butanesulfinyl)-6-phenylhexan-2-one (7y): The representative 

procedure was followed by using β-keto acid 6f (34.8 mg, 0.3 mmol) and imine 1a (48 mg, 0.2 

mmol). Purification by column chromatography (hexane/AcOEt, 1:2) yielded 7y (13.6 mg, 0.044 

mmol, 22%) as a yellow wax; Rf 0.27 (hexane/EtOAc, 1:3); IR ν (film) 2925, 1705, 1495, 1454, 

1362, 1174, 1047, 951, 733, 698 cm–1; Major isomer δH 7.34–7.10 (m, 5H), 4.26 (d, J = 8.8 Hz, 

1H), 3.46–3.26 (m, 1H), 3.14–2.72 (m, 2H), 2.66–2.51 (m, 1H), 2.11 (s, 3H), 2.08–1.89 (m, 1H), 

1.82–1.69 (m, 1H), 1.28 (s, 9H), 1.23 (d, J = 7.3 Hz, 3H); δC 212.3, 141.5 (C), 128.6, 128.5, 126.2, 

58.8 (CH), 56.5 (C), 51.0 (CH), 36.5, 32.6 (CH2), 29.85, 23.0, 13.5 (CH3); Minor isomer δH 7.32–

7.10 (m, 5H), 4.12 (d, J = 8.1 Hz, 1H), 3.46–3.26 (m, 1H), 3.11–2.73 (m, 1H), 2.67–2.50 (m, 2H), 

2.15 (s, 3H), 2.07–1.92 (m, 1H), 1.84–1.65 (m, 1H), 1.25 (s, 9H), 1.17 (d, J = 7.4 Hz, 3H); δC 

212.4, 141.6 (C), 128.6, 128.5, 126.1, 58.5 (CH), 56.25 (C), 50.8 (CH), 33.4, 32.9 (CH2), 29.5, 

22.9, 13.4 (CH3); LRMS (EI) m/z 253 (M+
−C4H8, 14%), 181 (45), 134 (12), 133 (8), 118 (11), 117 
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(100), 91 (50), 57 (27), 43 (25), 41 (8); HRMS (EI): Calculated for C13H19NO2S (M+
−C4H8) 

253.1136, found 253.1133. 

 

Synthesis of (−−−−)-Pelletierine Hydrochloride from β-Keto Acid 6a and Imine 1f: To a solution of 

β-keto acid 6a (82.0 mg, 0.8 mmol) in THF (4 mL) was added a 2M solution of LiOH in MeOH 

(0.5 mL, 1.0 mmol) at 0 ºC. The reaction mixture was allowed to reach rt and then the imine 1f 

(107.2 g, 0.4 mmol) was added and stirring was continued for 1 h. Complete formation of the β-keto 

amine derivative 7f was followed by TLC. After that, 6M HCl (0.5 mL, 3.0 mmol) was added to the 

resulting mixture at 0 ºC and it was stirred for 4.5 h at the same temperature. Removal of the tert-

butanesulfinyl group with concomitant formation of the free amine hydrochloride was also followed 

by TLC. Then, a mixture of H2O (5 mL) and AcOEt (5 mL) was added. The resulting aqueous 

phase was basified with a 2M NaOH aqueous solution (12 mL) and extracted with CH2Cl2 (4 × 3 

mL). To this new organic phase containing exclusively the free amine was added a saturated 

aqueous solution of NaHCO3 (8 mL) and this heterogeneous mixture was stirred 12 h at room 

temperature. The organic phase containing (−)-pelletierine [GC-MS.- single peak, m/z 141 (M+, 

14%)] was treated with a 2M HCl solution in Et2O (0.5 mL, 1.0 mmol) for 15 min and after that the 

solvents  were evaporated (15 Torr) to yield (−)-pelletierine hydrochloride as a white solid (46.9 

mg, 0.26 mmol, 66%); [α]D
20 –16.1 (c = 0.61, EtOH) [lit.31 for (–)-pelletierine hydrochloride [α]D

20 

–18.0 (c = 0.5, EtOH)], ca. 92% ee (from the dr of the intermediate 7f); δH 9.44 (s, 1H), 9.17 (s, 

1H), 3.58–3.44 (m, 2H), 3.32 (dd, J = 18.2, 4.1 Hz, 1H), 2.99 (dd, J = 18.2, 8.0 Hz, 1H), 2.95–2.86 

(m, 1H), 2.22 (s, 3H), 2.03–1.82 (m, 4H), 1.79–1.67 (m, 1H), 1.62–1.47 (m, 1H); δC 205.1 (C), 53.1 

(CH), 46.0 (CH2), 45.1 (CH2), 30.6 (CH3), 28.4, 22.3, 22.15 (CH2). 

 

ASSOCIATED CONTENT 

Supporting Information.  Copies of 1H, 13C NMR and DEPT spectra for all the reported 

compounds, X-ray structures of compounds 7h (Figure S1) and 7u (Figure S2), as well as 

Cartesian coordinates, number of imaginary frequencies (NIMAG), and energy data of stationary 

points gathered in Figure 2 (Tables S1-S6). 
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