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Current trends towards the synthesis of bioactive heterocycles and 
natural products using 1,3-dipolar cycloadditions (1,3-DC) with 
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Abstract In this revision a summary of the trends of the formation of complex 
or not so complex heterocyclic structures through 1,3-DC of azomethine ylides 
is described. Diastereo- and enantioselective processes as well as non-
asymmetric cycloadditions constitute very important synthetic tools for 
achieving all these series of compounds. The contents are classified as follows: 
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1. Introduction 

 

Biomimetic studies and biosynthetic theories strongly support 

that general [3+2] cycloadditions1 take place frequently in 

nature.2 In this line, azomethine ylides are useful synthetic 

intermediates to access complex molecules, and in consequence, 

their precursors are valuable building blocks in the elaboration 

of structurally diverse biologically important heterocycles and 

natural products.  The main utility of these dipolar intermediates 

is as component of 1,3-dipolar cycloaddition (1,3-DC) together 

with electrophilic alkenes. Inter- and intramolecular versions of 

these types of 1,3-DCs provide a potentially flexible and versatile 

entry into the complex molecular framework with a pyrrolidine 

core. These cycloadditions reach a special dimension when the 

catalytic enantioselective process is successfully implemented. In 

this way, up to four contiguous stereogenic centers can be 

unambiguously generated in just one single step.  

 There are many excellent reports and reviews in the literature 

about the generation, and applications concerning 1,3-DCs with 

azomethine ylides but this field is in continuous expansion.3 In 

this review the literature from 2015 through 2016 was covered 

organizing the research in terms of biologically important 

heterocycles and natural product from cascade 1,3-DC of 

azomethine ylide to the most simple cycloaddition [the 

application of this strategy to the generation of new materials or 

polymers is not covered in this review]. 

 

 

2. Synthesis of spirooxindoles  

 

Spirooxindole skeleton has an important biological role in 

bioorganic and medicinal chemistry as well as in the drug 

discovery programs.4 Synthesis of novel potentially bioactive 

spirooxindoles has been reviewed in a recent paper and the work 

related to spirooxindolepyrrolidines was also detailed.5 

However, in this review some very recent publications have not 

been highlighted. Therefore, in this revision the most recent work 

regarding to spiroxindolepyrrolidines, obtained from a 

multicomponent 1,3-dipolar cycloaddition (1,3-DC) of 

azomethine ylides with the appropriate alkene, is reported.  

The synthesis of spirooxindolepyrrolizidine derivatives 4 and 4’, 

as well as their in vitro bioactivity against Mycobacterium 

tuberculosis, were reported by Askri et al. Compounds 4 and 4’ 

were prepared from non-stabilized azomethine ylides, generated 

in situ from isatin derivatives 2 and L-proline 1. Subsequent 1,3-

DC with (E,E)-1,3-bis(arylidene)indan-2-ones 3 yielded the 
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corresponding dispirooxindolepyrrolizidines in a one-pot three 

component domino reaction with poor diastereoselectivities 

(Scheme 1).6, 7 In general, in these type of cycloadditions 

regarding iminium-decarboxylation route, the iminium salt I 

formed between compounds 1 and 2 undergoes a spontaneous 

decarboxylation to give the intermediate azomethine ylide II, 

which reacts with the electrophilic alkene with total 

regioselection. 

 

 
Scheme 1 Synthesis of diastereomeric mixtures of spirooxindoles 4 and 4’. 

 

An environmentally friendly synthesis of spirooxindolo-

pyrrolizidines 6 was reported by Tiwari et al. starting from 

proline 1, isatins 2, and acrylonitrile or methylacrylate in water. 

The reaction proceeded regioselectively in a three-component 

manner. Again, the in situ generation of fleeting non-stabilized 

azomethine ylide, and subsequent 1,3-DC reaction with these 

electron deficient alkenes 5 as dipolarophiles, afforded 

biologically active spirooxindolopyrrolizidine derivatives 6 

(Scheme 2).8 

A variant of this green process was the 1,3-DC run with a Morita–

Baylis–Hillman (MBH) adduct 7 (Scheme 2), derived from 

pyridine-4-carboxaldehyde and lauryl acrylate, giving similar 

spirocycloadducts in good yields but employing toluene instead 

of water.9  

 

 
Scheme 2 Green multicomponent synthesis of spirooxindolopyrrolizidines 6. 

 

Potentially bioactive spiroheterocycles 10, containing both 

spirooxindole and pyrrolizidine core structures, were 

enantioselectively prepared by Taghizadeh and co-workers. The 

1,3-DC was carried out in the presence of Cu(OTf)2· 

bis(arylmethyleneamine) 9 chiral complex, ethanol, proline 1, 

isatins 2, and acrylic dipolarophiles 8 under mild conditions 

(Scheme 3).10 

 

 
Scheme 3 Enantioselective synthesis of spiranic compounds 10. 

 

Highly activated tetraethyl vinylidene-1,2-(bis)phosphonate 11 

was allowed to react with isatins 2 and various amino acids 

(proline 1, sarcosine 13, or piperidine-2-carboxylic acid 14) in 

the presence of montmorillonite as catalyst. The 1,3-DC occurred 

in refluxing acetonitrile obtaining spirotetracyclic adducts 12 as 

a mixture of diastereoisomers in moderate to good yields 

(Scheme 4).11 

 

 
Scheme 4 Preparation of spirooxindoles 12 bearing geminal bisphosphonate 
unit.  

 

Alkylidene oxazolones 15 were selected as dipolarophiles to 

synthesize biologically important spirooxindole frameworks 16.  

Diverse isatins 2 and a variety of amino acids such as glycine 17, 

sarcosine 13, L-proline 1, or thiazolidine-4-carboxylic acid 18, 

afforded, in a one-pot tricomponent process, regio- and 

diastereoselective 1,3-DCs (Scheme 5). Biological evaluation of 
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compounds 16 against several cancer cell-lines revealed that 

some of them possessed antitumor activity.12 

 

 
Scheme 5 Synthesis of spirooxindoles 16. 

 

A range of potentially bioactive substituted dispiro-

pyrrolidines/-imidazolidines 23 were prepared in the presence 

of copper(I) thiophene-2-carboxylate (CuTC) catalyst in refluxing 

1,2-dichloroethane (1,2-DCE). Here, the in situ generated imine 

III reacted with the copper(I)-carbene (obtained by 

decomposition of diazocompound 21) giving a fleeting aziridine, 

which evolved thermally to azomethine ylide IV (Scheme 3). The 

reaction proceeded chemo-, regio-, and diastereoselectively in 

very good yields. The complexity of the resulting products 23 is 

obvious because two of the four generated stereogenic centers 

are quaternary carbons (Scheme 6).13  

 

 
Scheme 6 Synthesis of dispiranic compounds 23. 

 

Spirooxindolepyrrolidines 25 (n = 1) and an example of 

spirooxindolepiperidine 25 (n = 2) fused to nitrochromanes were 

prepared from isatin 2 and proline 1 or pipecolic acid 14 as 

azomethine ylide sources. The 1,3-DC occurred in  refluxing 

ethanol (Scheme 7), and proceeded with total control of the 

diastereoselectivity. 14  

A similar cycloaddition with electrophilic alkenes 26, instead of 

using nitroalkene 24, was performed. The cycloaddition 

proceeded chemo-, stereo- and regioselectively throughout the 

styrene moiety. 15 In other contribution, (2-nitrovinyl)imidazoles 

27 (Scheme 7) were allowed to react under similar reaction 

conditions producing a 95:5 ratio of the corresponding 

spirocycloadducts.16 

Trihalomethyl-substituted nitroethylenes 28 (Scheme 7) were 

selected as dipolarophiles to prepare a variety of biologically 

active spirooxoindolepyrrolidines, which may be of interest for 

medicinal chemistry.17 

Analogously, new designed glycol-3-nitrochromenes 29 and 30 

(Scherme 7), derived from glyco-β-nitroalkenes and 

salicylaldehyde, were tested as dipolarophiles in refluxing 

acetonitrile to give the corresponding biologically active sugar-

bearing spirooxindole cycloadducts as single diastereoisomers in 

good yields.18 

 

 
Scheme 7 Synthesis of spirocompounds 25. 

 

Spirooxindoles 32, bearing quinoline, pyrrolidine, 

pyrrolothiazole and  indolizine ring system hetereocycles, were 

prepared by Kumar et al. from, sarcosine 13, isatin 2 and 

potential bioactive dipolarophiles 31, derived from pyrazolo[3,4-

b]quinolone,  such as it is shown in Scheme 8. The ecofriendly 

reaction was achieved via in situ generated azomethine ylide and 

stereoselective 1,3-DC in a three-component sequential atom 

economy processes.19 This protocol was extended to another 

components such as, thiazolidine-4-carboxylic acid 18 and 

piperidine-2-carboxylic acid 14, together with 

acenaphthenequinone 33, to access potential bioactive diverse 

spiro-tethered pyrazolo quinoline heterocycles 34-37 (Scheme 

8). 
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Scheme 8 Synthesis of spiroxindoles 32, 34-37, from pyrazolo[3,4-b]quinolone 
31.  

 

From symmetric dipolarophiles 38, sarcosine 13, and isatin 

derivatives 2, a series of dispirooxindoles 39 were obtained in 

high diastereoselections. They showed higher potency, against 

the HeLa (cervical) tumor cell line, than reference cisplatin 

derivatives (Scheme  9).20,21  In addition, it was discovered that 

these molecules exhibited antitumor activity against 

hepatocellular cancer (HEPG2) cell line,22 breast cancer (MCF7, 

T-47D) and colon cancer (HCT116).23 

 

 
Scheme 9 Generation of dispiroxindoles 39. 

 

Synthesis of sugar-containing spirocyclic pyrrolidine derivatives 

41 were reported by Raghunathan et al. Here, α-aminoacids, 

ketones and electrophilic olefin 40 incorporating a sugar moiety 

were allowed to react via 1,3-DC (Scheme 10). Proline 1, 

sarcosine 13, tetrahydroisoquinolinic acid 42 or pipecolinic acid 

14 and acenaphthoquinone 33, isatin 2, or indenoquinoxalinone 

43 were employed in this cascade protocol to access a variety of 

biologically important spiroheterocyclic compounds 41 as single 

diastereoisomers.24 Regio- and  diastereo-selective 1,3-DC also 

afforded dispirooxindolopyrrolidines in a similar way, but 

employing  3-arylmethylidene-5-phenyl-3Н-furan-2-ones 44,25 

or 3,5-diarylmethylenespiro[indole-30,2- [1,3]thiazolane]-

20(1H)-4-diones 45 as dipolarophiles (Scheme 10).26 

 

 
Scheme 10 Synthesis of sugar-containing spirocyclicpyrrolidines 41.  

 

Another potential bioactive dispirooxindolo derivatives 48 were 

described by Mondal and co-workers from N-benzyl glycine 46 

and isatins 2 or acenaphthoquinone 33 with andrographolide 47, 

isolated from A. paniculata, as dipolarophile (Scheme 11). Their 

cytotoxic potential and antitimural activity of these 

spiroheterocycles 48 displayed more potency against MCF-7 

breast cancer cell line when comparing andrographolide 47 

itself.27  

This promising activity, confirmed by biological tests, moved to 

the authors to elaborate new semisynthetic antitumor 

spirooxindole frameworks from acenaphthoquinone 33 (or 

isatin 2 derivatives) and secondary amino acids such as sarcosine 

13, and proline 1.28 
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Scheme 11 Synthesis of dispiroandrographolide-type cycloadducts 48 via 1,3-
DC of azomethine  ylides. 

 

Dispiroxindole heterocycles 50, possessing dihydroanthracene 

ring system, were diastereoselectively prepared by Arumugam  

et al. in the presence of an ionic liquid (1-butyl-3-

methylimidazolium bromide [bmim]Br), isatin 2, sarcosine 13 

and 10-benzylideneanthracen-9(10H)-one derivatives 49 

(Scheme 12).29 

 

 
Scheme 12 Preparation of dispirooxindoles 50 using an ionic liquids as solvent. 

 

A series of spiroxindolepyrrolidines 53 showing potential 

cholinesterase inhibitory activity were prepared by Kumar et al. 

In ionic liquid medium the 1,3-DCs of the azomethine ylide, 

formed with 1,2-diketones, such as isatins 2 or 

acenaphthenequinone 33, and tryptophan 51, with 

arylmethylidene inden-1-ones 52, were successfully achieved. A 

representative example is shown in Scheme 13.30 Other 

dispirooxindolopyrrolidines were prepared using 1-butyl-3-

methylimidazolium bromide by mixing the corresponding amino 

acid, isatin 2, and (E)-2-oxoindolino-3-ylideneacetophenones 

54.31 

 

 
Scheme 13 Potential cholinesterase inhibitors 53 obtained via 1,3-DC. 

 

Biologically important aryl-/heteroaryl-substituted 

functionalized spiroxindole derivatives 56 were obtained 

employing electrophilic alkenes 55 containing an indole unit. 

Apart from isatins 2 and proline 1, other components such as 

acenaphthoquinone 33 or ninhydrin 57, sarcosine 13 and 

alkenes 58 (bonded to a pyrrole ring) were successfully tested. 

In general, the chemical yields and the diastereoselections were 

very high (Scheme 14).32  

 

 
Scheme 14 Sythesis of biologically important aryl-/heteroaryl-substituted 
cycloadducts 56. 

 

Spiroxindole-fused cycloadducts 60 and 61 were reported by 

Perumal et al. from 1,3-thiazolane-4-carboxylic acid 18 or 

sarcosine 13 and substituted isatins 2 as source of azomethine 

ylide intermediates. The 1,3-DC with 

benzimidazolphenylacrylonitrile 59 as dipolarophile occurred, in 

refluxing methanol, in very high yields and excellent 

diastereoselections (Scheme 15). This protocol, operating in a 

one-pot three-component manner,33 was employed in the 
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reactions involving nitrile 62 (Scheme 15). The combination of 

62 with isatin derivatives 2 and with the corresponding α-amino 

acid (1, 13, or 18) furnished biologically important cycloadducts 

with very interesting activities against bacteria and fungi.34 

 

 
Scheme 15 Synthesis of spiroxindole-fused heterocycles 60 and 61.  

 

Preparation of dispiro-acenaphthylen-2-one curcuminoids 64 

and 65 were described by Mondal et al. from acenaphthoquinone 

33 and proline 1 as precursors of the corresponding azomethine 

ylide, together with curcumin 63 as dipolarophile. This attractive 

natural compound allowed the preparation of spirocycloadducts 

as 1:1 mixture of 64 and 65 in good yield after a double 1,3-DC 

(Scheme 16).35 

 

 
Scheme 16 Synthesis of dispiro-oxindole analogues 64 and 65 from curcumin 
63. 

 

Synthesis of spirooxindolepyrrolizines 69, bearing a 1,2,3-

triazole moiety, was reported by Khurana et al. via stereo- and 

regioselective 1,3-DC. The in situ generated azomethine ylide V in 

glacial acetic acid triggered this one-pot four component domino 

strategy (Scheme 17). This cascade reaction involved the 

formation of the triazole derived from N-propargylated isatin 67 

and aryl azides 66 in the presence of copper(II) sulfate. Then, the 

reaction with L-proline 1 or sarcosine 13 and decarboxylation  of 

the resulting intermediate afforded the corresponding 

azomethine ylide V, which reacted with coumarin-3-carboxylic 

acid 68 as dipolorophile giving the desired spirooxindoles 69 in 

very good yields (Scheme 17).36 

 

 
Scheme 17 Synthesis of spirooxindolepyrrolizines fused to coumarin ring 
heterocycles 69. 

 

Dispirooxindolepyrrolidines 71 were reported by Singh et al. and 

prepared from sarcosine 13, isatins 2 with N-aryl-3-benzylidene-

pyrrolidine-2,5-diones 70 as dipolarophiles. These products 

were diastereoselectively isolated in high yields (Scheme 18).37 

Glycine 17 or sarcosine 13 with isatins 2,38 or even proline 1 plus 

acenaphthenequinone 33 or indenoquinoxaline-11-one 43 were 

also essayed in the presence of dipolarophiles 70.39 

 

 

Scheme 18 Substituted spiroxindoles 71 obtained via 1.3-DC of azomethine 
ylides. 

 

Spiro-pyrrolizidinooxindoles 73 and 74, derived from isatins 2 

or acenaphthoquinone 33, respectively, bearing a withaferin-A 

system were isolated by Mondal and co-workers. Proline 1 was 

selected as precursor of the azomethine ylide, which furnished 

exclusively cis-fused cycloaducts 73 and 74 in a total atom-
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economic one-pot three-component manner (Scheme 19). Their 

bioactivities were evaluated exhibiting a very promising 

cytotoxicity towards various cancer cell lines.40 

 

 

Scheme 19 Spiropyrrolizidino polycycles bearing withaferin-A sterodial ring 
system 73 and 74. 

 

Substituted spirooxindolepyrrolizines 77 (X = CH2), and spiro-

oxindolethiazoles 77 (X = S) were prepared from a range of 

secondary α-amino acids (proline 1 or 1,3-thiazolane-4-

carboxylic acid 18)  and dialkyl acetylenedicarboxylates 75 as 

precursors of azomethine ylides VI. Interestingly, this way of 

generating in situ azomethine ylides reacted with substituted 

methyleneoxindoles 76 through a sequential 1,3-DC (Scheme 

20).  This reaction protocol was also extended to the use of 

another α-amino acid derivatives to yield the corresponding 

spiroheterocycles under thermal conditions.41  

 

 
Scheme 20 Synthesis of spirooxindolepyrrolizines 77 (X = CH2), and 
spirooxindolethiazoles 77 (X = S) from dialkyl acetylenedicarboxylates. 

 

The unprecedented formation of dispirooxindolepyrrolizine 

thiazolidine-2,4-diones 79, contrary to the commonly observed 

regiochemistry, was described by Kumar et al. via one pot three-

component 1,3-DC from isatin 2, proline 1 and (Z)-arylidene 

thiazolidine-2,4-diones 78. The reaction took place under 

refluxing methanol with total regio- and diastereoselection 

(Scheme 21).42 Many biological studies concerning medical 

applications of heterocycles 79 are currently in progress. 

 

 
Scheme 21 Synthesis of spirocycles 79 with reverse regiochemistry.  

 

Dandia and co-workers constructed diastereoselectively various 

biologically important dispiropyrrolidinethiapyrrolizidine 

frameworks 81. Trifluoroethanol (TFE) was employed as 

enviromentally friendly solvent and also as catalyst due to its 

Bronsted acidity. Isatin derivatives 2 or azanaphthoquinone 80 

(X = NH), benzooxazinone 80 (X = O) derived electrophilic 

alkenes and sarcosine 13 or 1,3-thiazolidine carboxylic acid 18 

were the components used in this study (Scheme 22).43 

 

 
Scheme 22 Preparation of novel dispiroheterocyclic hybrids 81. 

 

Bisspirooxindolopyrrolidines 83 and bisspirooxindolo-

pyrrolizidines 84 were reported by Javidan et al. employing 

bischalcone 82 as bisdipolarophile in the 1,3-DC involving isatins 

2 and secondary α-amino acid derivatives such as proline 1 or 

sarcosine 15.  Final cycloadducts were obtained under mild 

conditions in very high both chemical yields and 

diastereoselections (Scheme 23).44 The biological activity of 

selected molecules 83 or 84 are under study. 
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Scheme 23 Bisspirooxindole ring systems 83 and 84 obtained via 1,3-DC of 
azomethine ylides. 

 

Biologically active quinolines containing both indoline and 

spirooxindole core structures 86 were designed by Mohan and 

co-workers. The 1,3-DC was carried out from sarcosine 

13/thiazolydine-4-carboxylic acid 18 together with isatins 

2/acenaphthoquinone 33/ninhydrin 57 and with designed (E)-

3-[(quinolin-3-yl)methylene]indolin-2-one derivatives 85 as 

dipolarophiles (Scheme 24). Biological evaluation of this new 

spiroheterocycles 86 revealed important in vitro antioxidant, 

antidiabetic and acetylcholinesterase (AChE) inhibitory 

activities.45 

 

 
Scheme 24 Synthesis of spirocyclicquinolines 86. 

 

Bioactive spirooxindoles 88, incorporating a steroidal 

framework, were reported.  Isatin 2 and sarcosine 13 reacted 

with a newly designed steroidal dipolarophile 87, derived from 

pregnenolone, through a conventional 1,3-DC under mild 

reaction conditions (Scheme 25). The produced 

spirooxindolepyrrolidines 88 exhibited antiproliferative 

activities against four human cancer cell lines including MCF-7.46 

 

 

Scheme 25 Synthesis of new steroidal spirooxindole frameworks 88. 

 

Interesting bioactive chiral enantioenriched spiroxindole 

derivatives 92 were prepared in the presence of a chiral ligand 

91 (35 mol%) from  isatins 2, diethyl 2-aminomalonate 89 and 

aldimine 90. This three-component reaction occurred via 

asymmetric 1,3-DC between the imine 90 and the azomethine 

ylide. The resulting structurally congested imidazolidines 92 

were isolated with good chemo-, diastereo- and 

enantioselections (Scheme 26).47 

 

 
Scheme 26 Synthesis of enantiomerically enriched spiroxindole derivatives 92.  

 

Synthesis of pentacyclic spirooxindole pyrrolidines 96 were 

prepared from the in situ generated tricyclic azomethine ylide 

derived from pyridone-annelated isatin 95 and amino acids 93 

and maleimides 94 in refluxing aqueous methanol (Scheme 27).48 

It is noteworthy the preference of the attack of amino group of 

the acids 96 towards the hydrate moiety, rather than the 

conjugated alkene moiety present in the two components 94 and 

95 involving in the cycloaddition. 

 

 
Scheme 27 Synthesis of pentacyclic spirooxindolepyrrolidines 96. 
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Dipolarophiles 97 were employed in the enantioselective 1,3-DC 

catalyzed by chiral bisphosphoric acid 98. The enantiomerically 

enriched bis-spirooxindolepyrrolidines 99 were obtained in 

good yields, very high diastereomeric ratios and excellent 

enantioselectivities in ethanol at 50 °C. Isatins 2 and 

diethylaminomalonate 89 were also the precursors of the 

azomethine ylides (Scheme 28).49 

 

 
Scheme 28 Enantioselective synthesis of spirocycles 99. 

 

Biologically important substituted spirooxindole cycloadducts 

101 were obtained by Shi and co-workers in the presence of the 

same chiral bisphosphoric acid 98 as organocatalyst. This 

enantioselective 1,3-DC with isatins 2, diethyl aminomalonate 89 

and alkyl 2,3-allenoates 100 as dipolarophiles, furnished 

enantioenriched anticancer and antimicrobial spiro[indoline-

3,2′-pyrrole] frameworks 101 in high diastereomeric ratios and 

good to excellent enantioselections (Scheme 29).50  

 

 
Scheme 29 Synthesis of enantiomerically enriched spirocycles 101. 

 

Dialkyl but-2-ynedioates 75 acted as dipolarophiles during the 

multicomponent 1,3-DC with cyclic α-amino acids such as proline 

1, 4-thiaproline 18, or (2S,4R)-4-hydroxyproline 102, with 

isatins 2. The resulting spirooxindolepyrrolizines 103 were 

isolated in good yields (Scheme 30). In addition, 

spiroxindoleazepines 104 were isolated as major compounds 

when two equivalents of electrophilic alkyne 75 were added 

together with one equiv of the rest of components. In this last 

example, alkynes behaved such as it was described in Scheme 

20.51 

 

 
Scheme 30 Synthesis of spirooxindolepyrrolizines 103 and azepine surrogates 
104. 

 

 

3. Synthesis of spiropyrrolidines 

 

Non-asymmetric synthesis of diazaspiropyrrolidine  derivatives 

106, possessing a dihydroisoquinoline moiety, were prepared 

from isoquinolines 105 with 3 equiv of the corresponding 

maleimide 94 without solvent at 70 ºC. The intermediate 

azomethine ylide VII was not formed as usual but through a 

Michael-type addition of the isoquinoline onto malimide followed 

by a prototropic shift (Scheme 31).52 

 

 
Scheme 31 Synthesis of diazaspiropyrrolidines 106. 

 

Spiroheterocycles 109, containing both pyrrolidine and 

indanone core structures, were synthesized from iminoesters 

107 and alkylidene-1-indanone derivatives 108 as dipolarohiles 

in the presence of a series of imidazolium salts as catalysts. The 

diastereoselectivities were low but the chemical yields were 

excellent under mild conditions. The catalyst was efficiently 

recovered and reused several times without losing efficiency 

(Scheme 32).53 
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Scheme 32 Synthesis of prolinates 109. 

 

A pyrrolidine ring bearing two quaternary centers corresponding 

to spiranic systems 113 was also designed for the construction of 

natural alkaloids. Liu et al. reported a one pot five-component 

reaction to produce dispiroindenoquinoxalinepyrrolidines 113 

from 1,3-indanedione 111, 1,2-phenylenediamine 110, 

ninhydrin 57, sarcosine 13, and aromatic aldehydes (for example 

112). A plausible mechanism proposed by the authors suggested 

that the formation of indenoquinoxaline-11-one 43, from 

condensation reaction of 1,2-phenylenediamine 110 and 

ninhydrin 57, and subsequent reaction with sarcosine 13 and 

decarboxylation afforded the corresponding azomethine ylide. 

Then, stereoselective 1,3-DC with the dipolarophile 114 (derived 

from the aldehyde 112 and 111) produced the desired 

dispiroindenoquinoxalinepyrrolidines 113  (Scheme 33).54 Some 

spiropyrrolothiazoles were prepared using a similar strategy but 

employing different components as (E)-β-nitrostyrene,55 or even 

1,3-thiazolane-4-carboxylic acid as dipolarophiles. 56 

 

 
Scheme 33 Synthesis of dispiroindenoquinoxalinepyrrolidines 113 in a one-pot 
five-component process. 

 

Novel steroid grafted dispiroindenoquinoxalinepyrrolidines 117 

were prepared by Raghunathan et al. from ninhydrin 57, 

sarcosine 13, 1,2-phenylenediammine 110 and estrone derived 

dipolarophiles 115 in the presence of an ammonium salt 116 as 

catalyst. This facile one-pot four-component [3+2]-cycloaddition 

occurred under mild reaction conditions, easy workup, and in 

good yields (scheme 34).57 This method is valuable for the 

synthesis of steroidal surrogates of biological significance. 

 

 
Scheme 34 Preparation of steroidal alkaloids 117. 

 

Enantioselective 1,3-DC between imino esters 107 and α-

alkylidene succinimides 70 were successfully achieved 

employing Cu(OAc)2 and N,O-chiral ligand 118. Structurally 

diverse functionalized endo-dispiropyrrolidine cycloadducts 119 

were obtained in very high diastereoselection and high to 

excellent enantioselections (up to 97% ee) (Scheme 35). These 

cycloadducts were transformed into N-

methylbispiropyrrolidines and further reduction with LiAlH4 

afforded functionalized substituted spiroheterocycles 120 in 

good yield and up to 99% ee. This process was also applied to 

enantioselective 1,3-DC with 2-oxoindolin-3-ylidenes 121 as 

dipolarophiles giving biologically active exo-dispiropyrrolidine 

skeletons 122 in good yield and up to 95% ee (Scheme 35). 58 
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Scheme 35 Enantioselective 1,3-DC of spiranic systems by intermediacy of 
Cu(OAc)2·118. 

 

Synthesis of enantiomerically enriched diaza-

bisspiropyrrolidines 125 and 126 was reported by Cossío and 

co-workers. Initially an interrupted 1,3-DC was performed in the 

presence of the catalytic complex Cu(MeCN)4PF6·127 with the 

aim of obtaining the cis- or the trans- γ-lactams 123, respectively. 

The diastereoselective 1,3-DC was performed with these imines 

and nitroalkenes, vinylic sulfones, acrylates, etc., using 

stoichiometric amounts of AgOAc (Scheme 36).59 At this moment, 

this family of spiranic compounds are being evaluating as 

anticancer agents.  

 

 
Scheme 36 Synthesis of spirocycles 125 and 126. 

 

A range of chiral highly substituted spironitroprolinates 131 

were reported in the presence of chiral bifunctional catalytic 

ligand based on [(R,R)-Me-DuPhos] 130 and AgF as source of 

chiral induction. The 1,3-DC was run with α-imino-γ-lactones  

128 and nitroalkenes 129 as dipolarophiles.60 The reaction 

proceeded enantio- and diastereoselectively to form up to four 

new chiral centers and overwhelmingly endo-spiranic 

cycloadducts 131 (Scheme 37).61 Biological  evaluation of some 

of these compounds revealed promising antitumor activity. 

 

 
Scheme 37 Synthesis of enantiomerically enriched spironitrocompounds 131. 

 

Asymmetric synthesis of biologically important tricyclic 

spiroheterocycles endo-134 possessing a cyclopropane unit was 

described. α-Imino-γ-lactones 128 reacted with 

cyclopropylidene acetates 132 as dipolarophiles using CuBF4·TF‐

BiphamPhos 133 as catalyst to afford endo-spirocycloadducts 

134 in good diastereoselectivities and very high 

enantioselectivities (Scheme 38).62  

 

 
Scheme 38 Synthesis of enantiomerically enriched endo-spironitrocompounds 
134. 

 

 

4. Synthesis of spiropiperidines and piperidines  

 

The   2,3-pyrrolidino-3,4-piperidine   (4,7-diazabicyclo-

[4.3.0]nonane) scaffold is an integral part of the underlying 

structure  of  numerous  alkaloids  possessing diverse 

bioactivities, including anti-tumor, antibiotic, and insecticidal 

activity. 
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Biologically active spiropiperidine derivatives 136 were 

reported by Guo and co-workers starting from homoserine 

lactone 128 and tropone 135 as dipolarophile. Here, a [6+3] 

cascade cycloaddition took place in the presence of AgOAc·PPh3 

as catalyst and DBU as base. The final diastereoselectivity was 

very high as well as chemical yield under mild reaction condition 

(Scheme 39).63 

 

 
Scheme 39 Preparation of heterocycles 136 

 

Potentially bioactive functionalized enantioenriched bridged 

piperidine derivatives 139 were designed by Wang et al. in the 

presence of Cu(MeCN)4BF4·138 catalytic system. The [3+6] 

cycloaddition with acyl heptatrienes 137 produced the 

corresponding exo-cycloadducts 139 with multiplication of 

stereocenters with excellent exo-selectivity in good yields and up 

to 99% ee (Scheme 40).64   

 

 
Scheme 40 Enantiomerically enriched exo-cycloadducts 139.  

 

A range of important substituted enantiomerically enriched 

pyrrolidinopiperidine derivatives 142 were synthesized by 

Waldmann and co-workers. The intramolecular 1,3-DC reaction 

of starting iminoamides 140 (generated from the corresponding 

N-Boc protected amine) occurred in the presence of the chiral 

complex formed by Cu(MeCN)4BF4 and chiral ligand 141. Final 

fused bicycle 142 was obtained in good yields, excellent 

diastereoselections and very high diastereomeric ratio (Scheme 

41).65 Once product 142 was formed, a sequential addition of (E)-

cinnamaldehyde 143 and alkenes 124 took place yielding fully 

substituted fussed-pyrrolizidines 144 in good conversions 

(Scheme 41). The main interest of this work was the definition of 

the scaffolds of glycosidase inhibitors, which have been the 

subject of numerous investigations. 

 

 
Scheme 41 Enantioselective synthesis of cycloadducts 142 and 144. 

 

The elaboration of biologically important substituted tetrahydro-

γ-carbolines 147 was performed during the enantioselective 

[3+3] cycloaddition between imino esters 107 and 2-

indolylnitroethylenes 145 in the presence of CuPF6·Ph-

Phosferrox 146 as catalytic complex. This chemo- and 

stereoselective [3+3] cycloaddition was produced, rather than 

expected 1,3-DC, in very high yields, diastereomeric ratios and 

enantioselectivities (Scheme 42).66 The proposed stepwise 

mechanism, caused by the high stability of the resulting enolate 

of the Michael-type addition, favored the Friedel-Crafts reaction 

of the nucleophilic 3-position of the indole. 

 

 
Scheme 42 Synthesis of tetrahydro-γ-carbolines 147 via [3+3] cycloaddition. 

 

 

5. Synthesis of pyrrolidines and fused pyrrolidines 

 

Pyrrolidine ring systems possessing a chiral sugar building block 

149 were reported by Thangamuthu et al. from sarcosine 13, 

paraformaldehyde and an electrophilic alkene bonded to a full-

protected glucopyranosyl unit 148. The cycloadduct was isolated 

in good yield and as only one diastereoisomer (Scheme 43).67 The 

biological evaluation of these compounds are currently in 

progress, demonstrating very promising applications.  
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Scheme 43 Diasteroselective synthesis of sugar derivatives 149. 

 

With the same aim, new pyrrolidine-containing macrocycles 151, 

bearing a triazole ring and a sugar (D-glucose) fragment, were 

prepared via intramolecular 1,3-DC of azomethine ylide.68  The 

1,3-DC occurred diastereoselectively in refluxing toluene in good 

yields independently of the amino acid employed (scheme 44). 

This  strategy  provides  opportunities  for  the preparation  of  

libraries of carbohydrate  grafted  macrocycles  with triazole 

spacer unit for biological screening.  

 

 
Scheme 44 Synthesis of biologically important macrocycles 151. 

 

A series of polyhydroxyalkylpyrrolidines 153 and ent-153, as 

potential inhibitors of a β-galactofuranosidase, were described 

by Varela et al. employing a silver-catalyzed 1,3-DC from imino 

esters and (S)- or (R)-sugar  pyranone as dipolarophiles (Scheme 

45).69 After a sequence of reactions comprised by hydrolysis, 

reductions, N-protection, degradative oxidations, etc., allowed 

the access to polyhydroxyalkylpyrrolidines 154-156, which 

were evaluated as inhibitors of the β-galactofuranosidase from 

Penicillium fellutanum. 

 

 

Scheme 45 Synthesis of polyhydroxyalkylpyrrolidines 153 and ent-153 and 
heterocycles 154-156 via 1,3-DC of azomethine ylides. 

 

Recently, an approach to the synthesis of parkacine 159 (a 

lycorine-type alkaloid) was communicated. The key step of the 

synthesis consisted in an intramolecular 1,3-DC. Chiral hept-6-

yne-al derivative 157 was selected to construct the C/D ring 

system of a lycorine-type alkaloid parkacine. However, the 

cycloaddition furnished a C/D ring-closure product with opposite 

configurations at 7- and 7a-carbons, after comparison with the 

absolute configuration of the natural product (Scheme 46).70 A 

possible reason of this epimerization could be caused through 

imine–enamine tautomerization (previous to the formation of 

the 1,3-dipole IV) involving the stereogenic center bearing the 

phenyl group.  

 

 

Scheme 46 New approach to the synthesis of parkacine epimer 158 using an 
intramolecular 1,3-DC as key step. 

 

A series of functionalized β-proline dimers, trimers, etc. (eg 162 

and 163), were designed from the corresponding menthyl 

acrylate 160 and iminoglycinate 107 through a silver-catalyzed 
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1,3-DC. The repeating acylation with acryloyl chloride, followed 

by cyclization, allowed the extension of this process towards 

hexamer chiral β-peptide molecular framework 163 in good 

yields (Scheme 47).71 These new poly-β-prolines were generated 

in the two enantiomeric forms exhibiting an important antitumor 

activity in HRPC cells.72 

 

 
Scheme 47 Synthesis of functionalized β-proline dimers and oligomers 162 and 
163. 

 

Concerning non-asymmetric approaches, substituted 

pyrano[2,3-c]pyrrolidines were reported by Sosnovskikh and co-

workers from sarcosine 13, formaldehyde and 4-aryl-6-

(trifluoromethyl)-2-pyrones 164 as dipolarophiles. The 1,3-DC 

produced cis-fused ring cycloadducts with high 

diastereoselectivity in refluxing benzene (scheme 48).73 Several 

applications of these compounds in medicinal chemistry are 

being envisaged.  

Analogously, the synthesis of benzopyrano[3,4-c]pyrrolidines 

was described in a diastereoselective 1,3-DC between an ∝-

iminoester 107 and coumarin in the presence of AgTFA.74 

 

 
Scheme 48 Synthesis of heterocycles 165. 

 

Hydroxypiperidones are important structures since the 

pharmaceutical point of view. They were prepared taking 

advantage of the use of aldehydes as dipolarophiles such as 

occurred in the 1,3-DC involving sarcosine 13, formaldehyde and 

an aromatic aldehyde or ketone 166. Ketal hydrolysis and 

lactonization from 167 afforded isolable compounds 168, which 

can be transformed into the corresponding substituted benzo-

fused pyperidones 169 (Scheme 49).75 

   

 
Scheme 49 Synthetic route to access products 169.  

 

Potential biologically active  benzoxazine framework alkaloids 

173 were obtained through a [3+3] process rather than the 

expected 1,3-DC. Racemic binol-derived phosphoric acid 172 

acted as Brønsted acid catalyst activating the enone dipolarophile 

(Scheme 50).76 A modification of this procedure using GaBr3 

instead of the phosphoric acid furnished cycloadducts in better 

yields and better periselectivities.77 

 

 
Scheme 50 Synthesis of heterocycles 173. 

 

A diversity oriented synthesis (DOS) was described during the 

study of one-pot multicomponent cycloadditions of non-

stabilized azomethine ylides (formaldehyde and N-alkylamino 

acids) and 1,2-diaza-1,3-dienes 174 and 176 as dipolarophiles in 

toluene. It was found that the nature of the substituents in the 

azadiene was crucial for the cycloaddition in such a way that the 

presence of an electron-withdrawing group bound to the azo 

group favored the generation of 1,2,4-triazepines 177 through a 

[4+3] cycloaddition. However, a phenyl group bonded to this azo 

moiety furnished pyrrolidines 175 in a typical 1,3-DC in 

moderate to good yields (Scheme 51).78 
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Scheme 51 Synthesis of pyrrolidines 175 or 1,2,4-triazepines 177 via 1,3-DC or 
[3+4]  cycloaddition of azomethine ylides, respectively. 

 

AgOAc-catalyzed [3+2] cycloaddition of the azomethine ylides 

derived from imino esters 107 and alkenes 178 was successfully 

achieved. Final pyrrolidines 179 were generated in good yields 

and high diastereomeric ratios under mild conditions (Scheme 

52). The biological properties of these compounds are under 

study.32 

 

 
Scheme 52 Synthesis of pyrrolidines 179. 

 

The 1,3-DC has been considered the key step in the new approach 

to the synthesis of  fused benzodiazepines 182. This attractive 

family of compounds are under screening. Firstly, the thermal 

multicomponent 1,3-DC took place in the presence of alanine 

derivative 180, 2-azidebenzaldehyde 66, and maleimides 94 in 

short reaction times (Scheme 53).  Triazolobenzodiazepine 

derivatives 182, obtained as unique diastereoisomers, were 

prepared from 181 through conventional N-propargylation 

followed by intramolecular copper-free 1,3-DC of the azido group 

with the alkyne residue.79 

 

 
Scheme 53 Stereoselective synthesis of triazolobenzodiazepines 182. 

 

Unstabilized azomethine ylides, generated from sarcosine 13 and 

paraformaldehyde, reacted with dihetaryl system 183 to give 

several cycloaddition adducts depending of the solvent involved. 

Thus, when benzene was employed product 184 was exclusively 

formed in quantitative yield. However, in the case of using MeCN, 

hydropyrrole 185 and pyrrole 186 were obtained as mixture of 

products in low yields (Scheme 54).80 

 

 
Scheme 54 Sythesis of substituted complex heterocycles 184-186. 

 

A series of substituted N-arylpyrrolidines 188, using various 

electron-deficient alkenes 124 as dipolarophiles during the 

reaction of imino esters 107 to aryne precursors 187, were 

generated in good chemical yields and very high 

diastereoselectivities. Here, the direct attack of the imino esters 

to the aryne and protonation of the resulting anion occurred 

giving raise azomethine ylides VIII and VIII’. In addition, 

imidazolidines 189 were analogously obtained adding 2 equiv of 

imino ester 107 under mild conditions (Scheme 55).81  Both types 

of heterocycles were tested as antiviral agents, specifically to 

those emerging viral infections. 
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Scheme 55 Preparation of imidazolidines 189 and substituted pyrrolidines 188 
from imines 107 and trimethylsilyl aryl triflates 187. 

 

An approach to the synthesis of 6-5-7 ACD azatricyclic ring 

system of numerous calyciphylline A-type alkaloids was 

successfully developed combining reagents 190 and 191. The 

use of H3PO4 as promoter in a highly donating solvent such as 

DMF produced the expected [3+2] cycloaddition under very mild 

conditions. The intramolecular 1,3-DC between a nonstabilized 

azomethine ylide IX→IX’, generated by desilylation of N-

(trimethylsilyl)methyliminium salt, and an electron-poor alkene 

afforded calyciphylline derivative 192 as unique 

diastereoisomer (Scheme 56).82 

 

 
Scheme 56 Intramolecular 1,3-DC reaction to yield calyciphylline type alkaloid 
192. 

 

Bioactive compounds bearing the chromene[4,3-b]pyrrolidine 

moiety 195 were constructed by intramolecular 1,3-DC. α-Amino 

esters 194 and O-crotonylsalicylaldehyde 193 under MW or 

conventional heating afforded alkaloid chromane hetereocycles 

195 in good yields via imine/[1,2]-prototropic shift route 

(Scheme 57). The 1,3-DC was diastereoselective in most of cases, 

obtaining other diastereoisomers in variable proportions.83  

Similar transformations were reported by Nelson and co-

workers in the search of new scaffolds for exploitation in the 

production of alkaloid-like libraries.84 In addition, the 

intramolecular 1,3-DC of allylic aminopyrimidine derivatives was 

also successful and afforded pyrimidine fused tricyclic systems 

196 in very high yields under thermal conditions.85 As an 

extension of this work, the synthesis of potential bioactive 

functionalized fused penta/hexacyclic alkaloids were 

constructed by the substitution of acyclic amino esters by 

tetrahydroisoquinolines (Scheme 57).86 

 

 
Scheme 57 Synthesis of chromanepyrrolidines 195 and 196. 

 

Functionalized aziridines 197 were employed as generators of 

azomethine ylides X by thermolysis in the 1,3-DC with allenes 

198 bearing a tetrazol moiety. The resulting tetrazolyl-

substituted pyrroles 199 or alkylidenepyrrolidines 200 resulted 

to be very attractive since the pharmaceutic point of view. The 

nature of the substituent at the terminal position of the allene 

affected the reaction course when a benzoyl group is bonded to 

the aziridine ring. However, the presence of an ester group 

instead (for example in aziridine 197 X = OEt) was not so 

important producing exclusively pyrrolidines 201 in excellent 

diasteromeric ratios and high chemical yields (Scheme 58).87 

 

 
Scheme 58 DOS of pyrroles 198 and pyrrolidines 199 and 201. 
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Important chromenopyrrole derivatives 203 and 205, were 

prepared by the generation of azomethine ylides from aziridines 

202 and 204 bearing terminal alkyne/allene groups, 

respectively.  The stereoselective intramolecular 1,3-DC took 

place in refluxing toluene giving only one stereoisomer in good 

chemical yields. The triple carbon–carbon bond led the  

corresponding  1,4-dihydrochromeno[4,3-b]pyrrol 203, whilst 

allene allowed the stereoselective  synthesis  of  3-

methylenechromano[4,3-b]pyrrole  derivative 205 (Scheme 

59).88 An alternative way to obtain the fused pyrrole heterocycle 

in good yields, consisted in a sequential one-pot 1,3-DC 

employing synthesis from N-substituted-Boc-glycine-O-aryl 

ester, bearing this arene moiety an alkyne group at its ortho-

position.89 

 

 
Scheme 59   Synthesis of chromeno[4,3-b]pyrrole derivatives 203 and 205. 

 

ABC Tricyclic ring system similar to that found in manzamine 

alkaloid framework was prepared by Coldham et al., 1,3-DC being 

one of the three key steps of the synthesis. The 1,3-DC was 

successful with only one diastereomer of 206 demonstrating the 

high control of the geometry of the transition state. The same 

aldehyde was able to afford stereodivergent products 208 or 

206, in moderate to good yields, depending on the reagents 

involved in the generation of the azomethine ylide (Scheme 60).90  

  

 
Scheme 60 Selective synthesis of tricycles 208 and 210. 

 

An unprecedented generation of non-stabilized azomethine 

ylides from N-(trimethylsilylmethyl)amides 211 was optimized. 

The activation of the amide was done with triflic anhydride, then, 

partial reduction with 1,1,3,3-tetramethyldisiloxane (TMDS), and 

desilylation with cesium fluoride afforded the final intermediate 

ylide XIII. Operating under mild conditions, the 1,3-DC tolerated 

several sensitive functional groups and provided cycloadducts 

212 in very good yield. The use of various dipolarophiles were 

successful, cis-diastereoselectivity for the substrates bearing an 

electron-withdrawing group being determined (Scheme 61).91 

The sequence formed by and nonstabilized azomethine ylide 

derived from N-substituted glycine and formaldehyde → 

anthraquinone → 1,3-oxazole formation → generation of 

azomethine ylide → 1,3-DC with electrophilic alkenes was also 

developed for the preparation of substituted pyrrolidines.92 

 

 
Scheme 61 1,3-DC reaction of nonstabilized azomethine ylides derived from 
secondary aromatic N-(trimethylsilylmethyl)amides 211. 

 

Potentially bioactive pyrroles 215 bearing a phosphonate unit at 

the 2-position are currently under evaluation. The preparation 

consisted in a simple 1,3-DC  between imino phosphonates 213 

and 1,3-DC with ynones 214 giving intermediate cycloadducts, 

which underwent a subsequent aromatization (Scheme 62). The 

multicomponent version was essayed but in lower chemical 

yield.93 

 

 
Scheme 62 Synthesis of pyrroles 215. 

 

The stability of the pyrrol unit was the driving force to construct 

a novel nitrogen-doped corannulene derivative 219. The key 1,3-

dipolar cycloaddition of a polycyclic aromatic azomethine ylide 

precursor 217 with a diarylethyne 216 gave product 218, which 

underwent a palladium-catalyzed intramolecular cyclization to 

complete the synthesis. This molecule represents the first 

example of a corannulene derivative bearing an internal 
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heteroatom, having particular and exclusive physical and 

biological properties (Scheme 63).94 

 

 
Scheme 63 Synthesis of azacorannulene derivative 219. 

 

Amine 221 has been widely used for the generation of non-

stabilized azomethine ylides under very mild conditions. In other 

side, the reaction of an azomethine ylide with a carbonyl group of 

an anhydride is not common. However, isobenzofuranone 

heterocycles 222 were obtained by the in situ generation of a 

dipole from N-silylatedbenzylamine 221 and phthalic 

anhydrides 220 affording spirooxazolidines 222 in very good 

yields and elevated regiocontrol (Scheme 64).95 

 

 
Scheme 64 Synthesis of isobenzofuranones 222. 

 

Pentafluorosulfanyl (SF5) group is not very common in nature, so 

the biological study of compounds incorporating it is very 

attractive. Bouillon and co-workers published a 1,3-DC between 

N-(methoxymethyl)-N-[(trimethylsilyl)methyl]benzylamine 221 

and SF5-substituted acrylic ester 223 or its corresponding amide 

as dipolarophiles afforded trisubstituted pyrrolidines 224 in 

good yields. In the case of using benzylideneglycine methyl ester 

107, the 1,3-DC was produced in the presence of AgOAc/PPh3 as 

catalyst furnishing almost equimolar mixtures of cycloadducts 

225 and 226 (Scheme 65). 96   

 

 
Scheme 65 Synthesis of heterocycles 224-226 from alkenes 223. 

 

In this context, very interesting imidazolidines 228 were 

obtained during the employment of N-sulfinylketimines 227 as 

dipolarophiles in 1,3-DC with non-stabilized azomethine ylide 

precursor 221. In the presence of substoichiometric amounts of 

diphenyl phosphate the reaction proceeded in good yields and 

high diastereoselections (Scheme 66).97 

An identical mode of generating the azomethine ylide from the N-

(trimethylsilylmethyl)benzylamine 221 derivative was 

employed in the reaction with electrophilic alkenes 

incorporating a trifluoromethyl group, fluorinated acrylates or 3-

fluoromaleimides. The resulting N-benzylpyrrolidines were 

obtained in very high yields.98,99 

 

 
Scheme 66 Synthesis of imidazolidines 228. 

 

The silver-catalyzed multicomponent reaction between ethyl 

glyoxylate, 2,2-dimethoxyacetaldehyde, or phenylglyoxal as 

aldehyde components (in general 229) with α-amino ester 

hydrochlorides 230 and a dipolarophile (for example, 

maleimides 94) in the presence of trimethylamine, was 

described. This domino process took place at room temperature 

by in situ liberation of the α-amino ester followed by the 

formation of the imino ester, which is the precursor of a 

metalloazomethine ylide. The cycloaddition of this species and 

the corresponding dipolarophile afforded polysubstituted 

proline derivatives. Ethyl glyoxylate (229, X = CO2Et) reacted 

with glycinate, alaninate, phenylalaninate and phenylglycinate at 

room temperature in the presence of representative 

dipolarophiles affording endo-2,5-cis-cycloadducts 231 in good 

yields and high diastereoselection. In addition, 2,2-

dimethoxyacetaldehyde [229, X = CH(OMe)2] was evaluated with 

the same amino esters and dipolarophiles, under the same mild 

conditions, generating the corresponding endo-2,5-cis-
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cycloadducts with higher diastereoselections than the obtained 

in the same reactions using ethyl glyoxylate. In the case of 

phenylglyoxal (229, X = Ph) the corresponding 5-benzoyl-endo-

2,5-cis cycloadducts 231 were obtained in short reaction times 

and similar diasteroselections (Scheme 67).100 In these examples, 

a new functional group, different from alkyl or aryl substituents, 

was introduced. 

 

 
Scheme 67 Synthesis of pyrrolidine cycloadducts 231. 

 

The enantioselective version of these transformations was also 

separately reported for reactions run with ethyl glyoxylate and 

2,2-dimethoxyacetaldehyde. Enantiomerically enriched 

substituted fused bicyclic pyrrolidine derivatives (231, X = 

CO2Et) were obtained in a multicomponent 1,3-DC from ethyl 

glyoxylate (229, X = CO2Et) and phenylalanine (230, R1 = Bn) in 

the presence of Ag2CO3·(S)-Binap 233 catalytic complex. 101  

However, Taniaphos 234·silver fluoride complex was the 

appropriate catalyst to produce an enantioselective 1,3-dipolar 

cycloaddition using 2,2-dimethoxyacetaldehyde derived imino 

esters 232 and maleimides 94 (Scheme 68).102 The employment 

of both complexes in their respective transformations allowed 

the reaction in the absence of an extra base giving high yields and 

ee of the corresponding endo-cycloadducts, so they acted as 

bifunctional catalysts. 

 

 
Scheme 68 Enantioselective synthesis of prolinates 231. 

 

Enantiomerically enriched substituted bicyclic pyrrolidines 

fused to cyclopentanediones 237 were described by Wang et al. 

in the presence of AgOAc and (S)-TF-BiphamPhos 236 as 

catalytic system. The reaction was performed at -20 ºC affording 

products 237 in good yield and high optical purity (up to >99 ee) 

(Scheme 69).103 Bicyclic heterocycles fused by pyrrolidine and 

cyclopentane moieties play a unique role in numerous bioactive 

naturally occurring compounds and pharmaceutical ingredients. 

This chiral catalytic complex was also employed for 

atroposelective desymmetrization of N-(2-t-

butylphenyl)maleimides during the enantioselective 1,3-DC 

affording enantiomerically pure cycloadducts 239, which could 

be transformed into pyrrolines (eg 240) and pyrroles (eg 241) in 

good yields (Scheme 69).104 A similar approach was reported by 

Singh et al. with excellent enantioselections but employing Pri-

Phosferrox 238 (R = Pri).105 

 

 
Scheme 69 Asymmetric synthesis of series of heterocycles 237, and 239-241. 

 

Biologically active isoxazolylpyrrolidines 244 were 

stereodivergently constructed by Wang and co-workers in the 

presence of AgOAc and various chiral ligands. The 1,3-DC with 

imino esters 107, alkene 242, using the catalyst system formed 

with But-Phosferrox 238 (Alkyl = But) gave diastereo- and 

enantioselectively endo-cycloadducts 244 in good yields. In 

contrast, the exo-cycloadducts were formed in the presence of 

chiral phosphoramidite ligand 243 (Scheme 70).106 
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Scheme 70 Modulated synthesis of optically pure endo- and exo-cycloadducts 
244. 

 

Attractive nitroprolinates 247 incorporating a trifluoromethyl 

group were employed in several biological tests. They were 

enantioselectively prepared from imino esters 107 and β-

(trifluoromethyl)nitroalkenes 245 by intermediacy of a chiral 

copper(I)·246 complex under mild conditions. In general 

enantio- and diastereoselections were excellent and chemical 

yields were good (Scheme 71).107 

 

 
Scheme 71 Enantioselective preparation of nitroprolinates 247. 

 

Diamino substituted pyrrolidine derivatives 252 are very 

attractive compounds in many scientific areas. Their synthesis 

was accomplished in a Cu(MeCN)4BF4·chiral bidentate ligand 

249 catalyst system from iminoesters 107 and β-

phthalimidonitroethylene 248. The endo-cycloadducts 251 were 

obtained as unique diastereoisomers and immediately 

underwent reduction with Ni-Raney followed by generation of 

the second free amino group (Scheme 72).108 An analogous 

process, in which a modulation of the ligand was attempted, was 

reported during the enantioselective 1,3-DC of imino esters 107 

and 2-phthalimidoylacrylates 253, mediated by chiral ligand 

250, in very good yields and both excellent diastereo- and 

enantioselectivities.109 In general, prolinates and nitroprolinates 

exhibit many useful properties in sciece. 

 

 
Scheme 72 Synthesis of enantiomerically enriched diamino substituted 
pyrrolidines 253. 

 

These imino esters also were allowed to react with nitrostyrene 

derivatives 129 through an enantioselective 1,3-DC reported by 

Fukuzawa et al.. AgOAc·ThioClickFerrophos (TCF) 254 complex, 

acting in a bifunctional mode, was the best catalyst to yield the 

corresponding endo-cycloadducts  255 (Scheme 73).110,111 

 

 
Scheme 73 Enantioselective synthesis of nitroprolinates 255. 

 

Enantioenriched exo’-pyrroloindolines 258 possesing four 

stereogenic centers were reported in the presence of an in situ 

generated catalyst system obtained from Cu(OTf)2 and (R)-

Difluorphos 257, from alanine imino esters 107 and 3-

nitroindole surrogates 258. The dearomative 1,3-DC occurred in 

high diastereoselections and with notable enantioselectivities 

(Scheme 74).112 These tricyclic entities are present in many 

natural products and is a straightforward and simple manner to 

access them.  
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Scheme 74 Asymmetric synthesis of polycyclic compounds 258. 

 

The synthesis of trifluoromethylated pyrrolidine derivatives 260 

and 262 was reported by Carretero and co-workers. The 

hetereocycles were obtained from a series of trifluoromethyl-

substituted iminoesters 259 or trifluoroethyl imines possessing 

a 2-pyridyl unit 261. The 1,3-DC proceeded in tert-butyl methyl 

ether (TBME) in very good yields and excellent endo-

diastereoselections  with a variety of dipolarophiles 124 in the 

presence of AgOAc/PPh3 and Cs2CO3 as base (Scheme 75).113 The 

enantioselective transformation using the chiral complex formed 

by AgOAc/Taniaphos 234 afforded endo-diastereoselection with 

high enantioselectivities of 262 (up to 92% ee) under the same 

conditions.  

 

 
Scheme 75 Synthesis of trifluoromethylated pyrrolidine derivatives 260, 262 
and 263. 

 

Some fused tricyclic heterocycles 266 were enantioselectively 

constructed by Waldmann and co-workers in the presence of 

Cu(MeCN)4BF4·Fesulphos ligand 265 catalyst.  Iminoesters 107 

(2 equiv), cyclopentadiene 264 and the catalyst, under the 

optimized conditions, developed a multicomponent cascade 

reaction which allows the highly diastereo- and enantioselective 

synthesis of complex natural product cores 266 with eight 

stereocenters in moderate to good yields (Scheme 76).114 A 

notable feature of the process was the aerobic copper-catalyzed 

oxidation of cyclopentadiene to cyclopentadienone previous to 

the 1,3-DC.  

 

 
Scheme 76 Natural product frameworks 266 obtained via double 1,3-DC of 
azomethine ylides. 

 

Carretero and co-workers have designed a very interesting 

stereodivergent methodology based in a 1,3-DC of  azomethine 

ylides and an activated 1,3-diene 268.  The cycloaddition 

occurred selectively at the terminal C=C bond of the diene and, in 

basis of the chiral ligand employed, the diastereoselection can be 

controlled. Thus, DTBM-Segphos 269 and BTFM-Garphos 271 

favored the formation of the exo- and endo-cycloadducts 272, 

respectively, in good yields, high diastereocontrol and excellent 

enantioselectivities (Scheme 77).115 This process had potential 

versatility to access to chromeno[4,3-b]pyrrole structures 273 

and the tetracyclic skeleton core of the alkaloid gracilamine 274. 

The same research group reported a diastereoselective one-pot 

synthesis of hexahydrocyclopenta[b]pyrrole derivatives using a 

similar catalytic system with (E)-tert-butyl 6-bromo-2-

hexenoate and α-imino esters. This enantioselective 1,3-DC was 

followed by an intramolecular alkylation.116 
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Scheme 77 Biologically important substituted pyrrolidines 270 ans 272 and 
alkaloid framework of natural product 274  via enantioselective 1,3-DC of 
azomethine ylides. 

 

Tetrasubstituted endo-pyrrolidines 277 were prepared in the 

presence of a metal catalyzed system (Ag2CO3/chiral amidphos 

ligand 276). Imino esters 107 and dialkyl maleates 275 reacted 

at room temperature in good yields. This multifunctional catalyst 

was able to act in particular reactions with a Brönsted acid 

domain (Scheme 78).117,118 

 

 
Scheme 78 Enantioselective generation of endo-cycloadducts 277. 

 

Chiral C-3 unsubstituted pyrrolidine cycloadducts 279 were  

reported by Vicario and co-workers in the presence of L-proline 

1 as catalyst with the idea of preparing deoxyazasugar 

surrogates. The 1,3-DC was set up from diethyl 

arylideneaminomalonates 171 and with acrolein 278 as 

dipolarophile  affording chiral cycloadducts, which were reduced 

to the corresponding primary alcohols 279 in good yields and 

high diastereo- and enantioselections (Scheme 79).119 

These imino esters 171, derived from aminomalonates, and 

ethynyl ketones were also employed by Deng and co-workers in 

the enantioselective synthesis of chiral functionalised 2,5-

dihydropyrrole framework. In this example, the complex formed 

by Cu(OAc)2·Ph-PhosFerrox 146 was the selected catalyst 

affording cycloadducts in both high diastereoselectivities (98:2–

>99:1) and enantioselectivities (89–92% ee).120  

 

 
Scheme 79 Organocatalyzed 1,3-DC affording adducts 279. 

 

Chiral organocatalysts were also very effective in 

enantioselective 1,3-DC of azomethine ylides generated from 

imino esters 107 and alkenes 137. Bioactive  substituted  

pyrrolidines 281 fused to a cycloheptatriene unit were reported 

by Jørgensen et al. in the presence of  chiral 

cyclopropenediamines 280 as chiral base catalyst. The reaction 

proceeded stereoselectively and produced one diastereoisomer 

in high enantioselections (Scheme 80).121 The transformations 

done in the diene part of cycloadduct gave access to new 

potentially bioactive heterocycles. 

 

 
Scheme 80 Synthesis of substituted pyrrolidines 281 fused to a 
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cycloheptatriene unit. 

 

 

6. Synthesis of pyrrolizidines and indolizidines 

 

Pyrrolizidine nucleus is a very attractive skeleton due to the 

biological importance of molecules containing it. In this line, a 

range of biologically important spiropyrrolizidines 283 and 284 

and pyrrolizinones 286 were reported by Yang et al. The three-

component 1,3-DC of the corresponding 1,3-diketones 282 or 

hydoxycoumarins 285, aromatic aldehyde 20 and proline 1 took 

place in short reaction times assisted by microwave irradiation 

(Scheme 81).122 

 

 
Scheme 81 Synthesis of functionalized pyrrolizidines 283 and 284 and 
pyrrolizinones 286. 

 

Highly substituted pyrrolizidines 288, bearing multiple 

functionality moieties, were prepared in a multicomponent 1,3-

dipolar cycloaddition.  This simple process involved prolinate 

hydrochlorides 287, aldehydes 20 and the corresponding 

dipolarophiles 124. The reaction proceeded with both high regio- 

and diastereoselectively to yield heterocycles in the presence or 

in the absence of AgOAc as catalyst depending on the aldehyde 

employed (Scheme 82).123 This cascade allowed the access to 

diverse molecular complexity, multiplication of stereocenters 

and access to potential bioactive pyrrolizidine alkaloids. 

 

 
Scheme 82 Synthesis of highly substituted pyrrolizidines 288 via 
multicomponent 1,3-DC. 

 

Another example of the synthesis of trisubstituted pyrrolizidines 

was recently reported via 1,3-DC of nonstabilized azomethine 

ylides and chalcones 289 as electron-deficient dipolarophiles in 

DMF. The reaction proceed regio- and diastereoselectively in a 

one-pot three-component reaction manner obtaining the desired 

compounds 290 together with an oxapyrrolizidine derivative in 

variable proportions. These substituted oxazolidines 291 arose 

when an excess of arylaldehyde 20 was employed, which acted 

as dipolarophile as well (Scheme 83). 124 

 

 

Scheme 83 Preparation of trisubstituted pyrrolizidines 290 and disubstituted 
oxazolidines 291. 

 

A novel one-pot three component iridium catalyzed 

dehydrogenation/1,3-dipolar cycloaddition cascade utilizing 

benzylic alcohols 292 was published. Benzylic alcohols 292, L-

proline 1, and maleimides 94 as dipolarophiles reacted in 

refluxing toluene for 24 h furnishing antimicrobial surrogates 

293 as mixtures of endo/exo-diastereoisomers in good yield 

(Scheme 84).125 

 
Scheme 84 Construction of tricyclic fused ring pyrrolidines 293. 

 

The total synthesis of the proposed structure of yuremamine 296 

was achieved from a [3+2]-cycloaddition of the platinum-

containing azomethine ylide (XIV→XIV’). The spectral data of the 

synthetic sample along with its diastereomers were different 

from the reported one. Lavonoidal skeleton, based on a 

funcionalized pyrrolo[1,2-a]indole core, was achieved with PtCl2 

(5 mol%) and 4A MS from the corresponding imine 294 derived 

from ortho-alkynylanilines. The intermediate platinum-

containing azomethine ylide XIV’ underwent and intermolecular 

1,3-DC with vinyl ether 295. The intermediate platinum carbine 

suffered a 1,2-migration of the substituent (CH2)2OTIPS with 

regeneration of the platinum catalyst to afford the already 

mentioned pyrroloindole skeleton 296 (Scheme 85).126 
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Scheme 85 Synthesis of lavonoidal skeleton of yuremamine 296. 

 

Pandey et al. have recently developed a route to total synthesis of 

both enantiomers of the biologically active (+)-aspidospermidine 

299, whose key step was the preparation of a fused indolizidine 

core through 1,3-DC using a non-stabilized azomethine ylide XV 

from precursor 297.  The enantiomerically pure starting material 

afforded only one diastereoisomer possessing the precise 

absolute configuration in all stereogenic centers (Scheme 86).127 

 

 
Scheme 86 Diastereoselective approach to total synthesis of (+)-
aspidospermidine 299. 

 

Following an intramolecular key 1,3-DC pattern, Fukuyama and 

co-workers accomplished the total synthesis of (-)-daphenylline 

302. The completion of the synthesis of core ABC tricyclic ring 

301 occurred stereospecifically in moderate yield under very 

harsh reaction conditions due to the low activation of the 

dipolarophile present in structure 300. In this example, a 

stabilized azomethine ylide was generated in situ by the iminium 

route (Scheme 87).128 

 

 
Scheme 87 Intramolecular 1,3-DC of  cyclic azomethine ylide employed in the 
synthesis of (+)-daphenylline 302. 

 

Biologically important core intermediates 304 permitted the 

access to extremely complex (±)-caldaphnidine C type alkaloids. 

Bélanger et al. designed a sequential Vilsmeier−Haack (V-H) 

cyclization and intramolecular  1,3-DC of an azomethine ylide 

with an electrophilic alkene as one of the key step of the total 

synthesis. The V-H cyclization occurred rapidly generating an 

iminium salt XVI, which was deprotonated and allowed to react 

with the activated olefin at room temperature in high yields 

(Scheme 88).129  

 

 
Scheme 88 Synthesis of core intermediate to access (±)-caldaphnidine C type 
alkaloid 304. 

 

Recently Brewer et al. have reported an approach to the synthesis 

of the biologically active tricycle, which is the core CDE-ring 

system of the aspidosperma alkaloid family 308. Initially, the 

fragmentation of diazo ester 305 took place using In(OTf)3 under 

mild conditions affording an intermediate stable iminium salt. 

After treatment of 306 with CsF in acetonitrile the tricyclic 

cycloadduct 307 was isolated in good yields as a single 

diastereomer (Scheme 89).130 
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Scheme 89 Ring Fragmentation/Intramolecular Azomethine Ylide 1,3-DC for 
the synthesis of the aspidosperma tricyclic core 308. 

 

Ellman and co-workers described the synthesis of potentially 

bioactive tropanes 310 and 311, and indolizidines 313 and 314 

skeletons through intramolecular 1,3-DC. Non-stabilized 

azomethine ylides, generated from readily prepared 2-

trimethylsilyl-substituted 1,2-dihydropyridines 309 or from  N-

(trimethylsilylmethyl)-1,2-dihydropyridines 312 via 

protonation or alkylation followed by desilylation, were selected 

to react with alkenes or alkynes. In the first example, densely 

substituted tropanes 310 and 311, incorporating quaternary 

carbons, were obtained in good yields and with high regio- and 

stereoselectivities. However, N-trimethylsilylmethyl  derivatives 

312 furnished regio- and diastereoselectively indolizidines 313 

or fused oxazolidine heterocycles 314 depending on the 

dipolarophile employed (Scheme 90).131 These cascades 

represented a powerful approach for the rapid assembly of  

biologically and pharmaceutically relevant nitrogen heterocycle 

scaffolds. Additionally, all these heterocycles reported in this 

work are difficult to synthesize by other methods. The 

implementation of this sequence into the synthesis of natural 

products are underway. 

 

 
Scheme 90 Synthesis of tropanes 310 and 311 and skeletons 313 and 314. 

 

 

7. Synthesis of quinolines and isoquinolines 

 

Tri- and tetra-cyclic pyrrolo/pyrrolizinoquinoline 316 and 318 

were prepared. N-allylated aldehyde 315 and sarcosine 13 

produced tricyclic pyrrolo[3,2-c]quinolines 316 in good yields. 

The analogous reactions were surveyed with proline 1 instead of 

sarcosine 13 and aldehyde 317 giving attractive fused tetracyclic 

pyrrolizinoquinolines 318 with a promising biological potential. 

The reaction afforded the best yields in refluxing acetonitrile 

with a total diastereoselection (Scheme 91).132 

 

 
Scheme 91 Synthesis of tri- and tetracyclic pyrroloquinolines 316 and 318. 
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Biologically important substituted pyrrolo[2,1-a]isoquinolines 

321 were described by Matsuya and co-workers in the presence 

of a [(CyJohnPhos)AuCl/AgOTf] catalytic system in 1,2-

dichloroethane (DCE). In this stereoselective process, a previous 

6-exo-dig-cyclization occurred generating the azomethine ylide 

XVII, which reacted with several dipolaraophiles 124 affording 

pyrroloisoquinoline heterocycles 321 (scheme 92).133 

 

 

Scheme 92 Stereoselective synthesis of pyrrolo[2,1-a]isoquinolines 321. 

 

Chiral pyrroloisoquinolines 327 (X = CH) and pyrrolophthalazine 

327 (X = N) were reported employing an asymmetric inverse-

electron demand 1,3-dipolar cycloaddition of isoquinolinium 

methylides 324 with enecarbamates 325. The catalytic system 

was formed by AgBF4 and a chiral N,N′-dioxide 326. Azomethine 

ylides 324 (isoquinolinium dicyanomethanide or phthalazinium 

dicyanomethanide) were generated from isoquinolines or 

phthalazines 322 and tetracyanoethylene oxide (TCNEO) 323.  

Final fused tricyclic heterocycles 327 were obtained in good to 

excellent chemical yields, high diastereoselections and very good 

enantioselectivities (Scheme 93).134,135 

 
Scheme 93 Enantioselective synthesis tricyclic entities 327. 

 

Biologically active heterocycles 331, containing both indolizines 

and quinoline core structures, were designed by Yavari and co- 

workers. Pyridinium ylides XVIII, generated by an iodine-

mediated reaction of 2-methylquinolines 328 and pyridines 329, 

underwent 1,3-DC with phosphorylated hydroxyketenimines 

330.   This one pot multicomponent cascade process afforded the 

desired heterocycles 331 in good yields (Scheme 94).136 

 

 
Scheme 94 Synthesis of heterocycles 331. 

 

Pyrroloisoquinolines 334 were generated in moderated to high 

yields via 1,3-DC of azomethine  ylide, obtained from 

isoquinolinium salts 332 with substituted ethyl allenoates 333.  

The pyrrole structure was achieved after elimination and 

isomerization occurring during the cycloaddition under basic 

media (Scheme 95).137 The synthetic utility of the cycloaddition 

products 334 can be demonstrated by simple chemical 

manipulations permitting the construction of more sophisticated 

biologically active compounds. 

 

 
Scheme 95 Synthesis of pyrroloisoquinolines 334. 

 

8. Conclusions 

According to all these sections it is reasonable to conclude that 

1,3-DC involving azomethine ylides is a powerful tool in both 

asymmetric or not asymmetric modalities able to give access to a 

wide family of skeletons. The exploration and exploitation of 

their biological activity is preferential for the discovery of new 

applications of the resulting cycloadducts in many scientific 

areas. The scope of theses cycloadditions seems to be unlimited 

and one of main interests of these 1,3-DC is the building of central 

subunits of complex alkaloids in a reduced number of reaction 

steps.   

 

 



Synthesis Review / Short Review 

Template for SYNTHESIS © Thieme  Stuttgart · New York 2017-07-11 page 27 of 30 

Acknowledgment 

We thank Mersin University (Project no. BAP 2015-AP2-1342), and 
Universities of Seville and Alicante for their support. We also thank 
funding by the Spanish Ministerio de Ciencia e Innovación (MICINN) 
(Consolider INGENIO 2010 CSD2007-00006, CTQ2004-00808/BQU, 
CTQ2007-62771/BQU, CTQ2010-20387 and the Hispano-Brazilian 
project PHB2008-0037-PC), the Spanish Ministerio de Economía y 
Competitividad (MINECO) (projects CTQ2013-43446-P and CTQ2014-
51912-REDC) FEDER, Generalitat Valenciana (PROMETEO/2009/039, 
and PROMETEOII/2014/017). M.G.R. thanks Junta de Andalucía (Grant 
2012/FQM 1078 and a postdoctoral fellowship).  

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Biosketches 
 

 

H.Ali Döndaş received his BSc. in 1990 from İnönü University, He received his MSc. in 1993 from 
Çukurova University and received his PhD degree in 1997 under the supervision of Professor Ronald 
Grigg (University of Leeds, UK) and received Best Ph.D Thesis award. In 1997 he was appointed 
Assistant Professor and become Associate Professor in 2001 at Mersin University. Since March 2007, 
he has been promoted to full Professor at Mersin University Faculty of Pharmacy, were he is currently 
the head of department at Basic Pharmaceutical Science. 
He has been working as Post-Doctoral Research Fellows (2000-2001) at University of Leeds (UK) with 
Professor Ronald Grigg and Post-Doctoral Research Fellows (2004) at University of Gent, Faculty of 
Bioscience Engineering Gent-Belgium with Professor Norbert De Kimpe.  
He has also  been working as Visiting Researcher in 1998, Visiting Scholar in 2003 and 2005 at the 
University of Leeds, He was invited Visiting Research Scientist at the University of Leeds in 2008, 2015 
and 2016. 

 

 

Maria de Gracia Retamosa received her Ph.D. in 2008 at University of Alicante (Spain) under the 
guidance of Prof. Carmen Nájera and José Miguel Sansano. After that, she did several postdoctoral stays 
[Prof. Michael Greaneyat at the University of Edimburgh (UK, 2009), Prof. Jesús M. Sanz at the 
University Miguel Hernández (Elche, Spain, 2009–2011) and Prof. Fernando P. Cossío at the University 
of the Basque Country and Donostia International Physics Center (Spain, 2012–2016)]. Recently, she 
has joined to the group of Prof. Rosario Fernández and José M. Lassaletta as a postdoctoral researcher 
[CSIC (Sevilla, Spain)]. Her current research interests include asymmetric metal and organocatalysis 
and synthesis of compounds with pharmacological interest. 

 

  

José Miguel Sansano was born in Rojales (Alicante), studied chemistry at the University of Alicante, 
where he obtained his B.Sc. and Ph.D. degrees in 1988 and 1994, respectively. His Thesis was 
supervised by Prof. C. Nájera and dealt about sulfone chemistry. After spending a two-year 
postdoctoral stay at the University of Leeds (U.K.) with Prof. R. Grigg, he joined the University of 
Alicante in 1996, where he was appointed Associate Professor in 2001. In 2010 he was promoted to 
Full Professor in the same University. He was invited visiting Professor at Chuo University in 2014. He 
is coauthor of more than 100 articles and he has supervised 10 PhD students. 

 

 

References  

 



Synthesis Review / Short Review 

Template for SYNTHESIS © Thieme  Stuttgart · New York 2017-07-11 page 28 of 30 

(1) (a) Huisgen, R.  Angew. Angew. Chem. Int. Ed. Engl. 1963, 2, 565. (b) Huisgen R. Angew. Chem. Int. Ed. Engl. 1963, 2, 633. 
(2) Baunach, M.; Hertweck, C. Angew. Chem. Int. Ed. 2015, 54, 12550. 
(3) (a) Naodovic, M.; Yamamoto, H. Chem. Rev. 2008, 108, 3132. (b) Nájera, C.; Sansano, J. M. Org. Biomol. Chem. 2009, 7, 4567. (c) Nájera, C.; Sansano, 

J. M.; Yus, M. J. Braz. Chem. Soc. 2010, 21, 377. (d) Kissanea, M.; Maguire A. R. Chem. Soc. Rev. 2010, 39, 845. (e) Adrio, J.; Carretero, J. C. Chem. 
Commun. 2011, 47, 6784. (f) Nájera, C.; Sansano, J. M. Curr. Topics Medicinal Chem. 2014, 14, 1568. (g) Maroto, E. E.; Izquierdo, M.; Reboredo, S.; 
Marco-Martínez, J.; Filippone, S.; Martín, N. Acc. Chem. Res. 2014, 47, 2660. (h) Narayan, R.; Potowski, M.; Jia, Z.-J.; Antonchick, A. P.; Waldmann, H. 
Acc. Chem. Res. 2014, 47, 1296.  (i) Nájera, C.; Sansano, J. M. J. Organomet. Chem. 2014, 771, 78. (j) Li, J.; Zhao, H.; Zhang Y. Synlett 2015, 26, 2745. 
(k) Yoo, E. J. Synlett 2015, 26, 2189.  (l) Ryan, J. H. Arkivoc 2015, (i), 160. (m) Hashimoto, T.; Maruoka, K. Chem. Rev.  2015, 115, 5366. (n) Pavlovska, 
T. L.; Gr. Redkin, R.; Lipson, V. V.; Atamanuk, D. V. Synth.  Biol. Activ. Mol. Divers 2016, 20, 299. (o) Meyer, A. G.; Ryan, J. H. Molecules 2016, 21, 935. 
(p) Singh, M.S.; Chowdhury, S.; Koley, S. Tetrahedron 2016, 72, 1603. (q) Nájera, C.; Sansano, J. M. Chem. Record 2016, 16, 2430.  

(4) Dispiroindole derivatives are known to have antidiabetic, anticancer, antitubercular, antibacterial as well as antimicrobial activities. (a) 
 Girgis, A.  S. Eur. J.  Med. Chem. 2009, 44, 91. (b) Ali, M. A.; Ismail, R.; Choon, T. S.; Yoon, Y. K.; Wei, A. C.; Pandian, S.; Kumar, R. S.; Osman, H.; 
Manogaran, E. Bioorg.  Med.  Chem.  Lett. 2010, 20, 7064.  (c) Ivanenkov, Y. A.; Vasilevski, S.  V.; Beloglazkina, E. K.; Kukushkin, M. E.; Machulkin, A. 
E.; Veselov, M. S.; Chufarova, N. V.; Chernyaginab, E. S.; Vanzcool, A. S.; Zyk, N. V.; Skvortsov, D. A.; Khutornenko, A. A.; Rusanov, A. L.; Tonevitsky, 
A. G.; Dontsova, O. A.; Majouga, A. G. Bioorg. Med. Chem. Lett. 2015, 25, 404. (d) Murugan, R.; Anbazhagan, S.; Sriman-Narayanan, S. Eur. J.  Med.  
Chem. 2009, 44, 3272. (e) Prasanna, P.; Balamurugan, K.; Perumal, S.; Yogeeswari, P.; Sriram, D. Eur.  J.  Med.  Chem. 2010, 45, 5653. (f) Karthikeyan, 
K.; Sivakumar, P. M.; Doble, M.; Perumal, P. T. Eur.  J.  Med.  Chem. 2010, 45, 3446. (g) Arun, Y.; Bhaskar, G.; Balachandran, C.; Ignacimuthu, S.; 
Perumal, P. T. Bioorg.  Med. Chem. Lett. 2013, 23, 1839. 

(5) Pavlovska, T. L.; Redkin, R. G.; Lipson, V. V.; Atamanuk, D. V. Mol. Divers. 2016, 20, 299. 
(6) Rouatbi, F.; Askri, M.; Nana, F.; Kirsch, G.; Sriram, D.; Yogeeswari, P. Tetrahedron Lett. 2016, 57, 163. 
(7) Isatins and various primary or cyclic secondary amines formed azomethine ylides which underwent self 1,3 dipolar-[3+3]-cyclizations. Xia, P.-J.; 

Sun, Y.-H.; Xiao, J.-A.; Zhou, Z.-F.; Wen, S.-S.; Xiong, Y.; Ou, G.-C.; Chen, X.-Q.; Yang,  H. J. Org. Chem. 2015, 80, 11573. 
(8)  Tiwari, Κ. Ν.; Pandurang, Τ.P.; Pant, S.; Kumar, R. Tetrahedron Lett. 2016, 57, 2286. 
(9) Malini, M.; Periyaraja, S.; Shanmugam, P. Tetrahedron Lett. 2015, 56, 5123. 
(10) Taghizadeh, M.-J.; Javidan, A.; Jadidi, K. J. Korean Chem. Soc. 2015, 59, 205. 
(11) Li, G.; Wu, M.; Liu, F.; Jiang, J. Synthesis 2015, 47, 3783. 
(12) Dong, H.; Song, S.; Li, J.; Xu, C.; Zhang, H.; Ouyang, L. Bioorg. Med. Chem. Lett. 2015, 25, 3585. 
(13) Muthusamy, S.; Kumar, S. G. Tetrahedron 2016, 19, 2392.  
(14) Nayak, S.; Mishra, S. K.; Bhakta, S.; Panda, P.;  Baral, N.; Mohapatra, S.; Purohit, C. S.; Satha, P. Lett. Org. Chem. 2016, 13, 11-21. 
(15) Dhanalakshmi, P.; Babu, S. S.; Thimmarayaperumal, S.; Shanmugam, S. RSC Adv. 2015, 5,  33705. 
(16) Chornous, V. A.; Mel’nik, O. Y.; Mel’nik, D. A. E. B.; Rusanov, E. B.; Vovk, M. V. Russ. J. Org. Chem. 2015, 51, 1423. 
(17) Barkov, A. Y.; Zimnitskiy, N. S.; Korotaev, V.-Y.; Kutyashev, I. B.; Moshkin, V. S.; Sosnovskikh, V.-Y. Tetrahedron 2016, 72, 6825. 
(18) Rao, J. N. S.; Raghunathan, R. Tetrahedron Lett. 2015, 56, 2276. 
(19)  Sumesh, R. V.; Muthu, M.; Almansour, A. I.; Kumar, R. S.; Arumugam, S.; Athimoolam, S.; Prabha, E. A. J.; Kumar,  R. R. ACS Comb. Sci. 2016, 18, 262. 
(20) Girgis, A. S.; Panda, S.S.; Aziz, M. N.; Steel, P. J.; Hall, C. D.; Katritzky, A. R. RSC Adv. 2015, 5, 28554. 
(21) Girgis, A. S.; Mabied, A. F.; Stawinski, J.; Hegazy, L.; George, R. F.; Farag, H.; Shalaby, E.; Farag, S. A. New J. Chem. 2015, 39, 8017. 
(22) George, R. F.; Panda, S. S.; El-Shalaby, A. M.; Srour, A. M.; Farag, I. S. A.; Girgis, A. S. RSC Adv. 2016, 6, 45434. 
(23) Girgis, A. S.; Panda, S. S.; Farag, I. S. A.; El-Shabiny A. M.; Moustafa, A. M.; Ismail, N. S. M.; Pillai, G. G.; Panda, C. S.; Hall, C. D.; Katritzky, A. R. Org. 

Biomol. Chem. 2015, 13, 1741. 
(24) Rao, J. N. S.; Raghunathan, R. Tetrahedron Lett. 2015, 56, 1539.  
(25) Anis'kovl, A. A.; Kamneva, Y. I.; Zheleznova, M. A.; Yegorova, A. Y. Chem. Heterocyclic Comp. 2015, 51, 709. 
(26) Feng, G.-L.; Li, Y.; Geng, L.-J.; Zhang, H.-L.; Shi, Y.-J.; Wang, K.-F. Synth. Commun. 2015, 45, 1259. 
(27) Chakraborty, D.; Maity, A.; Jain, C. K.; Hazra, A.; Bharitkar, Y. P.; Jha, T.; Majumder, H. K.; Roychoudhury, S.; Mondal, N. B. Med. Chem. Commun. 2015, 

6, 702. 
(28) Hazra, A.; Mondal, C.; Chakraborty, D.; Halder, A. K.; Bharitkar, Y. P.; Mondal S. K.; Banerjee, S.; Jha, T.; Mondal,  N. B. Curr. Topics Med. Chem. 2015, 

15, 1013. 
(29) Arumugam, N.; Almansour, A.; Kumar, R. S.; Menéndez, J. C.; Sultan, M. A.; Karama, U.; Ghabbour, H. A.; Fun, H. K. Molecules 2015, 20, 16142. 
(30) Kumar, R. S.; Almansour,  A. A.; Arumugam, N.; Basiri, A.; Kia, Y.; Kumar, R. R. Aust. J. Chem. 2015, 68, 863.  
(31) Almansour, A. I.-; Arumugam, N.; Kumar, R. S.; Periyasami, G.; Ghabbour, H. A.; Fun, H. K. Molecules 2015, 20, 780. 
(32) Rajkumar, V.; Babu, S. A.; Padmavathi, R. Tetrahedron 2016, 72, 5578. 
(33) Poomathi, N.; Mayakrishnan, S.; Muralidharan, D.; Perumal, P. T. Tetrahedron Lett. 2015, 56, 721.    
(34) Kathirvelan, D.; Haribabu, J.; Reddy, B. S. R.; Balachandran, C.; Duraipandiyan, V. Bioorg. Med. Chem. Lett. 2015, 25, 389. 
(35) Bharitkar, Y. P.; Das, M.; Kumari, N.; Kumari, M. P.; Hazra, A.; Bhayye, S. S.; Natarajan, R.; Shah, S.; Chatterjee, S.; Mondal, N. B. Org. Lett. 2015, 17, 

4440. 
(36) Rajeswari, M.; Kumari, S.; Khurana, J. M. RSC Adv. 2016, 6, 9297. 
(37) Kaur, A.; Kaur, M.; Singh, B. J. Heterocyclic Chem. 2015, 52, 827. 
(38) Haddad, S.; Boudriga, S.; Akhaja, T. N.;  Raval, N. P.; Porzio, F.; Soldera, A.; Askri, M.; Knorr, M.; Rousselin, Y. E.; Kubicki, M. M.; Rajani, D. New J. 

Chem. 2015, 39, 520. 
(39) Haddad, S.; Boudriga, S.; Porzio, F.; Soldera, A.; Askri, M.; Knorr, M.; Rousselin, Y.; Kubicki, M. M.; Golz C.; Strohmann, C. J. Org. Chem. 2015, 80, 

9064.  
(40) Bharitkar, Y. P.; Kanhar, S.; Suneel, N.; Mondal, S. K.; Hazra, A.; Mondal, N. B. Mol. Divers. 2015, 19, 251. 
(41) Sun, J.; Chen, L.; Gong, H.; Yan, C.-G. Org. Biomol. Chem. 2015, 13, 5905. 
(42) Ponnuchamy, S; Sumesh, R. V.; Kumar, R. R. Tetrahedron Lett. 2015, 56, 4374. 
(43) Dandia, A.; Singh, R.; Khan, S.; Kumari, S.; Soni, P. Tetrahedron Lett. 2015, 56, 4438. 
(44) Taghizadeh, M. J.; Javidan, A.; Keshipour, S. Chem. Heterocycl. Comp. 2015, 51, 467. 
(45) Mathusalini, S.; Arasakumar, T.; Lakshmi, K.; Lin, C.-H.; Mohan, P. S.; Ramnath, M. G.; Thirugnanasampandan, R. New J. Chem. 2016, 40, 5164. 
(46) Yu, B.; Sun, X.-N.; Shi, X.-J.; Qi, P.-P.; Zheng, Y.-C.; Yu, D.-Q.; Liu, H.-M. Steroids 2015, 102, 92. 
(47) Wang, Y.-M.; Zhang, H.-H.; Li, C.; Fan, T.; Shi, F. Chem. Commun. 2016, 52, 1804.  
(48) Al-As’ad, R. M.; El-Abadelah, M. M.; Sabri, S. S.; Zahra, J. A.; Awwadi, F. F.; Voelter, W. Monatsh Chem. 2015, 146, 621. 
(49) Dai, W.; Jiang, X.-L.; Wu, Q.; Shi, F.; Tu, S.-J. J. Org. Chem. 2015, 80, 5737. 
(50) Wang, C. S.; Zhu, R. Y.; Zheng, J.; Shi, F.; Tu, S. J. J. Org. Chem. 2015, 80, 512. 
(51) Yang, F.; Sun, Z.; Gao, H.; Yan, C. G. RSC Adv. 2015, 5, 32786.  
(52) Thirumala, P. P.; Krishnan, R.; Emanathan, G.; Doraiswamy, M. J. Chem. Sci. 2015, 127, 7. 
(53) Hu, W.-Q.; Cui, Y.-S.; Wu, Z.-J.; Zhang, C.-B.; Dou, P.-H.; Niu, S.-Y.; Fu, J.-Y.; Liu, Y. RSC Adv. 2015, 5, 70910. 
(54) Liu, F.-H.; Song, Y.-B.; Zhai, L.-J.; Lia, M. J. Heterocyclic Chem. 2015, 52, 322. 
(55) Hamzehloueian, M.; Yaghoub-Sarrafi, Y.; Aghaeib, Z. RSC Adv. 2015, 5, 76368. 
(56) Malathi, K.; Jeyachandran, V.; Kalaiselvan, K.; Kumar, R. R. Synth. Commun. 2015, 45, 503. 
(57) Gavaskar, D.; Suresh-Babu, A. R.; Raghunathan, R.; Dharani, M.; Balasubramanian, S. Steroids 2016, 109, 1. 
(58) Yang, W.-L.; Liu, Y.-Z.; Luo, S.; Yu, X.; Fossey, J. S.; Deng, W.-P. Chem. Commun. 2015, 51, 9212. 

 

 



Synthesis Review / Short Review 

Template for SYNTHESIS © Thieme  Stuttgart · New York 2017-07-11 page 29 of 30 

 

(59) Conde, E.; Rivilla, I.; Larumbe, A.; Cossío, F. P. J. Org. Chem. 2015, 80, 11755. 
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(129) Boudreault, J.; Lévesque, F.; Bélanger, G. J. Org. Chem. 2016, 81, 9247. 
(130) Giampa, G. M.; Fang, J.; Brewer, M. Org. Lett. 2016, 18, 3952. 
(131) Chen, S.; Bacauanu, V.; Knecht, T.; Mercado, B. Q.; Bergman, R. G. J. Am. Chem. Soc. 2016, 138, 12664. 

 



Synthesis Review / Short Review 

Template for SYNTHESIS © Thieme  Stuttgart · New York 2017-07-11 page 30 of 30 

 

(132) Bakthadoss, M.; Srinivasan, J.; Vinayagam, V. Org. Biomol. Chem. 2015, 13, 2870. 
(133) Sugimoto, K.; Hoshiba, Y.; Tsuge, K.; Matsuya, Y. Synthesis 2016, 48, 1855. 
(134) Xu, Y.; Liao, Y.; Lin, L.; Zhou, Y.; Li, J.; Liu, X.; Feng, X. ACS Catal. 2016, 6, 589. 
(135) Enantioselective processes were efficiently optimized in the presence of chiral Cu(MeCN)4BF4·Pri-PhosFerrox  complex (10 mol%). Yuan, C.; Liu, 

H.; Gao, Z.; Zhou, L.; Feng, Y.; Xiao, Y.; Guo, H. Org. Lett. 2015, 17, 26. 
(136) Yavari, I.; Naeimabadi, M.; Hosseinpour, R.; Halvagar, M. R. A. Synlett 2016, 27, 2601. 
(137) Li, F.; Chen, J.; Hou, Y.; Li, Y.; Wu, X. Y.; Tong, X. Org. Lett. 2015, 17, 5376. 


