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On the origin of magnetic anisotropy in two

dimensional CrI3

J. L. Lado1 and J. Fernández-Rossier1,2

1 QuantaLab International Iberian Nanotechnology Laboratory (INL), Av. Mestre

José Veiga, 4715-330 Braga, Portugal
2Departamento de F́ısica Aplicada, Universidad de Alicante, 03690 Spain

Abstract.

The observation of ferromagnetic order in a monolayer of CrI3 has been recently

reported, with a Curie temperature of 45 Kelvin and off-plane easy axis. Here we study

the origin of magnetic anisotropy, a necessary ingredient to have magnetic order in two

dimensions, combining two levels of modeling, density functional calculations and spin

model Hamiltonians. We find two different contributions to the magnetic anisotropy

of the material, favoring off-plane magnetization and opening a gap in the spin wave

spectrum. First, ferromagnetic super-exchange across the ≃ 90 degree Cr-I-Cr bonds,

are anisotropic, due to the spin orbit interaction of the ligand I atoms. Second, a much

smaller contribution that comes from the single ion anisotropy of the S = 3/2 Cr atom.

Our results permit to establish the XXZ Hamiltonian, with a very small single ion easy

axis anisotropy, as the adequate spin model for this system. Using spin wave theory

we estimate the Curie temperature and we highlight the essential role played by the

gap that magnetic anisotropy induces on the magnon spectrum.
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On the origin of magnetic anisotropy in two dimensional CrI3 2

1. Introduction

The recent reports of ferromagnetic order in two different two dimensional crystals,[1, 2]

Cr2Ge2Te6 and CrI3, together with the report of antiferromagnetic order[3, 4] in FePS3

a few months earlier, mark the beginning of a new chapter in the remarkable field of two

dimensional materials. These discoveries extend significantly the list of electronically

ordered two dimensional crystals, that included already superconductors,[5, 6] charge

density waves materials[7] and ferroelectrics.[8] In addition, there is an increasing

amount of computational studies predicting magnetic order in large variety of two

dimensional materials, such as VS2 and VSe2, [9] K2CuF4,[10] and the family of MPX3,

with M the 3d transition metals and X a group VI atom.[11] The integration of

magnetically ordered 2D crystals in Van der Waals heterostructures[12] opens a vast

field of possibilities for new physical phenomena and new device concepts, and is already

starting to be explored experimentally.[13]

Mermin andWagner demonstrated the absence of long range magnetic order in spin-

rotational invariant systems with short range exchange interactions.[14] Therefore, the

observation of long range magnetic order in two dimensional insulating materials stresses

the importance of a quantitative microscopic understanding of magnetic anisotropy

in these systems. The breaking of spin rotational invariance can be due to three

mechanisms, dipolar interactions, single ion anisotropy and anisotropy of the exchange

interactions. In the case of very strong single ion anisotropy, a description in terms of

the Ising model could be possible, which automatically entails a magnetically ordered

phase phase at finite temperature, as predicted by Onsager in his remarkable paper.[15]

However, large single ion anisotropies are normally associated to partially unquenched

orbital moment of the magnetic ion, which only happens for specific oxidation states

and low symmetry crystal environments, most notably in surfaces[16] or for rare earth

atoms.[17]

CrI3 is a layered transition metal compound known to order ferromagnetically,

in bulk, at Tc = 61 Kelvin.[18, 19] Ferromagnetic order has been shown to persist in

mechanically exfoliated monolayers of CrI3, with a Curie Temperature of Tc = 45 Kelvin,

as determined by magneto-optical measurements.[2] In this work we model magnetic

anisotropy in a monolayer of CrI3. Since dipolar interactions favor in-plane anisotropy,

we focus on the study of both single ion anisotropy and exchange anisotropies. To

do that, we first model the system with relativistic all electron density functional

theory (DFT) calculations that include spin orbit interactions, essential to account for

magnetic anisotropy. Our calculations permit to build an effective spin model with three

energy scales, the isotropic and anisotropic Cr-Cr exchange couplings, J the anisotropic

exchange λ, and the single ion anisotropy D. As we show below, J and λ are non zero,

whereas the single ion anisotropy D is negligible.

Both experimental results [19, 2] and DFT calculations[20, 21] show that CrI3 is

an semiconducting material with a the band-gap of 1.2 eV.[22] In a single layer of

CrI3, the plane of Cr atoms form a honeycomb lattice and is sandwiched between two
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On the origin of magnetic anisotropy in two dimensional CrI3 5

2. Density functional methods

We perform density functional theory calculations with the pseudo-potential code

Quantum Espresso[33] and the all-electron code Elk[34]. Monolayer structures were

relaxed with Quantum Espresso, Projector augmented wave (PAW) pseudopotentials[35,

36] and PBE exchange correlation functional[37] in the ferromagnetic configuration.

With the relaxed structures, calculation with Elk are carried out using spin orbit

coupling in the non-collinear formalism, DFT+U with the Yukawa scheme[38] (J = 0.7

eV and U = 2.7 eV) in the fully localized limit and LDA exchange correlation

functional.[39] We have verified that exchange energies with LDA or GGA, with or

without DFT+U give qualitatively similar results.

The calculations of magnetic anisotropy require careful convergence of the total

energy. We found that converging the total energy 10−8 eV yields stable results. We

have used the feature of Elk that permits to tune the overall strength of spin orbit

interaction by a dimensionless constant scale factor, that we call α. Thus, for α > 1

the size of the spin orbit coupling is increased above its actual value. In addition, we

have introduced a modification in the source code of Elk in order to selectively turn

on and off the spin orbit coupling in the two different atoms independently, so that we

now have two dimensionless scale factors, αI and αCr. As we discuss below, these two

resources permit to to trace the origin of the magnetic anisotropy, as we discuss now.

3. Electronic properties of CrI3

We now describe the most salient electronic properties of CrI3, as described within our

DFT calculations, in line with previous work[20, 40]. The calculations show that CrI3 is

a ferromagnetic semiconductor. The magnetic moment resides mostly in the Cr atoms,

with a residual counterpolarized magnetization on the I atoms. The total magnetic

moment in the unit cell is 6 µB, 3µB per Cr atom. Figure 2a shows the band structure,

calculated with and without SOC. The bands undergo a rather large shift, in the range

of 0.1 eV, when SOC is included,. The size of this shift is a first indication that the spin

orbit interaction of iodine atoms plays an important role,[41] as spin orbit coupling in Cr

is much smaller than 0.1 eV. Figure 2b,c shows the bands weighted over the projection

on the d orbitals of Cr (Fig. 2b) and the p orbitals of I (Fig. 2c). It is apparent

that the top of the valence band is formed mostly by spin unpolarized p orbitals of

the I atoms and the conduction band is formed by the minority spin d orbitals of Cr.

The majority spin d orbitals, of the t2g manifold, are found 2 eV below the top of the

valence bands.‡ The shape of the magnetization field, not shown, clearly shows that the

magnetic moment resides in orbitals with t2g symmetry, in line with previous results.[40]

‡ In the case U = 0, the weight of the t2g orbitals at the top of the valence band increases.
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On the origin of magnetic anisotropy in two dimensional CrI3 7

This suggests that anisotropic symmetric superexchange is the likely cause of magnetic

anisotropy in this compound. This also seems to indicate that the local moments do

not have a strong single ion anisotropy, and therefore they are not properly described

as Ising spins.

4.1. Spin Hamiltonian

In order to validate these hypothesis, we now propose a model Hamiltonian for the spins

of the Cr atoms in the honeycomb lattice:

H = −




∑

i

D(Sz
i )

2 +
J

2

∑

i,i′

~Si · ~Si′ +
λ

2

∑

i,i′
Sz
i S

z
i′



 (3)

where the sum over i runs over the entire lattice of Cr atoms, and the sum over

i′ runs over the 3 atoms, the first neighbors of atom i. The first term in the

Hamiltonian describes the easy axis single ion anisotropy and we choose z as the off-

plane direction. The second term is the Heisenberg isotropic exchange and the final

term is the anisotropic symmetric exchange. The sign convention is such that J > 0

favors ferromagnetic interactions and D > 0 favors off-plane easy axis. λ = 0 would

imply a completely isotropic exchange interaction.

We first treat Eq. 3 in the classical approximation, and we describe the spins ~S

as dimensionless classical vectors of length S in the sphere We write the energy of the

ground state for 4 possible ground states, depicted in Fig. 4a: (I) ferromagnetic off-plane

(FM,z) , (II) antiferromagnetic off-plane (AF,z), (III) ferromagnetic in-plane (FM,x) and

(IV) antiferromagnetic in-plane (AF,x). We denote the corresponding classical ground

state energies as EFM,z, EAF,z, EFM,x, EAF,x. The spin model allows to write the energetics

of the different configurations normalized per unit cell (2 Cr atoms) as

EFM,z = −2S2D − 3S2(J + λ) (4)

EAF,z = −2S2D + 3S2(J + λ) (5)

EFM,x = −3S2J (6)

EAF,x = +3S2J (7)

with S = 3/2 for CrI3. In order to determine J , D and λ, we use the ground state

energies for these 4 configurations as obtained from our DFT calculations. In addition,

we do this ramping the overall strength of the spin orbit coupling, α = αCr = αI .

For α = 1 we obtain J = 2.2 meV, in line with the results by Zhang et al.[20] Our

results for D and λ are shown in Fig. 4b. It is apparent that the anisotropic symmetric

exchange λ is much bigger than the single ion anisotropy D, in particular for α = 1.

The precise value of D was affected by numerical noise in the regime where both J

and λ already reached convergence, being always D at least 30 times smaller that the

anisotropic exchange λ. This yields a value of D negligible with respect any other

exchange energy scale. Thus, we have J > λ >> D, which lead us to claim that the

adequate spin model for CrI3 is the XXZ model with negligible single ion anisotropy.
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On the origin of magnetic anisotropy in two dimensional CrI3 9

linear Hamiltonian. The spin wave approximation consist in keeping only the quadratic

terms in the bosonic operators b. This approximation is valid for a small occupation

of the bosonic modes, ie, when the magnetization is closed to Sz ≃ S, ie, for small

temperatures. In the spin wave approximation, the effective Hamiltonian for the spin

excitations reads:

Hspinwaves =
∑

i

(2DS + 3S(J + λ)) b†ibi − JS
∑

〈ij〉

b†ibj (11)

where the sum over i runs over the entire lattice and the sum over j runs over the first

neighbors of j. This Hamiltonian describes bosonic excitations moving in a honeycomb

lattice, with an on-site energy ǫ0 = 2DS + 3S(J + λ) and a hopping energy JS. Thus,

the Bloch Hamiltonian for the honeycomb lattice reads

HSW (~k) =

(

ǫ0 −JSf(~k)

−JSf ∗(~k) ǫ0

)

(12)

where ǫ0 = 3JS + 2SD + 3Sλ, f(~k) = 1 + ei
~k·â1 + ei

~k·â2 is the usual form factor for the

honeycomb lattice, and â1,2 are the unit vectors of the triangular lattice. The resulting

energy spectrum is

E±(~k) = ǫ0 ± JS
√

|f(~k|2 (13)

We can expand the lower band around its minima at the Γ point, to get

E−(~k) ≃ ∆0 + ρk2 (14)

where the spin wave gap is given by

∆0 = 2DS + 3Sλ (15)

For CrI3 we can take D = 0 and we have a spin wave gap ∆0 = 3Sλ = 0.4 meV. The so

called spin stiffness is given by

ρ =
1

4
JS (16)

that yields for CrI3 a value ρ = 0.82 meV. The ratio ∆0

ρ
= 12λ

J
≃ 0.49 plays an important

role in the following.

From Eqs. 14,15 it is apparent that if the two terms that break spin rotational

invariance in the original Hamiltonian (3), D and λ, vanish, the spin wave spectrum

becomes gapless. Therefore, in the spin wave spectrum, both the anisotropic exchange

and the single ion anisotropy create a gap in the spin waves (see Fig. 5a), so that their

effect on the spin wave dispersion is similar. This implies that simple inspection of the

spin wave dispersion does not provide enough information to asses whether if the correct

model for a compound is single ion anisotropy or anisotropic exchange, and input from

a microscopic first principles calculation is necessary. As we discuss now, the presence

of their induced gap is essential to have magnetization at finite temperature.
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On the origin of magnetic anisotropy in two dimensional CrI3 11

Thus, we expect that the magnetization will have a very weak temperature dependence

for temperatures smaller than spin wave gap. According to our calculations ∆0 = 0.4

meV, so M(T ) be almost maximal up to T = 5 K.

5.2. Estimate of Tc

We now provide a rough estimate of the Curie temperature, based on non linear spin

wave theory . We use the initial expression for spin operators, and expand them retaining

the up to fourth order in the bosonic operators

S+
i ≈

√
2S

(

1− b†ibi
4S

)

bi (20)

S−
i ≈

√
2Sb†i

(

1− b†ibi
4S

)

(21)

Sz
i = S − b†ibi (22)

At intermediate temperatures, there is a finite number of spin waves, that is

accounted by the higher order terms in bosonic operators when substituting the previous

expansion in the spin Hamiltonian. In that situation, the spin Hamiltonian contains four

field operators and therefore is not exactly solvable. Thus, the effect of the spin wave

population is described using a mean field approximation in the spin wave Hamiltonian

by means of the substitution b†ibib
†
jbj ≈ 〈b†ibi〉b†jbj + b†ibi〈b†jbj〉 + C. With the previous

approximation it is straightforward to check that a finite population of spin waves is

equivalent to a renormalization of the hopping energy and spin wave gap as[45]

JS → J(S − 〈b†b〉) = JM(T ) (23)

λS → λ(S − 〈b†b〉) = λM(T ) (24)

The previous substitutions lead to a selfconsistent equation for the magnetization as

M = S − 1

2(2π)2

∫

BZ

d2~k

eβME(~k)/S − 1
(25)

where the integral extends over the first Brillouin zone. A qualitative behavior of the

previous integral can be obtained approximating E(~k) = ∆0 + ρk2 and eβ
M

S
E(k) − 1 ≈

βM(∆0+ρk2)/S. As Eq. (25) has no solution forM = 0, we define Tc as the temperature

at which the magnetization is depleted toM = S/2. This leads to the following equation:

kBTc ≃
2πρS

log ∆0+8πρ
∆0

=
πJS2

2 log ∆0+2πJS
∆0

(26)

A very similar result can be obtained using different spin representations.[46, 47]

Equation (26), together with the numerical solution[48] of Eq. (25) in Fig(5)b, show

several important results. First, Tc is an increasing function of the spin wave gap

∆0 (see Fig. (5c). This is in line with the experimental results recently reported for

Cr2Ge2Te6,[1] for which the major contribution to the spin wave gap comes from the
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On the origin of magnetic anisotropy in two dimensional CrI3 12

Zeeman contribution, due to the very tiny intrinsic anisotropy, resulting in dramatic

variations of Tc as a function of the applied field. This is a feature specific of two

dimensional magnets with dispersive spin waves. Second, Tc is significantly smaller than

the prediction coming from the Ising model. The exact solution for the Ising model in

the honeycomb lattice[49] yields kBTc = 1.51j, where j is the coupling between classical

spins with S = 1. Using this result for CrI3, we would have kBTc = 1.51(J + λ)S2 = 85

Kelvin, that overshoots the experimental value 45 K.

On the other hand, using the prediction of Tc obtained by the numerical solution of

Eq. (25) shown in Fig. 5c, we obtain a value of kBTc = 3.5ρ, for ∆0 = 0.49ρ, that gives

Tc = 33 K, underestimating the the experimental value[2] Tc = 45 K by 20%. Including

the effect of the finite magnetic field would increase ∆0, and push the prediction upward.

Inclusion of longer range coupling[50, 51, 52, 53] is also expected to increase the spin

stiffness, yielding a larger estimate of the critical temperature. Furthermore, a more

accurate treatment must consider the explicit spin wave density of states and a more

careful treatment of fluctuations close to the critical point. The discrepancy highlights

the limitations of the non-linear spin wave theory, and perhaps, also those of the DFT

scheme to determine the energy scales of the Hamiltonian. Nevertheless, apart from the

previous limitations, our approach highlights the role played by anisotropic exchange,

as the ultimate mechanism responsible to controlling the divergence in Eq. 26.

6. Conclusions

We have studied the origin of magnetic anisotropy in two dimensional CrI3, a

recently discovered ferromagnetic two dimensional crystal with off-plane anisotropy.

We have found that magnetic anisotropy in this system comes predominantly from

the superexchange interaction, that gives rise to an anisotropic contribution to the

conventional exchange interaction. The strength of the non Heisenberg correction is

found to be controlled by the spin orbit coupling of the intermediate iodine atom.

The single ion anisotropy of the magnetic Cr atoms is found to give a negligible

contribution to magnetic anisotropy. The suppression of the single ion anisotropy due

to the octahedral environment, together with large spin orbit coupling of iodine, make

the anisotropic exchange the leading mechanism stabilizing the magnetic ordering in

2D CrI3. Our calculations permit to conclude that the effective spin Hamiltonian

for CrI3 is a XXZ model. In turn, this implies that gapped spin waves are the

essential elementary excitations that control the finite temperature properties of this

new type of magnetic system. Given that spin waves in two dimensions are interesting

on its own right, as they can exhibit thermal Hall effect and have topologically non-

trivial phases.[54, 55, 56, 57, 58, 59] As an example, one can consider inducing a

Dzyaloshinskii-Moriya term in a CrI3 monolayer by applying a perpendicular electric

field, opening the possibility of a skyrmionic ground state whose magnonic Hamiltonian

is topologically non-trivial and shows gapless edge magnonic excitations.[56] Another

interesting playground would be the possibility of applying non uniform strain to the
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On the origin of magnetic anisotropy in two dimensional CrI3 13

ferromagnetic monolayer, modulating the exchange constants and creating an artificial

gauge field in the magnonic Hamiltonian.[60, 61] Therefore, the discovery of magnetic

2D crystals paves the way towards the exploration of these exciting phenomena.
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