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ABSTRACT 

For their use in supercapacitors, aqueous electrolytes of acidic (H2SO4), neutral 

(Na2SO4, K2SO4) and basic (NaOH, KOH) nature are studied, using two microporous 

binder-free and self-standing carbon cloths as electrodes. The carbon cloths show 

similar porosities and specific surface areas, but different contents in surface oxygen 

groups. The working potential window and the specific capacitance associated with the 

cations and anions are measured. From these parameters, the charges stored by the 

cations and anions at the electric electrolyte/electrode interface are deduced. The charge 

stored by the cations is higher than that stored by the anions for the three types of 

electrolytes. The differences between cations and anions are higher for the acidic and 

basic electrolyte than for the neutral electrolytes, and also higher for the carbon cloth 

with the highest content in surface oxygen groups. The charge stored by the cations 

follows the sequence H3O
+
 > Na

+
 or K

+ 
from the basic electrolytes > Na

+
 or K

+
 from the 

neutral electrolytes. The charge stored by the anions follows the sequence SO4
2-

>HSO4
-

>OH
-
. The results here reported provide a better understanding on the electric double 

layer of carbon-based supercapacitors. Those results are also of interest for asymmetric 

and hybrid supercapacitors.  
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INTRODUCTION 

Carbon cloth (CC) or carbon fabric is a self-standing, flexible, light, conductive 

and porous material suitable as binder-free electrode for supercapacitors, also called 

electrochemical capacitors.
1-4

 The CC, which is usually obtained from carbonization of 

a woven polymer, consists of woven carbon threads made from bundles of carbon 

fibers. The self-standing feature makes that CC does not require any binder to be 

conformed as electrode unlike the powder carbons. Compared with other flexible 

electrodes such as carbon films consisting of carbide-derived carbons,
5,6

 graphene-based 

materials
7-10

 and carbon nanofiber webs,
11

 the CC is more flexible and can be folded 

several times obtaining the same electrochemical behavior.
12, 13

 The high flexibility 

together with the low density (ca. 0.2 g cm
-3

) makes the CC a promising electrode for 

flexible/wearable supercapacitors.
13-15

 Regarding the electrical conductivity and 

porosity, the CC shows a sufficient electrical conductivity (in the order of magnitude of 

0.1 S cm
-1

) and a large specific surface area (up to 1000 m
2
 g

-1
). Moreover, the CC is 

inexpensive.   

 To improve the specific capacitance of the CCs, several approaches have been 

tried: (i) Development of larger specific surface areas through activation of the CCs, e.g. 

by activation of the carbon fibers with CO2 or KOH or by partial exfoliation of the 

carbon fibers through chemical or electrochemical oxidation followed by reduction;
16-22

 

(ii) Doping the carbon fibers with heteroatoms such as O, N, etc. for increasing the 

pseudocapacitive contribution;
22-25

 (iii) Coating the carbon fibers by other carbon 

materials such as carbon nanotubes or graphene providing an additional capacitance;
26-35

 

(iv) Coating the carbon fibers by several oxides that contribute with an additional 

pseudocapacitance;  the coating can be obtained by chemical deposition,
36-44

 

electrochemical deposition
45-47

 or printable procedures.
48
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 Looking at the electrolytes for carbon-based electrodes, aqueous electrolytes 

provide higher power densities, but lower energy densities than the organic Et4NBF4 

electrolyte and the ionic liquid electrolytes.
49-55

 Comparing the aqueous electrolytes of 

acidic, basic and neutral nature in presence of carbon-based electrodes, the working 

potential window seems to be slightly narrower than 1.0 V for the acidic and basic 

electrolytes and 1.6-2.2 V for the neutral electrolytes.
56-72

 The specific capacitance 

seems to be higher for the acidic than for the basic electrolyte and higher for the basic 

than for the neutral electrolyte.
57-61, 63-67, 70, 71

 A pseudo capacitance in addition to the 

double layer capacitance has been reported for the three types of aqueous electrolytes.
57, 

58, 61, 63, 67, 73-76
 However, the specific capacitance usually reported is the total value, i.e. 

the specific capacitance due to the combined contribution of the two types of ions, 

cations and anions, and the working potential window reported is also the total window 

due to the combined contribution of both, cations and anions. The specific capacitance 

and the working potential window associated with each ion, cation and anion, are 

scarcely studied. Such information, however, is important to get a better understanding 

of the electric electrolyte/electrode interface. The charges stored, i.e. the charges 

involved in the formation of the double layer plus the charges involved in 

pseudocapacitive reactions at the electrolyte/electrode interface, are likely very different 

for the cations and anions, and consequently one of the two types of ions could 

dominate the total charge stored at the electrolyte/electrode interface. Knowing this 

information could also be important for asymmetric and hybrid supercapacitors in order 

to balance the mases of the negative and positive electrodes.               

The aim of the present work is to gain understanding on the electrochemical 

behavior of the three types of aqueous electrolytes (acidic, neutral and basic) in 

presence of microporous carbon electrodes (two kinds of self-standing carbon cloths 
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having similar porosities and specific surface areas, but different contents of surface 

oxygen groups). The potential of zero charge (PZC), i.e. the potential at which the same 

amount of positive and negative charges are located at the electrolyte/electrode 

interface, was measured and taken as the reference potential for determining the 

working potential window of the cation and anion.
77-79

 The specific capacitances due to 

the cations and anions were also measured. Taking into account both the working 

potential windows and the specific capacitances ascribed to the cations and anions, the 

positive and negative charges stored at the electric electrolyte/electrode interface are 

estimated under stationary and dynamic conditions for the three types of electrolytes.     

 

EXPERIMENTAL SECTION 

Two carbon materials are studied in this work: An original carbon cloth (CC), 

and a heat-treated one. The original CC is an activated carbon material manufactured by 

Carbongen SA. The heat-treated CC was obtained in our laboratory from the original 

CC after heating under N2 flow of 100 ml min
-1

 at a rate of 5ºC min
-1

, up to a maximum 

temperature of 800ºC, which was held for 3 h. Then, the oven was cold down to room 

temperature while N2 flowed.  

The microstructural characterization was carried out by scanning electron 

microscopy (SEM) equipped with energy dispersive X-ray spectroscopy (EDS) in a 

FEG HITACHI S-4800 instrument. The images were obtained in the secondary electron 

(SE) mode.   

Temperature-programmed desorption (TPD) experiments were carried out to 

characterize the surface chemistry of the carbon cloths by quantifying the evolved CO 

and CO2 upon heating. The measurements were performed in TGA equipment (TA 

Instruments SDT Q600), which was coupled to a quadrupole mass spectrometer 
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(Balzers Instruments Thermostar GSD 300 T3). For the analysis, approximately 10 mg 

of the carbon cloth were heated with a ramp of 10 ºC min
-1

 up to 950 ºC in a helium 

flow of 100 ml min
-1

.  

N2 and CO2 adsorption/desorption isotherms were measured with a 

Micromeritics ASAP 2020. Prior to the adsorption, the carbon cloths were outgassed at 

250 ºC for 6 h. Specific surface areas were deduced from Brunauer-Emmett-Teller 

theory (SBET) and Non-Local Density Functional Theory (SDFT). Volumes of narrow 

micropores < 0.7 nm (VDR(CO2)) and total volumes of micropores with sizes < 2 nm 

(VDR(N2)) were calculated, using the Dubinin-Raduskevich method. The volumes of 

mesopores were deduced from the adsorbed amounts of nitrogen in the range from 0.2 

to 0.9 P/P0.  

Electrochemical measurements were performed in three-electrode cells. Circular 

pieces of the two carbon cloths, of ca. 12 mm in diameter and 0.5 mm thick were 

punched out. The weights of the original CC and heat-treated CC were ca. 12 and 9 mg, 

respectively. These circular pieces were used as working electrodes. A platinum wire 

was the counter electrode. The reference electrodes were: (i) Hg/Hg2SO4 for the acidic 

electrolyte 2M H2SO4, (ii) Ag/AgCl for the neutral electrolytes 1M Na2SO4 and 1M 

K2SO4, and (iii) Hg/HgO for the basic electrolytes 1M NaOH and 1M KOH. In some 

particular cases, symmetric two-electrode cells were assembled. The two equal pieces of 

the carbon cloth were separated by a glassy microfiber paper (Whatman 934 AH). Prior 

to all the electrochemical measurements, the CCs were immersed into the electrolyte 

under primary vacuum (ca. 10
-1

 Torr) for 2 h.  
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RESULTS and DISCUSSION 

Two carbon materials were used as electrodes in this work, an original carbon 

cloth (CC), and a heat-treated one. The SEM images revealed that the original CC is 

made from woven threads (Figure 1a), which consisted of bundles of ca. 600 carbon  

 

Figure 1. SEM pictures showing a piece of the original carbon cloth (a) and two threads  

consisting of bundles of carbon fibers (b). 

fibers (Figure 1b). Each carbon fiber had 6-7 µm in diameter (Figure 2a). Despite the 

anisotropy of the carbon fibers along and across the fiber axis (Figure 2a), their interior 

looked rather isotropic and consisted of connected carbon particles of 15-30 nm size 

(Figure 2b). Voids appeared between the carbon particles and were of similar size as the  

 

Figure 2. SEM picture of the section of a carbon fiber (a) and a magnified picture of 

that section (b).  
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carbon particles themselves, from 15 to 30 nm. The presence of these voids could favor 

the infiltration of the electrolyte into the carbon fibers. In order to confirm this, the 

section of a carbon fiber that had been infiltrated with the KOH electrolyte was 

analyzed by EDS. The results revealed that the potassium content was nearly the same 

at the outer part (marked as 1 in Figure 2a) and at the inner part (marked as 4 in that 

Figure) of the carbon fiber; the EDS results are outlined in Table S1. The morphology 

of the heat-treated CC was similar to that of the original CC (not shown).  

The amounts of evolved CO and CO2, which originated from the oxygen groups 

at the surface of the two carbon cloths, were deduced by TPD. The results shown in 

Table 1 reveal that the CO and CO2 content of the heat-treated CC are 3 and 4 times 

lower, respectively, as compared with the original CC. These strong decreases indicate 

that the surface oxygen groups of the original CC were efficiently removed after heating 

under N2 flow.  

Table 1. Contents of CO and CO2 deduced from TPD measurements, total 

micropore volume (VDR(N2)), narrow micropore volume (VDR(CO2)), 

supermicropore volume (VDR(N2)- VDR(CO2)), mesopore volume  (VMeso ) and 

specific surface areas deduced from DFT (SDFT) and BET method (SBET).  

 

Electrode CO 

µmol g
-1

 

CO2 

µmol g
-1

 

VDR(N2) 

cm
3
g

-1
 

VDR(CO2) 

cm
3
g

-1
 

VDR(N2)- 

VDR(CO2) 

cm
3
g

-1
 

VMeso  

cm
3
g

-1
 

SDFT 

m
2
g

-1
 

SBET  

m
2
g

-1
 

Original CC 3253 1009 0.526 0.258 0.268 0.032 944 1047 

Heat-treated CC 1122 248 0.696 0.265 0.431 0.038 972 1241 

 

The N2 and CO2 adsorption isotherms of the original and the heat-treated CC are 

shown in Figure 3. For the N2 adsorption isotherms of both samples (Figure 3a), the 

adsorbed volume sharply increases at relative pressures below 0.1, followed by a slight 

increase in adsorbed volume at relative pressures between 0.2 and 0.9. The former 

feature is ascribed to micropores, i.e. pores with sizes <2 nm, while the latter feature is 
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ascribed to mesopores, i.e. pores with sizes in the range 2-50 nm. The CO2 adsorption 

isotherms (Figure 3b) show similar shapes and both carbon cloths adsorb similar  

 

 

Figure 3. N2 (a) and CO2 (b) adsorption isotherms of the original (circles) and heat-

treated (triangles) CC.  

volumes. The textural results are shown in Table 1. The slight increase of the specific 

surface areas, SBET and SDFT, (19 % and 3 % , respectively) and the total micropore 

volume, VDR(N2), (24 %) from the original to the heat-treated CC are mainly associated 

with the decrease in weight (ca. 20 %) rather than with the development of additional 

pores upon the heating. The values for the volume of narrow micropores with sizes <0.7 

nm, VDR(CO2), and mesopores, VMeso, are similar for the two samples. The largest 

difference between the two samples is found for the wider micropores, also called 

supermicropores, with sizes in the range of 0.7-2 nm, which are calculated by VDR(N2) - 

VDR(CO2). This result agrees with (i) the pore size distribution deduced from the DFT 

and shown in Figure S1 and (ii) the fact that the average size of all pores is similar for 

the two carbon cloths, 1.8 nm for the original CC and 1.9 nm for the heat-treated one. 

Therefore, the heat treatment, and the corresponding removal of surface oxygen groups, 

leads to a slight generation of new porosity, mostly in the micropore range from 0.7 to 2 

nm, and also, to a slight increase of the specific surface area.  
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 In the literature, sometimes the sulfuric acid is reported to be dissociated in 

aqueous solutions with SO4
2-

 and H3O
+
 as the dominant ions.   However, the sulfuric 

acid dissociates in water in two steps. In the first step, sulfuric acid is completely 

transformed into bisulfate (HSO4
-
) ions and hydronium (H3O

+
) ions. In the second step, 

the bisulfate ions are partially transformed into sulfate (SO4
2-

) ions and H3O
+
 ions, 

according to the equilibrium constant Ka=10
-1.99

. Therefore, the dominant ions in the 

aqueous solution are HSO4
-
 and H3O

+
. Sodium sulfate (Na2SO4) and potassium sulfate 

(K2SO4) dissociate completely in water into the cations Na
+
 and K

+
, respectively, and 

the anion SO4
2-

. Sodium hydroxide (NaOH) and potassium hydroxide (KOH) dissociate 

completely in water into the cations Na
+
 and K

+
, respectively, and the anion OH

-
. The 

main drawbacks of the neutral electrolytes as compared with the acidic and basic 

electrolytes are their lower ionic conductivity and their higher freezing temperature 

close to 0 ºC;
80

 the latter limits their use at temperatures above 0ºC.   

The cyclic voltammetry (CV) measured for the cations (cathodic side) and 

anions (anodic side) of an acidic (H2SO4), a neutral (Na2SO4) and a basic (KOH) 

electrolyte, using the original CC are shown in Figure 4 as examples. The total CV, i.e.  

 

Page 10 of 36

ACS Paragon Plus Environment

The Journal of Physical Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



11 

 

Figure 4. Cyclic voltammetries recorded for the electrolytes: H2SO4 (a), Na2SO4 (b) 

and KOH (c) on the original CC. The voltage scan rate was 0.5 mV s
-1

. 

 

the CV recorded in the total potential window comprising the cathodic and anodic 

response, is also shown for the three electrolytes. The significant increase in intensity at 

very negative potentials and at very positive potentials is associated with water 

electrolysis, the former causing hydrogen evolution and the latter oxygen evolution. 

From the CV measurements, the lowest cathodic potential, the highest anodic potential 

and the total potential window were determined. The CVs also provide information 

about the open circuit potential (OCP) for each electrolyte; the OCP is refereed to 

Hg/Hg2SO4 for the acidic electrolyte, to Ag/AgCl for the neutral electrolytes and to 

Hg/HgO for the basic electrolytes. However, all the OCPs, and hence all potentials, can 

be referred to the standard hydrogen electrode (SHE). The CVs associated with the 

anions HSO4
-
, SO4

2-
 and OH

-
 show rectangular shapes that are characteristic for the 

double layer capacitance. The CVs associated with the cations H3O
+
, Na

+
 and K

+
 show 

humps that are characteristic for a pseudo capacitance, in addition to the double layer 

capacitance.
57, 58, 61, 63, 67, 73-76

 The humps are more noticeable for the cations of the 

acidic and basic electrolytes than for those of the neutral electrolyte.  

The total specific capacitance, Ctotal, i.e. the specific capacitance measured in the 

total potential window, and the specific capacitance associated with the cations, C+, and 

anions, C-, measured in the cathodic and anodic potential range, respectively, were 

determined from galvanostatic measurements at 1 mA cm
-2

, i.e. under stationary 

conditions (see Figure 5 as an example, using the sulfuric acid electrolyte with the 

original CC). The three specific capacitances were determined according to C=I·t/∆V·m, 

where I is the current applied, t is the time for the discharge in Fig. 5a and the time for 

the electro-desorption “des” in Figs. 5b and 5c, ∆V is the potential range and m is the 
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weight of the carbon cloth. The OCP, which is affected by the surface chemistry of the 

electrode, cannot be taken as the reference potential. However, the potential of zero    

 

 

Figure 5. Galvanostatic charge/discharge plots recorded for the sulfuric acid electrolyte 

on the original CC in the total voltage range (a) and in the partial voltage ranges from 

the OCP to positive voltages (b) and to negative ones (c). The three plots were obtained 

at 1 mA cm
-2

. 

charge (PZC), which is the potential when the same amount of positive and negative 

charges are located at the electrolyte/electrode interface, is the reference potential taken 

to determine the potential ranges for the cations and anions. The potential range from 

the PZC to the lowest potential at the onset of the hydrogen evolution is the potential 

range for the cation, ∆V+. The potential range from the PZC to the highest potential at 

the onset of the oxygen evolution is the potential range for the anion, ∆V-. The 

parameters PZC, ∆V+ and ∆V- were measured for each electrolyte in presence of the two 

carbon cloths.  

To determine the PZC value, the impedance plot -Z” vs. Z’ was recorded at 

certain potentials in a broad potential range, from potentials below the OCP to 

potentials above the OCP. Figure 6a shows the impedance plot obtained for the H2SO4 
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electrolyte and the original CC as an example. Between 1 and 15 mHz, the vertical line 

is ascribed to the capacitive response. Above 15 mHz, a small arc is also observed (inset  

 

Figure 6. (a) Impedance plot recorded for the H2SO4 electrolyte at the OCP value on 

the original CC. Inset: the magnified plot obtained at higher frequencies. (b) Variation 

of the specific capacitance measured at 1 mHz vs. the potential for three electrolytes, 

KOH, Na2SO4 and H2SO4, in presence of the original CC. Solid lines are the best 

fittings for determining the PZC.  

of Figure 6a). At the lowest frequency of 1 mHz the imaginary impedance is much 

higher than the real impedance and the real capacitance, C, can be estimated according 

to C=-1/(Z”·ω); where -Z” is the value of the imaginary impedance and ω=2·π·ν , ν is  

the frequency expressed in hertz. The dependence of the real C measured at 1 mHz as a 

function of the potential, E, is shown for the three electrolytes, using the original CC 

(Figure 6b). To compare the three plots, the potentials were referred to the SHE. For 

each electrolyte, the OCP and the potential at the onset of the oxygen evolution (D) are 

marked. The potential at the onset of the hydrogen evolution was not attained. For the 

three electrolytes, C decreases first with the increase of E and then increases showing a 

minimum. The PZC is the potential determined at that minimum. For potentials below 
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PZC the capacitance is dominated by the cations. For potentials above PZC the 

capacitance is dominated by the anions.
77-79

 The potential at the minimum was obtained 

from the fitting of the experimental C(E) data to a polynomic equation (Figure S2).   

Tables 2 and 3 summarize the values of OCP, PZC, ∆V+, ∆V- and  ∆Vtotal 

obtained for each electrolyte in presence of the original and heat-treated CC, res- 

 

Table 2. The original carbon cloth in presence of several electrolytes. The open 

circuit potential (OCP), potential of zero charge (PZC), working potential window 

for the cation (∆V+) and for the anion (∆V-) from the PZC, and the total working 

potential window (∆Vtotal). The total specific capacitance measured (Ctotal) and the 

specific capacitance measured for the cation (C+) and for the anion (C-). The 

specific capacitance (Ccal total) calculated according to equation (1), and the charges 

due to the cations (Q+) and anions (Q-) calculated according to the equations (2), (4) 

and (3), (5), respectively.   

 

a
OCP vs Hg/Hg2SO4; 

b
 OCP vs Ag/AgCl; 

c
 OCP vs Hg/HgO; 

d
∆Vtotal =∆V+ + ∆V– 

 

Table 3.  The heat-treated carbon cloth in presence of several electrolytes. The 

open circuit potential (OCP), potential of zero charge (PZC), working potential 

window for the cation (∆V+) and for the anion (∆V-), and the total working 

potential window (∆Vtotal) . The total specific capacitance measured (Ctotal) and the 

specific capacitance measured for the cation (C+) and for the anion (C-). The 

specific capacitance (Ccal total) calculated according to equation (1), and the charges 

due to the cations (Q+) and anions (Q-), calculated according to the equations (2), 

(4) and (3), (5), respectively. 

Electrolyte 

 

OCP 

V 

PZC 

V 

∆V+ 

 V 

∆V- 

V 

∆Vtotal
d
 

V 

Ctotal 

F g
-1

 

C+ 

F g
-1

 

C- 

F g
-1

 

Ccal 

total 

F g
-1

 

Q+  

C g
-1

;% 

Q- 

C g
-1

;% 

H2SO4 
0.078

a 

±0.001 

0.230
a 

±0.020 
0.840 0.100 0.94 

187 

±10 

192 

±10 

109 

±7 

183 

±9 

161; 93 

±9;±5 

11; 7 

±1;±1 

Na2SO4 
0.330

 b 

±0.001 

0.408
b 

±0.020 
0.808 0.372 1.18 

106 

±11 

107 

±11 

91 

±9 

102 

±13 

86; 72 

±9;±8 

34; 28 

±4;±6 

K2SO4 
0.330

 b 

±0.001 

0.436
b 

±0.020 
0.836 0.304 1.14 

105 

±10 

104 

±10 

97 

±9 

102 

±11 

87; 75 

±9;±8 

29; 25 

±3;±5 

NaOH 
-0.063

 c 

±0.001 

0.040
c 

±0.020 
0.840 0.010 0.85 

138 

±8 

139 

±8 

70 

±7 

138 

±7 

117; 99 

±7;±5 

1.0; 1 

±0.2;±1 

KOH 
-0.068

 c 

±0.001 

0.034
c 

±0.020 
0.779 0.121 0.90 

140 

±7 

149 

±7 

67 

±7 

138 

±7 

116; 93 

±6;±5 

8; 7 

±1;±1 
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a
OCP vs Hg/Hg2SO4; 

b
 OCP vs Ag/AgCl; 

c
 OCP vs Hg/HgO; 

d
∆Vtotal =∆V+ + ∆V– 

pectively. The values of PZC are different from those of OCP, especially for the acidic 

electrolyte and the original CC, the latter with the highest content of surface oxygen 

groups. In the case of all possible electrolyte/electrode combinations, ∆V+ is higher than 

∆V-. The difference between ∆V+ and ∆V- is more important for the acidic electrolyte 

and the basic electrolytes than for the neutral ones. Comparing the two carbon cloths, 

the difference between ∆V+ and ∆V- is higher for the original CC than for the heat-

treated one. The values of ∆V+ are similar for the three types of electrolytes. However, 

the values of ∆V- are higher for the neutral electrolytes than for the acidic electrolyte 

and the basic electrolytes. The total potential window, defined as ∆Vtotal=∆V++∆V- , is 

broader for the neutral electrolytes than for the acidic and basic electrolytes. These 

results agree with those reported by other authors.
64, 66, 70, 71

 However, it is worth to note 

that ∆Vtotal is affected by the potential scan rate or the current density chosen for the 

electrochemical measurements. While the ∆Vtotal value was of 1.6 V as measured at 10 

mV s
-1 

for the Na2SO4 electrolyte in presence of the original CC, the ∆Vtotal narrowed to 

1.2 V as measured at 0.2 mV s
-1

 (Figure S3). To avoid any side reaction associated with 

water electrolysis, the ∆Vtotal value taken in this work for the neutral electrolytes was 1.2 

V. This value is lower than that reported in other papers for neutral electrolytes.
66,70

  

Electrolyte 

 

OCP 

V 

PZC 

V 

∆V+ 

 V 

∆V- 

V 

∆Vtotal
d
 

V 

Ctotal 

F g
-1

 

C+ 

F g
-1

 

C- 

F g
-1

 

Ccal 

total 

F g
-1

 

Q+  

C g
-1

;% 

Q- 

C g
-1

;% 

H2SO4 
-0.010

a 

±0.001 

-0.027
a 

±0.030 
0.613 0.327 0.94 

150 

±8 

154 

±8 

122 

±6 

143 

±7 

94; 70 

±5;±4 

40; 30 

±2;±3 

Na2SO4 
0.190

b 

±0.001 

0.145
b 

±0.030 
0.745 0.455 1.20 

109 

±10 

105 

±10 

111 

±7 

107 

±10 

78; 61 

±8;±6 

51; 39 

±3;±6 

KOH 
-0.082

c 

±0.001 

-0.004
c 

±0.030 
0.746 0.104 0.85 

128 

±9 

132 

±9 

77 

±8 

125 

±8 

98; 92 

±7;±7 

8; 8 

±1;±1 
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Tables 2 and 3 also summarize the values measured for C+, C- and Ctotal for each 

electrolyte in presence of the two carbon cloths. For all possible electrolyte/electrode 

combinations, the values of C+ are higher than those of C-. The difference between C+ 

and C- is higher for the original CC, with higher content of surface oxygen groups and 

slightly smaller surface area, than for the heat-treated CC. These results agree with a 

pseudocapacitive contribution to the C+ value; the pseudocapacitive contribution is 

higher for the acidic electrolyte than for the basic one and higher for the original CC 

than for the heat-treated one as shown in Table S3. From the point of view of the double 

layer capacitance, the minimum size of the electro-adsorbed H3O
+
, K

+
 and Na

+ 
is 0.4-

0.5 nm and that of the electro-adsorbed HSO4
-
, SO4

2- 
and OH

-
 is 0.5-0.65 nm.

56, 81-84
 

Hence, the surface area available for the electro-adsorbed cations should be larger than 

that available for the electro-adsorbed anions. Comparing the values of C+, they follow 

the trend H3O
+
 > Na

+
 or K

+
 from the basic electrolytes > Na

+
 or K

+
 from the neutral 

electrolytes. This trend can be explained on the basis of (i) the contribution of the 

pseudo capacitance according to the trend acidic>basic>neutral electrolyte and (ii) the 

similar contribution of the double layer capacitance according to the similar sizes of the 

electro-adsorbed cations.  The specific capacitance C- is ascribed to a double layer 

contribution only as already discussed. The values of C- follow the trend HSO4
-
≈SO4

2-

>OH
- 
. These results agree with the smaller size of the electro-adsorbed bisulfate and 

sulfate ion, of ca. 0.5 nm,
 56,82,84

 as compared with the size of the electro-adsorbed 

hydroxyl ion, of 0.63 nm, 
83

 and hence with a larger surface area available for the 

bisulfate and sulfate ion. Comparing C- for the two carbon cloths, the values of C- are 

slightly higher for the heat-treated CC with slightly broader micropores and larger 

surface area. The measured total specific capacitance, Ctotal, is higher for the acidic 

electrolyte than for the basic electrolytes, the neutral electrolytes showing the lowest 
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values. These results agree with those reported by other authors.
57-61, 63-67, 70, 71

 

Comparing the two carbon cloths, no appreciable differences of Ctotal are found for the 

neutral electrolytes. When acidic and basic electrolytes are compared, higher Ctotal 

values are measured for the original than for the heat-treated CC, despite the slightly 

larger surface area of the latter. These results agree with the higher pseudocapacitive 

contribution of the cations for the original CC (Table S3).  

In this work, the total specific capacitance is calculated, Ccal total, according to the 

equation: 

      Ccal total = (C+·∆V+ + C-· ∆V- )/(∆V+ + ∆V-)                              (1) 

Where C+ and ∆V+ are associated with the cation and C- and ∆V- are associated with the 

anion. The values of Ccal total (Tables 2 and 3) agree with those of Ctotal, experimentally 

measured in the three-electrode cell, confirming the validity of eq. (1). Therefore, 

during the discharge in the total potential range, first the anions are electro-desorbed and 

then the cations are electro-adsorbed together with pseudocapacitive redox reactions. 

During the charge, first the cations are electro-desorbed together with the return of 

pseudocapacitive redox reactions and then the anions are electro-adsorbed (Figure 5 a). 

The experimental specific capacitances, C2E, were also obtained from galvanostatic 

measurements in symmetric two-electrode cells according to C2E = 2·I·td/∆V·m , where 

the parameter I, td and ∆V have the meaning already discussed and m is the mass of one 

electrode only (Figure S4). The experimental values of C2E agree with those of Ctotal. 

Thus, Ctotal shows the values of 187, 140 and 106 F g
-1

 and C2E shows the values of 178, 

144 and 99 F g
-1

 for the acidic H2SO4, basic KOH and neutral Na2SO4 electrolyte, 

respectively, with the original CC. The agreement between Ccal total, Ctotal and C2E shows 

that electro-adsorption/desorption of cations and anions together with pseudocapacitive 

reactions of the cations are involved in each electrode of the symmetric two-electrode 
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cell, and hence the two ions contribute to the capacitance of each electrode, CE, 

according to 1/C2E =1/CE + 1/CE. This interpretation differs from the one, which 

assumes that only one type of ion, either cation or anion, is involved in each electrode 

of the symmetric two-electrode cell, and hence 1/C2E = 1/C+ + 1/C- . This equation, 

sometimes used, differs clearly from eq. (1).  

         Based on the validity of eq. (1), the specific charges stored by the cations (Q+) 

and anions (Q-) at the electric electrolyte/electrode interface can be estimated according 

to: 

  Q+[C/g]= C+·∆V+                                                                                                                  (2) 

  Q-[C/g]= C-· ∆V-                                                                              (3) 

where Q+ and Q- are expressed in Coulombs per gram. 

The relative charges stored by the cations (Q+) and the anions (Q-) can be 

estimated according to the equations: 

 Q+[%]= [C+·∆V+/(C+·∆V+ + C-· ∆V- )]·100                                   (4) 

 Q-[%]= [C-· ∆V-/(C+·∆V+ + C-· ∆V- )]·100                                     (5) 

where Q+ and Q- are expressed in percentages.  

In the following, the charges Q+ and Q- are compared with each other for the 

three types of electrolytes and the two carbon cloths (Tables 2 and 3). The values of Q+ 

are much higher than those of Q- for all the electrolytes independent of the carbon cloth 

chosen. As an example, they can reach the values of 161 C g
-1

 for H3O
+
 vs. 11 C g

-1
 for 

HSO4
-
 with the original CC and 94 C g

-1
 for H3O

+ 
vs. 40 C g

-1
 for HSO4

-
 with the heat-

treated CC. The higher values of Q+ as compared with to those of Q- come from two 

facts: (i) C+ is higher than C- and (ii) ∆V+ is broader than ∆V-. Therefore, the cations 

dominate the charge involved at the electric electrolyte/electrode interface for the three 

types of electrolytes with the two carbon cloths. It suggests the preferential use of the 
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two carbon cloths as negative electrodes in asymmetric and hybrid supercapacitors. The 

values of Q+ follow the trend H3O
+
 (from the acidic electrolyte) > Na

+
 or K

+
 (from the 

basic electrolyte) > Na
+ 

or K
+
 (from the neutral electrolyte) for the original CC and the 

trend H3O
+ 

≈ K
+
 (from the basic electrolyte) > Na

+
 (from the neutral electrolyte) for the 

heat-treated CC.  Owing to ∆V+ is similar for all the cations in a given CC, the 

differences found in Q+ come from the different values of C+. Comparing each cation 

for the two carbon cloths, the value of Q+ is higher for the original CC due to its slightly 

higher values of C+ and ∆V+. The slightly higher C+ values are associated with the 

presence of a pseudocapacitive contribution, which is higher for the original CC as 

already discussed. The values of Q- follow the trend SO4
2-

 > HSO4
-
 > OH

-
 for the two 

carbon cloths. Despite the SO4
2-

 anion shows values of C- slightly lower than those of 

HSO4
-
, the former anion shows values of ∆V- clearly higher; it explains why Q- for the 

SO4
2-

 anion is higher than for the HSO4
-
 one. The OH

-
 anion shows lower values of both 

C- and ∆V- , and consequently Q- is lower. Comparing each anion for the two carbon 

cloths, the value of Q- is higher for the heat-treated CC due to its slightly higher values 

of C- and ∆V-. The slightly higher values of C- seem to be associated with the slightly 

larger surface area of the heat-treated CC.   

Finally, the charges stored under dynamic conditions are studied through the 

dependence of C+ and C- against the current density (Figure 7).  For the three types  
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Figure 7. Dependence of the specific capacitance associated with the cations and anions 

of the electrolytes H2SO4, Na2SO4 and KOH as a function of the current density for the 

original (a) and heat-treated (b) CC.  

of electrolytes and the two carbon cloths, C+ and C- decrease with the increase of the 

current density; however, the capacitance retention depends on the type of ion and also 

on the selected carbon cloth (Table 4). The capacitance retention of the cations follows 

the trend H3O
+
 (from the acidic electrolyte) > K

+
 (from the basic electrolyte) ≥ Na

+
 

(from the neutral electrolyte). This trend agrees with the trend observed for the ionic 

conductivity of the three electrolytes, acidic>basic>neutral.
80

 Comparing the two carbon  

Table 4. Retention of the specific capacitance, in percentage, for the cations and 

anions deduced from comparison of the specific capacitance measured at 1 and 30 

mA cm
-2

. The results are for the original and heat-treated carbon cloth.  

Electrode H3O
+
 Na

+
 K

+
 HSO4

-
 SO4

2-
 OH

-
 

Original CC 76±2 51±6 57±3 64±3 41±5 -- 

Heat-treated CC 85±1 55±4 64±3 60±3 45±4 -- 

 

cloths, the capacitance retention of the cations is slightly higher  for the heat-treated CC 

with lower content in surface oxygen groups and slightly broader micropores. The 

capacitance retention of the anions follows the trend HSO4
-
 > SO4

2-
 > OH

-
 (see also 

Figure 7). The lowest capacitance retention of the OH
- 
anion could be associated with its 
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larger size. Comparing the two carbon cloths, the capacitance retention of each anion is 

nearly the same. This suggests that the broadening of the micropores was not sufficient 

to mark differences. The comparison between the cation and anion of the same 

electrolyte shows that the capacitance retention is higher for the cation, with smaller 

electro-adsorbed size,
56,81-84

 than for the anion. These results underline the dominance of 

the cations over the anions at the electric electrolyte/electrode interface also under 

dynamic conditions.       

 

CONCLUSIONS  

The total specific capacitance following the trend acidic > basic > neutral 

electrolyte is explained on the basis of the specific capacitance and the working 

potential windows associated with the cations and anions according to eq. (1). The 

specific capacitance associated with the cations follow the trend H3O
+
 > Na

+
 or K

+ 
from 

basic electrolytes > Na
+
 or K

+
 from neutral electrolytes. Higher values are reached for 

the original carbon cloth, which has a higher content of surface oxygen groups. The 

specific capacitance associated with the anions follows the trend HSO4
-
 > SO4

2-
 > OH

- 
; 

the reached values are slightly higher for the heat-treated carbon cloth, with slightly 

larger specific surface area and broader microporosity. For the three aqueous 

electrolytes, the specific capacitance associated with the cation is higher than that 

associated with the anion.  

The total working potential window following the trend neutral > acidic ≈ basic 

electrolyte is the sum of the working potential window measured for the cation and 

anion. The working potential window for the cations is similar for the three electrolytes 

and slightly broader for the original carbon cloth. The working potential windows for 

the anions follow the trend neutral > acidic ≥ basic electrolyte and are slightly broader 
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for the heat-treated carbon cloth. For each aqueous electrolyte, the working potential 

window associated with the cation is clearly broader than the one associated with the 

anion.         

The charge stored by the cations and anions at the electric electrolyte/electrode 

interface has been deduced. The charge stored by the cations follows the trend 

H3O
+
>Na

+
 or K

+
 (from the basic electrolytes) > Na

+
 or K

+
 (from the neutral 

electrolytes); the charge is higher for the carbon cloth with higher content of surface 

oxygen groups. The charge stored by the anions follows the trend SO4
2-

>HSO4
-
>OH

-
; 

the charge is higher for the carbon cloth with slightly larger surface area and broader 

micropores. For each electrolyte, under stationary or dynamic conditions, the charge 

stored by the cations is much higher than that stored by the anions evidencing a 

dominance of the cations over the anions at the electric electrolyte/electrode interface. 

The dominance of the cations supports the suitability of the two carbon cloths as 

negative electrodes in asymmetric and hybrid supercapacitors.       

 

SUPPORTING INFORMATION 

Experimental results deal with: the potassium content deduced from EDS on the 

carbon fibers, the DFT pore size distributions for the two carbon cloths, fittings for 

determining the PZC values, CVs obtained at different potential scan rates and C2E 

specific capacitances obtained from symmetric two-electrode cells.   

 

ACKNOWLEDGEMENTS 

 Financial supports from the projects of reference MAT2014-57687-R and FCT-

M-ERA-NET/0004/2014, PCIN-2015-024 are gratefully acknowledged. We thank J. A. 

Diaz from Carbongen SA and R. Beneito from AIJU for providing the original carbon 

cloth and also for helpful discussions about this material. 

Page 22 of 36

ACS Paragon Plus Environment

The Journal of Physical Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



23 

 

    

REFERENCES 

(1) Rowlands, S. E.; Latham, R. J.; Schlindwein, W. S. Supercapacitor devices using 

porous silicon electrodes. Ionics 1999, 5, 144-149. 

(2) Niu, J.; Pell, W.G.; Conway, B. E. Requirements for performance characterization of 

C double layer supercapacitors: Applications to a high specific-area C-cloth material. J. 

Power Sources 2006, 156, 725-740. 

(3) Pandolfo, A. G.; Hollenkamp, A. F. Carbon properties and their role in 

supercapacitors. J. Power Sources 2006, 157, 11-27.  

(4) Inagaki, M.; Konno, H.; Tanaike, O. Carbon materials for electrochemical 

capacitors. J. Power Sources 2010, 195, 7880-7903. 

(5) Chmiola, J.; Largeot, C.; Taberna, P.-L.; Simon, P; Gogotsi, Y. Monolithic carbide-

derived carbon films for micro-supercapacitors. Science 2010, 328, 480-483. 

(6) Ghidiu, M.; Lukatskaya, M. R.; Zhao, M.-Q.; Gogotsi, Y.; Barsoum, M. W. 

Conductive two-dimensional titanium carbide clay with high volumetric capacitance. 

Nature 2014, 516, 78-81. 

(7) Zhu, Y.; Stoller, M. D.; Cai, W.; Velamakanni, A.; Piner, R. D.; Chen, D.; Ruoff, R. 

S. Exfoliation of graphite oxide in propylene carbonate and thermal reduction of the 

resulting graphene oxide platelets. ACS Nano 2010, 4, 1227-1233.  

(8) Yang, X.; Cheng, C.; Wang, Y.; Qiu, L.; Li, D. Liquid-mediated dense integration of 

graphene materials for compact capacitive energy storage. Science 2013, 341, 534-537. 

(9) Li, H.; Tao, Y.; Zheng, X.; Li, Z.; Liu, D.; Xu, Z.; Luo, C.; Luo, J.; Kang, F.; Yang, 

Q.-H. Compressed porous graphene particles for use as supercapacitor electrodes with 

excellent volumetric performance. Nanoscale 2015, 7, 18459-18463. 

(10) Li, H.; Tao, Y.; Zheng, X.; Luo, J.; Kang, F.; Cheng, H.-M.; Yang, Q.-H. Ultra-

thick graphene bulk supercapacitor electrodes for compact energy storage. Energy 

Environ. Sci. 2016, 9, 3135-3142.  

(11) Ma, C.; Song, Y.; Shi, J.; Zhang, D.; Zhong, M.; Guo, Q.; Liu, L. Phenolic-based 

carbon nanofiber webs prepared by electrospinning. Mater. Lett. 2012, 76, 211-214. 

(12) Chen, Y.-C.; Hsu, Y.-K.; Lin, Y.-G.; Lin, Y.-K.; Horng, Y.-Y.; Chen, L.-C.; Chen, 

K.-H. Highly flexible supercapacitors with manganese oxide nanosheet/carbon cloth 

electrode. Electrochim. Acta 2011, 56, 7124-7130. 

(13) Jost, K.; Stenger, D.; Perez, C.R.; McDonough, J.K.; Lian, K.; Gogotsi, Y; Dion, 

G. Knitted and screen printed carbon-fiber supercapacitors for applications in wearable 

electronics. Energy Environ. Sci. 2013, 6, 2698-2705.  

(14) Bao, L.; Li, X. Towards textile energy storage from cotton T-shirts. Adv. Mater. 

2012, 24, 3246-3252. 

(15) Kou, L.; Huang, T.; Zheng, B.; Han, Y.; Zhao, X.; Gopalsamy, K.; Sun, H.; Gao, 

C. Coaxial wet-spun yarn supercapacitors for high-energy density and safe wearable 

electronics. Nat. Commun. 2014, 5, 3754.  

(16) Zhang, T.; Kim, C. H. J.; Cheng, Y.; Ma, Y.; Zhang, H.; Liu, J. Making a 

commercial carbon fiber cloth having comparable capacitances to carbon nanotubes and 

graphene in supercapacitors through a top-down approach. Nanoscale 2015, 7, 3285-

3291. 

(17) Jiang, S.; Shi, T.; Zhan, X.; Long, H.; Xi, S.; Hu, H.; Tang, Z. High-performance 

all-solid-state flexible supercapacitors based on two-step activated carbon cloth. J. 

Power Sources 2014, 272, 16-23. 

Page 23 of 36

ACS Paragon Plus Environment

The Journal of Physical Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



24 

 

(18) Wang, G.; Wang, H.; Lu, X.; Ling, Y.; Yu, M.; Zhai, T.; Tong, Y.; Li, Y. Solid-

state supercapacitor based on activated carbon cloths exhibits excellent rate capability. 

Adv. Mater. 2014, 26, 2676-2682. 

(19) Wang, W.; Liu, W.; Zeng, Y.; Han, Y.; Yu, M.; Lu, X.; Tong, Y. A novel 

exfoliation strategy to significantly boost the energy storage capability of commercial 

carbon cloth. Adv. Mater. 2015, 27, 3572-3578. 

(20) Ye, D.; Yu, Y.; Tang, J.; Liu, L.; Wu, Y. Electrochemical activation of carbon 

cloth in aqueous inorganic salt solution for superior capacitive performance. Nanoscale 

2016, 8, 10406-10414. 

(21) Gao, S.; Zhu, L.; Liu, L.; Gao, A.; Liao, F.; Shao, M. Improved energy storage 

performance based on gamma-ray irradiated activated carbon cloth. Electrochim. Acta 

2016, 191, 908-915. 

(22) Jiang, S.; Shi, T.; Zhan, X.; Huang, Y.;  Tang, Z. Superior electrochemical 

performance of carbon cloth electrode-based supercapacitors through surface activation 

and nitrogen doping. Ionics 2016, 22, 1881-1890. 

(23) Hsieh, C.-T.; Teng, H. Influence of oxygen treatment on electric double layer 

capacitance of activated carbon fabrics. Carbon 2002, 40, 667-674. 

(24) Milczarek, G.; Ciszewski, A.; Stepniak, I. Oxygen-doped activated carbon fiber 

cloth as electrode material for electrochemical capacitor. J. Power Sources 2011, 196, 

7882-7885. 

(25) Shang, T. X.; Cai, X. X.; Jin, X. J. Phosphorus- and nitrogen-co-doped 

particleboard based activated carbon in supercapacitor application. RSC Adv. 2015, 5, 

16433-16438. 

(26) Geng, Y.; Song, Y.; Zhong, M.; Shi, J.; Guo, Q.; Liu, L. Influence of the pitch 

fluoride on the electrical conductivity of the activated carbon cloth as electrodes of 

supercapacitor. Mater. Lett. 2010, 64, 2673-2675. 

(27) Wang, G.; Ling, Y.; Qian, F.; Yang, X.; Liu, X.-X.; Li, Y. Enhanced capacitance in 

partially exfoliated multi-walled carbon nanotubes. J. Power Sources 2011, 196, 5209-

5214. 

(28) Hsu, Y.-K.; Chen, Y.-C.; Lin, Y.-G.; Chen, L.-C.; Chen, K.-H. High-cell-voltage 

supercapacitor of carbon nanotube/carbon cloth operating in neutral aqueous solution.  

J. Mater. Chem. 2012, 22, 3383-3387. 

(29) Du, J. X.; Mishra, D.; Ting, J.-M. Surface modified carbon cloth for use in 

electrochemical capacitor. App. Surf. Sci. 2013, 285P, 483-489. 

(30) Wang, S.; Pei, B.; Zhao, X.; Dryfe, R. A. W. Highly porous graphene on carbon 

cloth as advanced electrodes for flexible all-solid-state supercapacitors. Nano Energy 

2013, 2, 530-536. 

(31) Wang, S.;  Dryfe, R. A. W. Graphene oxide-assisted deposition of carbon 

nanotubes on carbon cloth as advanced binder-free electrodes for flexible 

supercapacitors. J. Mater. Chem. A 2013, 1, 5279-5283. 

(32) Zhou, C.; Liu, J. Carbon nanotube network film directly grown on carbon cloth for 

high-performance solid-state flexible supercapacitors. Nanotechnology 2014, 25, 

035402-035409. 

(33) Zhou, Y.; Wang, S. Interconnecting carbon fibers with the in-situ electrochemically 

exfoliated graphene as advanced binder-free electrode materials for flexible 

supercapacitor. Sci. Rep. 2015, 5, 11792. 

(34) Lei, C.; Markoulidis, F.; Wilson, P.; Lekakou, C. Phenolic carbon cloth-based 

electric double-layer capacitors with conductive interlayers and graphene coating. J. 

Appl. Electrochem. 2016, 46, 251-258. 

Page 24 of 36

ACS Paragon Plus Environment

The Journal of Physical Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



25 

 

(35) Wang, Y.; Tang, S.; Vongehr, S.; Syed, J. A.; Wang, X.; Meng, X. High-

performance flexible solid-state carbon cloth supercapacitors based on highly 

processible N-graphene doped polyacrylic acid/polyaniline composites. Sci. Rep. 2016, 

6, 12883. 

(36) Horng, Y.-Y.; Lu, Y.-C.; Hsu, Y.-K.; Chen, C.-C.; Chen, L.-C.; Chen, K.-H. 

Flexible supercapacitor based on polyaniline nanowires/carbon cloth with both 

gravimetric and area-normalized capacitance. J. Power Sources 2010, 195, 4418-4422. 

(37) Xu, J.; Wang, Q.; Wang, X.; Xiang, Q.; Liang, B.; Chen, D.; Shen, G. Flexible 

asymmetric supercapacitors based upon Co9S8 nanorod//Co3O4@RuO2 nanosheet arrays 

on carbon cloth. ACS Nano 2013, 7, 5453-5462. 

(38) Luan, F.; Wang, G.; Ling, Y.; Lu, X.; Wang, H.; Tong, Y.; Liu, X.-X.; Li, Y. High 

energy density asymmetric supercapacitors with a nickel oxide nanoflake cathode and a 

3D reduced graphene oxide anode. Nanoscale 2013, 5, 7984-7990. 

(39) Wang, Q.; Wang, X.; Liu, B.; Yu, G.; Hou, X.; Chen, D.; Shen, G. NiCo2O4 

nanowire arrays supported on Ni foam for high-performance flexible all-solid-state. J. 

Mater. Chem. A 2013, 1, 2468-2473.  

(40) Xiong, G.; Meng, C.; Reifenberger, R. G.; Irazoqui, P. P.; Fisher, T. S. Graphitic 

petal electrodes for all-solid-state flexible supercapacitors. Adv. Energy Mater. 2014, 4, 

1300515. 

(41) Zhang, Y.; Hu, Z.; Liang, Y.; Yang, Y.; An, N.; Li, Z.; Wu, H. Growth of 3D SnO2 

nanosheets on carbon cloth as a binder-free electrode for supercapacitors. J. Mater. 

Chem. A 2015, 3, 15057-15067.  

(42) He, S.; Chen, W. Application of biomass-derived flexible carbon cloth coated with 

MnO2 nanosheets in supercapacitors. J. Power Sources 2015, 294, 150-158.  

(43) Pan, Z.; Qiu, Y.; Yang, J.; Ye, F.; Xu, Y.; Zhang, X.; Liu, M.; Zhang, Y. Ultra-

endurance flexible all-solid-state asymmetric supercapacitors based on three-

dimensionally coated MnOx nanosheets on nanoporous current collectors. Nano Energy 

2016, 26, 610-619. 

(44) Huang, Z.-H.; Song, Y.; Xu, X.-X.; Liu, X.-X. Ordered polypyrrole nanowire 

arrays grown on a carbon cloth substrate for high performance pseudocapacitor 

electrode. ACS Appl. Mater. Interfaces 2015, 7, 25506-25513. 

(45) Nagaraju, G.; Ko, Y. H.; Yu, J .S. Tricobalt tetroxide nanoplate arrays on flexible 

conductive fabric substrate: Facile synthesis and application for electrochemical 

supercapacitors. J. Power Sources 2015, 283, 251-259.  

(46) Sieben, J. M.; Morallon, E.; Cazorla-Amoros, D. Flexible ruthenium oxide-

activated carbon cloth composites prepared by simple electrodeposition methods. 

Energy 2013, 58, 519-526.  

(47) Aldama, I; Barranco, V.; Centeno, T. A.; Ibañez, J.; Rojo, J. M. Composite 

electrodes made from carbon cloth as supercapacitor material and manganese and cobalt 

oxide as battery one. J. Electrochem. Soc. 2016, 163, A758-A765. 

(48) Chen, P.; Chen, H.; Qiu, J.; Zhou, C. Inkjet printing of single-walled carbon 

nanotube/RuO2 nanowire supercapacitors on cloth fabrics and flexible substrates. Nano 

Res. 2010, 3, 594-603. 

(49) Balducci, A.; Dugas, R.; Taberna, P. L.; Simon, P.; Plee, D.; Mastragostino, M.;  

Passerini, S. High temperature carbon-carbon supercapacitor using ionic liquid as 

electrolyte. J. Power Sources 2007, 165, 922-927.  

(50) Hall, P. J.; Mirzaeian, M.; Fletcher, I.; Sillars, F. B.; Rennie, A. J. R.; Shiita-Bey, 

G. O.; Wilson, G.; Cruden, A.; Carter, R. Energy storage in electrochemical capacitors: 

designing functional materials to improve performance. Energy Environ. Sci. 2010, 3, 

1238-1251. 

Page 25 of 36

ACS Paragon Plus Environment

The Journal of Physical Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



26 

 

(51) Lewandowski, A.; Olejniczak, A.; Galinski, M.; Stepniak, I. Performance of 

carbon-carbon supercapacitors based on organic, aqueous and ionic liquid electrolyte. J. 

Power Sources 2010, 195, 5814-5819. 

(52) Sillars, F. B.; Fletcher, S. I.; Mirzaeian, M.: Hall, P. J. Effect of activated carbon 

xerogel pore size on the capacitance performance of ionic liquid electrolytes. Energy 

Environ. Sci. 2011, 4, 695-706. 

(53) Vaquero, S.; Díaz, R.; Anderson, M.; Palma, J.; Marcilla, R. Insights into the 

influence of pore size distribution and surface functionalities in the behavior of carbon 

supercapacitors. Electrochim. Acta 2012, 85, 241-247.  

(54) Kurig, H.; Vestli, M.; Tonurist, K.; Janes, A.; Lust, E. Influence of room 

temperature ionic liquid anion chemical composition and electrical charge 

delocalization on the supercapacitor properties. J. Electrochem. Soc. 2012, 159, A944-

A951. 

(55) Beguin, F.; Presser, V.; Balducci, A.; Frackowiak, E. Carbons and electrolytes for 

advanced supercapacitors. Adv. Mater. 2014, 26, 2219-2251.  

(56) Eliad, L.; Salitra, G.; Soffer, A.; Aurbach, D. Ion sieving effects in the electrical 

double layer of porous carbon electrodes: Estimating effective ion size in electrolytic 

solutions. J. Phys. Chem. B 2001, 105, 6880-6887. 

(57) Nian, Y.-R.; Teng, H. Nitric acid modification of activated carbon electrodes for 

improvement of electrochemical capacitance. J. Electrochem. Soc. 2002, 149, A1008-

A1014. 

(58) Hu, C.-C.; Wang, C.-C. Effects of electrolytes and electrochemical pretreatments 

on the capacitive characteristics of activated carbon fabrics for supercapacitors. J. 

Power Sources 2004, 125, 299-308. 

(59) Babel, K.; Jurewicz, K. KOH activated carbon fabrics as supercapacitor material. J. 

Phys. Chem. Solids 2004, 65, 275-280. 

(60) Toupin, M.; Belanger, D.; Hill, I. R.; Quinn, D. Performance of experimental 

carbon blacks in aqueous supercapacitors. J. Power Sources 2005, 140, 203-210. 

(61) Andreas, H. A.; Conway, B. E. Examination of the double layer capacitance of a 

high specific-area C-cloth electrode titrated from acidic to alkaline pHs. Electrochim. 

Acta 2006, 51, 6510-6520. 

(62) Beguin, F.; Friebe, M.; Jurewicz, K.; Vix-Gurtel, C.; Dentzer, J.; Frackowiak, E. 

State of hydrogen electrochemically stored using nanoporous carbons as negative 

electrode materials in an aqueous medium. Carbon 2006, 44, 2392-2398. 

(63) Ruiz, V.; Blanco, C.; Raymundo-Piñero, E.; Khomenko, V.; Beguin, F.; 

Santamaria, R. Effects of thermal treatment of activated carbon on the electrochemical 

behavior in supercapacitors. Electrochim. Acta 2007, 52, 4969-4973.  

(64) Subramanian, V.; Luo, C.; Stephan, A. M.; Nahm, K. S.; Thomas, S.; Wei, B. 

Supercapacitors from activated carbon derived from banana fibers. J. Phys. Chem. C 

2007, 111, 7527-7531. 

(65) Qu, Q. T.; Wang, B.; Yang, L. C.; Shi, Y.; Tian, S.; Wu, Y. P. Study on 

electrochemical performance of activated carbon in aqueous Li2SO4, Na2SO4 and K2SO4 

electrolytes. Electrochem. Commun. 2008, 10, 1652-1655. 

(66) Demarconnay, L.; Raymundo-Piñero, E.; Beguin, F. A symmetric carbon/carbon 

supercapacitor operating at 1.6 V by using a neutral aqueous solution. Electrochem. 

Commun. 2010, 12, 1275-1278. 

(67) Bichat, M. P.; Raymundo-Piñero, E.; Beguin, F. High voltage supercapacitor built 

with seaweed carbons in neutral aqueous electrolyte. Carbon 2010, 48, 4351-4361. 

Page 26 of 36

ACS Paragon Plus Environment

The Journal of Physical Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



27 

 

(68) Stepniak, I.; Ciszewski, A. New design of electric double layer capacitors with 

aqueous LiOH electrolyte as alternative to capacitors with KOH solution. J. Power 

Sources 2010, 195, 2564-2569. 

(69) Yin, J.; Zheng, C.; Qi, L.; Wang, H. Concentrated NaClO4 aqueous solutions as 

promising electrolytes for electric double-layer capacitors. J. Power Sources 2011, 196, 

4080-4087.  

(70) Fic, K.; Lota, G.; Meller, M.; Frackowiak, E. Novel insight into neutral medium as 

electrolyte for high-voltage supercapacitors. Energy Environ. Sci. 2012, 5, 5842-5850. 

(71) Staiti, P.; Arenillas, A.; Lufrano, F.; Menendez, J. A. High energy ultracapcitor 

based on carbon xerogel electrodes and sodium sulfate electrolyte. J. Power Sources 

2012, 214, 137-141.  

(72) Volfkovich, Y. M.; Bograchev, D. A.; Mikhalin, A. A.; Bagotsky, V. S. 

Supercapacitor carbon electrodes with high capacitance. J. Solid. State Electrochem. 

2014, 18, 1351-1363.  

(73) Okajima, K.; Ohta, K.; Sudoh, M. Capacitance behavior of activated carbon fibers 

with oxygen-plasma treatment. Electrochim. Acta 2005, 50, 2227-2231. 

(74) Soneda, Y.; Yamashita, J.; Kodama, M.; Hatori, H.; Toyoda, M.; Inagaki, M. 

Pseudo capacitance on exfoliated carbon fiber in sulfuric acid electrolyte. Appl. Phys. A 

2006, 82, 575-578. 

(75) Centeno, T. A.; Hahn, M.; Fernandez, J. A.; Kotz, R.; Stoeckli, F. Correlation 

between capacitance of porous carbons in acidic and aprotic EDLC electrolytes. 

Electrochem. Commun. 2007, 9, 1242-1246.  

(76) Barranco, V.; Lillo-Rodenas, M. A.; Linares-Solano, A.; Oya, A.; Pico, F.; Ibañez, 

J.; Agullo-Rueda, F.; Amarilla, J. M.;  Rojo, J. M. Amorphous carbon nanofibers and 

their activated carbon nanofibers as supercapacitor electrodes. J. Phys. Chem. C 2010, 

114, 10302-10307.  

(77) Levi, M. D.; Salitra, G.; Mevy, N.; Aurbach, D.; Maier, J. Application of a quartz-

crystal microbalance to measure ionic fluxes in microporous carbons for energy storage. 

Nature Mater. 2009, 8, 872-875. 

(78) Shao, L.-H.; Biener, J.; Kramer, D.; Viswanath, R. N.; Baumann, T. F.; Hamza, A. 

V.; Weissmuller, J. Electrocapillary maximum and potential of zero charge of carbon 

aerogel. Phys. Chem. Chem. Phys. 2010, 12, 7580-7587. 

(79) Zebardast, H. R.; Rogak, S.; Asselin, E. Potential of zero charge of glassy carbon at 

elevated temperatures. J. Electroanal. Chem. 2014, 724, 36-42. 

(80) Handbook of Chemistry and Physics. Lide, D. R. Ed.; Taylor and Francis Group 

88
th

 Edition. Boca Raton 2007-2008. Pp 5-72 and pp 15-29.  

(81) Eliad, L.; Salitra, G.; Soffer, A.; Aurbach, D. Proton selective environment in the 

pores of activated molecular sieving carbon electrodes. J. Phys. Chem. B 2002, 106, 

10128-10134. 

(82) Ruiz, V.; Blanco, C.; Santamaria, R.; Juarez-Galan, J. M.; Sepulveda-Escribano, 

A.; Rodriguez-Reinoso, F. Carbon molecular sieves as model active electrode materials 

in supercapacitors. Micropores Mesopores Mater. 2008, 110, 431-435.  

(83) Garcia-Gomez, A.; Barranco, V.; Moreno-Fernandez, G.; Ibañez, J.; Centeno, T. 

A.; Rojo, J. M.. Correlation between capacitance and porosity in microporous carbon 

monoliths. J. Phys. Chem. C 2014, 118, 5134-5141. 

(84) Moreno-Fernandez, G.; Kunowsky, M.; Lillo-Rodenas, M. A.; Ibañez, J.; Rojo, J. 

M. New carbon monoliths for supercapacitor electrodes. Looking at the double layer. 

ChemElectroChem DOI: 10.1002/celc.201600848. 

 

 

Page 27 of 36

ACS Paragon Plus Environment

The Journal of Physical Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



28 

 

TOC Graphic 

 

  

 

 

 

Page 28 of 36

ACS Paragon Plus Environment

The Journal of Physical Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



  

 

 

Figure 1. SEM pictures showing a piece of the original carbon cloth (a) and two threads consisting of bundles 
of carbon fibers (b).  
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Figure 2. SEM picture of the section of a carbon fiber (a) and a magnified picture of that section (b).  
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Figure 3. N2 (a) and CO2 (b) adsorption isotherms of the original (circles) and heat-treated (triangles) CC.  
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Figure 4. Cyclic voltammetries recorded for the electrolytes: H2SO4 (a), Na2SO4 (b) and KOH (c) on the 
original CC. The voltage scan rate was 0.5 mV s-1.  
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Figure 5. Galvanostatic charge/discharge plots recorded for the sulfuric acid electrolyte on the original CC in 
the total voltage range (a) and in the partial voltage ranges from the OCP to positive voltages (b) and to 

negative ones (c). The three plots were obtained at 1 mA cm-2.  
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Figure 6. (a) Impedance plot recorded for the H2SO4 electrolyte at the OCP value on the original CC. Inset: 
the magnified plot obtained at higher frequencies. (b) Variation of the specific capacitance measured at 1 
mHz vs. the potential for three electrolytes, KOH, Na2SO4 and H2SO4, in presence of the original CC. Solid 

lines are the best fittings for determining the PZC.  
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Figure 7. Dependence of the specific capacitance associated with the cations and anions of the electrolytes 
H2SO4, Na2SO4 and KOH as a function of the current density for the original (a) and heat-treated (b) CC.  
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