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Abstract

Ocean warming is already affecting global fisheries with an increasing dominance of

catches of warmer water species at higher latitudes and lower catches of tropical and sub-

tropical species in the tropics. Tuna distributions are highly conditioned by sea tempera-

ture, for this reason and their worldwide distribution, their populations may be a good

indicator of the effect of climate change on global fisheries. This study shows the shift of

tuna catches in subtropical latitudes on a global scale. From 1965 to 2011, the percentage

of tropical tuna in longliner catches exhibited a significantly increasing trend in a study

area that included subtropical regions of the Atlantic and western Pacific Oceans and par-

tially the Indian Ocean. This may indicate a movement of tropical tuna populations toward

the poles in response to ocean warming. Such an increase in the proportion of tropical

tuna in the catches does not seem to be due to a shift of the target species, since the

trends in Atlantic and Indian Oceans of tropical tuna catches are decreasing. Our results

indicate that as populations shift towards higher latitudes the catches of these tropical

species did not increase. Thus, at least in the Atlantic and Indian Oceans, tropical tuna

catches have reduced in tropical areas.

Introduction

Anthropogenic impact on marine ecosystems is widely distributed all over the world. Climate

change and fishing activity are considered to have the most widespread impact on marine eco-

systems [1], affecting temperature, salinity, wind fields, oxygen, pH, and the density structure

of the water column [2]. In the upper 75 m of the ocean, the global average warming trend has

been 0.11˚C per decade over the period 1971–2010 [3].

In response to ocean warming, marine populations tend to move toward the poles and

deeper depths [4–7]. This is reflected as increases in warmer water species in some higher lati-

tude areas [8–10] and leads to the appearance of invasive species in other locations [11,12].

Shifts in the ecology and biogeography of marine fishes may be useful indicators of climate

changes [13]. Due to the wide distribution of tuna species [14] and their dependence on opti-

mal temperature, their populations may be a good indicator of the effect of climate change on

global fisheries.
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Tuna and tuna-like fishes include approximately forty species living in the Atlantic, Indian

and Pacific Oceans and the Mediterranean Sea. They are very important economically, mainly

as a significant human food source. The annual catch of these fishes has tended to increase

continually from less than 0.6 million tonnes in 1950 to more than 6 million tonnes [15].

The Thunnini are distinguished among all bony fishes by the counter-current heat

exchanger system (rete mirabile) [16] that maintains their body temperatures above that of the

ambient water [17]. These fish are constantly swimming to counterbalance their negative

buoyancy and moving extensively in search of food for energy. This strategy is aided by other

physiological and morphological adaptations for thermoregulation and high-efficiency oxygen

extraction [17]. Despite these adaptations, sea temperature is an important environmental

parameter for tuna distribution [18].

A distinction is made between tropical and temperate tunas, since they show different dis-

tributions due to their specific thermal tolerances and are caught by different fisheries. Tropi-

cal tunas are found in waters with temperatures higher than 18˚C (although they can dive to

colder waters), whereas temperate tuna are found in waters as cold as 10˚C or colder, but can

also be found in tropical waters [14, 18].

Approximately 66% of total global tuna catch is composed of a few species: skipjack tuna (Kat-
suwonus pelamis) 58.1%, yellowfin tuna (Thunnus albacares) 26.8%, bigeye tuna (Thunnus obesus)
8.2%, albacore (Thunnus alalunga) 5.9%, Atlantic bluefin tuna (Thunnus thynnus) <1% and

southern bluefin tuna (Thunnus maccoyii) (<1%) [15]. According to their thermal range and dis-

tribution [14, 18], these major species can be classified into tropical (skipjack and yellowfin),

intermediate (bigeye) and temperate tunas (albacore, Atlantic bluefin and southern bluefin).

This study analyzed trends in sea temperature (SST) and tropical tuna percentage in long-

liner catches in the Atlantic, Western Pacific and Indian Oceans during the period 1965–2011

(1967–2011 in the Indian Ocean) to evaluate the effect of ocean warming on spatial distribu-

tion of tropical tuna over the past decades. We hypothesize that in subtropical areas the pro-

portion of tropical tuna in the catches will increase as SST increases.

Material and methods

Longliner catch and effort data were obtained from the International Commission for the

Conservation of the Atlantic Tuna (ICCAT-database CATDIS and T2CE), the Western and

Central Pacific Fisheries Commission (WCPFC) and the Indian Ocean Tuna Commission

(IOTC). Sea surface temperature (SST) data were from the NOAA database, Extended Recon-

structed Sea Surface Temperature V3b (ERSST).

All data were converted to annual 5x5˚ values by averaging. The IOTC and ICCAT data

were in a variety of formats: 1x1, 5x5, 5x10, 10x20 and 20x20. Only 1x1 and 5x5 data were used

in this analysis. 1x1 data were converted to 5x5. WCPFC datasets were already in a 5x5 format.

All data were converted to annual values by averaging (ICCAT original values were recorded

in trimesters, WCPFC in months and IOTC from 1 to several months). We thus obtained our

dataset in 5x5˚ latitude/longitude grid squares starting from the coordinate 0/0˚. Effort data

are expressed as number of hooks per grid cell.

The analysis focused on the major tuna species: skipjack, yellowfin, bigeye, albacore and

Atlantic bluefin tuna in the Atlantic; yellowfin, albacore and bigeye in the western Pacific; and

skipjack, yellowfin, bigeye, albacore and southern bluefin tuna in the Indian Ocean. They were

classified according to their thermal range and distribution [14, 18] in tropical (skipjack and

yellowfin), intermediate (bigeye) and temperate tunas (albacore, Atlantic bluefin and southern

bluefin). The percentage of tropical species (skipjack and yellowfin) was calculated for each

grid cell.
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SST data, originally in 2x2 monthly format, were converted to annual 5x5 SST by weighted

average in order to unify the spatial resolution of all the data (both tuna and SST data). Only

those grid cells that contained SST and catch data for at least 35 years in the period 1965–2011

were included in the analysis.

The data set used for the analysis is included as supplementary material (S1 and S2 Files).

Modeling tropical tuna percentage

Tropical tuna percentage in longliner catch (%trop) can have any continuous value ranging

between 0 and 100. This kind of data has frequently been modeled by transforming the depen-

dent variable using the arcsine square root transformation [19, 20]. However, the approach

has several drawbacks and inferences can be misleading. Indeed, model parameters cannot be

easily interpreted in terms of the original response, and the measures of proportions typically

display asymmetry [21]. Unfortunately, the symmetry of the normal distribution can result in

nonsensical predictions, which means that confidence intervals are outside the [0, 1] range.

The beta distribution contrasts with this and is very flexible in terms of shape and fulfils the

required characteristics [22].

The %trop was modeled using a Bayesian beta regression model. Specifically, %trop, Yi in

each grid cell j, was assumed to follow a beta distribution Yj ~ Be(μj,ȹj). The observation year,

the SST variable and the interaction between the latitude and the year were implemented as

explanatory variables. In particular, the latter variable was implemented to test the direction of

%trop distribution over time as the hypothesis of a poleward shift. For each ocean, models

were computed for the northern and southern hemisphere separately. SST was treated as a

continuous variable and the year as a factor.

Bayesian parameter estimates in the form of marginal posterior distributions were obtained

throughout the R-INLA approach and software [23, 24].

Vague zero-mean Gaussian prior distributions with a variance of 100 were assigned for the

fixed effects, as recommended by Held et al. (2010) [25]. These priors are approximations of

non-informative priors designed to have little influence on posterior distribution.

Models were performed for each ocean and models were selected using the Watanabe Akaike

Information Criterion (WAIC) [26], which is inversely proportional to the goodness of fit.

Spatial maps were then obtained applying a Bayesian kriging, aggregated per decade to

remove effects of sub-decade variability. In order to better visualize the long term changes in

the %trop, the difference between the first and last decades are shown on the maps.

Besides Bayesian analysis, a smoothing function was used to attempt to capture the general

patterns in the time trends of %trop, effort, total catches and SST, while also reducing the

noise. This technique is especially useful to visually assess the relationship between variables

for long time series, where trends can be hard to visualize. Specifically, we smoothed the time

series using locally weighted scatterplot smoothing (lowess), an outlier-resistant method that

estimates a polynomial regression curve using local fitting [27].

In addition, we applied a bootstrap technique to each time series with the percentile method,

in order to account for the variability in the original lowess fit. With this methodology, each

series would have a 95% confidence interval for the original lowess [28, 29]. This technique was

performed with the entire dataset, and then only for subtropical regions (20-30N, 20-30S) to

explore if the effects of ocean warming are more evident in these regions than the others.

Results

The final Bayesian models for all the oceans included all the explanatory variables, including

the SST, latitude, year and interaction between latitude and year (Table 1).
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Specifically, the SST had a positive effect on the expected percentage of tropical tuna in all

the oceans, for both the northern and southern hemispheres. In the Atlantic, results showed

that for a one degree rise in SST the proportion of tropical tuna is expected to increase by 1.46

in the northern hemisphere and by 1.32 in the southern (Table 2). Similarly, in the Pacific, the

increase was 1.34 in the northern hemisphere and 1.27 in the southern. The Indian Ocean

showed the lowest increase, 1.25 in the northern hemisphere and 1.19 in the southern.

Table 1. Watanabe Akaike Information Criterion (WAIC) comparison for all the models tested. The best model is highlighted in bold. Predictor acro-

nyms are: SST = Sea temperature, Y = year, Lat = Latitude, YL = interaction between year and latitude.

Model Atlantic

NorthH

Pacific

NorthH

Indian

NorthH

Atlantic

SouthH

Pacific

SouthH

Indian SouthH

1 1 + Y * Lat + SST 531 621 448 543 598 465

2 1 + Y + Lat +SST 548 628 457 559 605 472

3 1 + SST+ Lat 567 629 462 564 610 476

4 1 + Y + SST 571 632 467 567 615 478

5 1 + Y * Lat 578 637 471 572 618 480

6 1 + SST 573 640 470 573 620 481

7 1 + Lat 598 642 479 584 6623 484

8 1 + Y 601 648 486 585 625 482

9 1 624 653 489 588 630 486

https://doi.org/10.1371/journal.pone.0178196.t001

Table 2. Numerical summary of the marginal posterior distribution for model parameters provided by

the selected model for each case considered. For each variable the median (Q0.5), and a 95% credible

central interval is provided, containing 95% of the probability under the posterior distribution.

Model Variable Q0.5 Q0.025 Q0.975

Atlantic NorthH SST 1.46 1.15 2.36

Year 1.28 1.12 1.71

Lat -1.42 -1.09 -2.05

Y *Lat 1.38 1.10 1.68

Pacific NorthH SST 1.34 1.12 1.72

Year 1.31 1.03 1.86

Lat -1.72 -1.08 -2.20

Y *Lat 1.26 1.12 1.73

Indian NorthH SST 1.25 1.08 1.82

Year -1.19 -1.03 -1.53

Lat -1.20 -1.08 -1.68

Y *Lat 1.19 1.09 1.70

Atlantic SouthH SST 1.32 1.15 1.95

Year 1.25 1.09 1.45

Lat 1.21 1.08 1.65

Y *Lat -1.30 -1.07 -1.70

Pacific SouthH SST 1.27 1.14 2.01

Year 1.13 1.02 1.43

Lat 1.75 1.05 2.32

Y *Lat -1.27 -1.08 -1.57

Indian SouthH SST 1.20 1.09 1.75

Year 1.15 1.06 1.32

Lat 1.14 1.03 1.28

Y *Lat 1.16 1.02 1.37

https://doi.org/10.1371/journal.pone.0178196.t002
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The interaction of year and latitude showed a positive effect in the three oceans in the

northern hemisphere, highlighting a constant shift of the tropical species towards higher lati-

tudes. Similarly, in the southern hemisphere the negative relationship indicates the same pat-

terns, except for the Indian Ocean (Table 2).

The year and latitude themselves were also important. In particular, latitude showed a nega-

tive relationship in the northern hemisphere, against a positive pattern in the southern since

negative values were used for southern hemisphere latitudes. The only exception was the posi-

tive relationship of the Indian Ocean in the southern hemisphere. A positive relationship for

year appeared for almost all ocean models, although for the Indian the pattern was different in

the northern hemisphere (Table 2).

Fig 1 shows the change in %trop from the first to the last decade of the time series,

highlighting a stronger increasing pattern in the proportion of tropical tuna, especially in the

subtropical areas (Fig 1). The decrease in tropical species in tropical areas is due to an increase

of the contribution of bigeye tuna, particularly from the 1970’s onwards.

The bootstrap-smoothing graphic solution showed an increasing SST tendency in the

Atlantic and Pacific oceans in the last two decades (Fig 2). This pattern is clearer when we

restrict the analysis to subtropical areas (Fig 3). In contrast, the Indian Ocean showed a more

stable pattern in the last two decades when analyzed on a large scale (Fig 2), while a clearly

increasing tendency is seen in the subtropical areas (Fig 3).

The percentage of tropical tuna did not show a clear pattern when overall data were ana-

lyzed (Fig 2). In particular, the %trop tended to increase in the Atlantic and Pacific oceans,

and decrease in the Indian ocean (Fig 2). However, the Atlantic and Pacific oceans showed an

increasing trend when the analyses were restricted to subtropical areas (Fig 3). However, for

the Indian Ocean %trop tends to decrease (Fig 3).

Catches showed an increasing trend only in the Pacific, both overall and in the subtropical

areas, while a decreasing trend was found for the Atlantic and Indian oceans during recent

decades (Fig 2 and Fig 3).

The effort showed an increasing trend in the Atlantic and Pacific, on both regional and

local scales, whereas the Indian ocean stood out with a decreasing tendency using both

approaches (Fig 2 and Fig 3).

Fig 1. Map of the percentage of tropical tuna in longliner catches (%trop) changes from the first to the last decade of the time

series 1967–2011.

https://doi.org/10.1371/journal.pone.0178196.g001
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Discussion

Our results revealed a rising trend in SST and %trop in subtropical areas throughout the Atlan-

tic and Pacific Oceans during the past four decades, and an even stronger increase in the last

two decades. In addition, tropical tuna catches show a descending trend in the Atlantic, which

may be taken as an indicator that the increased %trop was not related to a change in fishing

strategy, at least in this ocean. This suggests that tuna populations at intermediate latitudes

(20-30N and 20-30S) underwent a large-scale tropicalization from 1965 to 2011, in accordance

with the findings of Cheung et al. (2013) [19]. That study showed that ocean warming has

already been affecting global fisheries, resulting in an increasing dominance of catches of

warmer water species at higher latitudes during the past four decades [19].

Fig 2. Smooth functions for sea surface temperature (SST), tropical tuna percentage in longliner catches (%trop), total

catches and effort for the entire time series (1965–2011) for the three oceans: (A) Atlantic; (B) Pacific; (C) Indian. The solid

line in each plot is the estimated smooth function and the dashed lines represent approximate 95% confidence intervals.

https://doi.org/10.1371/journal.pone.0178196.g002
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In the Pacific, the clear increase in %trop along the time series is not related to a trend

towards decreasing catches. The effort and total catch increase together with %trop, highlight-

ing a possible change in the fisheries strategy or a spatial displacement of the fishery to higher

latitudes. This last hypothesis is supported by Bayesian analysis results that identify a constant

spatio-temporal trend to higher latitudes.

The Indian Ocean is the only area in which the %trop pattern is not totally clear. Indeed,

for subtropical areas the increasing %trop pattern showed the opposite trend in the last five

years of the time series. However, Bayesian analysis indicates that the %trop is positively

related with SST. Furthermore, similarly to the Atlantic Ocean, tropical tuna catches showed a

decreasing pattern, as did the fishing effort. Neither was the spatio-temporal effect clearly iden-

tifiable in the Bayesian analysis, since the interaction of the year and latitude showed a positive

Fig 3. Smooth functions for the sea surface temperature SST, tropical tuna percentage in longliner catches (%trop), the total

catches and effort for the entire time series 1965–2011 for the three oceans in sub-tropical regions: (A) Atlantic; (B) Pacific;

(C) Indian. The solid line in each plot is the estimated smooth function and the dashed lines represent approximate 95% confidence

intervals.

https://doi.org/10.1371/journal.pone.0178196.g003
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relationship in both northern and southern hemispheres. Further analysis using data from

recent years (2011–2017) should better define this pattern.

However, distributions of North Sea and Northeast Atlantic fishes responded markedly to

ocean warming, shifting in intermediate latitudes [4, 5]. This phenomenon seems to be more

important in species with short life cycles and small body size [4]. Tropical tunas are character-

ized by small to medium size, rapid growth, early age-at-maturity, long spawning duration

and short life span. These species therefore display a rapid turnover, characteristic of r-selected

species [20]. The tropicalization of longliner tuna catches in intermediate latitudes may be due

to a shift of tropical tuna populations towards the poles in response to ocean warming. This

tendency appears to be particularly strong in the Atlantic Ocean.

If this trend towards ocean warming continues [3], the prospects point to large scale redis-

tribution in fishery catches in the near future [21, 22]. This would affect the most vulnerable

economies in the world. Although warming will be most pronounced at high latitudes, coun-

tries most vulnerable to warming-related effects on fisheries lie in the tropics [23]. At least in

the Atlantic and Indian, our results indicate that tropical tuna catches have reduced in tropical

areas, as populations shift towards higher latitudes, since the expansion towards the poles of

these tropical species did not increase their catches.

Finally, two main limitations have to be taken into account in this worldwide long series

approach. Firstly, stock trends, catch regulations and market demands could also have signifi-

cant effects on species targeting and catches. Consequently, SST may be only a partial driver of

the trends identified in the different oceans. However, our analyses have focused on the pro-

portion of tropical tunas and not on the total catch of the species, in order to avoid these exter-

nal biases. Moreover, data are analyzed on a yearly time scale and seasonal patterns can be lost

in such an approach. However, the aim of this study was to provide a first worldwide long-

term series assessment of tropical tuna populations, so yearly data were the most useful.

Supporting information

S1 File. Reduced dataset including only cells with effort available.

(XLSX)

S2 File. Dataset including catches per species, year and cell.

(XLSX)
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