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ABSTRACT   

There is an increasing demand for new holographic recording materials. One of them are photopolymers, which are 
becoming a classic media in this field.  Their versatility is well known and new possibilities are being created by 
including new components, such as nanoparticles or dispersed liquid crystal molecules in classical formulations, making 
them interesting for additional applications in which the thin film preparation and the structural modification have a 
fundamental importance. Prior to obtaining a wide commercialization of displays based on photopolymers, one of the 
key aspects is to achieve a complete characterization of them. In this sense, one of the main parameters to estimate and 
control is the shrinkage of these materials. The volume variations change the angular response of the hologram in two 
aspects, the angular selectivity and the maximum diffraction efficiency. One criteria for the recording material to be used 
in a holographic data storage application is the shrinkage, maximum of 0.5%. Along this work, we compare two different 
methods to measure the holographic recording material shrinkage. The first one is measuring the angle of propagation for 
both diffracted orders ±1 when slanted gratings are recorded, so that an accurate value of the grating vector can be 
calculated. The second one is based on interference measurements at zero spatial frequency limit. We calculate the 
shrinkage for three different photopolymers: a polyvinyl alcohol acrylamide (PVA/AA) based photopolymer, one of the 
greenest photopolymers whose patent belongs to the Alicante University called Biophotopol and on the last place a 
holographic-dispersed liquid crystal photopolymer (H-PDLC). 

.   
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1. INTRODUCTION  
Photopolymers are very appealing recording materials because of their practical properties, self-processing capabilities 
and their low price. They are used in the mass production of holograms for applications related with security purposes 
and holographic-based memories [1] in addition to other applications [2-6].  

In general, the composition of photopolymers includes one or more monomers, a photosensitive dye and an initiator and 
many families of photopolymers has been proposed, liquid, solid, with nanoparticles or liquid crystals dissolved in its 
composition, with short or large polymer chains, with dyes that are not consumed or that can be eliminated with an UV 
cure, etc. For each specific application, an optimized chemical composition is needed to play with the large variety of 
possible properties like the rate of monomer diffusion, shrinkage, polymerization rate, the absorption of the material or 
the length of the polymer chain [7-9].  

There are some criteria for the recording material to be used in a holographic data storage application. Some of them are 
the material sensitivity, between of 100-1000 mJ/cm2 to achieve full dynamic range; refractive index modulation, 
minimum of 5x10−3; and shrinkage, maximum of 0.5% [10]. This last criterion, the shrinkage is commonly assumed to 
occurs after the grating formation. The assumption that one side of the material is attached to a rigid substrate is the basis 
of the fringe rotation model [11], this can be a reminiscence of the initial steps of the holography where silver halide 
emulsion was the most popular holographic recording material [12]. On the other hand, the common way of modelling 
the Bragg shifting in replay properties it is to assume a negligible change on the refractive index [13]. Thus, the standard 
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(PVA/AA), one of the greenest photopolymers whose patent belongs to the Alicante University called Biophotopol [24] 
and a holographic-dispersed liquid crystal photopolymer (H-PDLC) [25]. 

 

2. EXPERIMENTAL  
 

The first photopolymer analysed, the based on PVA/AA is composed by acrylamide (AA) as polymerizable monomer, 
N,N’-methylene-bis-acrylamide (BMA) as crosslinking monomer, triethanolamine (TEA) as coinitiator and plasticizer, 
yellowish eosin (YE) as dye, polyvinyl alcohol (PVA) as binder and a small proportion of water as additional plasticizer. 
The composition to create samples with a physical thickness of 75 ± 5 µm on a glass substrate (25 cm x 20 cm) is shown 
in Table 1. The refractive index of this material is measured before exposure using a refractometer and obtaining a value 
of 1.4811.  

 

Table 1. Composition of the liquid solution for PVA/AA based photopolymer. 

TEA (ml) PVA (ml) (8% w/v) AA (gr) BMA (gr) YE (0.8% w/v) (ml) 
2.0 25 0.84 0.2 0.6 

 

The composition used for Biophotopol photopolymer is presented in Table 2. It is composed of sodium acrylate (AONa) 
as polymerizable monomer, triethanolamine (TEA) as coinitiator and plasticizer, sodium salt 5-riboflavin 
monophosphate (PRF) as dye and polyvinyl alcohol (PVA) as binder (Mw = 130000 u, hydrolysis degree = 87.7%). The 
composition of the photopolymer solution is deposited on a glass substrate by gravity obtaining films of 300 ± 10 μm 
after water evaporation. In this case, the refractive index of the “solid” layer before exposure is 1.4730. 

 

Table 2. Composition of the liquid solution for photopolymer AA. 

PVA (% w/v) AONa (M) TEA (M) PRF (M)
15 0.34 0.15 1.00·10-3

 
The photopolymer with liquid crystal molecules (HPDLC), uses dipentaerythritol penta/hexa-acrylate (DPHPA) with a 
refractive index n = 1.490. We use the nematic liquid crystal, licristal BL036 from Merck. It is a mixture of 4-
cyanobiphenyls with alkyl chains of different lengths. It has an ordinary refractive index n0 = 1.5270, and a difference 
between extraordinary and ordinary index Δn = 0.2670 [26]. There is a difference of 0.037 between the ordinary 
refractive index of the liquid crystal and that of the monomer. The liquid crystal concentration was set at 28 wt% as the 
starting point for component optimization and remained practically unchanged during this process. N-vinyl-2-
pyrrolidone (NVP) was used as crosslinker, N-phenyl glicine (NPG) as radical generator and octanoic acid (OA) as 
cosolvent [23]. We used ethyl eosin (YEt) as dye. 
The H-PDLC prepolymer solution is made by mixing the components under red light at which the material is not 
sensitive. The solution is sonicated in an ultrasonic bath, deposited between two conductive ITO glass plates of 1 mm 
thick and separated using two types of glass microspheres. The microspheres were provided by Whitehouse scientific 
with a thickness between 15 and 20 µm. The composition of this material is detailed in Table 3. For this syrup, the 
refractive index before polymerization is 1.5225. 
 

Table 3. Composition of photopolymer H-PDLC in wt% 

DPHPA BL036 YEt NPG NVP OA

48.4 29.2 0.1 1.5 16.4 4.4 
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different electromagnetic methods to fit the angular responses of the diffracted orders coming out of the gratings, 
obtaining the optical thicknesses and refractive index modulations. This analysis is to study possible deformations in the 
sinusoidal profile of the gratings due to shrinkage. 

 

3.1 Study of the shrinkage in the different materials 

In this case, the main idea is to show the maximum transmission efficiency (TE) and diffraction efficiency (DE) 
achieved for the holograms recorded on the different materials. For thick slanted gratings, it is difficult to obtain this 
information on real time due to the high angular selectivity and Bragg’s condition detuning. Therefore, to obtain 
information of the DE at Bragg’s condition, we have situated the readout laser at the angle where the maximum DE for 
long time recorded gratings is located to show the maximum DE achieved for these holograms.  

The results for the different photopolymers are presented on Fig. 3, for the diffracted order situated around 3.7º in air. 
For the PVA/AA based photopolymer, the value of DE is higher than 80%, near the maximum achievable for this angle, 
showing the good response of this material to record slanted gratings and its viability in applications that require angular 
multiplexing, for example. For the 300 µm thick layers of Biophotopol, it is difficult to measure the DEs at Bragg’s 
angle. Very small deviations of this angle produce a huge change on the measured DE [27, 28]. In this case, to obtain the 
maximum DE as a function of time, we analysed many gratings recorded at different times getting their respective 
angular responses to obtain the maximum DE. The result shown is for the angle 7.2º in air. In this case, the maximum 
DE is achieved after 30 seconds of exposition and it is near the one obtained for PVA/AA, higher than 80%. 
In the case of the HPDLC material, also high values, near 80% are obtained for an angle of 3.7º in air. It is remarkable 
that in this case, the angle deviation does not affect significantly to the maximum value of DE. For these kind of 
materials, the shrinkage is reduced due to the PIPS effect [29] and the multifunctional monomer that causes compaction 
in the polymerized zones. 
 

 
Fig. 3.DE as a function of recording time for the different photopolymers at Bragg’s condition for diffracted order 
+1: 75 µm AA/PVA material, 300 µm Biophotopol and 16 µm HPDLC. 

 

Once we have analysed the DE of each material, we measured the Bragg’s angles of the orders +1 to obtain the value of 
K vector and check the possible variations of the Kx component. We control the initial Bragg’s angles in air for the 
diffracted orders, and we measured the new ones with an error of ± 0.002°. This accuracy give us an error of 0.09% in 
the determination of the shrinkage. Nevertheless, we must add additional imprecisions, firstly measuring the refractive 
index of the layer with an Abbe refractometer, n = 1.4811 ± 0.0005, secondly, possible average changes in n of 0.003 
due to polymerization, and thirdly, the repeatability that implies a total error in the shrinkage of 0.14%. To measure the 
shrinkage, we followed the equation presented by Zhao [14], Eq. (2), obtaining the value of K from the angles of the 
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both first orders ±1.  In Table 3, we present the measured angles in air for each photopolymer and their respective Kx 
components. It is observable how in the AA/PVA the Kx component decreases with long expositions, from 6.21µm-1 to 
6.15µm-1 after 80 seconds of exposition. This drop of the Kx value is due to an error determining the shrinkage with only 
one Bragg’s angle, near ±2%, the same value of the highest values reported in this paper. In other words, the relative 
error, measuring only one Bragg’s detuning angle, can be higher than 100%. It is also appreciable how, even when the 
DE looks constant, the shrinkage continues growing for BIO and AA/PVA. For the HPDLC material, we observed a 
shrinkage close to the one of the AA/PVA and a very weak variation of the Kx component.  

 

Table 3. Measured shrinkage and x component of K vector for the three different photopolymers. 

Recording 
time (s) 

% Shrinkage 
AA ±0.14 

Kx AA 
(µm-1) 
±0.01 

% Shrinkage 
BIO ±0.2 

Kx BIO 
(µm-1) 
±0.01 

% Shrinkage 
HPDLC ±0.2 

Kx HPDLC 
(µm-1) ±0.01 

5 0.05 6.21 0.8 7.34 0.4 6.19 

10 0.08 6.21 1.4 7.34 0.5 6.19 

20 0.05 6.19 2.6 7.37 0.8 6.19 

30 0.17 6.18 2.8 7.36 1.0 6.19 

40 0.29 6.16 3.2 7.37 1.2 6.20 

50 0.62 6.13 3.5 7.38 1.2 6.20 

80 1.31 6.13 3.5 7.40 1.2 6.20 
 

3.2 Study of the diffracted orders  

It is interesting to use one of the multiple coupled wave theories to reproduce the angular scan of a holographic slanted 
grating to obtain information about different parameters such as the optical thickness or the refractive index modulation. 
These theories are also useful to study the deviation from the sinusoidal profile provided by the higher orders. In many of 
the shrinkage models reported [9-17], it is supposed that the sinusoidal profile remains after the shrinkage occurs. If there 
is any deviation from this profile during the shrinkage, it is supposed to be a variation in the higher diffracted orders. We 
have compared different coupled wave theories: Kogelnik wave theory (KCW), rigorous coupled wave theory (RCW) 
and time-domain-difference-method (TDDM) comparing the approximate KCW model with the rigorous models.  
For the slanted gratings analysed in this paper, only one of the third diffracted orders are inside of the Ewald’s Sphere, 
nevertheless, in all the cases analysed its DE is weaker than 0.1% and in the most of them it is very difficult to detect and 
to fit it with the coupled wave theories. 
For the different materials, we depicted the experimental angular scan around the +1 Bragg’s condition. In Fig. 4 it is 
shown the comparison between the results for the PVA/AA material exposed during 40 s and the fitting simulations 
provided by the KCW and RCW models.  
 
In the case of the Biophotopol material, the results of the fitting are shown in Fig. 5 we did not observe any higher 
diffraction order. It is also important to remark that, in this case, the RCW model is not suitable due to the large 
thicknesses of the material, that caused instabilities. In this case, to compare with the KCW, we used the FDTDM, 
observing good agreement between experimental data and both models. In this case, the max DE reached is reduced by 
the value of absorption and scattering coefficient around 13%, due to the high thickness value. 
 
For HPDLC materials, the RCW model is suitable to fit the angular response. This fitting is shown in Fig. 6. In this case, 
we can observe a deviation of the KCW model respect to the RCW due to the low thickness and high refractive index 
modulation.  
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4. CONCLUSIONS  
In this work, we have compared different methods to study the dimensional changes in different families of 
photopolymers, measuring the holographic recording material shrinkage. The PVA/AA and Biophotopol materials have 
exhibited a variation of the Kx component of the grating vector. In this case, as it is not possible to measure the 
shrinkage by using the classical methods, the measurement of the Bragg’s angles for both orders ± 1, from these data, we 
can calculate the shrinkage using two different equations with similar results. 
For the third material, HPDLC, the value of Kx remains almost constant; nevertheless, for these metrology 
measurements, where high precision is required, we suggest also determining shrinkage from the values of both first 
Bragg’s angles. To analyse how the shrinkage affects to the grating shape we have measured higher diffracted orders 
using different electromagnetic theories, we can conclude that the shrinkage does not increase the deformations in the 
sinusoidal profile significantly. 
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