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ABSTRACT 11 

Monitoring of the quality of bathing water in line with the European Commission bathing water 12 

directive (Directive 2006/7/EC) is a significant economic expense for those countries with great 13 

lengths of coastline. In this study a numerical model based on finite elements is generated whose 14 

objective is partially substituting the microbiological analysis of the quality of coastal bathing waters. 15 

According to a study of the concentration of Escherichia coli in 299 Spanish Mediterranean beaches, 16 

it was established that the most important variables that influence the concentration are: monthly 17 

sunshine hours, mean monthly precipitation, number of goat cattle heads, population density, 18 

presence of Posidonia oceanica, UV, urbanization level, type of sediment, wastewater treatment 19 

ratio, salinity, distance to the nearest discharge, and wave height perpendicular to the coast. Using 20 

these variables, a model with an absolute error of 10.6 ± 1.5 CFU/100 ml is achieved. With this 21 

model, if there are no significant changes in the beach environment and the variables remain more 22 

or less stable, the concentration of E. coli in bathing water can be determined, performing only 23 

specific microbiological analyses to verify the water quality. 24 

Keywords: numerical modelling; E. coli; beaches; water quality 25 

1. Introduction 26 

In the last fifty years enjoying leisure time on the coast throughout the year has increased in 27 

popularity. This requires minimum standards of quality in the coastal areas and its bathing waters to 28 

ensure the health of the users (Sardá et al., 2005). For this reason, the European health 29 

administration has been monitoring the quality of bathing water for more than 20 years. Bathing 30 

waters are the surface waters where a significant number of people are expected to bathe or there 31 

is an activity directly related to water sports. 32 

Monitoring the quality of coastal waters is carried out mainly in accordance with the European 33 

Directive on bathing waters (Directive 2006/7 / EC), measuring the concentration of Escherichia coli 34 

and intestinal Enterococci. These bacteria, present in the microbiota of humans and warm-blooded 35 

animals (Callahan et al., 1995; Gantzer et al., 1998), are used as an index of faecal contamination 36 

because they can cause gastrointestinal and respiratory tract infections, as well as ears, eyes, nasal 37 
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cavity or skin illness (W.H.O., 2003). Depending on the risk of infection, Directive 2006/7/EC classifies 38 

coastal waters as: excellent, good, sufficient and insufficient. The established limit values may, in 39 

rare circumstances, be adapted by the local authorities to each space, depending on the social, 40 

cultural, environmental and economic conditions. 41 

The variation in the concentration of these bacteria depends on many factors. On the one hand, 42 

physical characteristics such as beach environment, sediment type, radiation, or salinity are 43 

important variables. For example, urban beaches (with greater urban development and greater 44 

number of users) present lower quality than natural or semi-urban beaches (Ariza et al., 2010; May 45 

et al., 1999; McLellan, 2004; Winter and Duthie, 1998). The type of sediment (gravel or sand) is also 46 

important, since E. coli can reproduce in sand, because it is a humid environment, rich in organic 47 

matter (Alm et al., 2006; Yamahara et al., 2007). Furthermore, the type of sediment is directly 48 

related to the disinfection capacity of ultraviolet light (UV), which inactivates the microorganisms in 49 

the water (Salcedo et al., 2002), the greater the number of suspended solids in the water the lower 50 

disinfection capacity (Abdelzaher et al., 2010; Haugland et al., 2005; Salcedo et al., 2002). This is one 51 

of the reasons why sandy beaches have higher concentrations of bacteria than gravel beaches 52 

(Aragonés et al., 2016a). 53 

On the other hand, beach users, pets (dogs) and birds, especially seagulls, are sources of this type of 54 

bacteria in the sand and therefore in the water (Abdelzaher et al., 2010; Haugland et al., 2005; 55 

Whitman et al., 2004). Likewise, livestock and agricultural developments near the beaches have 56 

adverse effects on the microbial quality of bathing water, with the negative effects mainly due to 57 

rainfall (Ackerman and Weisberg, 2003). Several authors have also related the concentration of E. 58 

coli to the presence of some species of marine vegetation. For example, Cladophora favours the 59 

survival of E. coli (Beckinghausen et al., 2014; Englebert et al., 2008; Vanden Heuvel et al., 2010), 60 

while other algae like Ulva rigida, Codium bursa, Cystoseira barbata, Ceramium diaphanum 61 

Acanthophora sp., Bryothamnion triquetrum, Gracilaria sp., Gelidium sp., Caulerpa mexicana, 62 

Caulerpa sp., Halimeda incrassata, Ulva sp., Codium decorticatum, Sargassum sp. or Posidonia 63 

oceanica have an antibacterial activity against E. coli (Frikha et al., 2011; Hammami et al., 2013; Luzi 64 

et al., 2016; Ríos et al., 2009). 65 

Historically, monitoring programs have led to geospatial analysis models (Grayson et al., 2008; 66 

Kelsey et al., 2004; Knothe, 2012), tracking microbial source (McQuaig et al., 2012), and evaluating 67 

microbial networks (Brooks et al., 2008; Faust and Raes, 2012) to more accurately predict human 68 

health risks after exposure to contamination. However, there are still difficulties in establishing 69 

predictive models, since microbial contamination can come from multiple point and non-point 70 

sources (Stewart et al., 2008), but having a large database can facilitate modelling (Mill et al., 2006). 71 

For example, Partyka et al. (2017), through 1740 samples, established data collection sites, and 72 

generated a model to predict changes in concentration in areas subject to large seasonal variations. 73 

The objective of this study is to obtain a model that allows us to determine the concentration of E. 74 

coli in coastal bathing waters, in order to reduce the number of microbiological analyses. First, the 75 

correlations between E. coli concentration in 299 beaches and 33 variables related to climate, 76 

maritime climate, physical characteristics, environment, fauna and flora were studied. Next, 77 

different mathematical models were generated, and the optimum model was validated using data 78 

from later years. 79 
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2. STUDY AREA 80 

The study area comprises 299 beaches along 983 km of the Spanish Mediterranean coast (Fig. 1), 81 

specifically the beaches located in the provinces of Valencia (47 beaches), Alicante (94 beaches), 82 

Murcia (37 beaches), Almeria (65 beaches) and Granada (27 beaches). It is a microtidal area where 83 

astronomical tides range from between 20 cm and 40 cm, and when affected by meteorological 84 

factors, the tide surges can be up to 75 cm (EcoMAG, 2009). 85 

The zone to the North of the Cape of the Nao is bordered by marshes intensely transformed by the 86 

agricultural activity (Fig. 1a), while to the south to the Amadorio River the coast is characterized by a 87 

landscape of small coves and cliffs (Fig. 1b). Towards south there are dune ridges, beaches and 88 

lagoons such as Torrevieja or Guardamar (Fig. 1c). On the coast of Murcia, there is an important 89 

dune strip that forms the Mar Menor, which presents a higher temperature and salinity than the 90 

Mediterranean Sea. From Cape Palos to the border of the province of Granada, the coastal plains are 91 

very narrow and the coast is formed by cliffs and small beaches, except for the valleys of some 92 

rivers. The rivers throughout the study area are generally short and the flows have an important 93 

seasonal character. 94 

An important feature of the study area is the extensive presence of Posidonia oceanica meadows on 95 

the seabed (Fig. 1d). Posidonia oceanica is a marine plant endemic to the Mediterranean and forms 96 

large meadows on sandy bottoms near the coast. To develop, Posidonia meadows need good 97 

quality, uncontaminated, transparent and well oxygenated waters, that is, their presence is 98 

representative of the good quality of the waters in which are located. 99 

 100 
Fig. 1. Location of the study area, the Posidonia oceanica meadows, as well as the 299 beaches studied. a) 101 

Agricultural area. b) Cliffs and coves. c) Dune strips. d) Posidonia oceanica. 102 
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3. Methodology 103 

The work was carried out in four phases: data collection and organization, analysis of variables, 104 

generation of models, and finally, validation. 105 

3.1. Data collection 106 

In this study, 33 variables have been analysed and can be grouped according to their relationship 107 

with: climatology (water temperature, hours of sun, ultraviolet radiation, rainfall or wind); maritime 108 

climate (wave height and salinity); physical characteristics (sediment, environment, density and 109 

population, morphology, orientation); livestock (goats, sheep or cow); sources of discharges and 110 

purification; and the existence of Posidonia oceanica (existence, depth, width of the meadow, etc.). 111 

Table 1 shows a summary of the studied variables and their origin. 112 

Table 1. Summary of the studied variables and their origin. 113 
Parameters Variables Origin 

Faecal bacteria E. coli (CFU/100 ml) 
Treatment according to Directive 

2006/7/EC of data from the Nayade (2016) 
database 

Physical 
characteristics 

Sediment (sand, sand with scattered rocks, sand and 
gravel, gravel and with scattered rocks, and rocks) 
Level of urbanization (urban, semi-urban, natural) 

Visual corroboration of data from the 
MAGRAMA (2016b) database 

Orientation (North, North-Northeast, Northeast, 
East-Northeast, East, East-South, etc.) 
Morphology (open, supported, Bi-supported, 
enclosed) 

Measurement through a GIS system of 
data from Ecolevante (2006) and EcoMAG 

(2009) 

Population 
Population per town 
Population density (pop/km

2
) 

INE (2016)database 

Climatology 
Ultraviolet (UV) rays 
Average monthly precipitation (mm/month) 
Average hours of sunshine per month (h/month) 

AEMET (2016) database 

Maritime climate 

Average salinity (PSU) 
Average water temperature (°C) 

Puertos del Estado (2016) database 

Wind velocity perpendicular to the coast (m/s) 
Wave height perpendicular to the coast (m) 
Period associated with wave height (s) 

Treatment using AMEVA v.1.4.3 software 
of data from Puertos del Estado (2016) 

database 

Livestock 

Heads of cattle (total number of cattle head/town) 
Goat cattle (number of cattle head/town) 
Sheep cattle (number of cattle head/town) 
Pig cattle (number of cattle head/town) 
Other cattle (number of cattle head/town) 

MAGRAMA (2016a) 

Purification rate 
and 

source discharges 

Purification rate (percentage of purified wastewater) MAGRAMA (2016c) database 

Ravines or rivers 
Distance to ravines or river (m) 
Residual discharges 
Distance to residual discharges (m) 
All discharges (rivers, gullies and waste) 
Distance to any type of discharge (m) 

Measurement through a GIS system of 
data from Ecolevante (2006) and EcoMAG 

(2009) 

Posidonia 
oceanica 

Presence of Posidonia oceanica 
Meadow final depth (m) 
Meadow medium depth (m) 
Meadow initial depth (m) 
Meadow width (m) 

Measurement through a GIS system of 
data from Ecolevante (2006) and EcoMAG 

(2009) 

Stem height (cm) 
Plant density (stems/m

2
) 

Ecolevante (2006) and EcoMAG (2009) 
databases 

 114 
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Escherichia coli concentrations in each of the beaches were obtained from the database published 115 

by Nayade (2016) for the surveys conducted between 2012 and 2016. The data for 2012-2015 were 116 

used for the model adjustment, while the data from 2015-2016 were used for validation. These data 117 

were processed according to Directive 2006/7/EC to obtain P95 values of E. coli in each of the 118 

studied beaches. For more information on sampling, cadence of data collection, detection methods, 119 

etc., see http://nayade.msc.es/Splayas/home.html. 120 

All data on climatology, population and maritime climate refer to the average of the period studied 121 

during the bathing season (May-September). The wave height Hs,12 (wave height exceeded 12 hours 122 

per year or with a probability of being exceeded of 0.137%), its associated mean period (T) and the 123 

median wind speed were calculated using the software AMEVA v1.4.3 (IHCantabria, 2013). 124 

Regarding the physical characteristics, beach morphology was divided into four groups (open, 125 

supported, bi-supported and enclosed) as were proposed by López et al. (2015). The beaches were 126 

classified into 16 groups according to their orientation as follows: A perpendicular line was drawn 127 

from the coastline of each beach, thereby enabling us to read its orientation as given by the wind 128 

rose. A visual inspection of the sediment resulted in a classification into five groups: sand, sand with 129 

scattered rocks, sand and gravel, gravel with scattered rocks, and rocks. The level of urbanization 130 

was obtained from the MAGRAMA (2016b) classification, which follows the guidelines established by 131 

Ariza et al. (2010), distinguishing between urban, semi-urban and natural beaches. 132 

Several types of discharges to the beaches can be found such as: rivers, ravines and residual 133 

discharges. Residual discharges, in turn, can be grouped in five types, according to their origin and 134 

end point: 1) outfall (discharge directly in the beach or nearby); 2) submarine outfall (discharges 135 

more than 500 m from the shoreline); 3) agricultural; 4) diffuse: generic, industrial and storm water; 136 

and 5) WWTP (Wastewater Treatment Plant). A GIS (Geographic Information System) system was 137 

used to measure the distance between each point of discharge and the midpoint of the beach in the 138 

direction of the main wave flow in each zone. The littoral discharge closest to the shoreline was 139 

selected, provided that the distance from the shoreline was less than 2 km. If the distance to the 140 

discharge point was greater than 2 km, it was considered that no discharge existed on the beach.  141 

The characteristics of the Posidonia oceanica meadows (width and depth) were obtained by 142 

measuring the GIS data from Ecolevante (2006) and EcoMAG (2009). The remaining data (plant 143 

density and stem height) were obtained from the files of each of the Posidonia meadows found in 144 

the databases of the previous studies (Ecolevante, 2006; EcoMAG, 2009). For more information 145 

about the variables used see supplementary material 1. 146 

3.2. Mathematical modelling 147 

For the study and modelling of E. coli bacteria in the coastal waters, first the principal component 148 

analysis (PCA) and bivariate correlations were analysed. The bivariate Pearson Correlation produces 149 

a sample correlation coefficient (r) which measures the strength and direction of linear relationships 150 

between pairs of continuous variables. By extension, the Pearson Correlation evaluates whether 151 

there is statistical evidence for a linear relationship among the same pairs of variables in the 152 

population. This methodology is advantageous because it is less sensitive to atypical values and 153 

biased distributions, and works well even when there is strong interaction between input variables 154 

(Liao et al., 2016). 155 
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After the study of correlations, the selection of variables to be included in the different models was a 156 
function of: 157 

- Degree of correlation 158 
- The ease of obtaining the data of the variable 159 
- The relative importance of these variables according to other research 160 

For the generation of mathematical models, several methodologies were used. First, linear models 161 

(S-Plus2000, 1999) and (SPSS12.0., 2003), were determined. From the study of linear models, the 162 

results indicate that the existing relationship is not linear since the estimated regression coefficient 163 

is 0.23. For this reason, numerical models were used. Different numerical models (using data from 164 

the period 2012-2015) were generated using the methodologies based on the finite element method 165 

(Navarro-González and Villacampa, 2013; Navarro-González and Villacampa, 2012) and the 166 

formulation of the Galerkin method (Navarro-González and Villacampa, 2016).  167 

The methodologies of Navarro-González and Villacampa (2012, 2013) are numerical methodologies 168 

that allow the generation of models to represent the relationship between independent variables 169 

and a dependent variable(s), from the interpolation defined in n-dimensional finite element model, 170 

which is generated from the experimental data. The interpolation function implies the use of some 171 

initial conditions, which in the defined methodology implies the coincidence between the values of 172 

the function in a finite number of points. As normally occurs when applying the finite element 173 

method, the model function is obtained in a finite set of points called nodes (Zienkiewicz et al., 174 

1977). In the applied methodologies, an optimization problem based on the determination of the 175 

minimum of an error function, generically defined in a finite element model, was solved. To improve 176 

the speed of resolution when the number of variables used is high (as in the case of some of the 177 

models generated in this paper), the methodology developed by Navarro-González and Villacampa 178 

(2016) was used. 179 

In both methodologies, the experimental data are normalized to the n-dimensional hyper-cube, 180 

given by         . Each interval [0, 1] is divided into c subintervals (c is called the complexity of 181 

the model). A set of    elements and        nodes is generated, where the relationship between 182 

the independent variables and the dependent variable(s) is calculated. For example, if we consider a 183 

3-dimensional geometric model with a complexity c = 4, the total number of elements is 43 = 64. To 184 

determine the output data, the model uses an interpolation function. The minimized error depends 185 

on the methodology used. Thus, in Navarro-González and Villacampa (2012, 2013) the sum of the 186 

squared error (Equation 1) of the values obtained by the interpolation function at each point (zj) and 187 

the initial conditions (Pj) is minimized. While in the methodology based on the Galerkin method 188 

(Navarro-González and Villacampa, 2016), the error (    -the difference between the solution and 189 

its approximation) is minimized by zeroing the integral defined in Equation 2, where NP is the 190 

number of variables in the model,          is the interpolation function used to determine the value of 191 

the model at any point and        is the selected weight function (collocation method, sub-domain 192 

method, Least Square Method, Galerkin method, method of moments). In order to select the 193 

complexity, the generation and validation data of the model are used. Thus, the lower complexity 194 

that offers better results is selected, in order not to overfit the model. 195 

                       
   

    (1) 196 
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                 (2) 197 

The criterion for selecting the optimal model was, first, the R2 value. The coefficient of 198 

determination (R2) allows us to measure the goodness of fit and decide whether the linear 199 

adjustment performed is sufficient or should alternative models be sought. However, for nonlinear 200 

numerical models (as in our case), the value of R2, is a guideline, since a model with a low value of R2 201 

can offer good results. Therefore, to determine the performance of the models and select the 202 

optimal model, the following errors were used: absolute error (Equation 3); mean magnitude of the 203 

relative error (Equation 4); and relative percentage error (Equation 5), which have been previously 204 

used by other authors (Aragonés et al., 2016b; Hashemi et al., 2010; Liu et al., 2012). 205 

          (3) 206 

     
 

 
  

     

  
  

    (4) 207 

   
        

  
   

     
 

 
     

  
   

 (5) 208 

Where ri are the real measured data, oi are the data estimated by the model, n is the number of 209 

data, and p is the number of free parameters. 210 

Numerical models were validated with the 10% of the studied beaches (30 beaches) using 211 

experimental data from subsequent years (2015-2016) to model adjustment data (2012-2015). 212 

Beaches were selected randomly, but taking into account that all the types of studied beaches (type 213 

of sediment, level of urbanization, etc.) were included. 214 

4. Results 215 

Results obtained from linear correlations between the analysed variables and E. coli concentrations 216 

are shown in Table 2. From the table it can be seen that the sun hours, rainfall and goat cattle have a 217 

greater direct influence on E. coli. However, correlation values were generally low, always lower 218 

than 0.35. Furthermore, nine main components, which explain 81.6% of the variance, were obtained 219 

from the PCA (see supplementary material 2). Among these components, the first three explain 220 

more than 52% of the variance. The variables that are more related to the first component are 221 

representative of the livestock, and it is observed that the temperature of the water and UV have 222 

also significant weight. The second component are related to the Posidonia oceanica (stem height (-223 

0.705) and plant density (-0.791)). And in the main variables of the third component are the hours of 224 

sun (-0.814) and the purification rate (0.877), which by their definition have no relation between 225 

them. 226 

Table 2. Study of correlations (r) between studied variables and E. coli. 227 

Variables Correlation (r) Variables Correlation (r) 

Sun hours -0.349 Distance to any type of discharge -0.164 
Rainfall 0.335 Width of meadow -0.162 
Goat cattle 0.308 Temperature -0.148 
Depth final meadow -0.271 Density of beams -0.139 
Depth medium meadow -0.268 Orientation -0.134 
Presence of Posidonia oceanica -0.267 All discharges (rivers, gullies and waste) 0.128 



8 

Others cattle -0.224 Sediment -0.127 
Population density 0.220 Distance to residual discharges -0.122 
Depth beginning of meadow -0.207 Purification rate 0.088 
UV 0.202 Wave period -0.060 
Heads of cattle (total number) -0.194 Level of urbanization -0.059 
Ravines or rivers 0.177 Morphology -0.056 
Salinity 0.176 Sheep cattle -0.045 
Residual discharges -0.175 Distance to ravines or river -0.029 
Wind 0.175 Population 0.017 
Stem height -0.172 Hs,12 -0.004 
Pig cattle -0.165   

 228 

Following the criteria stated in section 3.2 for the selection of variables, more than 20 mathematical 229 

models, using different combinations of the 33 studied variables, were generated to express the 230 

relationship between the variables and the concentration of E. coli in bathing waters. Among the 231 

models there were 6 that provided significant results and they are reproduced in Table 3. 232 

Table 3. Variables used in each of the models. 233 

6 Variables 8 variables 11 variables 11 variables_2 12 variables 13 variables 

Sun hours Sun hours Sun hours Sun hours Sun hours Sun hours 

Rainfall Rainfall Rainfall Rainfall Rainfall Rainfall 

Goat cattle Goat cattle Goat cattle Goat cattle Goat cattle Goat cattle 

UV UV UV UV UV UV 

Population 
density 

Population 
density 

Population 
density 

Population 
density 

Population 
density 

Population 
density 

Presence of 
Posidonia 
oceanica 

Presence of 
Posidonia 
oceanica 

Presence of 
Posidonia 
oceanica 

Presence of 
Posidonia 
oceanica 

Presence of 
Posidonia 
oceanica 

Presence of 
Posidonia 
oceanica 

- 
Level of 

urbanization 
Level of 

urbanization 
Level of 

urbanization 
Level of 

urbanization 
Level of 

urbanization 

- Sediment Sediment Sediment Sediment Sediment 

- - Purification rate Purification rate Purification rate Purification rate 

- - Salinity Salinity Salinity Salinity 

- - 
Distance to 

ravines or rivers 
Distance to any 

type of discharge 
Distance to any 

type of discharge 
Distance to any 

type of discharge 

- - - - Hs,12 Hs,12 

- - - - - Period (T) 

 234 

Fig. 2 shows the R2 values for each of the generated models, with significant results. The values of R2 235 

increase as the complexity of the model and the number of independent variables increase. 236 

However, for more than 11 variables, the value of R2 decreases slightly (12 variables model, R2= 237 

0.775±0.019). Thus, for example, the model with six variables has an R2 value of 0.458±0.037, and for 238 

the 11 variables_2 model is 0.780±0.057, but when the number of variables is increased to 13, the R2 239 

decrease slightly (0.752±0.035). 240 
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 241 
Fig. 2. R

2
 values for each of the studied models. 242 

However, when the errors are analysed, a big difference is observed. Thus, Fig. 3 shows that the 243 

model of eight variables improves by 29.8% the absolute error of the six variables model. When 244 

adding two new variables (models with 11 variables) the mean absolute error decreased (13.1±1.9 245 

CFU/100 ml for 11 variables and 12.8±2.7 CFU/100 ml 11 variables_2). If variables continued to be 246 

added (12 variables) the error decreased to 11.3±1.1 CFU/100 ml. However, when the variables were 247 

increased (13 variables) so did the error 13.5±1.9 CFU/100 ml. As observed, the error of the 13 248 

variables model is similar to 11 variables model but with a greater standard deviation for each of the 249 

studied complexities (2.02 versus 1.35 CFU/100 ml). 250 

 251 
Fig. 3. Absolute error (CFU/100 ml) for each of the studied models. 252 

Regarding the MAPE (Fig. 4a) and the relative percentage error (Fig. 4b) something similar to what 253 

happens with absolute error occurs. As the number of variables and the complexity of the model 254 

increases, errors decrease, reaching the values indicated in the 12 variables model and the 255 

complexity 90 of 27.1±4.1% and 0.370±0.055 for MAPE and relative percentage error, respectively. 256 

However, when the number of variables increases to 13 variables, the mean error is very similar to 257 
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the 11 variables model but the standard deviation increases. For example, for complexity 90, the 258 

MAPE of 13 variables model is 38.3±5.7% and the relative percentage error is 0.372±0.056. 259 

 260 
Fig. 4. a) MAPE and b) relative percentage error, for each of the studied models. 261 

Once the model was chosen (12 variables), the results were validated. As can be seen, the errors 262 

committed during validation (Fig. 5) were very similar to those made during calibration. For the 263 

absolute error, errors increase by a mean of 9.2% (+1.04 CFU/100 ml), except for the model of 264 

complexity 80 where the increase is 17.4% (+1.9 CFU/100 ml). Something similar happens with 265 

MAPE, but with higher increase, reaching 22.1% (+ 11.4%) on average. Finally, the measured data 266 

were compared with the modelled data and the quality limits established by Directive 2006/7/EC 267 

(Fig. 6). The differences observed are small and the quality assigned to the modelled data is the 268 

same as that assigned to the measured data. 269 

 270 
Fig. 5. a) Absolute error and b) MAPE, for validation data. 271 
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 272 
Fig. 6. Measured and modeled data during the model (12 variables and complexity 70) calibration and 273 

validation, for the 30 beaches used for validation. 274 

5. Discussion 275 

Several studies have shown that there is a relationship between gastrointestinal symptoms and the 276 

quality of recreational waters, which is determined by measuring the number of bacteria (Prüss, 277 

1998). Therefore, given the popularity of the use of coastal waters for recreational purposes, quality 278 

minimums must be met (Sardá and Fluviá, 1999). In order to avoid endangering the health of users, 279 

regulators set limits on the maximum concentrations of faecal bacteria in the water. In Europe these 280 

values are described in Directive 2006/7/EC. To know the concentration of faecal bacteria during the 281 

bathing season, regulators carry out costly microbiological analyses once every 2 weeks. In this 282 

study, a model was generated to obtain the concentration of E. coli in coastal bathing waters, in 283 

order to reduce the number of microbiological analyses. 284 

First, the bivariate correlations between the analysed variables and the concentration of E. coli were 285 

studied (Table 2). The variables with the highest direct correlation are: sun hours (-0.349), 286 

precipitation (0.335) and goat cattle (0.308), so these variables are in all models. To these three 287 

variables were added other variables following the criterion described in section 3.2. Thus, the first 288 

model that presented significant results was the 6 variables model (sun hours, rainfall, goat cattle, 289 

presence of Posidonia oceanica, population density and UV), with values of R2 between 0.396-0.504 290 

(Fig. 2), and average absolute error of 25.9 CFU/100 ml. From the PCA, is extracted that there are no 291 

strong relationships between the explanatory variables that have been used later to generate the 292 

models. It is observed that there are no correlation between variables that a priori can be thought 293 

that are possibly correlated to each other, as can be the temperature, the hours of sun and the 294 

ultraviolet radiation. Although, it is true that there is a certain relationship between ultraviolet 295 

radiation and temperature, neither of the two variables has been used together in the generated 296 

models. 297 
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The results of this model (6 variables) confirm the relationship, established by other authors, 298 

between these six variables and the concentration of E. coli. For example, according to Abdelzaher et 299 

al. (2010); Whitman et al. (2004); Zagarese et al. (1998) the concentration of E. coli decreases with 300 

UV, and increases with the low temperatures which is directly related to the hours of sunlight 301 

(Bathingwatercommittee, 2009; Bogosian et al., 1996; Brettar and Höfle, 1992; Sampson et al., 2006; 302 

Smith et al., 1994). Other authors, such as Rijal et al. (2009) indicate the importance of the volume 303 

of precipitation. Higher precipitation influences E. coli concentration in the following ways: i) allows 304 

an increase in bacteria dilution, which could reduce the concentrations (Cho et al., 2010); ii) modifies 305 

salinity conditions of water; iii) runoff waters clean the land surface and drag the pathogens toward 306 

the coast, increasing the bacterial concentration in coastal waters; and iv) Increases the flows of 307 

rivers, ravines, rainwater, which flow out to sea with all kinds of contaminants, such as animal 308 

defecations (Gibbs, 2001). This last point, could explain the high correlation obtained between the 309 

goat cattle and the E. coli, since in the studied area, goats usually freely graze on pastures (Meseguer 310 

and Espín, 2001), while the other livestock (bovine, porcine, etc.) are characterized by intensive, 311 

farms, and their excreta accumulate in the barn and are used as manure in agriculture (Ferrer et al., 312 

2000). Meanwhile, Hammami et al. (2013) and Luzi et al. (2016) observed that Posidonia oceanica 313 

has an antibacterial function against E. coli bacteria. 314 

Moreover, population density during the bathing season has a significant influence on bacterial 315 

concentration, due to the drastic increase in the number of users (Ariza et al., 2010). Also, urban 316 

development in the beach environment generally worsens the water quality of the beach. Ariza et al. 317 

(2008) observed that urban sandy beaches are the most affected by bacterial contamination since 318 

they are more accessible and accommodate more bathers. In addition, several recent studies 319 

indicate that bacterial indices may be associated with sewer leakage (generally ubiquitous in urban 320 

areas) due to aging infrastructure (Sercu et al., 2009). The type of sediment also influences the 321 

concentration of bacteria, because E. coli is able to reproduce in the sand if the necessary conditions 322 

of nutrients, predators and environmental conditions occur (Alm et al., 2006; Yamahara et al., 2007), 323 

where it can persist for longer and then be transferred to the sea. In addition, the smaller the 324 

sediment size, the greater the number of particles that can be suspended when the waves break, 325 

making it difficult to purify water by UV (Abdelzaher et al., 2010; Haugland et al., 2005; Salcedo et 326 

al., 2002). The degree of urbanization and the sediment type has a significant influence on bacterial 327 

concentration, as confirmed by the results of the 8 variables model, which decreases the absolute 328 

error by 30%, although it is higher than 16 CFU/100 ml (Fig. 3). 329 

The models that showed improvement —11, 12 and 13 variables models— included salinity which is 330 

inversely correlated to E. coli (Aragonés et al., 2016a; Mallin et al., 2000), the purification ratio and 331 

the distance to discharges. It was observed that the distance from the rivers or ravines to the beach 332 

is important (Fig. 3-5), since there is a great improvement in the results when this variable is added 333 

to the models (improvement of 28% against the 8 variables model). However, the distance to any 334 

type of discharge is more important, because to replace the variable "distance to rivers and ravines" 335 

by the variable "distance to any type of discharge" the improvement is 35%. This is logical 336 

considering that the purification ratio of wastewaters is usually not 100%, but they are treated to 337 

eliminate the highest possible percentage of pollution and then are discharged into the sea to 338 

continue the purification process (Yamahara et al., 2007). In addition, other studies have observed 339 

that areas located near agricultural or similar discharges present a higher concentration of faecal 340 

bacteria than those located near other kind of discharges (Palazón et al., 2017). This can be due to 341 
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the trapping of fertilizers and contaminants of the irrigation waters, as well as to the lack of 342 

regulation and control in the discharge of these waters into the sea. 343 

The incident wave (Hs, 12) and its related period are intimately linked to the discharges and their 344 

distance to the beach, since currents may move the discharges onshore or offshore. It has also been 345 

observed that, generally, beaches whose coasts are parallel to the wave front have a higher 346 

concentration of bacteria (Palazón et al., 2017), perhaps because of the turbidity that is generated 347 

when the wave breaks. This explains the improvement that occurs in the modelling by including the 348 

wave height as input variable. Although the absolute error is similar to that of the 11 variables model 349 

(11.4 vs. 12.8 CFU/100 ml, Fig. 3), the MAPE is much lower (29.3% vs. 43.8%, Fig. 4a). However, 350 

including the period in the models does not improve the results, they are even slightly worse (11.35 351 

vs. 13.09 CFU/100 ml, Fig. 3). 352 

For validation, unlike conventional models that use a percentage of the set data to calibrate the 353 

model and the rest for validation, in this study, a set of data from the 2015-2016 bathing season was 354 

used whereas data from 2012-2015 was introduced into calibration model. The data used for 355 

validation come from 30 beaches, randomly selected, but taking into account that they include all 356 

the types and degrees of urbanization, sediment, etc. The errors during the validation are similar to 357 

the errors during calibration (Fig. 5), which means that the model is valid and not over-adjusted. If 358 

the model were over-adjusted, when different data are used for validation the results would be 359 

much worse than the results of the calibration. 360 

Finally, the analysis of the models shows that there are two types of variables: i) variables directly 361 

related to humans or their activity (population density, livestock, level of urbanization and 362 

purification ratio); and ii) variables related to the environment (rainfall, UV, sunshine hours, 363 

Posidonia oceanica, sediment and salinity). Therefore, we can affirm that except for important 364 

modifications in the analysed variables, the concentrations of E. coli will remain more or less stable. 365 

In that case, the model can replace microbiological analysis, which could be performed only once 366 

during each bathing season (rather than every two weeks) in order to corroborate the model results. 367 

This study also shows that in order to further improve the results of the models, the effect of 368 

currents, tides, or sediment transport should be included in future studies.  369 

6. Conclusion 370 

Quality control and monitoring of bathing water based on measuring the concentration of faecal 371 

bacteria, such as E. coli, requires numerous microbiological analyses. The objective of this study to 372 

obtain a model that enables the measurement of E. coli in coastal bathing waters in order to reduce 373 

the microbiological analyses has been achieved. From the analysis of the results and the models that 374 

were generated, the following conclusions can be made:  375 

- The relationship between the studied variables and the concentration of E. coli is not linear, 376 

which is confirmed by the study of correlations and the poor results of the linear models. 377 

- The model with the best results is the 12 variables model and complexity 70, obtaining an 378 

mean absolute error of 10.6±1.5 CFU/100 ml and a MAPE of 29.9±4.5% 379 

- The most important variables are: sun hours, rainfall, goat cattle, UV, presence of Posidonia 380 

oceanica, population density, level of urbanization, type of sediment, purification ratio, 381 

salinity, distance to the nearest discharge, and wave height perpendicular to the coast. 382 



14 

Acknowledgements 383 

The authors thank the Ministerio de Agricultura, Alimentación y Medio Ambiente, and Organismo 384 

Público Puertos del Estado, for the information they provided has enabled this study. 385 

REFERENCIAS 386 

Abdelzaher, A.M.; Wright, M.E.; Ortega, C.; Solo-Gabriele, H.M.; Miller, G.; Elmir, S.; Newman, X.; 387 
Shih, P.; Bonilla, J.A., and Bonilla, T.D., 2010. Presence of pathogens and indicator microbes 388 
at a non-point source subtropical recreational marine beach. Applied and Environmental 389 
Microbiology, 76(3), 724-732. 390 

Ackerman, D. and Weisberg, S.B., 2003. Relationship between rainfall and beach bacterial 391 
concentrations on Santa Monica Bay beaches. Journal of Water and Health, 1(2), 85-89. 392 

Aemet. 2016. Agencia Estatal de Meteorología [Online]. Ministerio de Agricultura, Alimentación y 393 
Medio Ambiente, Gobierno de España. Available: 394 
www.aemet.es/es/idi/clima/registros_climaticos. 395 

Alm, E.W.; Burke, J., and Hagan, E., 2006. Persistence and potential growth of the fecal indicator 396 
bacteria, Escherichia coli, in shoreline sand at Lake Huron. Journal of Great Lakes Research, 397 
32(2), 401-405. 398 

Aragonés, L.; López, I.; Palazón, A.; López-Úbeda, R., and García, C., 2016a. Evaluation of the quality 399 
of coastal bathing waters in Spain through fecal bacteria Escherichia coli and Enterococcus. 400 
Science of The Total Environment, 566–567, 288-297. 401 

Aragonés, L.; Villacampa, Y.; Navarro-González, F.J., and López, I., 2016b. Numerical modelling of the 402 
equilibrium profile in Valencia (Spain). Ocean Engineering, 123, 164-173. 403 

Ariza, E.; Jiménez, J.A., and Sardá, R., 2008. A critical assessment of beach management on the 404 
Catalan coast. Ocean & Coastal Management, 51(2), 141-160. 405 

Ariza, E.; Jimenez, J.A.; Sarda, R.; Villares, M.; Pinto, J.; Fraguell, R.; Roca, E.; Marti, C.; Valdemoro, H., 406 
and Ballester, R., 2010. Proposal for an integral quality index for urban and urbanized 407 
beaches. Environmental Management, 45(5), 998-1013. 408 

Bathingwatercommittee, 2009. Bathing Water Profiles: Best Practice and Guidance. European 409 
Enviroment Agency. EC DG ENV 2009 URL: http://ec.europa.eu/environment/water/water-410 
bathing/pdf/profiles_dec_2009.pdf. 411 

Beckinghausen, A.; Martinez, A.; Blersch, D., and Haznedaroglu, B.Z., 2014. Association of nuisance 412 
filamentous algae Cladophora spp. with E. coli and Salmonella in public beach waters: 413 
impacts of UV protection on bacterial survival. Environmental Science: Processes & Impacts, 414 
16(6), 1267-1274. 415 

Bogosian, G.; Sammons, L.E.; Morris, P.; O'neil, J.P.; Heitkamp, M.A., and Weber, D.B., 1996. Death of 416 
the Escherichia coli K-12 strain W3110 in soil and water. Applied and Environmental 417 
Microbiology, 62(11), 4114-4120. 418 

Brettar, I. and Höfle, M., 1992. Influence of ecosystematic factors on survival of Escherichia coli after 419 
large-scale release into lake water mesocosms. Applied and Environmental Microbiology, 420 
58(7), 2201-2210. 421 

Brooks, C.P.; Antonovics, J., and Keitt, T.H., 2008. Spatial and temporal heterogeneity explain disease 422 
dynamics in a spatially explicit network model. The American Naturalist, 172(2), 149-159. 423 

Callahan, K.M.; Taylor, D.J., and Sobsey, M.D., 1995. Comparative survival of hepatitis A virus, 424 
poliovirus and indicator viruses in geographically diverse seawaters. Water Science and 425 
Technology, 31(5–6), 189-193. 426 

Cho, K.H.; Cha, S.M.; Kang, J.-H.; Lee, S.W.; Park, Y.; Kim, J.-W., and Kim, J.H., 2010. Meteorological 427 
effects on the levels of fecal indicator bacteria in an urban stream: A modeling approach. 428 
Water Research, 44(7), 2189-2202. 429 

http://www.aemet.es/es/idi/clima/registros_climaticos
http://ec.europa.eu/environment/water/water-bathing/pdf/profiles_dec_2009.pdf
http://ec.europa.eu/environment/water/water-bathing/pdf/profiles_dec_2009.pdf


15 

Ecolevante 2006. Estudio ecocartográfico del litoral de las provincias de Alicante y Valencia, 430 
Dirección General de Costas, Ministerio de Medio Ambiente, Spain, [Available online: 431 
http://www.mapama.gob.es/es/costas/temas/proteccion-432 
costa/ecocartografias/ecocartografia-alicante.aspx]. 433 

Ecomag 2009. Estudio ecocartográfico de las provincias de Granada, Almería y Murcia., Dirección 434 
General de Costas, Ministerio de Medio Ambiente, Spain [Available online: 435 
http://www.mapama.gob.es/es/costas/temas/proteccion-436 
costa/ecocartografias/ecocartografia-murcia.aspx]. 437 

Englebert, E.T.; Mcdermott, C., and Kleinheinz, G.T., 2008. Impact of the Alga Cladophora on the 438 
Survival of E. coli, Salmonella, and Shigella in Laboratory Microcosm. Journal of Great Lakes 439 
Research, 34(2), 377-382. 440 

Faust, K. and Raes, J., 2012. Microbial interactions: from networks to models. Nat Rev Micro, 10(8), 441 
538-550. 442 

Ferrer, M.; Monge, E., and Orus, F., 2000. Quantification of nitrogen chemical forms of pig slurries by 443 
different analytic methods. Anaporc, 86-101. 444 

Frikha, F.; Kammoun, M.; Hammami, N.; Mchirgui, R.; Belbahri, L.; Gargouri, Y.; Miled, N., and Ben-445 
Rebah, F., 2011. Chemical composition and some biological activities of marine algae 446 
collected in Tunisia Composición química y algunas actividades biológicas de algas marinas 447 
recolectadas en Túnez. Ciencias Marinas, 37(2), 113-124. 448 

Gantzer, C.; Maul, A.; Audic, J., and Schwartzbrod, L., 1998. Detection of infectious enteroviruses, 449 
enterovirus genomes, somatic coliphages, and Bacteroides fragilis phages in treated 450 
wastewater. Applied and Environmental Microbiology, 64(11), 4307-4312. 451 

Gibbs, M.T., 2001. Aspects of the structure and variability of the low‐salinity‐layer in Doubtful Sound, 452 
a New Zealand fiord. New Zealand Journal of Marine and Freshwater Research, 35(1), 59-72. 453 

Grayson, R.; Kay, P., and Foulger, M., 2008. The use of GIS and multi-criteria evaluation (MCE) to 454 
identify agricultural land management practices which cause surface water pollution in 455 
drinking water supply catchments. Water Science and Technology, 58(9), 1797-1802. 456 

Hammami, S.; Salem, A.B.; Ashour, M.L.; Cheriaa, J.; Graziano, G., and Mighri, Z., 2013. A novel 457 
methylated sesquiterpene from seagrass Posidonia oceanica (L.) Delile. Natural product 458 
research, 27(14), 1265-1270. 459 

Hashemi, M.R.; Ghadampour, Z., and Neill, S.P., 2010. Using an artificial neural network to model 460 
seasonal changes in beach profiles. Ocean Engineering, 37(14–15), 1345-1356. 461 

Haugland, R.A.; Siefring, S.C.; Wymer, L.J.; Brenner, K.P., and Dufour, A.P., 2005. Comparison of 462 
Enterococcus measurements in freshwater at two recreational beaches by quantitative 463 
polymerase chain reaction and membrane filter culture analysis. Water Research, 39(4), 559-464 
568. 465 

Ihcantabria 2013. Análisis Matemático y Estadístico de Variables Medioambientales (AMEVA). In: 466 
CANTABRIA, U.D. (ed.). Cantabria, Spain. Available online: http://ihameva.ihcantabria.com/. 467 

Ine. 2016. Instituto Nacional de Estadística [Online]. Available: 468 
www.ine.es/inebaseDYN/cp30321/cp_inicio.htm. 469 

Kelsey, H.; Porter, D.E.; Scott, G.; Neet, M., and White, D., 2004. Using geographic information 470 
systems and regression analysis to evaluate relationships between land use and fecal 471 
coliform bacterial pollution. Journal of Experimental Marine Biology and Ecology, 298(2), 472 
197-209. 473 

Knothe, G.J., 2012. The influence of urbanization on streams: The use of GIS spatial analysis to study 474 
land use influence on fish communities, water quality and physical habitats in Southeast 475 
Texas. The University of Houston Clear Lake, Master's thesis, p. 476 

Liao, H.; Krometis, L.-a.H., and Kline, K., 2016. Coupling a continuous watershed-scale microbial fate 477 
and transport model with a stochastic dose-response model to estimate risk of illness in an 478 
urban watershed. Science of The Total Environment, 551–552, 668-675. 479 

http://www.mapama.gob.es/es/costas/temas/proteccion-costa/ecocartografias/ecocartografia-alicante.aspx%5d
http://www.mapama.gob.es/es/costas/temas/proteccion-costa/ecocartografias/ecocartografia-alicante.aspx%5d
http://www.mapama.gob.es/es/costas/temas/proteccion-costa/ecocartografias/ecocartografia-murcia.aspx%5d
http://www.mapama.gob.es/es/costas/temas/proteccion-costa/ecocartografias/ecocartografia-murcia.aspx%5d
http://ihameva.ihcantabria.com/
http://www.ine.es/inebaseDYN/cp30321/cp_inicio.htm


16 

Liu, H.; Tian, H.-Q., and Li, Y.-F., 2012. Comparison of two new ARIMA-ANN and ARIMA-Kalman 480 
hybrid methods for wind speed prediction. Applied Energy, 98, 415-424. 481 

López, I.; Aragonés, L.; Villacampa, Y.; Compañ, P., and Satorre, R., 2015. Morphological classification 482 
of microtidal sand and gravel beaches. Ocean Engineering, 109, 309-319. 483 

Luzi, F.; Fortunati, E.; Jiménez, A.; Puglia, D.; Chiralt, C., and Torre, L., 2016. PLA Nanocomposites 484 
Reinforced with Cellulose Nanocrystals from Posidonia oceanica and ZnO Nanoparticles for 485 
Packaging Application. Journal of Renewable Materials, In press, Available online 486 
http://www.ingentaconnect.com/content/scrivener/jrm/pre-prints/content-jrm-2016-0051. 487 

Magrama. 2016a. Encuestas Ganaderas, análisis del número de animales por tipos [Online]. 488 
Ministerio de Agricultura, Alimentación y Medio Ambiente, Gobierno de España. Available: 489 
www.mapama.gob.es/es/estadistica/temas/estadisticas-agrarias/ganaderia/encuestas-490 
ganaderas/ 2016]. 491 

Magrama. 2016b. Guía de playas [Online]. Ministerio de Agricultura, Alimentación y Medio 492 
Ambiente, Gobierno de España. Available: www.mapama.gob.es/es/costas/servicios/guia-493 
playas/ 2016]. 494 

Magrama. 2016c. Saneamiento y depuración [Online]. Ministerio de Agricultura, Alimentación y 495 
Medio Ambiente, Gobierno de España. Available: www.mapama.gob.es/es/cartografia-y-496 
sig/ide/descargas/agua/saneamiento-y-depuracion.aspx 2016]. 497 

Mallin, M.A.; Williams, K.E.; Esham, E.C., and Lowe, R.P., 2000. Effect of human development on 498 
bacteriological water quality in coastal watersheds. Ecological applications, 10(4), 1047-499 
1056. 500 

May, C.W.; Horner, R.R.; Karr, J.R.; Mar, B.W., and Welch, E.B., 1999. Effects of urbanization on small 501 
streams in the Puget Sound ecoregion. Watershed Protection Techniques, 2(4), 79. 502 

Mclellan, S.L., 2004. Genetic diversity of Escherichia coli isolated from urban rivers and beach water. 503 
Applied and Environmental Microbiology, 70(8), 4658-4665. 504 

Mcquaig, S.; Griffith, J., and Harwood, V.J., 2012. Association of fecal indicator bacteria with human 505 
viruses and microbial source tracking markers at coastal beaches impacted by nonpoint 506 
source pollution. Applied and Environmental Microbiology, 78(18), 6423-6432. 507 

Meseguer, E.G. and Espín, J.M.G., 2001. La ganadería de la Región de Murcia en el periodo 1960-508 
2000. Papeles de geografía, 34, 163-190. 509 

Mill, A.; Schlacher, T., and Katouli, M., 2006. Tidal and longitudinal variation of faecal indicator 510 
bacteria in an estuarine creek in south-east Queensland, Australia. Marine Pollution Bulletin, 511 
52(8), 881-891. 512 

Navarro-González, F.J. and Villacampa, Y., 2012. A new methodology for complex systems using n-513 
dimensional finite elements. Advances in Engineering Software, 48, 52-57. 514 

Navarro-González, F.J. and Villacampa, Y., 2013. Generation of representation models for complex 515 
systems using Lagrangian functions. Advances in Engineering Software, 64, 33-37. 516 

Navarro-González, F.J. and Villacampa, Y., 2016. A finite element numerical algorithm for modelling 517 
and data fitting in complex systems. International Journal of Computational Methods and 518 
Experimental Measurements, 4(2), 100-113. 519 

Nayade. 2016. Sistema de Información Nacional de Aguas de Baño [Online]. Madrid, Spain. Available: 520 
http://nayade.msc.es/Splayas/home.html. 521 

Palazón, A.; Aragonés, L.; López, I.; López-Úbeda, R., and Saval, J.M., 2017. Determination of the 522 
most influential factors in the concentration of bacteria in coastal waters. International 523 
Journal of Environmental Impacts, In press. 524 

Partyka, M.L.; Bond, R.F.; Chase, J.A., and Atwill, E.R., 2017. Monitoring bacterial indicators of water 525 
quality in a tidally influenced delta: A Sisyphean pursuit. Science of The Total Environment, 526 
578, 346-356. 527 

Prüss, A., 1998. Review of epidemiological studies on health effects from exposure to recreational 528 
water. International Journal of Epidemiology, 27(1), 1-9. 529 

http://www.ingentaconnect.com/content/scrivener/jrm/pre-prints/content-jrm-2016-0051
http://www.mapama.gob.es/es/estadistica/temas/estadisticas-agrarias/ganaderia/encuestas-ganaderas/
http://www.mapama.gob.es/es/estadistica/temas/estadisticas-agrarias/ganaderia/encuestas-ganaderas/
http://www.mapama.gob.es/es/costas/servicios/guia-playas/
http://www.mapama.gob.es/es/costas/servicios/guia-playas/
http://www.mapama.gob.es/es/cartografia-y-sig/ide/descargas/agua/saneamiento-y-depuracion.aspx
http://www.mapama.gob.es/es/cartografia-y-sig/ide/descargas/agua/saneamiento-y-depuracion.aspx
http://nayade.msc.es/Splayas/home.html


17 

Puertos Del Estado. 2016. Puertos del Estado [Online]. Madrid, Spain: Ministerio de Fomento. 530 
Gobierno de España. Available: http://www.puertos.es/en-531 
us/oceanografia/Pages/portus.aspx. 532 

Rijal, G.; Petropoulou, C.; Tolson, J.K.; Deflaun, M.; Gerba, C.; Gore, R.; Glymph, T.; Granato, T.; 533 
O'connor, C.; Kollias, L., and Lanyon, R., 2009. Dry and wet weather microbial 534 
characterization of the Chicago area waterway system. Water Science and Technology, 60(7), 535 
1847-1855. 536 

Ríos, N.; Medina, G.; Jiménez, J.; Yánez, C.; García, M.Y.; Di Bernardo, M.L., and Gualtieri, M., 2009. 537 
Actividad antibacteriana y antifúngica de extractos de algas marinas venezolanas. Revista 538 
Peruana de Biología, 16, 97-100. 539 

S-Plus2000 1999. Guide to statistics, Mathsoft, Inc. 540 
Salcedo, I.; Andrades, J.A.; Quiroga, J.M., and Nebot, E., 2002. Desinfección de aguas residuales 541 

urbanas mediante radiación ultravioleta: Aplicación el la EDAR de Jerez de la Frontera. 542 
Tecnología del Agua, (227), 42-56. 543 

Sampson, R.W.; Swiatnicki, S.A.; Osinga, V.L.; Supita, J.L.; Mcdermott, C.M., and Kleinheinz, G.T., 544 
2006. Effects of temperature and sand on E. coli survival in a northern lake water 545 
microcosm. Journal of Water and Health, 4(3), 389-393. 546 

Sardá, R.; Avila, C., and Mora, J., 2005. A methodological approach to be used in integrated coastal 547 
zone management processes: the case of the Catalan Coast (Catalonia, Spain). Estuarine, 548 
Coastal and Shelf Science, 62(3), 427-439. 549 

Sardá, R. and Fluviá, M. 1999. Tourist Development in the Costa Brava (Girona, Spain): A 550 
Quantification of Pressures on the Coastal Environment. In: SALOMONS, W., TURNER, R.K., 551 
LACERDA, L.D.andRAMACHANDRAN, S. (eds.) Perspectives on Integrated Coastal Zone 552 
Management. Berlin, Heidelberg: Springer Berlin Heidelberg. 553 

Sercu, B.; Werfhorst, L.C.V.D.; Murray, J., and Holden, P.A., 2009. Storm Drains are Sources of 554 
Human Fecal Pollution during Dry Weather in Three Urban Southern California Watersheds. 555 
Environmental Science & Technology, 43(2), 293-298. 556 

Smith, P.; Hiney, M.P., and Samuelsen, O.B., 1994. Bacterial resistance to antimicrobial agents used 557 
in fish farming: A critical evaluation of method and meaning. Annual Review of Fish Diseases, 558 
4, 273-313. 559 

Spss12.0. 2003. Guide to statistics, Mathsoft, Inc. 560 
Stewart, J.R.; Gast, R.J.; Fujioka, R.S.; Solo-Gabriele, H.M.; Meschke, J.S.; Amaral-Zettler, L.A.; Del 561 

Castillo, E.; Polz, M.F.; Collier, T.K., and Strom, M.S., 2008. The coastal environment and 562 
human health: microbial indicators, pathogens, sentinels and reservoirs. Environmental 563 
Health, 7(2), 1-14. 564 

Vanden Heuvel, A.; Mcdermott, C.; Pillsbury, R.; Sandrin, T.; Kinzelman, J.; Ferguson, J.; Sadowsky, 565 
M.; Byappanahalli, M.; Whitman, R., and Kleinheinz, G.T., 2010. The Green Alga, Cladophora, 566 
Promotes Escherichia coli Growth and Contamination of Recreational Waters in Lake 567 
Michigan All rights reserved. No part of this periodical may be reproduced or transmitted in 568 
any form or by any means, electronic or mechanical, including photocopying, recording, or 569 
any information storage and retrieval system, without permission in writing from the 570 
publisher. Journal of Environmental Quality, 39(1), 333-344. 571 

W.H.O. 2003. Guidelines for safe recreational water environments: Coastal and fresh waters, World 572 
Health Organization. 573 

Whitman, R.L.; Nevers, M.B.; Korinek, G.C., and Byappanahalli, M.N., 2004. Solar and temporal 574 
effects on Escherichia coli concentration at a Lake Michigan swimming beach. Applied and 575 
Environmental Microbiology, 70(7), 4276-4285. 576 

Winter, J. and Duthie, H., 1998. Effects of urbanization on water quality, periphyton and invertebrate 577 
communities in a southern Ontario stream. Canadian Water Resources Journal, 23(3), 245-578 
257. 579 

http://www.puertos.es/en-us/oceanografia/Pages/portus.aspx
http://www.puertos.es/en-us/oceanografia/Pages/portus.aspx


18 

Yamahara, K.M.; Layton, B.A.; Santoro, A.E., and Boehm, A.B., 2007. Beach Sands along the California 580 
Coast Are Diffuse Sources of Fecal Bacteria to Coastal Waters. Environmental Science & 581 
Technology, 41(13), 4515-4521. 582 

Zagarese, H.E.; Cravero, W.; Gonzalez, P., and Pedrozo, F., 1998. Copepod mortality induced by 583 
fluctuating levels of natural ultraviolet radiation simulating vertical water mixing. Limnology 584 
and oceanography, 43(1), 169-174. 585 

Zienkiewicz, O.C.; Taylor, R.L., and Taylor, R.L. 1977. The finite element method, McGraw-hill London. 586 

 587 

 588 




