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ABSTRACT 13 

This article focuses on the optimal architecture of the neural network for determining 14 

the three characteristic points of the bars (starting, crest and final point). For the 15 

definition of the network, precision profiles, sedimentological and wave data were 16 

used. A total of 209 profiles taken for 22 years was used. The inputs were analysed and 17 

selected considering the variables that influenced the formation of the bars and their 18 

movement. 19 

For the selection of the optimal model different architectures were studied, generating 20 

50 models for each of them and selecting with better results and with the smaller 21 

number of neurons in the hidden layer. To evaluate the performance of the model, 22 

various statistical errors were used (absolute error, mean magnitude of relative error 23 

and percentage relative error), with an average absolute error of 17.3 m in the 24 

distances to the coast and 0.26 m in the depths. The results were compared with 25 

equations currently employed (Table 1), which show that the errors generated by the 26 

ANN (Artificial Neural Network) are much lower (per example the MAPE committed by 27 

the proposed equation for distance to shore of the crest is 47%, while the ANN is made 28 

of 29%). 29 

Keywords: sand bar beaches; artificial neural networks; precision profiles 30 

31 

1. INTRODUCTION32 
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The sandbars are important morphological characteristics of the beaches, and changes 33 

in position and height of sandbars are the main cause of a variability profile (Lippmann 34 

and Holman, 1990). Bars affect the waves and currents near the coast, which result in 35 

sediment transport and morphological evolution, including erosion and accretion of 36 

beaches (Kuriyama, 2002). 37 

The cross-shore movement of the bars is necessary for the artificial regeneration of 38 

beaches. Apparently, the cross-shore displacement of the nourished sand depends 39 

largely on the location of the nourishment within the active zone. Spanhoff et al. 40 

(2005) suggested that shore-face nourishments placed above the bars location, tend to 41 

remain in the same position; whereas, nourishments placed further offshore of this 42 

position tend to migrate onshore, until they reach this location. Finally, when the sand 43 

is placed in the trough between the middle and the outer bar, the trough is newly 44 

formed within some months and the sand from the nourishment is incorporated into 45 

the bar system, contributing to the formation of a higher onshore bar. Another 46 

important factor is to condition the transport of sediment and pollutants (Short et al., 47 

1996) and also biota (Jumars and Nowell, 1984). During storms, waves breaking over 48 

the crest of the bar creates strong currents near the bottom directed offshore 49 

(undertow) and lead to the migration of the bar to the sea (Gallagher et al., 1998; 50 

Hoefel and Elgar, 2003; Ruessink et al., 2009; Thornton et al., 1996). The beaches 51 

eroded by storms, at least partially recover sediment transport and migration to 52 

ground rods using less energy (Aubrey, 1979; Elgar et al., 2001; Hoefel and Elgar, 2003; 53 

Ruessink et al., 2009). 54 

Among the models needed for the evolution of the cross-shore profile (including bars) 55 

supported by field observations, the type of energy models grounded in sediment 56 

transport is highlighted (based on Bagnold (1966)). These relate sediment transport to 57 

the flow near the bottom. Thus, we find the model proposed by Thornton et al. (1996) 58 

which uses the measured velocities near the bottom for 10 days in a beach profile of 59 

Duck, North Carolina, to promote a model of energy transport. Gallagher et al. (1998) 60 

also tested the Bailard (1981) model using field data. Hoefel and Elgar (2003) showed 61 

that the addition of dependent transport of acceleration-asymmetry and the Bailard 62 

(1981) model led to accurate predictions of bar migrations both to the coast and to 63 

sea. Henderson et al. (2004) simulated the bar migration by combining measurements 64 

of the water velocity and a bottom boundary layer model for wave-induced sediment 65 

transport. Gallagher et al. (1998), Hoefel and Elgar (2003), Henderson et al. (2004) 66 

compared the results of its models with the data collected during the field experiment 67 

conducted in Duck94 (1994), where elevation data, pressure and currents were 68 

collected in nine profiles between the months of August and October (Birkemeier and 69 

Thornton, 1994). 70 
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Furthermore, various researchers have proposed more or less simple equations to 71 

determine the characteristic points of the bars (Table 1), such as the onset, peak and 72 

end of the bar, based on experiments conducted in flumes. Horikawa et al. (1973) 73 

proposed a simple expression to determine the distance from the crest of the bar to 74 

the shoreline, which depended on the steepness (Ho/Lo), the wavelength (Lo), the 75 

period (T) and the test duration (t). Meanwhile, Larson and Kraus (1989), studied the 76 

profiles of erosion and accretion and proposed a formula for the height of the crest 77 

and the volume of the bar using experimental data. Silvester and Hsu (1997) 78 

determined the parameters of the beach profile by non-linear regression techniques 79 

using various experimental data obtained from previous work. 80 

Hsu (1998) after a series of experiments conducted using a three-dimensional model 81 

on a flume with moving bed, having two types of earrings, two angles of swell and 82 

different steepness of erosive waves, obtained a series of empirical relationships 83 

between characteristic geometric profile of a storm and the modified Iribarren number 84 

(Equation 1). This model includes the effects of the slope of the beach (m), the angle of 85 

incidence of the breaking wave (θb) and the steepness (Ho/Lo), where Ho and Lo are the 86 

height of wave and the wavelength in deep water respectively. 87 

   
 

      
      (1) 88 

More recently, Günaydın and Kabdaşlı (2005) also studied the parameters of the bar 89 

using physical models under conditions of regular and irregular wave flume. They 90 

determined the position of the bars using the obtubieron model parameters, related 91 

functions using linear regression techniques, and compared with other functions 92 

obtained using similar techniques. 93 

Kömürcü et al. (2007) presented a series of equations to determine the position and 94 

depth of the ridge, the distance to break even (starting point of the bar and after a 95 

certain period of trial, when equilibrium is reached), the distance to the end (the end 96 

of the short bar with the initial profile) and the volume of the bar. To achieve this, they 97 

conducted 80 tests on flume with different wave heights and period, varying initial 98 

slopes of bed sediments and at different sizes (0.18, 0.26, 0.33 and 0.40 mm). These 99 

equations are compared with other equations proposed by other authors (Günaydın 100 

and Kabdaşlı, 2005; Hallermeier, 1978; Hsu, 1998; Larson and Kraus, 1989; Silvester 101 

and Hsu, 1997). 102 

Demirci and Aköz (2013) by regression analysis of the data obtained in Demirci and 103 

Aköz (2012), functions such as linear and hyperbolic type are obtained, being the 104 

hyperbolic function which obtains greater regression coefficient for all parameters. 105 

These equations and results are compared with other equations proposed above. 106 

Based on the equation, Silvester and Hsu (1997) proposed more results, which is 107 

closest to the results, while the equations proposed by Günaydın and Kabdaşlı (2005) 108 
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and Kömürcü et al. (2007) were those that performed least. The equations proposed 109 

by each of the authors cited above are presented in Table 1, where Ho and Lo are the 110 

height of wave and the wavelength in deep water respectively. Hb is the breaking wave 111 

height, T is the period, t test duration, d50 is the median sediment size, w is the fall 112 

velocity of the sediment and m is the slope. The breaking wave height is obtained from 113 

the formula proposed by Komar and Gaughan (1972) (Equation 2). 114 

                       (2) 115 

Table 1. Equations currently used for determining the parameters of the bars. 116 

On the other hand, artificial neural networks (ANNs) have been used to determine the 117 

position of the sandbars (Pape et al., 2007). However, this study only determines the 118 

distance to the shoreline, since the data were obtained from video images, so that the 119 

volume or the depth of the crest could not be determined. Neural network models are 120 

reliable to predict many aspects of cross-shore sandbar behaviour, such as rapid 121 

migration during storms offshore, onshore slower return during quiet periods, 122 

seasonal cycles and annual to inter-annual offshore-directed trends (Pape et al., 2010; 123 

Pape and Ruessink, 2011). ANN was also used by Demirci et al. (2015)to estimate the 124 

bar volume using several parameters such as bottom slope, wave period, median 125 

sediment diameter, wave steepness, showing that the presented ANN model provides 126 

better estimates for the bar volume than the other models like: multi-linear regression 127 

(MLR) models, Kömürcü et al. (2007), Larson and Kraus (1989) or Silvester and Hsu 128 

(1997). Furthermore, ANN models have been used successfully in other applications 129 

related to coastal engineering such as prediction of coastal erosion (Tsekouras et al., 130 

2015), form plan geometry of bay beaches (Iglesias et al., 2009), coastline extraction 131 

(Rigos et al., 2016b), model seasonal changes in beach profiles (Hashemi et al., 2010), 132 

beach rotation (Rigos et al., 2016a), etc. 133 

The aim of this study is to generate a neural network to determine the three 134 

characteristic points of the bar (start, peak and end) from empirical data collected for 135 

over 22 years of study. The results obtained are compared with the results from the 136 

equations (Table 1) proposed by various authors for each of the parameters studied. 137 

2. STUDY AREA 138 

The study area is located to the north and south of the port in Valencia (Spain) (Figure 139 

1). It is a micro tidal area with astronomical tides ranging between 20 and 30 cm, 140 

which together with the meteorological tides can get up to 75 cm. It consists of fine 141 

sandy beach, with average sizes of sediments ranging from 0.172 mm to 0.452 mm 142 

(Ecolevante, 2006). The six beaches that constitute the study area cover a length of 143 

17.7 km and two morphodynamic units. The first one, north of the port, with an 144 

approximate length of 5 km, includes the beaches of Cabanyal-Malvarrosa (P1N), La 145 

Patacona (P2N and P3N) and Port Saplaya (P4N). In the second unit, south of the port, 146 
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are the beaches of Pinedo (P1S and P2S), El Saler (P3S and P4S) and La Dehesa (P5S). 147 

The nomenclature used corresponds to the code of the profiles analysed in the study 148 

area (Figure 1). 149 

Figure 1. Localization of the study area. 150 

The study area has undergone various morphological changes over the review period 151 

(22 years) due to the various regeneration and expansion of the Port in Valencia. So 152 

Pinedo Beach (P1S) was regenerated in 1999 with a volume of 215787 m3 sand in 153 

which d50 existing before regeneration was 0.171 mm (Serra Peris and Medina, 1996) 154 

and 0.281 mm after (Ecolevante, 2006) regeneration. In the year 2006, the Cabanyal-155 

Malvarrosa beach (P1N) was regenerated with a contribution of 135000 m3 of sand, 156 

and whose d50 before regeneration was 0.171 mm and 0.172 mm after regeneration. 157 

This resulted in an increase in the regeneration area to 43458 m2 (Figure 2). 158 

The analysis of the historical evolution (comparative of historical geo-referenced 159 

orthophotos from the years 2000, 2004, 2006, 2008, 2010 and 2012 respectively) has 160 

led to the positioning of the shoreline in each of the orthophotos and then observe its 161 

tendency and the surfaces of the dry beach in each study period. Thus, it has detected 162 

a longitudinal transport to the South, so that Malbarrosa-Cabanyal beach remains the 163 

only one that is increasing its surface, thus, gaining a total of 83,628 m2, of which just 164 

above half are as a result of the regeneration that occurred in the year 2006 (Figure 2). 165 

In the south, stands the great loss of surface (1003432 m2) between the year 2000-166 

2004.  167 

Moreover, within the period analysed, the North dike of the Port of Valencia has 168 

undergone expansion (Figure 2d). Therefore, the change after this period may be due 169 

to changes in the sectors of swell of each of the beaches due to breakwater extension. 170 

Figure 2. Evolution of the study area. (a) Table showing the variation of the surface of the 171 

beaches. (b) Table showing  incident wave in each profile before and after the expansion of the 172 

Port. (c and d) Status of the port before and after enlargement. (e) Evolution of the coastline on 173 

the south end of the beach Malbarrosa-Cabanyal. 174 

3. DATA COLLECTION 175 

The procedure followed to determine the position of the bars, and to obtain the 176 

different sedimentological and wave characteristics, which will be used to define the 177 

neural network, and those required for using the proposed equations in Table 1 is 178 

described. 179 

3.1.  Bars position 180 

In determining the position of the bars, 209 precision cross-shore profiles (error less 181 

than 2 cm) was used (Table 2). The profiles were obtained in 9 points to the North and 182 
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South of the Port in Valencia (4 to the North and 5 to the South). The profiles were 183 

taken using the method of Beach Profiler (BP) (Serra Peris and Medina, 1996). This 184 

method has a system of attachable bars with an articulated foot and a crown with two 185 

reflecting prisms that allow determining the height of the beach profile, regardless of 186 

the mean sea level by astronomical tide and wave oscillation. 187 

Profiles survey was conducted between the 1992-1997 and 2005-2014 intervals. The 188 

frequency of intake was: i) Every 2 months between 1992-1994, ii) every 4 months 189 

from 1994 to 1997, and iii) twice a year during 2005-2014 (April and October). In this 190 

way, representative information of the summer and winter profiles are obtained in all 191 

the intervals. 192 

Table 2. Number of profiles and period of data collection in each of the nine points of 193 

study. 194 

In each of the profiles, the distance to the shoreline and the depth of the three 195 

characteristic points of the bar were obtained: i) The beginning is taken at the lowest 196 

point before the start of the bar, ii) the crest is the highest point of the bar, and iii) the 197 

end is the point where the slope changes and becomes more stretched (Figure 3). In 198 

those profiles in which no bar was found (21 profiles) the distance of each point to the 199 

coastline was obtained as the average of the position of the previous profiles, and the 200 

corresponding depth in the profile at that distance (Figure 3). Although the purpose of 201 

the neural network is to determine the characteristic points of the bar. It was decided 202 

to add the profiles data that had no bars, so that the model can provide us with more 203 

real results and confirm the presence or absence of bars. 204 

Figure 3. Location of the three characteristic points of the bar. 205 

The six data will be the neural network outputs: 1) Distance from the shoreline to the 206 

start of the bar (Xs), 2) Depth of the starting point of the bar (Ys), 3) Distance from the 207 

shoreline to the crest (Xc), 4) Depth of the crest (Yc), 5) Distance from the shoreline to 208 

the final point of the bar (Xf), and 6) Final point depth (Yf).  209 

From the analysis of each of the profiles was also obtained the difference of the beach 210 

width between them, which will be abbreviated as DBW. 211 

3.2. Maritime climate 212 

In the study of marine climate, swell data obtained from the nodes SIMAR-2081114 213 

(Northern zone) and SIMAR-2081113 (South zone) provided by Organismo Público 214 

Puertos del Estado were used. 215 

In each of the profiles, the wave sectors that influenced them for each of the study 216 

periods have been sectorized and verified, so that those waves that did not affect the 217 

profile for the calculation of the waves were discarded. Then, the wave height Hs,12 218 
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(wave height exceeded only 12 hours a year, with a probability of 0.137% regardless of 219 

the studied period), maximum wave height (Hmax), corresponding periods (T) and 220 

directions (θ) were obtained. The mean wave height (Hm) and the corresponding 221 

period (T) and direction (θ) were also calculated. Finally, the number of days elapsed 222 

between the maximum wave height and profile survey was also obtained. To calculate 223 

the above data the software Carol v1.0 (Universidad de Cantabria, 2001) was used.  224 

Finally, the breaking wave height (Hb) was obtained using the formula proposed by 225 

Komar and Gaughan (1972) (Equation 2). 226 

3.3. Sedimentology 227 

Finally, using the sedimentological samples corresponding to each of the profiles, 228 

collected during the sampling campaign conducted by the University of Alicante in the 229 

year 2013, the median size of the sediment (d50) were obtained according the 230 

regulation UNE-EN 933-1:2012. 231 

 232 

4. NEURAL NETWORK 233 

Artificial Neural Networks (ANN) is a paradigm of learning and automatic processing, 234 

inspired by the functioning of the brain. It is a system of interconnected neurons 235 

cooperating to produce a stimulus output. They appear as a field of study within the 236 

Artificial Intelligence (AI), and it was invented by shared efforts of engineers, 237 

mathematicians, physicists, computer scientists, and neuroscientists (Bishop, 1995). 238 

The theory and modeling of neural networks is inspired by the structure and 239 

functioning of the nervous systems, where the neuron is the fundamental element. 240 

Neurons are characterized by their ability to communicate and in general terms it can 241 

be said that input signals are received that combine to emit output signals. 242 

Furthermore, each neuron receives signals through synapses that control the effects of 243 

the signal in the neuron. The main components of an ANN are: A) The synapses or 244 

connection links that provide the weights (Wi) (Figure 4) and are usually designed to 245 

minimize error in a training data set. B) One function adds the input each of values 246 

weighted           , and C) an activation function that applies         . In 247 

this work, the standard network that is used for function fitting is a two-layer 248 

feedforward network, with a sigmoid transfer function in the hidden layer and a linear 249 

transfer function in the output layer. 250 

Figure 4. Artificial neuron. w are the weights given to each input and b is the activation 251 

threshold 252 

The main elements of an ANN are architecture, learning algorithm and activation 253 

function and the method of determining the weights is referred to as the learning or 254 
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training method. The activation functions transform the input data to output in a 255 

neuron (Fausett, 1994). 256 

There are several kinds of ANN, such as Multilayer perceptron, Radial Basis Function 257 

nets and Kohonen’s SOM. The multilayer perceptron is defined by an input layer, many 258 

hidden layers and an output layer. Neurons of the input layer are inputs to the 259 

network and the output layer produces the output of the network (Mitchell, 1997). 260 

Hidden layers receive and process information and send it to the neurons in the next 261 

layer. ANN's may recognize, classify, convert, and learn from learning samples.  262 

The network architecture and learning algorithm are the main features of a neural 263 

network. In this study, three-layer feed-forward neural networks (A single hidden layer 264 

was used) with back propagation (BP) learning were constructed for computation of 265 

the cross-shore profile of sand beaches. A feed-forward neural network (FFNN) is very 266 

powerful in function optimization modelling and has extensively been used for the 267 

prediction of different elements related to coastal engineering (Browne et al., 2007; 268 

Herman et al., 2009; Iglesias et al., 2009; Pape et al., 2007). 269 

4.1. Back propagation neural network and learning algorithm 270 

The back propagation (BP) is a commonly used learning algorithm in ANN application. 271 

It uses the back propagation (BP) of the error gradient. This training algorithm is a 272 

technique that helps distribute the error in order to arrive at a best fit or minimum 273 

error. After the information has gone through the network in a forward direction and 274 

the network has predicted an output, the back propagation algorithm redistributes the 275 

error associated with this output back through the model, and weights are adjusted 276 

accordingly. Minimization of the error is achieved through several iterations. One 277 

complete cycle is known as the “epoch”. Each neuron in a layer is connected to every 278 

neuron in the next layer. These links are given a synaptic weight that represents its 279 

connection strength (Govindaraju, 2000). Although, traditional BP uses a gradient 280 

descent algorithm to determine the weights in the network, it computes rather slowly 281 

due to linear convergence. 282 

To improve speed, find the Levenberg-Marquardt (LMA), which is much faster as it 283 

adopts the method of approximate second derivative (Wang, 2004) was used here. The 284 

LMA is similar to the quasi-Newton method in which a simplified form of the Hessian 285 

matrix (second derivative) is used. The Hessian matrix (H) can be approximated as 286 

equation 3 and the gradient ( ) can be computed as equation 4 (Hagan and Menhaj, 287 

1994; Kişi and Uncuoglu, 2005). 288 

       (3) 289 

       (4) 290 
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in which J is the Jacobian matrix which contains first derivatives of the network errors 291 

with respect to the weights and biases, and e is a vector of network errors. One 292 

iteration of this algorithm can be written as equation 5: 293 

                         (5) 294 

where   is the learning rate,   is the identity matrix and   represents connection 295 

weights (Dedecker et al., 2004). During training the learning rate   is incremented or 296 

decremented by a scale at weight updates. When   is zero, this is just Newton’s 297 

method, using the approximate Hessain matrix. When   is large, this becomes gradient 298 

descent with a small step size (Karul et al., 2000). 299 

Bayesian regularization (BR) is a training algorithm that updates the weights and bias 300 

values according to LMA optimization (Foresee and Hagan, 1997; MacKay, 1992). It 301 

minimizes a combination of squared errors and weights, and then determines the 302 

correct combination so as to produce a network that generalizes well (Pan et al., 303 

2013). BR introduces network weights into the training objective function which is 304 

denoted as      in equation 6 and further explained by Yue et al. (2011). 305 

             (6) 306 

Where    is the sum of the squared network weights and    is the sum of network 307 

errors. Both   and   are the objective function parameters. In the BR framework, the 308 

weights of the network are viewed as random variables, and then the distribution of 309 

the network weights and training set are considered as Gaussian distribution. 310 

The   and   factors are defined using the Bayes’ theorem. The Bayes’ theorem relates 311 

two variables (or events), A and B, based on their prior (or marginal) probabilities and 312 

posterior (or conditional) probabilities (Li and Shi, 2012). After finding the optimum 313 

values for   and   for a given weight space, the algorithm moves into LMA phase 314 

where Hessian matrix calculations take place and updates the weight space in order to 315 

minimize the objective function. Then, if the convergence is not met, algorithm 316 

estimates new values for   and   and the whole procedure repeats itself until 317 

convergence is reached Yue et al. (2011). 318 

MATLAB (MathWorks, Inc., Natwick, MA) was used for analyzing the BR Artificial 319 

Neural Network (BR) and LM Artificial Neural Network (LMA). To prevent overtraining, 320 

develop predictive ability, and eliminate superiors’ effects caused by the initial values, 321 

the algorithms of BR and LMA were trained independently 50 times for each generated 322 

model. In this study, the training process is stopped if: 1) it reaches the maximum 323 

number of iterations; 2) the performance has an acceptable level; 3) the estimation 324 

error is below the target; or 4) the LMA   parameter becomes larger than 1010. 325 

4.2. Optimization of the ANN structure and modelling performance criteria 326 
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When selecting the optimal architecture of a network, it must be designed according 327 

to the physical problem posed. The models and the input and output vectors, along 328 

with the network parameters are fundamental steps for designing the ANN. Therefore, 329 

the input layer will be formed by the physical factors that affect the development of 330 

the bars, with 7 input neurons corresponding to the following variables: 1) Month of 331 

survey profile (x1); 2) Steepness corresponding to the maximum wave height (x2); 3) 332 

Hmax direction (x3); 4) Days elapsed from Hmax to the survey profile (x4); 5) Hm (x5); 6) d50 333 

(x6); 7) Difference in beach width between profiles (x7). Some of these factors (wave 334 

height, the depth, direction or grain size) have been used by other authors (Günaydın 335 

and Kabdaşlı, 2005; Horikawa et al., 1973; Kömürcü et al., 2007). However, it was felt 336 

necessary to use other variables that reflect changes in the study area as the change in 337 

the width of the beach. Finally, use the Month of the profile survey has been 338 

considered to mark the change of season that occurs in the area, as the wave heights 339 

in the area did not suffer a great variation between summer and winter. The output 340 

layer is formed by six neurons corresponding to the distance and depth of the three 341 

studied points (Xs, Ys, Xc, Yc, Xf and Yf).  342 

The used network is a multilayer perceptron in which a total of 209 data have been 343 

used. Executions were carried out by changing the percentages of training, validation 344 

and test. From the study of these executions it was observed that the most consistent 345 

and most satisfactory results corresponded to 85% (177) of training and validation and 346 

15% (32) of test. The model is also trained by Bayesian Regularization and Levenberg-347 

Marquard algorithms, thus, obtaining better results with the first method. To select 348 

the optimum number of neurons, 20 different architectures were tested, increasing 349 

neurons in the hidden layer one at time from 1 to 20. For each architecture, 50 350 

executions were carried out in which data for training and testing were chosen at 351 

random by the program MATLAB (MathWorks, 2005). Since the choice of data for 352 

training and testing is random, we can not determine which profiles have been used in 353 

each group, so the error calculation is performed for each and every one of the 209 354 

profiles. 355 

In order to choose the best model, the Pearson coefficient (R2) was used as 356 

information parameter in training, in test and together. The absolute error (Equation 357 

7), the average magnitude of relative error (MAPE) (Equation 8) and the relative 358 

percentage error (Equation 9) is also used to determine the best model. 359 
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Where ri corresponds to the measured values, oi with the values obtained from the 363 

network, n is the number of values and p is the number of free parameters of 364 

expression.  365 

Of the set of 20 architectures, the best results are those of 12 and 20 neurons in the 366 

hidden layer. Figure 5 shows the average, maximum and minimum of R2 in the test for 367 

each of the architectures. The [7-12-6] architecture was finally chosen as the average 368 

value of R2 is one of the largest, and the difference between the maximum and 369 

minimum values is the smallest, which means that this architecture offers the most 370 

stable results, and also has a smaller number of neurons in the hidden layer. In Figure 371 

6, the selected architecture is shown. 372 

Figure 5. Mean, maximum and minimum values of R2 for the whole test. 373 

Figure 6. Optimal architecture [7-12-6]. 374 

Figures 7 and 8 show the absolute error and the average for each of the six outputs of 375 

the chosen network architecture of [7-12-6]. The mean error for distances to shore 376 

(Figure 7) is between 13.6 and 23.9 m (13.6 m in Xs, 14.5 m in Xc and 23.9 m in Xf), 377 

which is an error of 14.2% in Xs (mean distance of 96 m), 11.5% in Xc (average of 126 378 

m) and 11.9% in Xf (average of 197 m). While the error in the depths (Figure 8) are 0.28 379 

m, 0.25 m and 0.26 m at the start, the crest and the final point respectively, thus 380 

committing an error of 10.7% in Ys (mean depth of -2.62 m), 10.1% in Yc (mean of -2.47 381 

m) and 6.9% in Yf (mean of -3.59 m). The largest errors often occur almost always in 382 

the same profiles, such as 11, 156, 180, 184 and 194. 383 

Figure 7. Absolute error (m) committed for distances to shore in each of the network outputs. 384 

Figure 8. Absolute error (m) committed for depths in each of the network outputs. 385 

The mean MAPE of the ANN is 0.3 (Figure 9), being 80% of profiles below this value, in 386 

this case the profiles 56, 120, 180 and 199 produce the greatest error. In these profiles, 387 

the same as the profile 180 occurs, the bars are very close to the coastline, being 388 

located 42 m in the middle. Figure 9 also shows the relative percentage error of the 389 

network for which the value is less than 5.1% in all cases with an average of 1.7%. 390 

Figure 9. MAPE and δ at each studied profile. 391 

 392 

5. DISCUSSION 393 

In this study, different architectures of ANNs required to locate the three characteristic 394 

points of a bar have been generated. An architecture of the type [7-12-6] has been 395 

selected, being offered the highest values of the coefficient of Pearson in the training, 396 

test, and together, as well as lower absolute errors. 397 
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It is observed that the mean absolute error (Figures 7 and 8) is 13.6 m in Xs, 14.5 m in 398 

Xc, 13.9 m in Xf, 0.28 m in Ys, 0.25 m in Yc and 0.26 m in Yf, being the error around, 399 

12.5% in the distances to the coast and 9.2% in the depths. The profiles that produce 400 

the biggest mistakes are 11, 156, 180, 184 and 194. The MAPE (Figure 9) in turn, has an 401 

average of 30%, with much more higher value in the profiles 56, 120, 180 and 199. The 402 

relative percentage error generally have small values with an average of 1.7% (Figure 403 

9). 404 

From the analysis of the profiles, it is observed that the biggest errors occur in those in 405 

which there were no bars (11, 156, 184 and 194) (Figure 10). In these profiles, the 406 

neural network tends to generate a small bar, because the number of profiles without 407 

bar is very low compared to the total (21/209). Furthermore, the problem of the 408 

profiles 56, 120, 180 and 199, is that the bars are located much closer to the coast 409 

(crest is an average of 42 m) than the other profiles in which the crest is generally 410 

around 126 m (Figure 10). 411 

Figure 10. Comparison between real points of the bar and points obtained by the ANN. 412 

Finally, the error made using the ANN model has been compared with some of the 413 

functions currently used, as displayed in Table 1. Figure 11 shows the comparison 414 

between R2 and MAPE for each of the outputs of the network and the functions 415 

proposed by each of the authors. It is observed that the error made by using any of the 416 

proposed equations is greater than committed by the ANN in all cases. As an example, 417 

the MAPE committed by the proposed equation for distance to shoreline of the crest is 418 

47%, while the ANN is 29%. This error difference is mainly because the formulas have 419 

been developed from tests on flume, and therefore do not take into account the 420 

complexities of a natural beach as morphological changes and/or irregular wave. 421 

However, these effects are very important and cannot be neglected in an area such as 422 

the study area, which suffered serious erosion problems and has suffered various 423 

nourishments in the last years (Figure 2). Moreover, taking into account the changes 424 

the area has undergone both natural and artificial (port expansion, nourishments, 425 

etc.), the mistakes made by the neural network are admissible because they are only 426 

17.3 m in the distance waterfront and 0.26 m in depth in comparison with the current 427 

formulas (Figure 11). 428 

Figure 11. Comparison of R2 and MAPE of the equations used today and ANN. The X-axis shows 429 

a comparison between each of the authors using initials; H: Horikawa [1973], Haller.: 430 

Hallermeir (1978), L&K: Larson and Kraus (1989), S&H: Silvester and Hsu (1997), Hsu: Hsu 431 

(1998), G&K: Günaydın and Kabdaşlı (2005), K: Kömürcü et al. (2007), and D&A: Demirci and 432 

Aköz (2013). 433 

The correct determination of the location of the sand bars has important implications 434 

in coastal engineering. Therefore, if we are able to determine the exact position or 435 

range of motion of the rods we can determine more accurately the elements 436 
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influencing the calculation of the elements of protection of the coast or the volumes of 437 

sand required for a beach nourishment. For example, when calculating the position of 438 

a detached breakwater have to calculate the depth of closure, which must be located 439 

offshore the end point of the bar. In this case, for example, the difference between 440 

using the results obtained with the ANN or the current proposed equations would 441 

mean a difference of 0.7-2.5 m depth which is a big difference in the volume of 442 

material needed for the construction of the element of protection. 443 

On the other hand, the use of the ANN can offer simulated data to the future, which 444 

will allow to know what the movement of the bar would be in front of future storms, 445 

from which it could be determined the influence that a storm could have in the width 446 

and the erosion of the beach, and the subsequent recovery in the calm period. Thus, 447 

this tool associated with other similar tools such as erosion determination (Tsekouras 448 

et al., 2015) or bar volume (Demirci et al., 2015), becomes not only a tool for the 449 

knowledge of the bars, but is an additional element for coastal management and 450 

control, which may imply a reduction in both construction and maintenance costs. 451 

 452 

6. CONCLUSION 453 

ANN model is used for predicting the three characteristic points of the bar (start, crest 454 

and final point) depending on wave action, sediment and the date of the profile 455 

survey. These characteristics are represented by the following inputs: Month, Hmax/Lo, 456 

θHmax, Days, Hm, d50 and DBW. The analysed beaches are complex beaches that have 457 

undergone various morphological changes within the study period (22 years) due to 458 

the expansion of the Port in Valencia and the beaches nourishment. The outputs were 459 

obtained from precision profiles taken for 22 years, particularly in the months of April 460 

and October. 20 architectures are designed for each, thus, obtaining 50 different 461 

models. For the selection of the optimal architecture, Pearson coefficient (R2) has been 462 

used as an informative parameter in the test, training and together, being the best 463 

model that uses 12 neurons in the hidden layer [7-12-6]. To evaluate the performance 464 

of the model, we used the absolute error (Equation 7), the average magnitude of 465 

relative error (Equation 8) and relative percentage error (Equation 9). The mean 466 

absolute error is 17.3 m for distances to the coast and 0.26 m in depth. Physical 467 

analysis shows that the largest errors occur in those profiles in which there was no bar, 468 

as these represent only 10% of the data, and the profiles in which the bar is located 469 

much closer to the coast than the average value. Even so, the error committed by the 470 

ANN is much less than the commited by using the current formulations (Table 1 and 471 

Figure 11), which is mainly due to the fact that these formulations are usually obtained 472 

from experiments in flume, and therefore, do not take into account the variability of 473 

the actual waves or morphological complexities that can affect the study area. 474 
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Therefore, the results of this work could be used in other areas as an effective tool in 475 

predicting the position of the bars. 476 
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