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Summary 

1. Organic pollution is widespread in coastal areas and can have profound impacts on 

the seabed. Coastal sediments play an important role at a global scale in the recycling of 

organic matter, and this process is influenced by the habitat complexity of the 

sediments, among other factors. Mollusc shells are produced as a waste product from a 

range of anthropogenic activities, but we demonstrate that they can be used to increase 

the habitat complexity of sediments.  

2. We studied the effect of mussel-shell debris (shell-hash) on the biogeochemical 

processes of marine sediments affected by organic pollution, using a mesocosm 

experiment simulating the bioturbation effects of macrofauna.  

3. We found that shell-hash improved the ecological status of organically-polluted 

sediments by reducing the accumulation of sulphide from anaerobic metabolic 

pathways.  

4. Additionally, when shell-hash was present in an organically-polluted sediment, there 

was a decrease in ammonium release to the water column, thus preventing the negative 

ecological consequences of eutrophication.  

5. Synthesis and applications. Our study indicates that shell-hash debris can be used as a 

potential tool to mitigate the effects of organic enrichment on marine sediments. A 

density of shell-hash debris of 1900 g m
-2

 in the sediment can diminish toxic by-

products (sulphides and ammonium) derived from the stimulation of anaerobic 

metabolic pathways by organic pollution, at levels that are biologically relevant. The 
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mitigation effect of shell-hash is more pronounced in sediments where macrofauna is 

not present. 

Key-words: aquaculture, biogeochemical fluxes, eutrophication, habitat complexity, 

pollution mitigation, organic enrichment, sediment metabolism, shell-hash, waste 

management, waste reuse 

Introduction 

Marine sediments act as a major sink of organic matter (OM), and have an 

important role in the cycling of nutrients at a global scale (Duarte, Middelburg & 

Caraco 2005). This function is especially important in coastal sediments, which are 

responsible for more than half of the mineralisation of the total OM that accumulates in 

the seabed (John I. Hedge 1995). Coastal areas are highly exposed to pollution because 

they are often densely populated. Organic pollution, which is the excess of organic 

matter above natural deposition rates, is one of the most widespread forms of pollution 

worldwide (Islam & Tanaka 2004). It can be caused by a range of anthropogenic 

activities such as agriculture, aquaculture and discharges of sewage (Cloern 2001; 

Newell 2004; Sanz-Lázaro & Marín 2008). 

Bacteria play the most important role in the mineralisation of OM in sediments 

(Duarte, Middelburg & Caraco 2005), through a variety of metabolic pathways. Their 

metabolic capacity depends on their electron-acceptor availability. Benthic fauna, 

through the active movement of particles (bioirrigation) and solutes (bioturbation) 

improve electron-acceptor supply from the water column, enhancing the metabolic 

capacity of the sediment (Aller & Aller 1998; Meysman, Middelburg & Heip 2006). 

Aerobic respiration is the most efficient metabolic pathway, and as oxygen becomes 

exhausted, there is a sequential consumption of other electron acceptors from higher to 
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lower efficiency (Holmer & Barry 2005). Sulphate reduction is the most important 

anaerobic metabolic pathway, which can account for up to half of the total benthic 

metabolism (Jørgensen 1982). When all electron acceptors have been consumed, 

methanogenesis occurs through the fermentation of the OM. 

Augmenting inputs of OM causes an increase in sediment metabolism, and thus 

oxygen consumption, preventing its accumulation. Excessive loads of OM can lead to 

hypoxic or even anoxic conditions, favouring anaerobic metabolic pathways over 

aerobic ones (Welsh & Castadelli 2004). This situation leads to a decrease in the 

sediment’s metabolic capacity, slowing the rate of OM mineralisation. Additionally, 

anaerobic pathways produce a series of toxic by-products, such as sulphides and 

methane (Holmer, Duarte & Marbá 2005; Valdemarsen, Kristensen & Holmer 2010). 

Oxygen depletion, together with a high concentration of these toxic by-products, can 

have negative impacts on benthic communities and can cause the defaunation of the 

sediment (Pearson & Rosenberg 1978; Gray, Wu & Or 2002; Hargrave, Holmer & 

Newcombe 2008). This can decrease the electron-acceptor supply in the sediment, and 

consequently, its metabolic capacity (Sanz-Lázaro et al. 2011).  

Under oxic conditions, the mineralisation product of phosphorous (PO4
3-

) is 

retained in the sediment, bound to iron hydroxides. When conditions are hypoxic, 

sulphides bind to the iron, causing PO4
3-

 to be released into the water column 

(McManus 1997). In the case of nitrogen (N2), under hypoxic conditions, the 

decoupling of the nitrification-denitrification process causes a reduction in N2 

production. Therefore, the production of molecules at intermediate steps of the 

mineralisation of nitrogen (such as NH4
+
, NO3

-
 and NO2

-
) is increased (Stief 2013). 

Overall, hypoxic conditions in the sediment promote the release of inorganic nutrients 

to the water column (Sanz-Lazaro, Valdemarsen & Holmer 2015), which can combine 
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with other sources of pollution and cause eutrophication, resulting in negative 

ecological consequences such as algal blooms (Gray, Wu & Or 2002).  

Marine sediments are influenced by a range of environmental parameters, 

including changes in water flow, resource transport, sessile organism attachment 

availability, and sediment grain size (Sebens 1991). Habitat complexity modulates these 

parameters, and, consequently, increases in the heterogeneity of the sediment, can 

enhance its functions, such as benthic metabolism. The shells of molluscs in various 

states of decomposition (referred to as ‘shell-hash’; Wilding 2012) are important 

elements of the habitat structure that promote its complexity, by modifying grain size 

and augmenting sessile organism attachment (Gutierrez et al. 2003). Large volumes of 

shell-hash are obtained as a residue from different activities such as aquaculture and the 

canning industry (Barros et al. 2009). This residue could be recovered to increase the 

habitat complexity of sediments, and therefore to improve the ecological status of the 

sediment, due to an enhanced metabolic capacity (Dolmer & Frandsen 2002). 

To test this hypothesis, we study the effect of shell-hash on the biogeochemistry 

of marine sediments affected by organic pollution. We carried out a mesocosm 

experiment to test whether shell-hash could ameliorate the ecological status of 

organically-polluted sediments, and whether these effects could complement those of 

macrofauna. 

 

Materials and methods 

Sampling of sediment and polychaete worms 

The sediment used for the experiment was collected at The Gola beach, Santa Pola, 

Spain (38°11'18.81"N 0°35'34.55"O). It was a carbonated sediment typical of the 

Mediterranean. It was graded as a very fine and fine sand grain (0.063-0.25 mm) 
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according to the Wentworth (1922) classification. A volume of 30 litres of sediment 

was collected at a 0-10 cm depth range with a shovel, and was sieved through a 0.5 mm 

mesh to remove the existing macrofauna. To simulate the effect of macrofauna we 

introduced the polychaete Lumbrineris latreilli Audouin & Milne Edwards, 1834, which 

was collected at the beach of Torrevieja, Spain (38 ° 1'14.38 "N 0 ° 39'8.40" W) in 

August 2014.  

 

Experimental setup 

Sodium sulphate (50 mmol L
-1

) was added to the sediment and homogenized manually 

to prevent sulphate depletion during sediment incubation. A total of 36 methacrylate 

cores (with an internal diameter of 6 cm and a length of 32 cm) were filled with 

sediment to a depth of 20 cm. The bottom of the cores was sealed with a rubber stopper, 

leaving ~12 cm of water above the sediment. The cores were left to stratify for 4 days, 

and were then distributed into 2 groups: a control with unenriched sediment (-OM) and 

an organically enriched sediment (+OM). The surface of the sediment of +OM cores 

was enriched with 5.62 g of the same sediment containing 92 g of labile OM per kg of 

sediment in the form of finely ground fish feed [L-4 Alternate CMX 20 2P BB2, 

SKRETTING (46.5% protein, 20% fats and oils, 6.1% minerals, fiber 2.2%, 1% 

phosphorus, 0.9% calcium and 0.4% sodium)]. This enrichment was performed once a 

week during the experiment. The organic enrichment in +OM cores was 0.1 mmol POC 

cm
-3

 sediment. This level has proved optimal for the stimulation of microbial 

metabolism in previous enrichment studies (Valdemarsen, Kristensen & Holmer 2010) 

and corresponds to a realistic OM input to sediments that are subject to organic 

enrichment in natural environments, such as the sediments underlying fish or mussel 
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farms (Morrisey et al. 2000; Callier et al. 2006; Holmer et al. 2007; Sanz-Lazaro et al. 

2011). 

We produced shell-hash using shells of the mussel Mytilus galloprovincialis 

Lamarck, 1819. We removed the epibiotic remnants from the outer surface of the shells 

by gently rubbing them with a scourer, and then broke the valves into fragments (4-5 

cm length, 2-3 cm width). We added c. 5.4 grams of shell-hash per core, which 

corresponded to a density of c. 1900 g m
-2

 (Wilding 2012). Shell hash was placed in the 

cores at two depth levels: 1) on the sediment surface (+MS), simulating an initial 

deposition of shell-hash, and 2) half-buried (+MB) (pressed 3-4 cm vertically into the 

sediment), simulating shell-hash deposited for a longer time. The area of sediment in the 

cores occupied by shell-hash was between 50 and 70% for +MS cores, and between 10 

and 30% for +MB cores (see Fig. S1 in Supporting Information). An additional control 

treatment without shell-hash fragments (-M) was included. The factor ‘shell-hash’ was 

considered as a fixed factor, with three levels. After the 4 days that the sediment of the 

cores was left for stratification, the shell-hash fragments were added. 

To simulate the bioirrigation of macrofauna in natural sediments, three healthy 

worms (L. latreilli) of 14 - 20 cm length were added to each core (c. 1300 individuals 

m
-2

), simulating the natural density observed in the location where they were collected 

(Casado-Coy and Sanz-Lázaro pers. obs.). 18 cores contained worms (+W), while the 

other 18 were worm-free controls (-W). Worms were added seven days after the 

addition of the shell-hash and OM. At this point, we considered that the experiment had 

started. 

Cores were maintained at 16
o
C in a tank containing 75 L seawater from The 

Gola beach with a salinity of 37.6. The seawater was filtered to remove large particles 

(Whatman GF/F Glass Microfiber Filters, 0.7um, 4.7cm; 100/Box, USA). The water 
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tank was vigorously oxygenated by air pumps, using the incubation system proposed by 

Piedecausa et al. (2012). The water above the sediment cores was circulated by 

magnetic bars (4 cm length) placed a few centimetres above the sediment surface, and 

driven by a rotating magnet (60 rpm) placed close to the cores. The temperature was 

controlled by two coolers that recirculated the water through the tank, and was 

monitored several times per day. The cores were kept submerged and in darkness 

throughout the experiment. More than half of the volume of the tank was exchanged 

with fresh seawater every 1-2 days to prevent accumulation or depletion of metabolites. 

TCO2 and SOU fluxes  

Total CO2 (TCO2), sediment oxygen uptake (SOU) and nutrient fluxes were determined 

by the integration of seven incubations performed during the time span of the 

experiment. Initially, they were performed every 2 or 3 days during the first two weeks, 

and once per week thereafter. The incubations were performed by sealing the upper part 

of the core with a rubber stopper for specific time periods (2-4 hours for +OM and 4-5 

hours for -OM cores) aiming to prevent O2 depletion below 60% of the initial 

concentration in the water column (Glud 2008). At the beginning and at the end of the 

incubation water samples were taken to calculate consumption/production rates from the 

difference between these measurements. The O2 samples were measured with an 

oximeter and the TCO2 was measured using a total Carbon titration with titrasol HCl 

(0.1 mol L
-1

, Applichem Panreac, Germany Methyl Red. Verify periodically the titer) at 

two pH ranges (Gran et al. 1950). 

Nutrients 

The water used to determine nutrients was initially filtered with an MCE Syringe 

(Syringe Filter - 13mm 0.22um CA-CN with Luer lock, 100/pk United Kingdom) filter 

(Ø 0.22 µm), transferred to 15 mL plastic vials, and frozen (-20 
o 
C) until analysis. The 
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nutrients (NH4
+
, PO4

3-
, NO2

-
 and NO3

-
) were analysed using an Automated Wet 

Chemistry Analyser - Continuous Flow Analyser (Breda, the Netherlands). Fluxes were 

integrated for the duration of the experiment and reported as mmol m
-2

 d
-1

. 

Sectioning of cores 

2 - 3 days after the last incubation, the cores were sectioned in 1 cm intervals from 0 to 

2 cm, and in 2 cm intervals from 2 to 16 cm, in order to measure porewater and analyse 

the sediment. The cores were sliced after removing the shell-hash, keeping the space 

occupied by it, so that density values included the effect of the shell-hash. For the AVS 

analysis, 5ml of sediment was frozen in plastic bags, taking special care to prevent air 

bubble formation, while for sediment density we used 2 ml. 

 

 

Sediment analyses 

The irrigation rates of L. latreilli were estimated according to Heilskov, Alperin & 

Holmer (2006). One day prior to the final sectioning of the cores, the water portion of 

each core was enriched with bromine (Br
-
) to a final concentration of c. 8 mmol/L. After 

24 hours, the cores were sectioned and the porewater of the sediment in each section 

was extracted by a filter system powered by a vacuum pump. Samples were kept at 4 ºC 

until analysis by ion-chromatography with a Dionex auto-suppressed anion-system, 

IonPac AS9-HC column and AG9-HC suppressor (Thermo Fisher Scientific, 

Sunnyvale, USA.) and bicarbonate/carbonate eluent. Bioirrigation was quantified by 

modelling the excess bromide distribution in the porewater at the end of the incubation. 

Irrigation activity was calculated from the depth-integrated Br
-
 inventory and corrected 

for the effects of passive diffusion.  
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Sediment density was determined as the weight of a known volume, while water 

content was measured as the weight difference after desiccation. Total OM was 

determined by weight loss upon ignition for 4 h at 450 °C. The value of OM for the 

integrated treatment was calculated as a percentage of each section, obtaining one value 

for each core. The sediment for measuring the mmol m
-2

 of the AVS accumulated in the 

sediment was fixed by freezing in plastics bags. Prior to analysis, sediment was thawed. 

AVS samples were distilled and quantified following the methodology proposed by 

Allen, Fu & Deng (1993). 

Experimental design and data analysis 

The measured variables were compared among treatments using a three-way ANOVA, 

where the fixed factors were: organic pollution (with two treatments, with and without 

organic enrichment, -OM and +OM), worms (with two treatments, with and without 

worms, +W and -W) and shell-hash (with three treatments, no shell-hash, with shell-

hash on the sediment surface, and with shell-hash buried in the sediment, -M, +MS and 

+MB, respectively). Before carrying out the ANOVA, normality and homogeneity of 

variance was checked using Cochran's test and p-p plots (Underwood 1997). If 

assumptions were violated, transformations were applied and assumptions were re-

checked. If the differences between interactions of any of the three factors were 

significant, the Student-Newman-Keuls post-hoc test for multiple comparisons was 

applied. To assess whether significant differences were biologically relevant, we 

calculated the effect size (Nakagawa & Cuthill 2007). All statistical tests were 

conducted with a significance level of α=0.05. Data were reported as mean ± standard 

error (SE), while the size of effect was reported with the 95% confidence interval (CI). 
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Results 

TCO2 

TCO2 fluxes ranged from 22.3±16.4 to 294.4±42.0 mmol m
-2

 d
-1

. The increasing trends 

over time levelled off at the end, except for +OM–M–W cores, where the increasing 

trend was maintained for the whole experiment (see Fig. S3). Time-integrated TCO2 

fluxes showed significant interactions among all the factors (see Table S1) (Fig. 1). 

+OM–W cores with shell-hash (+MS and +MB) had an effect decreasing the TCO2 flux 

by 148.1 with a CI of 42.2 to 253.9 mmol m
-2

 d
-1

 compared to cores without shell-hash 

(-M). When worms were present (+W), the effect of shell-hash was not biologically 

relevant in +OM cores, decreasing the TCO2 flux by only 1.9 with a CI of 75.9 to -79.8 

mmol m
-2

 d
-1

. The effect of shell-hash separated when being on surface (+MS) than 

when buried (+MB) under organic pollution conditions is shown in Fig. 2. 

Sediment Oxygen Uptake  

SOU values ranged from 24.0±4.9 to 75.1±3.6 mmol m
-2

 d
-1

. The increasing trends over 

time levelled off in the -OM cores at the end, but in the +OM cores the range was 

greater (see Fig. S3). In time-integrated SOU values, the factor with the greatest effect 

was organic pollution (33.4 mmol m
-2

 d
-1

 with a CI of 22.1 to 44.6) (Fig. 1). Time-

integrated SOU values showed a significant interaction between OM and M (see Table 

S1). Shell-hash on the sediment surface (+MS) in +OM -W cores had an effect of 

lowering SOU by 40.1 with a CI of 51.2 to 29.1 mmol m
-2

 d
-1

. Under organic pollution 

when worms were present (+OM +W), the effect size of shell-hash was not biologically 

relevant (5.7 with a CI of -45.0 to 33.6 mmol m
-2

 d
-1

) (Fig. 1).  

TCO2:O2 ratio  
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Time-integrated TCO2:O2 values showed significant interactions among all the factors 

(see Table S1) (Fig. 1). Shell-hash buried in the sediment (+MB) in +OM–W cores had 

an effect decreasing the TCO2:O2 ratio by 1.9 with a CI of 4.4 to -0.5. When worms 

were present (+W), the effect size of shell-hash (+MS and +MB) was not biological 

relevant (0.1 with a CI of -0.4 to 0.6). 

Nitrogen compounds 

NH4
+
 fluxes ranged from 5.8±1.0 to 25.5±2.0 mmol m

-2
 d

-1
. The increasing trends over 

time levelled off at the end, except for +OM–W–M cores, where the increasing trend 

was maintained throughout the experiment (see Fig. S4). The trends of time-integrated 

NH4
+
 fluxes were very similar to those obtained in TCO2 fluxes (Fig. 3). Time-

integrated NH4
+
 fluxes showed a significant interaction between OM and M, on the one 

hand, and between W and M, on the other (Table 1). The NH4
+
 fluxes of the +OM-W 

cores containing shell-hash were nearly half those of the cores without shell-hash (-M) 

(Fig. 3). Shell-hash in +OM–W cores had an effect decreasing the NH4
+
 fluxes by 11.4 

with a CI of 5.4 to 17.5 mmol m
-2

 d
-1

. When worms were present (+W), the effect size 

of shell-hash (+MS and +MB together) was not biologically relevant 0.6 with a CI of -

6.4 to -7.6 mmol m
-2

 d
-1

. The effect of Shell-hash separated when being in surface 

(+MS) than when buried (+MB) under organic pollution conditions and without worms 

is shown in Fig. 2. 

NO2
-
 fluxes ranged from -0.12±0.10 to 0.04±0.04 mmol m

-2
 d

-1
. In general, the 

trends were negative in the +OM cores and stable in the –OM cores (see Fig. S4). In -

OM cores time-integrated NO2
-
 fluxes were close to 0 (Fig. 3), and significantly higher 

than +OM cores (Table 1). Organic pollution had an effect of decreasing the NO2
-
 

fluxes by 4.9 with a CI of 2.0 to 7.8 mmol m
-2

 d
-1

. 
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NO3
-
 fluxes ranged from 0.06±0.09 to 0.20±0.05 mmol m

-2
 d

-1
, and decreased 

towards the end of the experiment. The range of NO3
-
 fluxes for the treatments were 

lower at the end of the experiment (see Fig. S4). Time-integrated NO3
-
 fluxes were 

usually positive, close to 0 and without significant differences among treatments (Fig. 

3) (Table 1).  

PO4
3-

 

PO4
3-

 fluxes ranged from 0.18±0.03 to 0.72±0.09 mmol m
-2

 d
-1

, and showed 

idiosyncratic trends during the experiment (see Fig. S4). Worms have an effect of 

increasing time-integrated PO4
3-

 fluxes by 0.21 with a CI of 0.04 to 0.38 mmol m
-2

 d
-1

 

(Fig. 3) (Table 1). 

Organic matter 

OM depth-integrated values ranged from 0.89±0.01 to 1.09±0.12% (Fig. 4). In general, 

the OM concentration in the sediment at the end of the experiment was lower than the 

initial values. OM depth-integrated values had significant differences between -OM and 

+OM cores (Table 1). 

 

 

Fe-sulphide accumulation 

AVS accumulation depth-integrated values ranged from 32.6±3.6 to 196.0±31.8 mmol 

m
-2

 (Fig. 1). AVS accumulation was generally higher in most cores in the beginning 

than at the end of the experiment (Fig. 1). AVS depth-integrated accumulation showed a 

significant interaction between OM and M (Table 1). The greatest accumulation of AVS 
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was obtained in +OM–W-M cores (196.0 ± 31.8 mmol m
-2

). +OM–W cores with shell-

hash (+MS and +MB) had an effect decreasing the AVS accumulation by 97.8 with a CI 

of 7.0 to 128.6 mmol m
-2

 compared to cores without shell-hash (-M). The effect of 

shell-hash separated when being in surface (+MS) than when buried (+MB) under 

organic pollution conditions is shown in Fig. 2. 

Bioirrigation rates 

Irrigation rates according to Br- inventories were significantly higher in +W cores than 

–W cores (see Fig. S2), indicating the capacity of bioirrigation of the worms used. 

 

Discussion 

This study shows that under organic pollution, shell-hash can influence sediment 

metabolism, diminishing the prevalence of anaerobic pathways, and consequently, 

preventing AVS accumulation and reducing NH4
+
 release to the water column. This is 

expected to have a considerable long-lasting effect, and to be more evident in the 

absence of macrofauna, although in some cases shell-hash and macrofauna can have 

cumulative effects. 

The addition of OM-enhanced sediment led to higher TCO2 and SOU fluxes 

than in unenriched conditions. Ratios between TCO2 and SOU fluxes indicated whether 

the biogeochemical cycling was balanced (ratio close to 1) or alternatively whether the 

by-products resulting from anaerobic pathways (mainly sulphides) were not re-oxidised, 

but accumulated in the sediment in the form of AVS (for ratios higher than 1) (Canfield 

1989, 1994). Despite the increase in sediment metabolism due to organic pollution, the 

TCO2:O2 ratios were comparable between –OM and +OM cores. This indicates that 

anaerobic pathways were not notably boosted in sediments suffering organic pollution. 

In the sediments with neither worms nor shell-hash, anaerobic metabolic pathways 
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seemed to be promoted, because both the TCO2:O2 ratio and the AVS accumulation 

increased.  

In the absence of worms, AVS accumulation under organic pollution was also 

relatively high when the shell-hash was just deposited in the surface. This could be 

because shell-hash positioned horizontally on the surface of the sediment may have 

hindered the diffusion of solutes (such as O2) between the water column and the 

sediment. Nonetheless, AVS accumulation was lower than when no shell-hash was 

present, and similar to the unenriched conditions with no worms. Both, the TCO2:O2 

ratio and AVS accumulation, decreased when shell-hash was embedded slightly deeper 

in the stratigraphy of the sediment. This suggests that the effect of shell-hash may be 

more effective when it is integrated into the sediment stratigraphy, modifying its grain 

size and thus, increasing its habitat complexity. Accordingly, the effect of shell-hash on 

the sediment is expected to have a long-lasting effect.  

Macrofauna promotes solute exchange between the water column and sediment 

porewater (Meysman, Middelburg & Heip 2006), as shown by the irrigation rates (Br
-
 

content) in our study. This activity had an important role in decreasing the accumulation 

of by-products derived from sediment metabolism (Aller & Aller 1998; Valdemarsen & 

Kristensen 2005). When shell-hash and worms acted in combination, the effect was 

more pronounced, and as when worms were absent, there was a stronger effect when 

shell-hash was integrated in the sediment stratigraphy than when it was just positioned 

on the surface. Therefore, the decrease in AVS accumulation is expected to be greater 

when the habitat complexity of the sediment is maximized by macrofauna and shell-

hash. 
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NH4
+
 release to the water column was impeded by shell-hash under organic 

pollution, both when worms were present and absent. Macrofauna-induced bioturbation 

creates microhabitats that favour the coupling between nitrification and denitrification 

(Gilbert, Bonin & Stora 1995). The increase in habitat complexity caused by shell-hash 

could promote denitrification, thus explaining the decrease of NH4
+
 release in sediments 

under organic pollution and without macrofauna. NOx fluxes were not influenced by 

shell-hash. The relatively low values of NOx fluxes could be explained by a tight 

coupling of the nitrification-denitrification pathways (Middelburg et al. 1996). 

Similarly, shell-hash did not affect PO4
3-

 release, but it was positively affected 

by worms (Sundby et al. 1992). The similarity between different shell-hash treatments 

could be because the sediment surface was oxidized, demonstrated by the presence of a 

thin yellowish/lighter layer in the first millimetres of the sediment surface, which was 

visible in all cores. The oxidized surface controls PO4
3-

 release acting as an “Fe lid”, by 

keeping the Fe in the ferric form, allowing it to retain a comparable amount of PO4
3-

 in 

the sediment (Rozan et al. 2002). Therefore, changes in PO4
3-

 release could be 

influenced mainly by changes in the thickness of the oxidized sediment layer in the 

surface rather than by habitat complexity. 

Habitat complexity modulates the structure and function of biological 

communities, although the mechanisms underlying this relationship remain unclear 

(Cardinale et al. 2002). In this experiment, the structure of shell-hash was expected to 

increase habitat complexity, leading to the enhancement of aerobic pathways in several 

aspects. Firstly, an augment in the grain size of the sediment was expected to increase 

the diffusion rates between the water column and sediment porewater (Bengt-Owe 

Jansson 1967). Secondly, the roughness and structure of shell-hash can modify the 

advective porewater flux, favouring the formation of microzones and microlayers 
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(Huettel & Gust 1992). Thirdly, as shell-hash is a hard surface, it is a suitable habitat for 

the development of bacteria in biofilms (Gutierrez et al. 2003), which are hot-spots of 

bacteria activity, having an important role in the cycling of elements (Welsh & 

Castadelli 2004). Increases in habitat complexity created by shell-hash may have 

resulted in the promotion of benthic aerobic metabolism (Cardinale et al. 2002), 

decreasing the production of by-products derived from organic pollution (Papaspyrou, 

Thessalou-Legaki & Kristensen 2010; Kanaya 2014; Martinez-Garcia et al. 2015). 

The toxicity generated by these by-products can cause the disappearance of 

macrofauna. In turn, the loss of macrofauna causes a decrease in the active exchange of 

particles and solutes between porewater and the water column. This results in the 

erosion of the ecological functions that macrofauna provide, such as the enhancement of 

sediment metabolic capacity, unbalanced nutrient cycling, etc. This study demonstrates 

that shell-hash has a positive effect by decreasing the accumulation of toxic by-products 

derived from organic pollution, and having complementary effects with macrofauna on 

sulphide. Additionally, shell-hash seems to have similar effects to macrofauna in 

diminishing the release of NH4
+
. This could be explained by the fact that both shell-hash 

and macrofauna promote the coupling between nitrification and denitrification, thus 

stimulating the release of N2 versus other N forms that are bioavailable for plants and 

can promote the negative consequences of eutrophication. 

Mesocosm experiments are robust ecological approaches that allow us to control 

environmental variables and therefore to study cause-effects relationships, by testing 

both the main effects and the interactions between variables. Mesocosms provide 

important data that cannot be obtained by direct environmental sampling or other 

research approaches. Nevertheless, extrapolations must be made with care, because 

mesocosms are simplifications of the natural environment. Consequently, these 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

experiments should simulate the natural environmental conditions as closely as possible. 

In this experiment, TCO2, O2, NH4
+
, NO3

-
, NO2

-
 and PO4

3-
 fluxes as well as AVS 

accumulation were comparable with in situ measurements (Sundby et al. 1992; 

Christensen et al. 2000; Callier et al. 2006; Giles, Pilditch & Bell 2006). Additionally, 

the bioirrigation rates were comparable with other studies when using whole 

macrofauna assemblages (Kristensen & Holmer 2001). Thus, the results obtained in this 

experiment provide promising insights into the potential use of shell-hash as a tool for 

mitigating the deleterious effects of organic pollution on soft sediments. 

Shell-hash is the main waste product derived from mussel culture. Spain has the 

second-highest mussel production in the world (between 150 000 and 250 000 T year
-1

), 

and produces c. 80 000 T year
-1

 of waste product (APROMAR 2015). Shell-hash debris 

usually have no intrinsic economic value, and very little is recycled e.g. only 9% in 

Spain (e.g. only 9% in Spain Consellería de Medio Ambiente de Galicia 2011). 

Disposal to landfill can be costly (e.g. in the United Kingdom the cost is £80 per tonne; 

Talbot 2014), leading to illegal dumping events. If shell-hash was used as a tool to 

mitigate organic pollution in the density proposed in our experiment, it could involve 

the re-cycling of 1900 tonnes of shell-hash per km
2
 of treated seabed.  

Although organic pollution is wide-spread in marine sediments, mitigation 

measures are rarely implemented. The addition of shell-hash to the sediment is not 

expected to be particularly costly because it could be deployed from the water surface. 

The integration of shell-hash into the stratigraphy of the sediment would occur 

naturally, without any requirement for mechanical intervention. Nevertheless, a cost-

benefit analysis would be necessary to establish the most suitable method to transfer 

shell-hash to the sediment in order to minimize costs and the carbon footprint.  
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In some cases, sediments that are subjected to shell-hash deposition, such as the 

ones influenced by mussel culture, have been dredged to remove mussel shells from the 

sediment. Our results suggest that it may be better not to dredge these areas, at least if 

the density of shell-hash is similar to the one used in this study. This measure would be 

beneficial for sediment biogeochemical processes, and would reduce the carbon 

footprint derived from dredging. 

This study demonstrates that under conditions of organic pollution, shell-hash 

can reduce the accumulation of by-products from anaerobic metabolic pathways, 

improving the sediment’s ecological status. Shell-hash can decrease the release rate of 

ammonium to the water column, thus preventing the negative ecological consequences 

derived from eutrophication. Therefore, shell-hash debris derived as a ‘waste-product’ 

of anthropogenic activities could be used to mitigate the effects of organic pollution on 

marine sediments, particularly in defaunated sites. 
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Tables and Figures 

Table 1. Results of the ANOVA for the time-integrated fluxes of total CO2 (TCO2), SOU, NH4
+
, NO3

ˉ
, NO2

ˉ
, PO4

3-
, depth-integrated acid volatile 

sulphide (AVS) and organic matter percentage (OM%) at the end of the experiment. The factors were organic pollution (OM), worm (W) and 

shell-hash (M). Significant effects are indicated in bold 

  SOU  TCO2  TCO2:O2  NH4
+   

 

Source of variation df MS F P   MS F P   MS F P   MS F P   

OM 1 10024 49.715 < 0.001  102575   58.106 < 0.001  0.005462 9.019 < 0.01  840.9  85.128 < 0.001   

W 1 1223    6.068    < 0.05  723 0.410 > 0.5  0.002436 4.022 > 0.05  93.4  9.451  < 0.01   

M 2 405    2.009    > 0.1  1446 0.819 > 0.4  0.001789 2.954 > 0.07  26.4  2.669  > 0.08   

OM x W 1 66    0.326    > 0.5  6592 3.734 > 0.06  0.006357 10.496 < 0.01  13.1  1.323  > 0.2   

OM x M 1 806    3.997    < 0.05  16099 9.120 < 0.01  0.007190 11.871 < 0.001  49.5  5.009  < 0.05   

W x M 1 293    1.451    > 0.2  7892 4.471 < 0.05  0.000178 0.294 > 0.7  65.6  6.640  < 0.01   

OM x W x M 1 56    0.280    > 0.7  8053 4.562 < 0.05  0.004812 7.945 < 0.01  8.9  0.904  > 0.4   

Residual 16 202                         1765    0.000606    9.9      

Total 23                  

Cochran's C test  C=0.445, P<0.05  C=0.2798, P>0.05  C=0.38162, P>0.05  C=0.2292, P>0.05   

Transformation  none  none  none  none   

 
 

NO3
- 

 
NO2

- 
 

PO4
3- 

 
%OM 

 

Source of variation df MS F P   MS F P  MS F P   MS F P    

OM 1 0.016886 1.422  > 0.2  0.10366  19.175 < 0.001  0.0012  0.054 > 0.8  0.08316  6.934 < 0.05   

W 1 0.014150 1.192 > 0.2  0.00062  0.115 > 0.7  0.3973  18.507 < 0.001  0.01341  1.118 > 0.3   

M 1 0.015055 1.268 > 0.3  0.00202  0.373 > 0.6  0.0350  1.632 > 0.2  0.00400  0.334 > 0.7   

OM x W 1 0.008033 0.676 > 0.4  0.00109  0.201 > 0.6  0.0600  2.795 > 0.1  0.01733  1.445 > 0.2   

OM x M 1 0.003998 0.337 > 0.7  0.00046  0.085 > 0.9  0.0972  4.528 < 0.05  0.01080  0.900 > 0.4   

W x M 1 0.008307 0.700 > 0.5  0.00124  0.229 > 0.7  0.0426  1.986 > 0.1  0.00109  0.091 > 0.9   

OM x W x M 1 0.004610 0.388 > 0.6  0.00016  0.030 > 0.9  0.0107  0.499 > 0.6  0.00448  0.374 > 0.6   

Residual 16 0.011875    0.00541     0.0215     0.01199      

Total 23                  

Cochran's C test  C= 0.2466, P>0.05  C=0.5228, P<0.05  C=0.3659, P>0.05  C=0.3452, P>0.05   

Transformation  none  none  none  none   

  AVS     
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Source of variation df MS F P                 

OM 1 3376  5.726 < 0.05               

W 1 18168  30.809 < 0.001               

M 1 2982  5.057 < 0.05               

OM x W 1 279  0.473 > 0.4               

OM x M 1 3453  5.856 < 0.01               

W x M 1 765  1.297 > 0.2               

OM x W x M 1 461  0.782 > 0.4               

Residual 16 590                  

Total 23                  

Cochran's C test  C=0.4296, P<0.05         

Transformation  none         
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Figure 1. Time-integrated fluxes of total CO2 (TCO2) (A), SOU (B), TCO2 and O2 

integrated fluxes ratio (C) and depth-integrated acid volatile sulphide (AVS) at the end 

of the experiment (D) (n=3, mean ± SE). See legend of Table 1 for the abbreviations of 

each treatment. 

Figure 2. Effect size (with a CI of variables) of the effect of the shell-hash factor in 

organic pollution conditions in time-integrated fluxes of TCO2 (A), NH4
+
 (B) and depth-

integrated acid volatile sulphide (AVS) at the end of the experiment (C). See legend of 

Table 1 for the abbreviations of each treatment. 

Figure 3. Time-integrated fluxes of NH4
+
 (A), PO4

3-
 (B), NO3

-
 (C) and NO2

-
 (D) (n=3, 

mean ± SE). See legend of Table 1 for the abbreviations of each treatment. 

Figure 4. Depth-integrated (0 – 16 cm) organic matter percentage (OM%) (n=3, mean ± 

SE). See legend of Table 1 for the abbreviations of each treatment. 
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