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Síntesis en castellano

Introducción

La música constituye una de las principales herramientas para la transmisión cul-
tural. Es por ello que, a lo largo de los siglos, numerosos documentos musicales se
han preservado cuidadosamente en catedrales, bibliotecas o archivos históricos.
No obstante, el acceso a estas fuentes no siempre es posible, pues su uso conti-
nuado podría comprometer su integridad. Esto implica que una importante parte
de este patrimonio permanece alejado del estudio musicológico.

Desde hace años se ha invertido mucho esfuerzo en la transcripción de parti-
turas a formato digital, ya que este proceso favorece la preservación de la música,
así como su acceso, estudio y distribución. Para este propósito se han desarrollado
muchas herramientas de distinta naturaleza. Por ejemplo, el uso de aplicacio-
nes de edición de partituras está especialmente extendido. Éstas permiten crear
partituras en formato digital a través de acciones con el ratón o el teclado. Otra
posibilidad para transcribir partituras es utilizar instrumentos digitales (por ejem-
plo, un piano MIDI) que puedan ser conectados a un ordenador, de forma que la
información musical se transfiera automáticamente a través de su interpretación.
Desafortunadamente, este proceso no siempre puede captar todos los matices que
se encuentran en una partitura.

Por otra parte, la digitalización masiva de documentos musicales abre diversas
oportunidades para aplicar algoritmos de Extracción y Recuperación de Infor-
mación Musical, que son de gran interés para el análisis musicológico. Indepen-
dientemente del medio utilizado, la transcripción de partituras es un proceso que
puede ser largo y tedioso —que a menudo requiere supervisión experta— por lo
que el desarrollo de sistemas de transcripción automática ha adquirido importan-
cia en los últimos años.

El Reconocimiento Óptico de Música (Optical Music Recognition, OMR) es la
tecnología que proporciona a los ordenadores la capacidad de entender la infor-
mación musical contenida en una partitura a partir del escaneo de su fuente. El
proceso consiste, básicamente, en recibir una imagen de una partitura y exportar
su contenido a algún tipo de formato estructurado como MusicXML, MIDI o MEI.
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Hasta ahora, esta tarea ha sido enfocada desde un punto de vista de proce-
samiento de imagen. Sin embargo, representa un desafío similar al del Recono-
cimiento Óptico de Caracteres (Optical Character Recognition, OCR), que tradicio-
nalmente ha sido tratado por la comunidad de Reconocimiento de Formas. La
complejidad particular de la notación musical, no obstante, crea la necesidad de
desarrollar algoritmos específicos.

Por otra parte, conviene tener en cuenta que las tecnologías actuales no per-
miten asegurar una transcripción libre de errores, y puede que nunca lo hagan.
Es por ello que en los últimos años está surgiendo lo que se conoce como Reco-
nocimiento de Formas Interactivo. Este paradigma está enfocado a la creación de
sistemas de transcripción asistida por ordenador. En este caso, el usuario y la má-
quina colaboran para completar la tarea de reconocimiento con el mínimo gasto
posible de recursos. El escenario más convencional asume que el ordenador pro-
pone soluciones a la tarea y el usuario tiene la responsabilidad de supervisar dicha
salida. Si existe algún error, el usuario debe proporcionar retroalimentación a la
máquina, que debe cambiar su respuesta teniendo en cuenta la nueva información
recibida.

Este paradigma implica varios cambios con respecto al Reconocimiento de For-
mas tradicional:

• Comportamiento dinámico: las interacciones del usuario proveen informa-
ción en línea relacionada con la tarea, lo que puede ayudar al sistema a variar
su comportamiento. Por ejemplo, mediante el uso de nuevos datos etiqueta-
dos o propagando la corrección a otras partes de la hipótesis propuesta.

• Interacción con el sistema: es necesario invertir esfuerzo en que el usuario
pueda utilizar una interfaz lo más ergonómica posible. Sin embargo, este ti-
po de interfaces pueden proceder de una señal no determinista, es decir, que
a veces será necesario decodificar dicha interacción. Por lo tanto, el sistema
tendrá que inferir, utilizando la nueva señal y la información inherente a la
tarea, qué pretende comunicar el usuario. Esto abre la posibilidad a explotar
la sinergia entre ambas modalidades de información.

• Medida de evaluación: como el esfuerzo del usuario, usualmente cuantifica-
do como la cantidad de correcciones a realizar, se considera el recurso más
importante, el objetivo del sistema no es tanto minimizar el número de erro-
res sino el número de correcciones necesarias para completar la tarea. Esto
puede provocar diferencias a la hora de elegir la hipótesis óptima.

Por todo lo expuesto anteriormente, esta tesis se centra en estudiar los aspectos
del reconocimiento automático de notación musical que puedan ser enfocados
desde una perspectiva de Reconocimiento de Formas, sin perder de vista el caso
interactivo.
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Objetivos

Desde una perspectiva global, el objetivo de esta tesis es explorar las posibilidades
que puede ofrecer el Reconocimiento de Formas cuando se aplica al reconocimien-
to automático de notación musical.

En lo que atañe al propio campo de OMR, la idea es desarrollar nuevos algo-
ritmos para algunas tareas específicas en las que queda margen de mejora para
aplicar estrategias basadas en el Reconocimiento de Formas. Las tareas de OMR
se suelen resolver siguiendo un cauce ampliamente establecido: binarización, bo-
rrado de líneas de pentagrama, detección de símbolos y clasificación; tradicio-
nalmente, la implementación de estos pasos (salvo la clasificación) suele seguir
enfoques basados en algoritmos de procesamiento de imagen.

A este respecto, en esta tesis queremos centrarnos en el paso encargado del
borrado de líneas de pentagrama. A pesar de que estas líneas son necesarias pa-
ra la interpretación humana, también complican la segmentación y clasificación
automática de símbolos musicales. Aunque la detección y eliminación del pen-
tagrama puede parecer una tarea sencilla, a menudo es difícil obtener resultados
precisos. Esto se debe principalmente a irregularidades en la imagen tales como
discontinuidades en las líneas o distorsión de la perspectiva, provocadas por la
conservación del papel (especialmente en documentos antiguos) o el proceso de
captación. Teniendo en cuenta que cuanto más preciso es este proceso, mejor es
la detección de símbolos musicales, se ha llevado a cabo mucha investigación pa-
ra mejorar este paso, que puede ser considerado hoy en día como un campo de
estudio en sí mismo.

El hecho de que esta tesis haga especial hincapié en este proceso se debe a dos
motivos principales. El primero, que las líneas de pentagrama tan sólo aparecen
en documentos musicales, por lo que es un tema específico que no ha sido tra-
bajado por otros campos relacionados con el análisis de documentos; en segundo
lugar, que se estima que una gran cantidad de errores en posteriores etapas son
causadas por fallos en este proceso (líneas de pentagrama no totalmente elimina-
das o borrado en partes de símbolos musicales). Para esta tesis se plantearon dos
objetivos relacionados con este proceso:

1. Investigar si es posible evitar el borrado de líneas de pentagrama. Aunque
para notación moderna es complejo de asumir, esta estrategia parece factible
en mucha notación musical antigua.

2. Investigar la resolución de este problema desde la perspectiva de Recono-
cimiento de Formas, afrontándolo como una tarea de clasificación supervi-
sada. Nuestra hipótesis es que es posible, y quizá más provechoso, basar la
bondad del proceso en algoritmos de aprendizaje automático.

Por otro lado, se pretende estudiar la interacción-humano máquina en tareas
interactivas OMR. Como se ha comentado en la sección anterior, este paradigma
está enfocado a la colaboración entre humano y máquina para resolver la tarea
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de la forma más eficiente posible. En nuestro caso, la idea es proveer al usuario
encargado de supervisar la tarea de una interfaz ergonómica con la que trabajar.
A pesar de los muchos esfuerzos invertidos en desarrollar editores de partitura
cómodos para el usuario, la realidad es que la comunidad musicológica todavía
prefiere trabajar de forma convencional con papel y lápiz. Utilizando un lápiz di-
gital y una superficie electrónica, es posible desarrollar una interfaz que permita
una interacción humano-máquina cómoda e intuitiva. El problema principal de
este enfoque es que la interacción ya no es determinista, pues el sistema no pue-
de estar seguro de qué es lo que el usuario está intentando comunicar; es decir,
esta interacción tiene que ser decodificada, y esta decodificación puede contener
errores.

Relacionado con este objetivo, esta tesis plantea estudiar el desarrollo de algo-
ritmos de Reconocimiento de Formas que hagan que la máquina pueda entender
interacciones recibidas a través de un lápiz digital. Típicamente, estas interac-
ciones representarán símbolos musicales dibujados utilizando un lápiz digital.
Nótese que esto puede ser utilizado tanto para interactuar con un sistema OMR
como para proveer de un sistema de creación de partituras.

Otro de los procesos en los que más hincapié se quiere hacer en esta tesis es
el de la propia clasificación de símbolos o trazos musicales, independientemente
de si el origen es imagen o es un lápiz digital. En concreto, la regla del vecino
más cercano (Nearest Neighbour, NN) representa una opción ideal desde un punto
de vista interactivo por dos motivos principales: es naturalmente adaptativo, ya
que la simple inclusión de nuevos prototipos en el conjunto de entrenamiento
es suficiente (no es necesario volver a entrenar); si a través de este aprendizaje
incremental, el conjunto de entrenamiento creciera demasiado, el tamaño podría
ser controlado utilizando algoritmos de reducción basados en distancia.

Es por ello que esta tesis también se plantea ciertos objetivos relacionados con
este tipo de clasificación. Por un lado, proponer mejoras en la clasificación de sím-
bolos teniendo en cuenta algoritmos basados en un esquema NN. Adicionalmen-
te, dado el carácter interactivo del campo de estudio de esta tesis, es importante
que los clasificadores sean capaces de dar una respuesta rápida. Desafortunada-
mente, los clasificadores NN suelen ser computacionalmente ineficientes. Es por
ello que también se plantea el objetivo de desarrollar esquemas que permitan uti-
lizar este tipo de clasificadores de una forma más eficiente pero tratando, en la
medida de lo posible, de no degradar su precisión.

Trabajos publicados

Los objetivos comentados anteriormente se han planteado desde una perspectiva
general. Durante el transcurso de la tesis, no obstante, la investigación se ha ido
matizando hacia aquellos aspectos que parecían más prometedores y más intere-
santes de tratar.
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Dado que la tesis se defiende en la modalidad de compendio de publicacio-
nes, los resultados troncales de la misma se encuentran reflejados en las distintas
publicaciones en revistas o congresos de alto impacto que se han obtenido. A con-
tinuación se describe cada uno de ellas.

Publicación I

Referencia:

• Calvo-Zaragoza, J., Barbancho, I., Tardón, L. J., and Barbancho, A. M. (2015a).
Avoiding staff removal stage in optical music recognition: application to sco-
res written in white mensural notation. Pattern Analysis and Applications,
18(4):933–943

Esta investigación se llevó a cabo durante durante una estancia en la Univer-
sidad de Málaga. El trabajo presenta un sistema OMR para partituras escritas en
notación mensural blanca del Archivo de la Catedral de Málaga. Estas partituras
tienen un estilo de impresión específico que nos permite proponer un nuevo en-
foque en el que se ha evitado la típica etapa de detección y borrado de líneas de
pentagrama.

Dado que los archivos de la catedral deben ser cuidadosamente tratados, no se
permite el escaneado de los mismos sino que las imágenes de entrada correspon-
den a fotografías tomadas desde una distancia fija. Por tanto, es necesario realizar
una etapa de procesamiento previo con el fin de corregir tanto la rotación como
la distorsión de la perspectiva de la entrada, de forma que el contenido quede
alineado con el eje horizontal. En esta etapa también se aborda la binarización de
la imagen de entrada por medio de diversos subprocesos (aumentar el contraste,
compensar la iluminación y umbralizar), que será necesaria para los siguientes
pasos.

La siguiente etapa comienza aislando cada sección de la partitura. Tras ello,
seguimos una nueva estrategia para la detección de símbolos que no depende
del borrado de líneas de pentagrama. Esta estrategia se basa en la combinación
de un histograma vertical junto con un algoritmo de agrupamiento k-means para
detectar los límites de cada región donde se encuentra un único símbolo. Con este
procedimiento se logra una tasa de extracción superior al 96 %, demostrando ser
suficientemente fiable para esta tarea.

Para clasificar cada uno de los símbolos, hacemos uso de un clasificador NN
utilizando el operador de correlación cruzada normalizada como medida de disi-
militud. Éste método obtiene unas tasas de clasificación superiores al 90 %.

Teniendo en cuenta los procesos de detección y clasificación, nuestro sistema
transcribe los resultados con una precisión cercana al 90 %. En comparación con
los resultados anteriores sobre este mismo archivo, nuestro trabajo mejora la de-
tección de los símbolos, lo que demuestra que evitar la etapa de eliminación de
pentagrama puede ser una opción muy interesante en estos términos. Además, la
precisión de la clasificación también mejora, a pesar de mantener estas líneas.
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Este trabajo abre nuevas vías para la construcción de sistemas OMR, demos-
trando que evitar el borrado de líneas de pentagrama merece consideración. Se ha
comprobado que puede ser una manera de corregir algunos de los problemas de
extracción y clasificación que se dan en los sistemas actuales.

Publicación II

Referencia:

• Calvo-Zaragoza, J., Micó, L., and Oncina, J. (2016a). Music staff removal with
supervised pixel classification. International Journal on Document Analysis and
Recognition, Online:1–9

En este trabajo presentamos un nuevo enfoque para la etapa de borrado de
líneas de pentagrama. En la literatura, este proceso suele tratarse utilizando al-
goritmos de procesamiento de imagen basados en las principales características
de los documentos musicales. Aunque la mayoría de los métodos propuestos son
capaces de lograr un buen rendimiento en muchos casos, están lejos del óptimo
cuando se cambia el estilo de la partitura. Nuestra intención es presentar un nue-
vo método que sea capaz de adaptarse a cualquier estilo de documento siempre y
cuando se disponga de datos de aprendizaje adecuados.

En este contexto, nuestra estrategia consiste en modelar la tarea de borrar las
líneas de pentagrama como si se tratara de un problema de clasificación de apren-
dizaje supervisado, en el que cada píxel de color se clasifica como pentagrama o
símbolo, manteniendo tan sólo los últimos.

Dada una imagen binaria que representa una partitura musical, se propone
recorre cada píxel con color y extraer un conjunto de características. Estas ca-
racterísticas se utilizan para entrenar un algoritmo de aprendizaje supervisado
utilizando pares de partituras con y sin pentagrama.

En este trabajo las características de cada píxel de interés consisten en los va-
lores de los píxeles vecinos, considerando una vecindad cuadrada de 3× 3, 5× 5,
7×7 o 9×9. Creemos que el entorno de cada píxel contiene suficiente información
contextual para afrontar esta tarea con precisión. Además, esta información con-
textual puede ayudar a evitar errores de clasificación debidos al ruido o pequeñas
deformaciones de la imagen.

Nuestros resultados experimentales muestran que el tamaño del conjunto de
características es más relevante que el clasificador específico. En concreto, un clasi-
ficador de máquinas de vectores soporte (Support Vector Machines, SVM), teniendo
en cuenta una vecindad de 9×9 (81 características), obtuvo los mejores resultados
en promedio.

También se incluye una comparación con otros procesos de eliminación de
líneas de pentagrama propuestos por otros investigadores. Nuestro método mues-
tra un rendimiento muy competitivo, incluso logrando los mejores resultados en
algunos casos a pesar de utilizar tan sólo una pequeña parte de la información de
entrenamiento. También se lleva a cabo un experimento de prueba de concepto
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sobre documentos musicales antiguos, que demuestra la solidez de nuestra pro-
puesta frente a otras opciones.

Por lo tanto, este nuevo enfoque reclama una mayor atención en este campo
de investigación, ya que afrontar el proceso como una tarea de aprendizaje super-
visado abre varias oportunidades para las cuales los métodos convencionales no
son aplicables.

Publicación III

Referencia:

• Rico-Juan, J. R. and Calvo-Zaragoza, J. (2015). Improving classification using
a confidence matrix based on weak classifiers applied to OCR. Neurocompu-
ting, 151:1354–1361

Se propone una nueva representación para mejorar la clasificación de símbo-
los aislados de cualquier naturaleza. Esta representación se obtiene a partir de un
conjunto de clasificadores débiles, de los cuales se obtiene la probabilidad a pos-
teriori de que la entrada pertenezca a cada una de las categorías de la tarea. Este
enfoque permite que las características iniciales sean transformadas a un nuevo
espacio de meta-características, compactando su representación en una serie de
valores más significativos.

La imagen de entrada se divide en sub-regiones, extrayendo de cada una ca-
racterísticas del símbolo, características del fondo y características del contorno.
Para cada tipo de característica, se considera un clasificador débil distinto basado
en NN, que mapea la entrada a un espacio de probabilidad. Los resultados de los
clasificadores débiles se utilizan para crear una matriz de confianza, que es final-
mente utilizada como conjunto de características para entrenar los clasificadores.

Nuestra experimentación demuestra que el uso de esta representación permi-
te una mejora significativa en la precisión con respecto a utilizar el conjunto de
características inicial. Estos resultados vienes avalados por una experimentación
con cuatro bases de datos de símbolos ampliamente conocidas y el uso de pruebas
de significancia estadística.

Publicación IV

Referencia:

• Calvo-Zaragoza, J. and Oncina, J. (2014). Recognition of pen-based music
notation: The HOMUS dataset. In 22nd International Conference on Pattern
Recognition, ICPR 2014, Stockholm, Sweden, August 24-28, 2014, pages 3038–
3043

Este artículo pretende ser un primer punto de referencia para el reconocimien-
to de la notación musical escrita a mano con un lápiz digital.
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Este proceso se centra en el reconocimiento de símbolos musicales que se di-
bujan en una superficie digital utilizando un lápiz electrónico. De esta manera,
se puede trabajar con notación musical digital sin recurrir a editores de partitura
convencionales.

Se presentan algunos estudios previos que han trabajado en este tema. Sin em-
bargo, todos ellos utilizan un conjunto de datos reducido y privado, por lo que
todavía era necesario realizar experimentos comparativos que indicaran qué al-
goritmos son más adecuados para esta tarea.

Para resolver este problema, este trabajo presenta la base de datos Handw-
ritten Online Musical Symbols (HOMUS). Este conjunto de datos contiene 15,200
muestras de símbolos musicales a partir de 100 músicos expertos. Dentro de este
conjunto se pueden encontrar 32 tipos diferentes de símbolos musicales. Se espera
que el conjunto de datos proporcione muestras suficientes para que los resultados
dependan de las técnicas utilizadas para la clasificación y no de la necesidad de
más datos.

Cada muestra de la base de datos representa un símbolo musical aislado, que
puede contener uno o varios trazos. Estos trazos — considerados como la forma
dibujada entre los eventos pen-up y pen-down — producen un conjunto ordena-
do de puntos, que indican el camino seguido por el lápiz (modalidad online). No
obstante, de cada símbolo se puede reconstruir una imagen de la forma dibujada,
que también se puede utilizar para la clasificación como se haría en el reconoci-
miento a partir de imagen (modalidad offline). Esta modalidad da otra perspectiva
del símbolo y podría ser más robusta frente a la velocidad del usuario, el orden
seguido para dibujar un símbolo y el número de trazos usados.

Para establecer una primera línea base del reconocimiento de este tipo de da-
tos, los experimentos se llevan a cabo con algoritmos de reconocimiento de formas
ampliamente conocidos: para aprovechar la modalidad online, clasificadores NN
y modelos ocultos de Markov (Hidden Markov Models, HMM); para clasificar las
muestras de la modalidad offline se utilizan clasificadores NN, SVM, redes neuro-
nales artificiales (Artificial Neural Networks) y HMM.

Se realizan dos experimentos para comprender mejor este conjunto de datos y
extraer las primeras conclusiones sobre la clasificación de estos símbolos. El pri-
mer experimento consiste en medir la dificultad de reconocer un símbolo cuando
proviene de un músico cuyo estilo no se ha visto durante el entrenamiento. En el
segundo experimento, las muestras de cada músico se incluyen tanto en el con-
junto de entrenamiento como en el de evaluación. Los resultados muestran que
la dificultad principal se encuentra en el primer caso. Por otra parte, los algorit-
mos que aprovechan la naturaleza online de los datos han demostrado ser los más
prometedores para la tarea de clasificación.
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Publicación V

Referencia:

• Calvo-Zaragoza, J. and Oncina, J. (2015). Clustering of strokes from pen-
based music notation: An experimental study. In 7th Iberian Conference Pat-
tern Recognition and Image Analysis, IbPRIA 2015, Santiago de Compostela, Spain,
June 17-19, 2015, Proceedings, pages 633–640

Cuando se trata una tarea de reconocimiento de música basada en lápiz di-
gital, la entrada consiste en una secuencia de trazos. A partir de un conjunto de
datos de símbolos musicales, podemos obtener definiciones de cómo se construye
cada símbolo a partir de trazos aislados. Si consideramos un etiquetado de trazos,
se podría reducir el espacio de búsqueda de trazos mediante la asignación de la
misma etiqueta a trazos similares.

En este punto, tenemos que lidiar con el problema abierto del conjunto de
etiquetas o categorías a considerar para cada trazo aislado. Sería factible consi-
derar un etiquetado ad-hoc pero no parece apropiado desde el punto de vista de la
aplicación. Por tanto, proponemos un caso de estudio de etiquetado automático
utilizando diferentes medidas de similitud entre trazos. El objetivo principal de
este trabajo no es dar una única propuesta de etiquetado, sino medir la bondad y
la generalización de cada medida de similitud considerada.

A este respecto, se consideran hasta 7 medidas de similitud. Algunas trabajan
directamente con la secuencia ordenada de puntos en el plano 2D, mientras que
otras son utilizadas tras pasar por un proceso de extracción de características.

Nuestro estudio experimental muestra que, aunque el proceso de agrupamien-
to es robusto cuando los símbolos provienen del mismo usuario, la tarea se vuelve
compleja en el escenario en el que las muestras son diferentes estilos de escritura.
En este caso, algunas medidas de similitud obtuvieron buenos resultados, mien-
tras que otras, especialmente aquellas basadas en características extraídas de la
imagen del trazo, se mostraron menos adecuadas para agrupar de forma compac-
ta este tipo de información.

Publicación VI

Referencia:

• Calvo-Zaragoza, J., Valero-Mas, J. J., and Rico-Juan, J. R. (2015b). Improving
kNN multi-label classification in Prototype Selection scenarios using class
proposals. Pattern Recognition, 48(5):1608–1622

Con el fin de mejorar la eficiencia de un clasificador basado en la regla NN,
han surgido una serie de técnicas que se centran en reducir el conjunto de entre-
namiento. Uno de los enfoques más conocidos para este propósito es la selección
de prototipos. La premisa principal de esta familia de algoritmos es que es posible
mantener, o incluso mejorar, la precisión del clasificador teniendo en cuenta tan
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sólo un subconjunto de los datos de entrenamiento disponibles. Los criterios para
seleccionar qué datos se mantienen dan lugar a diferentes algoritmos.

Desafortunadamente, en la mayoría de los casos, la reducción del conjunto de
entrenamiento conlleva una pérdida de precisión en la clasificación. Para paliar
esta situación, este trabajo propone una estrategia que tiene como objetivo buscar
el equilibrio entre la precisión que se puede obtener con todo el conjunto de en-
trenamiento y la eficiencia que se puede alcanzar con algoritmos de selección de
prototipos.

Nuestra estrategia reduce primero el conjunto de entrenamiento mediante el
uso de un algoritmo de selección; la clasificación del nuevo elemento se realiza
primero en ese conjunto reducido pero, en lugar de recuperar la clase más cercana,
se propone un rango de clases de acuerdo a su similitud con la entrada; estas
propuestas se utilizan para clasificar el elemento recibido en una versión filtrada
de los datos de entrenamiento originales en los que solamente los elementos que
pertenecen a las clases previamente seleccionadas se consideran para la tarea de
clasificación.

Para comprobar la validez de nuestra estrategia, se lleva a cabo una experi-
mentación exhaustiva, con múltiples bases de datos, diferentes escenarios y test
de significancia estadísticos. Los resultados muestran que nuestra propuesta ofre-
ce una nueva gama de soluciones equilibradas entre precisión y eficiencia. En los
mejores casos, nuestra estrategia alcanza la precisión original utilizando tan sólo
un 30 % del conjunto de entrenamiento. Además, en todos los casos considerados,
las pruebas estadísticas revelaron que la precisión obtenida es significativamente
mejor que la que se obtiene con los conjuntos reducidos.

Publicación VII

Referencia:

• Calvo-Zaragoza, J., Valero-Mas, J. J., and Rico-Juan, J. R. (2016b). Prototy-
pe Generation on Structural Data using Dissimilarity Space Representation.
Neural Computing and Applications, Online:1–10

Dentro de las técnicas para reducir el tamaño del conjunto de entrenamiento
podemos encontrar dos tipos de algoritmos: selección de prototipos, que seleccio-
na los datos más representativos de los disponibles; y generación de prototipos,
que se centran en la creación de nuevos datos que puedan representar la misma
información que el conjunto original pero de forma más eficiente.

A pesar de que la generación de prototipos suele suponer una opción más
eficiente, también es más restrictiva en su uso pues necesita que los datos estén
representados por un conjunto de características numérico, siendo imposible de
usar en datos estructurados como secuencias de símbolos de tamaño arbitrario,
árboles o grafos.



xvii

En este trabajo proponemos el uso de lo que se conoce como espacio de disimili-
tud, que permite representar cualquier tipo de datos como vectores de caracterís-
ticas siempre y cuando se pueda establecer una medida de disimilitud. Utilizando
este espacio es posible el uso de algoritmos de generación de prototipos en datos
estructurados.

Dado que el uso de dicho espacio puede conllevar pérdida de representa-
tividad, presentamos un estudio comparativo en el cual nuestra propuesta es
enfrentada al uso de algoritmos de selección de prototipos sobre los datos ori-
ginales.

Los resultados experimentales, avalados por el uso de varios conjuntos de
datos y test de significancia estadística, muestran que la estrategia propuesta es
capaz de obtener resultados significativamente similares que los obtenidos por la
selección de prototipos. No obstante, utilizar un espacio de disimilitud presenta
ventajas adicionales que refuerzan el uso de esta aproximación.

Trabajos no publicados

El trabajo sustancial de la presente tesis se encuentra en las publicaciones mencio-
nadas anteriormente. Con carácter complementario, a continuación se describen
trabajos realizados, pero pendientes de publicar, que completan algunos de los
objetivos que se habían planteado, especialmente para el caso de la interacción
basada en lápiz digital.

Trabajo I

• Título: Recognition of Pen-based Music Notation with Finite-State Machines

Este trabajo presenta un modelo estadístico para reconocer composiciones mu-
sicales basadas en lápiz digital utilizando algoritmos de reconocimiento de trazos
y máquinas de estados finitos.

La secuencia de trazos recibida como entrada se transforma a una representa-
ción estocástica. Es decir, en lugar de asignarle una etiqueta concreta a cada trazo,
se estima la probabilidad de que cada trazo sea cada una de las primitivas de trazo
consideradas.

Esta representación se combina con un lenguaje formal que describe cada sím-
bolo musical considerado en términos de secuencias de trazos (por ejemplo, el
símbolo musical negra podría definirse por la secuencia de trazos cabeza colorea-
da, plica). Como resultado, se obtiene una máquina de estados probabilista que
modela una distribución de probabilidad sobre todo el conjunto de secuencias
musicales.

Con el objetivo de evitar secuencias incorrectas, este modelo se cruza con un
lenguaje semántico que define todas aquellas que son gramaticalmente correctas.
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Tras esto, obtenemos un modelo de estados que define una distribución de pro-
babilidad sobre el conjunto de secuencias musicales gramaticalmente correctas.
Con el fin de producir una hipótesis sobre la entrada recibida, se describen varias
estrategias de decodificación de este tipo de máquinas.

Nuestra experimentación comprende varios algoritmos de reconocimiento de
trazos, diversos estimadores de probabilidad, varias medidas de evaluación y di-
ferentes escenarios. Los resultados muestran la bondad del modelo propuesto,
obteniendo resultados competitivos en todos los casos considerados.

Trabajo II

• Título: Pen-based Multimodal Interaction with Music Notation

En este trabajo describimos una nueva forma de interacción humano-maquina
para tareas de transcripción de notación musical. Este enfoque se basa en el uso de
una interfaz de lápiz electrónico, donde se asume que el usuario va a calcar cada
símbolo que el sistema haya obviado o clasificado incorrectamente. El sistema
recibe, por tanto, una señal multi-modal: por un lado, la secuencia de coordenadas
que indican la trayectoria seguida por el lápiz electrónico (modalidad online) y,
por otro, la porción de partitura que subyace bajo el calco realizado (modalidad
offline).

Hemos aplicado este enfoque a un pequeño repositorio de manuscritos de
música española de entre los siglos XVI y XVIII en notación mensural blanca, vi-
siblemente distinta de la notación moderna utilizada actualmente. De esta forma
hemos obtenido 10,200 muestras multi-modales, repartidas entre 30 tipos de sím-
bolo.

El trabajo incluye experimentación con la base de datos recogida, consideran-
do una clasificación que combina ambas modalidades. Se utiliza un clasificador
NN que arroja una probabilidad por cada modalidad de que cada muestra perte-
nezca a cada uno de los posibles símbolos. Estas probabilidades son combinadas
mediante una media ponderada en la cual se puede ajustar el peso otorgado a
cada modalidad.

El análisis de estos experimentos revela que es provechoso utilizar ambas mo-
dalidades en el proceso de clasificación, ya que la precisión mejora notablemente
con respecto a considerar cada modalidad por separado. En concreto, la mejor
combinación encontrada obtiene alrededor de un 98 % de precisión mientras que
se obtiene un 88 % y un 94 % para las modalidades individuales offline y online,
respectivamente.

Conclusiones

Esta tesis doctoral estudia nuevos enfoques para el reconocimiento automático de
notación musical basados en una perspectiva de Reconocimiento de Formas. El
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interés de la comunidad científica en el trabajo desarrollado se demuestra con las
publicaciones en revistas y congresos de alto impacto, avalados por comités de
revisión por pares. En concreto, indicar como indicios de calidad que 5 publica-
ciones están en revistas indexadas en el Journal Citation Reports, la mayoría de ellas
situadas en los primeros cuartiles de impacto, y 2 han sido defendidas en congre-
sos internacionales. Además, se han descrito otros trabajos que están en vías de
publicación.

Como se demuestra en la diversidad de temáticas abordadas en los trabajos
presentados, la tesis ha sido flexible en su línea principal, incorporando nue-
vas ideas surgidas en el transcurso de la propia investigación enmarcada dentro
del reconocimiento automático enfocado en la notación musical. La investigación
abarca diferentes partes del proceso como el borrado de líneas de pentagrama,
nuevos enfoques para interactuar con el sistema y mejoras en la clasificación de
símbolos, tanto en precisión como en eficacia.

El trabajo iniciado en esta tesis no puede considerarse como un camino fina-
lizado, sino que precisamente ha sido la investigación llevada a cabo la que ha
abierto nuevas vías que son interesantes para considerar en el futuro inmediato:

1. El enfoque de sistema OMR que evita borrar las líneas de pentagrama de-
be ser considerado para analizar otros tipos de partituras. Queda pendiente
evaluar si esta estrategia puede establecerse definitivamente como una nue-
va alternativa para la construcción de estos sistemas o se reduce tan sólo a
aquellas partituras que tengan un estilo de notación como el trabajado en
esta tesis. Una cuestión a considerar es que la segmentación siga también un
enfoque basado en aprendizaje automático, en lugar del uso de heurísticas.

2. Esta tesis ha demostrado que el borrado de líneas de pentagrama puede en-
focarse como una tarea de clasificación supervisada. Siguiendo esta misma
cuestión, sería interesante generalizar este proceso para que pueda utilizarse
con imágenes en escala de grises, ahorrándose así los problemas inheren-
tes al proceso de binarización. También debe dedicarse más investigación a
superar el problema de conseguir datos suficientes para entrenar a los clasifi-
cadores cuando se recibe un nuevo estilo de partitura que no se había visto.
Como idea preliminar, desarrollar sintéticamente un conjunto de entrena-
miento más variado, que permita reconocer partituras de diferentes estilos.

3. Dado que el reconocimiento de notación musical basado en lápiz había si-
do poco explorado hasta el momento, el trabajo realizado durante esta tesis
supone los primeros puntos de partida hacia esa dirección. No obstante, to-
davía queda mucho trabajo por realizar para explotar verdaderamente este
tipo de información. Principalmente, incorporar esta modalidad en el flujo
de trabajo de un sistema OMR funcional. Sería interesante comprobar cómo
el propio sistema y el usuario colaboran para completar la tarea con el míni-
mo esfuerzo, haciendo que la interacción no sólo corrija errores producidos
sino que ayude al sistema a modificar su comportamiento dinámicamente.
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4. Hasta ahora la mayoría de sistemas OMR han seguido un cauce conven-
cional basado en segmentación y clasificación. Como trabajo futuro, sería
interesante analizar el rendimiento que obtienen algoritmos holísticos de re-
conocimiento de formas como HMM o redes neuronales recurrentes, que
están dando buenos resultados en el reconocimiento automático de texto
manuscrito.
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Preface

Given that most of the research conducted as part of this thesis has been pub-
lished in international peer-reviewed journals and conferences, this dissertation is
configured as a thesis by publication. This means that the main part of the work is
presented as reprints of such publications, keeping their original format.

The set of papers that form the PhD work are (in chronological order of publi-
cation):

1. Calvo-Zaragoza, J. and Oncina, J. (2014). Recognition of pen-based music
notation: The HOMUS dataset. In 22nd International Conference on Pattern
Recognition, ICPR 2014, Stockholm, Sweden, August 24-28, 2014, pages 3038–
3043

2. Rico-Juan, J. R. and Calvo-Zaragoza, J. (2015). Improving classification using
a confidence matrix based on weak classifiers applied to OCR. Neurocomput-
ing, 151:1354–1361

3. Calvo-Zaragoza, J., Barbancho, I., Tardón, L. J., and Barbancho, A. M. (2015a).
Avoiding staff removal stage in optical music recognition: application to
scores written in white mensural notation. Pattern Analysis and Applications,
18(4):933–943

4. Calvo-Zaragoza, J., Valero-Mas, J. J., and Rico-Juan, J. R. (2015b). Improving
kNN multi-label classification in Prototype Selection scenarios using class
proposals. Pattern Recognition, 48(5):1608–1622

5. Calvo-Zaragoza, J. and Oncina, J. (2015). Clustering of strokes from pen-
based music notation: An experimental study. In 7th Iberian Conference Pat-
tern Recognition and Image Analysis, IbPRIA 2015, Santiago de Compostela, Spain,
June 17-19, 2015, Proceedings, pages 633–640

6. Calvo-Zaragoza, J., Micó, L., and Oncina, J. (2016a). Music staff removal with
supervised pixel classification. International Journal on Document Analysis and
Recognition, Online:1–9

7. Calvo-Zaragoza, J., Valero-Mas, J. J., and Rico-Juan, J. R. (2016b). Proto-
type Generation on Structural Data using Dissimilarity Space Representa-
tion. Neural Computing and Applications, Online:1–10
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Additionally, we also include some works that have not been published yet but
contain substantial research that is strongly related to the objectives of the thesis.

Following the guidelines of the doctoral school of Universidad de Alicante for
writing thesis as compilation of papers, the dissertation has to be organized as
follows:

- Part I: Introduction. An initial section introducing the background of the
thesis and a description of the set of contributions within the context of the
thesis project.

- Part II: Published work. The compilation of papers that are already pub-
lished or accepted for publication.

- Part III: Unpublished work. Finished works that are neither published nor
accepted for publication yet.

- Part IV: Conclusions. Summary of the contributions, general conclusions
and some lines about future research.

Taking into account that each presented paper is totally self-contained, Part I
merely puts into context the research carried out without giving a deep insight
into the background and related works. Similarly, the analysis of the results
achieved can be found in each publication, so Part IV summarises the general
discussion.
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Preamble
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Chapter 1

Introduction

A large number of music documents have been carefully preserved over the cen-
turies. It is even a common practice nowadays, given the historical and cultural
interest of these sources. The transcription of these documents allows a large-scale
organization that would facilitate their access, search and study, while represent-
ing an indispensable element for their future maintenance. The problem, however,
is that the transcription of scores is a long, tedious task —which often requires
expert supervision— so the development of automatic transcription systems be-
comes an important need.

The automatic transcription of music documents has been approached so far
from an image-processing point of view. However, it represents a challenge very
similar to that of the Optical Character Recognition, which has been traditionally
tackled by the Pattern Recognition community. Nevertheless, although part of the
research carried out on characters could be of great utility in the context of music
documents, the specific complexity of music notation forces the development of
new algorithms and ideas.

On the other hand, it should be noted that ensuring error-free recognition sys-
tems (whichever the specific task) is not possible, and might never be. That is
why a new paradigm, known as Interactive Pattern Recognition, is emerging in
recent years. This paradigm is focused on the creation of computer-assisted tran-
scription systems. It assumes a scenario in which users and machines collaborate
to complete the recognition task efficiently. Therefore, many aspects ignored in
the traditional scenario, such as the way humans interact with the machine or the
ability of the system to adapt rapidly to the feedback, become of great interest in
the interactive one.

Consequently, this dissertation focuses on the key aspects of automatic tran-
scription of music documents that can be approached from a Pattern Recognition
perspective, without losing sight of the interactive case.

Each contribution presented as a part of this thesis is a complete research work,
thereby containing enough background information to be understood by them-
selves. Nevertheless, the following sections briefly introduce the different fields
of research that are considered, given its interest for the present dissertation.
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1.1 Pattern Recognition

Pattern Recognition is the field of computer science devoted to discovering pat-
terns from data. It is assumed that there exists an unknown function that assigns
a category or class to each sample. The goal is therefore to infer such a function
from a set of representative examples.

Formally speaking, a Pattern Recognition task is defined by an input space X ,
an output space Y and a function γ : X → Y . The field can be broadly divided
into two families of algorithms depending on how γ is estimated. If it is inferred
by means of a set of labelled examples T = {(xi, yi) : xi ∈ X , yi ∈ Y}|T |i=0, the task
is referred to as supervised learning. On the other hand, if the function has to be
estimated from the data itself, it is called unsupervised learning.

Traditionally, a feature extraction process is performed, which consists of a
function f : X → F . This function maps the input space onto a feature space
from which the task is expected to be solved more easily. Depending on the
model used for representing the space F , two fundamental approaches can be
found: a first one, usually known as structural or syntactical, in which data is
represented as symbolic data structures such as strings, trees or graphs; and a sec-
ond one, known as statistical representation, in which the representation is based
on numerical feature vectors that are expected to sufficiently describe the actual
input. The election of one of these approaches has some noticeable implications
and consequences: structural methods offer a wide range of powerful and flexible
high-level representations, but only few algorithms and techniques are capable of
processing them; statistical methods, in spite of being less flexible in terms of rep-
resentation, depict a larger collection of Pattern Recognition techniques (Bunke
and Riesen, 2012).

On the other hand, there are many Pattern Recognition tasks that are naturally
sequential. For instance, Handwritten Text Recognition (Toselli et al., 2010) or Au-
tomatic Speech Recognition (O’Shaughnessy, 2000), for which the label to guess
can be seen as a sequence rather than a single category. These tasks can be further
modelled by an alphabet Σ, a finite non-empty set of symbols, and a vocabulary Ω.
If some combinations of symbols are not acceptable, the vocabulary represents a
subset of all possible sequences that can be formed with the alphabet (Ω ⊂ Σ∗).

Furthermore, an input x ∈ X can be seen from different perspectives. On
one hand, if considered as a whole, an output from Ω is directly inferred. These
methods are also referred to as holistic or continuous models, for which systems
based on Hidden Markov Models (Gales and Young, 2008) o Recurrent Neural
Networks (Graves and Schmidhuber, 2009) are good representatives. On the other
hand, the input can be approached as a sequence of smaller inputs, each of which
has to be classified within the alphabet, as long as the final sequence belongs to
the vocabulary. That is, the input is considered a sequence x = (x1, x2, . . . , xn) and
the estimated hypothesis h = (h1, h2, . . . , hm) must accomplish that hi ∈ Σ, ∀1 ≤
i ≤ m and h ∈ Ω.
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Chapter 1. Introduction

In the latter case, the Pattern Recognition task also entails a problem of seg-
mentation, in order to decide how to divide each part of the raw input x into
single units.

1.1.1 Interactive Pattern Recognition

It is widely known that current Pattern Recognition systems are far from being
error-free. At least, that is the case in relevant fields like Automatic Speech Recog-
nition (Graves et al., 2013), Handwritten Text Recognition (Yin et al., 2013) or
Automatic Music Transcription (Benetos et al., 2013). If a high or full accuracy
is a necessary issue, an expert supervisor is required to correct the mistakes. Tra-
ditionally, these corrections have been performed offline: the machine proposes
a solution and the supervisor corrects the output off the system error by error.
The Interactive Pattern Recognition (IPR) framework involves actively the user
in the recognition process so as to reduce the effort needed in the previous sce-
nario (Toselli et al., 2011).

A common IPR task is developed as follows (see Fig. 1.1):

1. An input is given to the system.

2. The system proposes a solution.

3. If some error is found, the user gives feedback to the system.

4. Taking into account the new information, the system proposes a new solu-
tion and returns to the previous step.

(1)

(2)

(3)

Figure 1.1: General scheme of an IPR task.

Note that the main goal of IPR is not to make the user learn how to perform
such a task, which would be more related to fields like Interactive Learning (Lund-
vall, 2010), but to complete the work saving as much as possible the available
resources.
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Including a supervisor in the recognition process provides new ways to im-
prove the efficacy of the system (Horvitz, 1999). For instance, corrections pro-
vide error-free parts of the solution, which can be helpful to be more accurate in
the remaining ones. In addition, each interaction provides new context-related
labelled data. Therefore, it might be interesting to consider instance-based classi-
fiers which do not need to retrain the model when new data is available (Russell
and Norvig, 2009).

However, the most important difference when dealing with an IPR task is the
performance evaluation. Since the user is considered the most valuable resource,
the performance of an IPR system must be related to the user effort needed to
complete the task. This is commonly measured as the number of user interactions,
regardless the nature of them (Vidal et al., 2007). In fact, if the number of user
interactions is to be minimized, the optimum hypothesis changes with respect to
conventional Pattern Recognition (Oncina, 2009)

Theoretically, this framework reduces the number of corrections that would be
needed in a non-interactive scenario. Nevertheless, empirical studies with real
users, such as those carried out under Transcriptorium (Romero and Sanchez,
2013) or CasMaCat (Sanchis-Trilles et al., 2014) projects, showed that the interac-
tive approach may entail some drawbacks from users’ point of view. For instance,
if the human-computer interaction is not friendly enough or the user is not used
to working in an interactive way, the time and/or effort needed to complete the
task could even be worse than in the conventional post-editing scenario. As a
consequence, some effort must be devoted to developing intuitive and ergonomic
ways of performing the human-computer interaction.

1.2 Recognition of Music Notation

Digitizing music scores offers several advantages such as an easier distribution,
organisation and retrieval of the music content. Since decades, much effort has
been devoted to the development of tools for this purpose.

Nowadays, edition tools that allow actions based on mouse and click actions
to place musical symbols in empty scores are available. Alas, its use is still te-
dious and very time-consuming. Moreover, digital instruments (such as MIDI
keyboards) can also be found, from which the musical information can be directly
transferred to the computer by playing the score. However, this mechanism can-
not be completely accurate and capture all the nuances of the score. Furthermore,
this method requires the user to be able to play the piece perfectly, which is not a
trivial matter.

The emergence of Optical Music Recognition (OMR) (Bainbridge and Bell,
2001) systems represented a more comfortable alternative. Analogous to Opti-
cal Character Recognition with the case of text manuscripts, OMR is the field of
computer science devoted to understanding a music score from the scanning of
its source. The process basically consists in receiving an image of a music score

8



Chapter 1. Introduction

and exporting its information to some kind of machine-readable format such as
MusicXML, MIDI or MEI.

An OMR process usually entails a series of sub-procedures. A typical pipeline
consists of the following steps:

1. Preprocessing. The preprocessing stage is focused on providing robustness
to the system. If posterior stages always have as input an image with the
staff lines aligned with respect to the horizontal axis, with equal relative
sizes and where the only possible values for a pixel are background or fore-
ground, systems tend to generalise more easily. Each of these steps can be
addressed in different ways and each author chooses those techniques that
are considered more appropriate in each case.

2. Staff lines removal. Although these lines are necessary for human read-
ability, they complicate the detection and classification of musical symbols.
Therefore, a common OMR system includes the detection and removal of
staff lines. Next section goes deeper in this step, given its relationship with
the research carried out in this dissertation.

3. Symbol detection and classification: symbol detection is performed by search-
ing the remaining meaningful objects in the score after the removal of the
staff lines. Once single pieces of the score have been isolated, an hypothe-
sis about the type of each one is emitted in the classification stage. The main
problem is that some of the musical symbols are broken by the earlier stages.

4. Post-processing: it entails a series of procedures that involve the reconstruc-
tion of music notation from symbol primitives and its transformation into
some structured encoding.

For an extensive review of the state-of-the-art of all these steps, reader may
check the comprehensive work published by Rebelo et al. (2012).

Yet, it should be stressed that the input of these systems can be quite varied.
In addition to common notation, it is interesting to consider the automatic digi-
tisation of any kind of old music manuscripts. This music is an important part
of historical heritage, which is usually scattered across libraries, cathedrals and
museums. Thereby making it difficult to access and study them appropriately.
In order to analyse these documents without compromising their integrity, they
should be digitised.

Nonetheless, conventional OMR systems are not effective transcribing these
kind of music scores (Pinto et al., 2000). The quality of the sheet, the inkblots or the
irregular levelling of the pages constitute some features to overcome. Moreover, it
is extremely complex to build systems for any type of document because several
notations can be found such as mensural, tablatures, neumes, and so on.
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1.2.1 Staff detection and removal

OMR systems have to deal with many aspects of musical notation, one of which
is the presence of the staff, the set of five parallel lines used to define the pitch of
the notes. In fact, this stage is one of the most critical aspect of the OMR process
since both the detection and the classification of musical symbol commonly relies
on its accuracy.

It is important to note that this process should not only detect staff lines but
also remove them in such a way that musical symbols remain intact (see Fig. 1.2).

(a) Example of input score for an OMR system

(b) Input score after staff removal

Figure 1.2: Example of a perfect staff removal process.

Problems mainly come from sheet deformations such as discontinuities, skew-
ing or paper degradation —especially in ancient documents— or just a variation
of the main features of the music sheet style (thickness, spacing or notation).

Given that, following conventional approaches, the more accurate this process
the better the detection of musical symbols, much research has been devoted to
this process, which can be considered nowadays as a task by itself (Dalitz et al.,
2008). Although this stage has been approached in many ways, it finally be-
comes a trade-off between keeping information and reducing noise. Aggressive
approaches greatly reduce the noise but can eliminate relevant information. On
the contrary, less harmful processes end up producing a high amount of noisy
areas.

10



Chapter 1. Introduction

1.2.2 Recognition of Pen-based Music Notation

Despite several efforts to develop light and friendly software for music score edi-
tion, many musicians still prefer pen and paper to deal with music notation.

On one hand, this is common during the composition of new music. Once the
artistic process is over, however, they resort to this kind of tools to transcribe the
musical content to some machine-readable format. Although this process is not
always mandatory, it entails several benefits such as an easier storage, organiza-
tion, distribution or reproduction of the music scores. A profitable way of solving
the whole problem is by means of a pen-based music notation recognition sys-
tem. Such systems makes use of an electronic pen, with which music symbols are
drawn over a digital surface. The system collects user strokes and then processes
them to recognize the music notation. As said before, this task can be consid-
ered very similar to the Optical Character Recognition task, for which pen-based
(or online) research have been widely carried out (Plamondon and Srihari, 2000;
Mondal et al., 2009; Liu et al., 2013).

On the other hand, such an interface could be used to amend errors made by
OMR systems in a ergonomic way for the user, as has been proposed for automatic
text recognition (Alabau et al., 2014). Handwriting is a natural way of communi-
cation for humans, and it is therefore interesting to use this kind of information as
a mean of interaction with machines.

A straightforward approach to solve recognise pen-based music notation is to
resort to OMR algorithms. That is, an image can be generated from pen strokes
to make it pass through a conventional image-based system. Nevertheless, the
performance of current such systems is far from optimal, especially in the case of
handwritten notation (Rebelo et al., 2012).

Note that the main intention of a pen-based notation system is to provide mu-
sicians with an interface as friendly as possible. Therefore, they are expected to
write without paying attention to achieving a perfect handwriting style so that
notation would be even harder than usual to be recognised.

Fortunately, pen-based recognition brings new features that make the task be
very different to the offline case. Therefore, it is interesting to move towards the
development of specific pen-based algorithms.

1.3 The Nearest Neighbour classifier

The Nearest Neighbour rule (NN) is the most representative instance-based method
for supervised classification. Most of its popularity in classification tasks comes
from its conceptual simplicity and straightforward implementation. This method
just require to work over a metric space, i.e., that in which a distance between two
instances can be defined. Thereby being independent of data representation used.
More precisely, given an input x, the NN rule assigns to x the label of its nearest
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prototype of the training set. This rule can be easily extended to kNN, in which
the decision is taken by querying its k-nearest prototypes of the training set.

An interesting advantage of this method is that it deals very well with inter-
active tasks. Due to its lack of model, the method does not need to perform any
retune when new labelled data is considered. Therefore, the feedback received
by the user within an interactive loop can be exploited rapidly. This increases
the possibility of avoiding close errors related to the feedback received, thereby
saving valuable user effort.

Additionally, this classifier is suitable for problems in which the set of possible
labels contains more than two elements (multi-class classification). In this sense,
the algorithm does not have to make any adjustment since it is naturally multi-
class unlike other such as Support Vector Machines, which have to choose some
kind of strategy to adapt to this scenario Hsu and Lin (2002).

On the other hand, this rule has some disadvantages related to its operation.
For instance, it needs to examine all the training data each time a new element has
to be classified due to the lack of model. As a consequence, it does not only depict
considerable memory requirements in order to store all these data, which in some
cases might be a very large number of elements, but also show a low computa-
tional efficiency as all training information must be checked at each classification
task (Mitchell, 1997). Note that this is especially relevant for the interactive case,
in which a stream of labelled data is expected to come through users’ corrections.

These shortcomings have been widely analysed in the literature and several
strategies have been proposed to tackle them. In general, they can be divided into
three categories:

• Fast Similarity Search: family of methods which base its performance on
the creation of search indexes for fast prototype query in the training set.

• Approximated Similarity Search: approaches which work on the premise
of searching sufficiently similar prototypes to a given query in the training
set instead of retrieving the exact nearest instance.

• Prototype Reduction: set of techniques devoted to lower the training set
size while maintaining the classification accuracy.

While the two first approaches focus on improving time efficiency, they do not
reduce memory consumption. Indeed, some of these techniques speed-up time
response at the expense of increasing this factor. Therefore, when memory usage
is an aspect to consider, the Prototype Reduction framework rises as a suitable
option to consider.

1.3.1 Prototype Reduction

Prototype Reduction techniques are widely used in NN classification as a means
of overcoming its previously commented drawbacks, being the two most common
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Chapter 1. Introduction

approaches Prototype Generation (PG) and Prototype Selection (PS) (Nanni and
Lumini, 2011). Both methods focus on obtaining a smaller training set for low-
ering the computational requirements and removing ambiguous instances while
keeping, if not increasing, the classification accuracy.

PS methods try to select the most profitable subset of the original training set.
The idea is to reduce its size to lower the computational cost and remove noisy
instances which might confuse the classifier. Given its importance, many different
approaches have been proposed throughout the years to carry out this task. The
reader may check the work of Garcia et al. (2012) for an extensive introduction to
this topic and comprehensive experimental comparison of the different methods
proposed.

On the other hand, PG methods are devoted to creating a new set of labelled
prototypes that replace the initial training set. Under the reduction paradigm, this
new set is expected to be smaller than the original one since the decision bound-
aries can be defined more efficiently. Reader is referred to the work of Triguero
et al. (2012) to find a more comprehensive review about these methods, as well as
a comparative experiment among different strategies.
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Chapter 2

Contributions

This chapter broadly introduces the main contributions presented in this disserta-
tion, and their relationships with the object of study.

It is important to emphasise that the main objective of this thesis is to explore
the capabilities of Pattern Recognition strategies when dealing with the automatic
recognition of music notation. Since this intention is rather general, we focus on
specific tasks that can be approached from this perspective.

For the sake of clarity, the contributions are divided into three groups: gen-
eral contributions to the OMR field, pen-based interaction for music notation, and
improvements to the efficiency of the NN rule.

2.1 Optical Music Recognition

Among all the procedures involved in an OMR pipeline, this thesis pays special
attention to the staff lines removal. This step is especially interesting for the pur-
pose of this dissertation because staff lines represent a feature that only appears
in music documents, so it is a specific stage that has not been addressed by other
fields. Furthermore, it is estimated that a large number of errors in posterior stages
are caused by inaccuracies during this process, ie. staff lines not entirely removed
or removal of parts that belong to symbols.

In this respect, this work considers two questions related to this process:

1. Is it possible to avoid the staff removal stage in an OMR process?

This question is addressed in Chapter 3 by proposing a new OMR system for
printed Early notation that avoids the staff lines removal stage. This work
was conducted during a research visit to Málaga (Spain), whose cathedral
maintains an interesting music archive of printed Early music.

The segmentation of symbols is done by means of an unsupervised learn-
ing analysis of the projection of the score over the x-axis. Once symbols are
detected, classification is performed by using a common template matching
method. Comparative results are provided, in which our strategy reports
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better figures in both detection and classification metrics than previous stud-
ies.

2. Is it possible to approach the staff removal stage from the supervised learn-
ing perspective?

Our initial premise is that it might be possible to achieve accurate results
as long as learning data is available. Chapter 4 presents a work in which
the staff lines removal is solved as a classification problem at pixel level.
Experiments show that the approach is very competitive, reaching state-of-
art algorithms based on image processing procedures.

This thesis also deals with the recognition of isolated symbols. As aforemen-
tioned, we want to focus on classification based on the NN rule since it represents
an ideal choice for the interactive case: it is naturally adaptive, since the mere in-
clusion of new prototypes in the training set is sufficient; and, if the training set
grows too much due to the new labelled data received through user interactions,
the size could be controlled by distance-based Prototype Reduction algorithms.

Chapter 5 describes a new ensemble method that takes into account different
features from isolated symbols. These features are combined by means of weak
classifiers based on the NN rule. Due to an editorial decision, the paper was pre-
sented as a method for classifying symbols of any nature. That is why that chapter
includes additional results obtained for the case of music notation.

2.2 Pen-based Interaction for Music Notation

One of the specific objectives of the present dissertation is the study of human-
computer interaction when dealing with music notation. The interactive frame-
work is based on the collaboration between users and machines in order to com-
plete the recognition task as efficiently as possible. In our case, we focus on
providing a natural interface with which to work with music notation.

The premise is that it is possible to develop an ergonomic interface that allows
an intuitive and comfortable interaction with the machine by means of an elec-
tronic pen (e-pen) and a digital surface. The main drawback of this interface is
that the interaction is no longer deterministic, ie. the system cannot be sure what
the user is trying to communicate. Therefore, this interaction has to be decoded
and this decoding may contain errors.

Related to that problem, this thesis studies the development of Pattern Recog-
nition algorithms that make the machine understand interactions received through
an e-pen. These interactions might represent either isolated music symbols or
complete music sequences.

Given that few research has been done over this issue, Chapter 6 presents a
dataset of isolated symbols written using an e-pen. In addition, some baseline
classification techniques are presented, considering both image and sequence fea-
tures. Chapter 11 (unpublished work) extends this initial idea by considering a

16



Chapter 2. Contributions

scenario in which the user traces the symbols over the music manuscript. This
contribution shows that, taking into account the information provided by the user
and the information contained in the score itself, it is possible to improve the clas-
sification results noticeably. Therefore, the interaction of the user is much better
understood by the system, leading to a friendlier interaction with the machine.

On the other hand, Chapter 7 and 10 (unpublished work) develop the idea of
using an e-pen and a digital surface to build a system in which a composer can
write the music naturally and have it effortlessly digitised. Our proposal follows a
learning-based approach and, therefore, it can be adapted to any kind of notation
and handwriting style. The input of the system is the series of strokes written by
the user. From that, Chapter 7 proposes an automatic labelling of these strokes,
which is used as a seed to develop a complete system in Chapter 10. We show that
the proposed approach is able to recognise accurately the music sequence written
by the user.

2.3 Efficiency of the Nearest Neighbour rule

Given the interactive nature of the field of study in this dissertation, the Nearest
Neighbour (NN) rule is a suitable classifier because of its intrinsic adaptiveness
and dynamic behaviour. In turn, it is computationally inefficient, which can be
harmful from a user-point of view: if the system takes too long to give any answer
and the user has to wait too much, the interactive process loses all its sense.

Fortunately, one may resort to the use of Prototype Reduction techniques to
develop schemes that allow using this kind of classifiers more efficiently. That
is why this thesis devotes some effort to reducing the computational complex-
ity of the NN when the task poses a multi-class problem, that is, when the set
of possible labels is high (as it is in the case of music symbols classification). As
introduced previously, among the techniques to reduce the size of the training
set two types of algorithms can be found: Prototype Selection (PS), which selects
the most representative data available; and Prototype Generation (PG), which fo-
cuses on creating new data that might represent the same information with fewer
examples.

Alas, these techniques involve a loss of accuracy in most cases. To alleviate this
situation, we propose in Chapter 8 a strategy that seeks for a trade-off between the
accuracy obtained with the whole training set and the efficiency achieved with PS
algorithms. In the best cases, our strategy achieves the original accuracy using
only 30 % of the initial training set.

Moreover, although PG is often reported to be a more efficient option than PS,
it is also more restrictive in its use because it needs data represented by a set of nu-
merical features, being infeasible over structural data. Chapter 9 proposes the use
of the so-called Dissimilarity Space (DS), which allows representing any type of
data as feature vectors as long as a pairwise dissimilarity measure can be defined
over the input space. Note that this is not a hard constraint under a NN scenario

17



because such a dissimilarity function is necessary for the classification. Using this
new space, it is possible to use PG algorithms over any kind of data. Experimen-
tal results show that the combined strategy DS/PG is able to obtain significantly
similar results to those obtained by PS with the original data. However, the use of
a DS representation provides additional advantages that enhance the use of this
approach.
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Abstract Staff detection and removal is one of the most

important issues in optical music recognition (OMR) tasks

since common approaches for symbol detection and clas-

sification are based on this process. Due to its complexity,

staff detection and removal is often inaccurate, leading to a

great number of errors in posterior stages. For this reason, a

new approach that avoids this stage is proposed in this

paper, which is expected to overcome these drawbacks.

Our approach is put into practice in a case of study focused

on scores written in white mensural notation. Symbol

detection is performed by using the vertical projection of

the staves. The cross-correlation operator for template

matching is used at the classification stage. The goodness

of our proposal is shown in an experiment in which our

proposal attains an extraction rate of 96 % and a classifi-

cation rate of 92 %, on average. The results found have

reinforced the idea of pursuing a new research line in OMR

systems without the need of the removal of staff lines.

Keywords Optical music recognition � Staff detection
and removal � Ancient music � White mensural notation

1 Introduction

Since the emergence of computers, much effort has been

devoted to digitizing music scores. This process facilitates

music preservation as well as its storage, reproduction and

distribution. Many tools have been developed for this

purpose since the 1970s. One way of digitizing scores is to

use electronic instruments (e.g., a MIDI piano) connected

to the computer, so that the musical information is directly

transfered. However, this process is not free of errors and

inaccuracies could cause differences between the generated

score and the original one. An additional bothersome fea-

ture of this method is that it requires the participation of

experts who know how to perform the musical piece. On

the other hand, software for creating and editing digital

scores, in which musical symbols are placed in a staff

based on ’drag and drop’ actions, is also available. Nev-

ertheless, the transcription of scores with this kind of tools

is a very time-consuming task. This is why systems for

automatic transcription of music scores became an impor-

tant need.

Optical music recognition [1] (OMR) is the task of

automatically extracting the musical information from an

image of a score in order to export it to some digital format.

A good review of OMR can be found in the work of Rebelo

et al. [23], covering the state of the art and the remaining

challenges.

In this work, we are interested in the process of recog-

nition of musical symbols from ancient scores. Ancient

music is a main source of historical heritage. This kind of

music is scattered across libraries, cathedrals and muse-

ums, what makes it difficult to access and study them. In

order to use these documents without compromising their

integrity, they can be digitized. However, conventional

OMR systems are not effective transcribing ancient music
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scores [18]. The quality of the sheet, the inkblots or the

irregular leveling of the pages constitute some features to

overcome. Moreover, it is extremely complex to build

systems for any type of document because several nota-

tions can be found: mensural (white and black), tablature,

neumes, etc. In the literature, some studies that have

worked with some kinds of ancient scores can be found,

such as those reported in [19] or [8].

The system described here focuses on analyzing ancient

scores in white mensural notation. Specifically, our dataset

consists of scores from the Archivo de la Catedral de

Malaga (ACM). The ACM was created in the fifteenth

century, and its library contains music scores from the

tenth to the twentieth centuries. The scores of our dataset

have a special feature: Unlike other ancient printed scores

in which the printing house put the symbols over an empty

staff, these symbols were printed jointly with a piece of

staff over an empty sheet (see Fig. 1). It means that in each

piece of the score, a single symbol is found. Furthermore, a

noticeable distance between each musical symbol always

exists. These features allow us to address the OMR process

avoiding the common staff detection and removal stage.

Much research has been conducted in OMR concerning

staff detection and removal [7, 25, 27]. This stage is one of

the most critical aspects for both the detection and the

classification of the musical symbols since they are based

on symbol isolation. This stage is hardly sufficiently

accurate, and it often produces noisy results. Although

more aggressive methods that minimize noise can be used,

they produce partial or total loss of some musical symbols.

The trade-off between these two aspects, in addition to the

accuracy of the techniques, has hitherto led to the inevi-

table production of extraction and classification errors [23].

Furthermore, this stage is usually very expensive in terms

of time. For this reason, other authors decided to face OMR

without the staff removal stage. In the work developed

in [16], the whole score (including the staff) is thinned by a

skeleton algorithm. The symbols are then detected seeking

junctions and termination points. Pugin [22] also proposed

a recognition scheme in which the score maintains the staff

lines. His approach consisted in learning Hidden Markov

Models based on low level.

Although these approaches are less common in the lit-

erature, we consider that this kind of procedure is an

interesting option in different types of musical scores. Most

of the current OMR systems are developed to handle

contemporary notation, but same algorithms are performed

later to early music, which is characterized by different

types of scores. In this work, we propose an scheme that

skips the staff removal stage. This approach is expected to

help to reduce extraction and classification errors. Our aim

is to show that this way of building OMR systems can be

very effective for some music scores.

The type of scores selected from the ACM gives the

possibility of detecting the musical symbols in a simple

way. Since each symbol is on a different piece, there

cannot be overlap. Therefore, in each piece of the score,

there can be only one symbol. The extraction of the

musical symbols only requires the detection of the portions

of the staff in which each symbol begins and ends. More-

over, keeping the staff lines forces us to select appropriate

techniques to classify the musical pieces of symbols. In this

paper, a method based on template matching is proposed,

since all the symbols to be detected come from a fixed font

type due to the engraving mechanism. This approach has

been successfully used for OMR tasks in some previous

works [4, 30].

The remaining paper is structured in the same way as the

recognition process (see Fig. 2): Sect. 2 details the pre-

processing stage, Sect. 3 describes the score processing

task, in which each staff of the score is isolated and each

symbol is detected, and Sect. 4 presents the classification

Fig. 1 Piece of staff in white mensural notation from the ACM. Each

musical symbol is printed separately with its part of the staff Fig. 2 General scheme of the recognition process
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step. Results are shown in Sect. 5, and some conclusions

are drawn in Sect. 6. The steps to be performed after the

recognition of symbols will not be addressed. An example

of those processes for scores written in white mensural

notation can be found in [29].

2 Preprocessing stage

In order to ensure the integrity of the documents, the

images provided as input to the system correspond to

pictures on polyphony books of the inventory of the ACM

(Fig. 3), which consists of two pages each. A preprocessing

of the image is a key step to perform the recognition task.

Often, the book appears rotated with respect to the

image axes. Furthermore, the position of the book in the

picture makes the perspective of the pages inconvenient. It

is especially important to correct both the rotation and the

perspective, so that the musical symbols can be detected

and recognized correctly. Also, the background of the

pages and ink is acquired with different color levels

depending on their location due to the sheet conditions

(irregular leveling, uneven lighting, paper degradation,

etc.). Therefore, a binarization process that allows distin-

guishing accurately between the background and ink seems

crucial for the performance of the system as well as for

reducing the complexity of the recognition. These two

steps are considered in the next subsections.

2.1 Correction of rotation

The process of transcription begins with the detection of

the region of interest (ROI), which follows the same pro-

cess as explained in [2]. The polygon that marks the

boundaries of each page is found (Fig. 4). In addition to the

separation of the pages, the vertexes of this polygon pro-

vide the key points to perform the correction of rotation.

The objective of this step is to correct the rotation of the

page. A perfect alignment with the image axes constitutes

the starting point for the following stages since they are

based on the horizontal and vertical histograms to detect

the different parts of interest. In the case of these images, it

is not sufficient to perform a simple rotation because the

pages (their projection in the image) do not have the shape

of a rectangle, but a trapezoid. Thus, the rotation is cor-

rected by recovering the perspective distortion of the image

with respect to the book pages.

In order to perform this rotation, we take the sides of the

ROI polygon and split each pair into an equal number of

segments to create a grid. Each pixel belonging to this grid

is interpolated onto a rectangle. This process, when applied

over a page of the input image, produces a result like the

one shown in Fig. 5a. It can be observed that both the

alignment with the image axes and the perspective are now

adjusted successfully.

2.2 Binarization

The next step of the preprocessing stage is to binarize the

image. We should be able to distinguish between mean-

ingful pixels (music symbols and staves) and others

(background, mold and noise). However, the binarization

cannot be applied directly to the image with a typical

adaptive method because of the presence of irregularities in

the sheet. Hence, the binarization requires a more com-

prehensive process. The actions needed to better perform

the binarization of these sheets are as follows:

– RGB to grayscale conversion The input images are in

RGB color space. Since the relevant information of

each pixel for our task relies only on its position and its

intensity, the image is converted to grayscale by using a

weighted average [10].

Fig. 3 Input image from the polyphony book 6 of the inventory of

1859 of the ACM (Francisco Guerrero, 1582) Fig. 4 Polygon over the ROI. The polygon identifies the boundaries

of the page and provides the key points to correct the rotation

Pattern Anal Applic (2015) 18:933–943 935

123

Reprinted publication

24



– Contrast enhancement In order to enhance the image,

the contrast-limited adaptive histogram equalization

(CLAHE) algorithm [20] is applied.

– Illumination compensation Since the illumination can

vary largely among the set of images, the isolation of

the reflectance—which keeps the meaningful informa-

tion—is required. To this end, an aggressive symmetric

Gaussian low-pass filter is used, so that an estimation of

the illumination at each pixel can be obtained to correct

the image. Preliminary experiments showed that a filter

with size 80 and standard deviation 50 provided good

results in the considered images. Nevertheless, results

were not significantly different when using other

similar parameters of the same order of magnitude.

– Adaptive thresholding An adaptive method is now

needed to find the threshold that clusters the back-

ground pixels and the pixels with ink. At this stage, the

Otsu’s method [17]—which is reported as one of the

fastest and most successful algorithms for this pur-

pose [31]—is finally used to binarize the image.

An example of the result of the binarization process can be

found in Fig. 5b.

3 Score processing

After the preprocessing stage, a binary image with per-

spective and rotation corrected is obtained. The next

objective is to detect the musical symbols contained. As the

scores are organized by staves, treating each staff sepa-

rately is convenient. When the staves are isolated, the

procedures for symbol detection can be performed more

easily. In the next subsections, these two stages are

described.

3.1 Isolation of staves

Staff detection consists in seeking the positions of five

equally spaced parallel lines. The detection of the areas that

contains these lines indicates the location of the staves. A

common procedure is to compute the row histogram (or y-

projection) of the image [28]. Staff features such as dis-

tance between staff lines, thickness of the staff lines and

distance between staves are then computed from the his-

togram in order to isolate each staff. Alas, the presence in

the scores of the ACM of other content such as lyrics or

frontispieces among the staves complicates the process.

Our approach handles this problem by creating a mask that

keeps only the regions with horizontal lines. Unlike other

works, we do not apply this mask to remove meaningless

parts of the score but to directly isolate the staff parts on

this mask.

First, an erosion over the binarized page is performed

with a 1� by� 20 rectangular structuring element, which

leads to the detection of parts with staves. A dilatation with

a 20� by� 1 rectangular structuring element is then

applied in order to span the entire space of the staff with

the areas identified in the previous step. This way, a mask

that indicates when a pixel is part of a staff region is

estimated (Fig. 6).

It should be noted that by this mask, the extraction of

staff features is not needed: staff splitting can now be

performed with a row histogram analysis directly over the

mask. Only a threshold is required in order to distinguish

between rows with staff regions and rows with some

remaining noise. Theoretically, each column of the

(a) Perspective-corrected
image

(b) Perspective-corrected
image binarized by using
Otsu’s method

Fig. 5 Binarization of the perspective-corrected image

(a) Binary image of the page (b) Mask over the staff re-
gions

Fig. 6 Creation of a mask to detect staff regions
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histogram with a value higher than 1 should be considered

part of a staff. Nevertheless, taking into account that pre-

vious steps are not error-free and staff parts get higher row-

projection values, we decided to set a threshold which was

a good margin with respect to the removal of noise and the

detection of staff parts. Preliminary experiments estab-

lished the threshold as 100 for the pages used in our

experiments (1,600 9 1,000). This value achieved the best

trade-off between noise removal and detection. Afterward,

the intersection of the threshold line with the slopes of the

histogram indicates where each staff is located in the ori-

ginal image (Fig. 7).

3.2 Isolation of symbols

After each staff has been isolated, the next goal is to detect

the musical symbols contained. The common procedure at

this point in typical OMR frameworks is the staff detection

and removal. As aforementioned, we aim at exploring the

possibilities of avoiding this step. The need of the removal

of every part of the staff leads to delete some parts of the

musical symbols, which produces unavoidable errors in

posterior stages. Systems focused on contemporary scores

need this process for the detection and classification of

symbols. However, other scores—like the ones in our

case—allow addressing the problem in a less aggressive

manner and, eventually, less likely to delete important parts

of the sheet. Thus, a novel approach for symbol detection

and classification is presented.

Instead of staff removal and detection, we directly

extract the column histogram of each staff obtained in the

previous section. This histogram contains enough infor-

mation to detect the musical symbols. Over this histogram,

a k-means clustering [11], with k = 3, is applied to dis-

tinguish among the three column types considered:

columns only with staff lines, columns with the head of a

musical symbol and columns with the head of a musical

symbol and its stem. Manhattan distance [5] is used in the

clustering method instead of the Euclidean because it has

proven to be more accurate for our system. After this

process, the cluster with the lowest centroid—that corre-

sponds to the areas without musical symbols—is removed.

The histogram found is then used to partition the staff. This

process is illustrated in Fig. 8.

3.2.1 Special staff types

The process explained so far performs well for common

staves. However, there are two types of staff in the ACM

scores that require some specific attention: staves with

frontispiece (Fig. 9a) and half-filled staves (Fig. 10a).

The special features of these staves distort the results of

the clustering process and can lead to a poor segmenta-

tion. A slight preprocessing stage for these staves is

required.

In the first case, in order to prevent parts of the fron-

tispiece being treated as musical symbols, the beginning

of the staff should be detected. The column histogram is

used to detect the connected parts and keep only the

widest one, which is expected to correspond to the staff

(see Fig. 9).

In the case of half-filled staves, a correct clustering of

the columns without symbols is difficult to perform

because the number of such columns represents a very

large percentage with respect to the total number of col-

umns to analyze. The solution to this problem is to trim the

image, so that the process is applied only to the parts that

actually contain musical symbols. The detection of those

parts is performed by means of a column histogram ana-

lysis. Starting from the left-hand side, it is checked whether

Fig. 7 Isolation of the staves.

The intersection of the threshold

line with the row histogram over

the staff mask indicates the

boundaries of each staff
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the histogram stabilizes within a meaningful period. If this

happens, it can be assumed that the rest of the staff is

empty, so we trim the image at that point (see Fig. 10).

These two processes are applied to all the staves before

the clustering process since they perform well regardless of

the type of staff. It should be noted that only one vertical

histogram is required to compute all the processes.

4 Classification

The output of the previous section is a set of ordered

images containing a single musical symbol. The

(a)

(b)

(c)

(d)

Fig. 8 Extraction of musical symbols from a piece of staff. a Piece of

a musical staff. b Column histogram over the piece of the staff. c
Column histogram without staff columns. d Example of the extraction

of musical symbols by histogram analysis

(a)

(b)

(c)

Fig. 9 Preprocessing of a staff with frontispiece. a Staff with

frontispiece. b Column histogram over isolated staff: detection of the

staff region. c Staff without frontispiece

(a)

(b)

(c)

Fig. 10 Preprocessing of a half-filled staff. a Half-filled staff. b
Column histogram over isolated staff: detection of the part without

musical symbols. c Staff without the empty part
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classification stage aims at labeling each of these images

with the symbol contained in it. Typical OMR systems rely

on feature extraction to classify the symbols. These fea-

tures are then used to construct a set of samples to perform

pattern recognition methods. Image feature extraction for

recognition can be based on several techniques: Fourier

descriptors [33], angular radial transform (ART)

moments [12], chain codes such as Freeman’s (FCCE) [9]

or Vertex Chain Code (VCC) [3], etc. Unfortunately, these

methods cannot be applied to these images as the presence

of staff lines would represent an ineluctable obstacle. A

classification method whose performance does not get

severely damaged by the presence of the staff lines is

required. This is the reason that led us to use the cross-

correlation.

Cross-correlation [6] is a common method for template

matching [24, 32]. Let f ðx; yÞ be an image and wðx; yÞ be a
template, the cross-correlation can be computed with the

following equation:

cðu; vÞ ¼
P

x;y ½f ðx; yÞ � wu;v�½tðx� u; y� vÞ � w�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

x;y f ðx; yÞ � f u;v�
2½wðx� u; y� vÞ � w�22

q

ð1Þ

where f u;v is the mean of f ðx; yÞ in the region under the

template and w is the mean of the template. Equation (1) is

commonly referred to as normalized cross-correlation [26].

The result of the normalized cross-correlation gives a value

between -1 and ?1 related to the presence of the template

at each point of the image. In this work, a fast version of

the normalized cross-correlation [15] is used.

It should be noted that the cross-correlation matrix can

give high values despite being different symbols as long as

some piece of the image looks like the template. Fortu-

nately, it is known that if there is a very high value in the

center of the matrix, the probability of being the same

symbol is very high. This is because all symbol images in

our dataset contain the symbols centered horizontally.

Thus, we establish that the correlation values of interest are

those that are well centered horizontally. We assume that if

the cross-correlation attains its maximum value close to the

vertical edges, it should be considered a misclassification.

Hence, the classification process is governed by a range

R ¼ ðxs; xeÞ, normalized with respect to the width of the

image (xs; xe 2 ½0; 1�), that indicates which cells of the

cross-correlation matrix must be taken into account for the

classification.

Let s represent the N �M image of a symbol, W stands

for the dataset of labeled symbols, LðwÞ represents the label
of a template w; let MðmÞ denote the maximum value of a

matrix m, let ½m�a:b;c:d represent the sub-matrix of m formed

by rows a; . . .; b and columns c; . . .; d; and let R ¼ ðr1; r2Þ

denote a specific range, with r1; r2 2 ½0; 1�; the label s of s
(ss) is determined by the following equation:

ss ¼ L argmax
w2W

M ½cðs;wÞ�½Nr1:Nr2;1:M�

� �� �

ð2Þ

In Eq. (2), the normalized cross-correlation between the

extracted symbol and each labeled template in the data-

base is applied. The template that achieves the best cross-

correlation value within the width range R is used to

label the symbol. It should be clear that, with this method,

we can determine both the type and the pitch of the

symbol as long as the labels in the database keep this

information.

5 Experiments

In this section, some experiments are carried out to assess

the accuracy of the proposed strategies. Our dataset is

composed of 12 pictures, with two pages each one. The

average number of staves in each page is 12. Over the

entire dataset, 5,768 symbols are to be extracted and

classified. The parameters involved in the process are as

follows: the total number of musical symbols in the scores

(T), the number of extracted symbols (E) and the number of

correctly classified symbols (C). It should be noted that E

can be divided into the number of musical symbols

extracted (Se) and the number of noise images extracted

(Ne). All the symbols that either contain no musical

information (e.g., parts of the frontispiece) or are partially

(wrongly) extracted are considered as noise. Similarly, C

can be divided into the number of correctly classified

musical symbols (Sc) and the number of noisy symbols

detected (Nc)—noise images classified as noise.

Since the extraction and the classification are two dif-

ferent processes that can be evaluated separately, an eval-

uation for each process is performed. A global evaluation

of the system, involving both the extraction and the clas-

sification, is also included.

5.1 Evaluation of the extraction process

A good performance of the symbol extraction stage is the

first requirement to perform a good transcription. The

extraction process is related to the number of musical

symbols correctly extracted as well as to the number of

symbols lost or partially (wrongly) extracted. In order to

assess this process, we use the extraction rate. This

parameter can be calculated as the number of musical

symbols that have been found during the segmentation

process divided by the total number of musical symbols in

the score:
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Rext ¼
Se

T
ð3Þ

Moreover, it is also important to quantify the noise intro-

duced during the segmentation. The amount of noise can be

evaluated by using the noise rate, based on the number of

noise images extracted (Ne) and the total number of sym-

bols extracted from the scores (E):

Rnoise ¼
Ne

E
¼ Ne

Se þ Ne

ð4Þ

Table 1 shows the extraction performance over our set of

images. These results show that our extraction stage is able

to achieve a rate over a 95 %, on average. All cases exceed

a 93 %, even some of them are over 97 %. Moreover, the

noise rate is low in almost all the cases, which means that

our strategy accurately distinguishes between musical

symbols and other objects of the scores. These values show

the good performance of our symbol detection strategy.

Further analysis of these results revealed that the

musical symbol dot is the most commonly missed symbol.

The small width of the symbol makes it difficult to be

detected. Changing the detection parameters, so that this

symbol gets detected more accurately led to a larger noise

rate. We consider that it is preferable to accept some dot

misses rather than generate a more noisy output which may

deteriorate the whole transcription process.

5.2 Evaluation of the classification process

The evaluation of the classification process aims at mea-

suring the goodness of the method used to determine the

type of the symbols found. As indicated in Sect. 4, the

cross-correlation operator for template matching was cho-

sen. In our system, we evaluate the accuracy of the clas-

sification strategy regardless of the type of symbols

detected or the type of error made, so, in order to evaluate

the performance, we use the common 0� 1 loss function.

This function is able to measure the rate of misclassified

symbols if a uniform weight for each symbol is established.

Thus, the classification rate can be defined as the number of

correctly classified symbols divided by the number of

symbols extracted:

Rclassification ¼
C

E
¼ Sc þ Nc

Se þ Re

ð5Þ

The classification experiment is conducted by using a k-

fold cross-validation scheme. Each fold is composed of one

of the images of the dataset, while the labeled symbols of

the rest of the folds are used as database for the cross-

correlation operator. The results for each fold are shown in

Table 2. A set of possible values for the range R ¼ ðr1; r2Þ
(Eq. 2) is confronted experimentally.

The results show that the classification rate obtained

with the cross-correlation is larger than 90 % in all the

cases considered. Also, it has been shown that the best

range to use for the cross-correlation is between 30 and

70 % of the total width of the image, which yields a

classification rate of 91.64 %, on average. However, it

should be emphasized that the results among the different

alternatives are not particularly remarkable, which is

indicative of the robustness of the cross-correlation oper-

ator with respect to this parameter.

Table 1 Performance results of the extraction process over the

dataset

Fold T Se Ne Rext (%) Rnoise (%)

1 390 371 3 95.13 0.80

2 377 361 7 95.76 1.90

3 623 598 5 95.99 0.83

4 432 421 10 97.45 2.32

5 410 399 2 97.32 0.50

6 427 414 8 96.96 1.90

7 514 498 7 96.89 1.39

8 436 425 6 97.48 1.39

9 441 433 3 98.19 0.69

10 444 432 5 97.30 1.14

11 633 598 9 94.47 1.48

12 641 601 7 93.76 1.15

Whole 5,768 5,551 72 96.24 1.28

The table contains information about the number of musical symbols

in each fold (T), the number of musical symbols extracted (Se) and the

number of noise images extracted (Ne), which are used to calculate

the extraction rate (Rext) and the noise rate (Rnoise)

Table 2 Classification rate over the dataset with a 12-fold cross-

validation scheme

Classification rate (Rclassification)

Fold E Range R ¼ ðr1; r2Þ

(0, 1) (0.1, 0.9) (0.2, 0.8) (0.3, 0.7) (0.4, 0.6)

1 374 92.25 93.04 92.78 93.85 93.58

2 368 88.86 89.40 91.30 91.30 91.84

3 603 88.22 88.39 88.55 88.72 88.05

4 431 91.18 91.87 92.34 93.03 93.27

5 401 91.52 91.52 93.01 93.26 93.76

6 422 91.23 90.75 92.18 92.41 92.65

7 505 89.30 89.50 91.28 91.48 90.89

8 431 89.32 89.79 91.41 91.41 91.18

9 436 92.66 92.88 92.88 93.11 93.80

10 437 88.55 88.55 91.99 92.67 93.13

11 607 89.12 88.96 89.45 89.45 89.29

12 608 90.29 90.78 90.78 91.44 91.11

Whole 5,623 90.09 90.39 91.30 91.64 91.62

Different ranges R for the cross-correlation are presented
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5.3 Global evaluation

In the previous subsections, the extraction strategy and the

classification strategy were evaluated. However, the OMR

system has to be globally evaluated by involving both the

extraction and the classification stages. In order to assess its

performance, we use the well-known Word Error Rate

(WER) [13].

The WER is based on the edit distance [14] and mea-

sures the difference between two sequences (in our case,

two sequences of musical symbols). As the focus of OMR

systems is to assist the human task, this metric can provide

an estimation of the human effort needed to correct the

output of the system. It involves the three common edit

operations, which in this case are defined as follows:

– Insertions The difference between the number of

musical symbols in the score and the number of

extracted symbols (T � Se).

– Substitutions The difference between the number of

extracted symbols and the number of symbols correctly

classified (Se � Sc).

– Deletions The difference between the number of noise

image extracted and the number of noise correctly

classified (Ne � Nc).

Therefore, the WER can be calculated by summing up

these three values and dividing it by the total number of

musical symbols:

WER ¼ ðT � SeÞ þ ðSe � ScÞ þ ðNe � NcÞ
T

¼ T þ Ne � C

T

ð6Þ

The final results of applying our OMRprocess over the dataset

with thebest classification parameter selected [R ¼ ð0:3; 0:7Þ]
are shown in Table 3. Note that since we are reporting the

accuracy of the system, we show the results by using the word

accuracy (WAcc), which is defined as 1�WER:

It can be observed that the results of the OMR system

developed are all close to 90 % of WAcc. This means that a

person in charge of the transcription has to deal with just

the remaining 10 % to get the perfect transcription of the

score, which would result in a very important saving of

time and effort.

In order to assess the relevance of our proposal, Table 4

provides a comparison against a previous work that makes

use of musical scores from the ACM (see [29]). As men-

tioned above, the staff detection and removal stage is one

of the main reasons for symbol detection losses. The results

show that our approach, which circumvents the staff

removal process, leads to a remarkably good extraction

rate. On the other hand, our classification approach, based

on cross-correlation operator, attains good performance.

6 Conclusions

This work presents a new approach to deal with the optical

music recognition process for scores written in white

mensural notation from the Archivo de la Catedral de

Malaga. These scores have a special printing style that

allows us to propose a new approach in which the very

common staff detection, and removal stage has been

avoided. This stage is critical in the detection and recog-

nition of symbols, and it is often one of the main steps to

improve the accuracy rates of current OMR systems.

A preprocessing stage is necessary in order to correct

both the rotation and the perspective distortion of the input

image. At this stage, a binarization process has also been

performed to reduce the complexity of the subsequent task.

The next stage isolates each staff of the score, and a new

symbol detection strategy has been followed. This strategy

is based on the combination of the use of the y-projection

of the staff and k-means clustering to detect the boundaries

of each symbol region.

These procedures have proven to be reliable as they

have achieved extraction rate performance higher than

Table 3 Global results of the OMR systems over the dataset

Fold T Ne C WAcc (%)

1 390 3 351 93.04

2 377 7 336 89.40

3 623 5 535 87.89

4 432 10 401 90.71

5 410 2 374 92.76

6 427 8 390 90.52

7 514 7 462 90.09

8 436 6 394 90.02

9 441 3 406 92.43

10 444 5 405 91.53

11 633 9 543 87.97

12 641 7 556 90.29

Whole 5,768 72 5,153 90.36

The table contains information about the number of musical symbols

in each fold (T), the number of noisy images extracted (Ne) and the

number of correct classifications (C). These parameters are used to

calculate the word accuracy (WAcc)

Table 4 Comparison against previous work with scores from the

ACM with average (%) results obtained in the recognition processes

Extraction Classification

Our results 96.24 91.64

Previous [29] 72.78 88.86

Bold values represent the best results, on average
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96 %. The cross-correlation operator has shown its effec-

tiveness in this context for classifying symbols that main-

tain the staff lines. Classification rates higher than 90 % are

attained in all cases. However, new techniques for symbol

classification could be applied or developed in future works

since there still is some room for improvement. An overall

evaluation of the system has also been computed. Our

system transcribed the scores with an accuracy close to

90 %.

In comparison with previous results on the ACM (see

Table 4), our work attains very good extraction rate on

average: 96.24 %, which proves that avoiding staff removal

stage is a very valuable choice for the task in terms of

symbol detection. In addition, the classification accuracy is

also good: 91.64 %, on average, using a very simple

classification strategy.

The work presented opens new avenues for building

OMR systems. We believe that the avoidance of the staff

detection and removal step deserves further research and

can be a way to overcome some of the common mis-

classification problems that exist in current systems. This

approach should be considered to analyze other types of

scores to assess whether it can be definitely established as a

new alternative for the construction of these systems.
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Abstract This work presents a novel approach to tackle
the music staff removal. This task is devoted to remov-
ing the staff lines from an image of a music score while
maintaining the symbol information. It represents a key step
in the performance of most optical music recognition sys-
tems. In the literature, staff removal is usually solved by
means of image processing procedures based on the intrin-
sics of music scores. However, we propose to model the
problem as a supervised learning classification task. Sur-
prisingly, although there is a strong background and a vast
amount of research concerning machine learning, the classi-
fication approach has remained unexplored for this purpose.
In this context, each foreground pixel is labelled as either
staff or symbol. We use pairs of scores with and without staff
lines to train classification algorithms. We test our proposal
with severalwell-knownclassification techniques.Moreover,
in our experiments no attempt of tuning the classification
algorithms has been made, but the parameters were set to
the default setting provided by the classification software
libraries. The aim of this choice is to show that, evenwith this
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straightforward procedure, results are competitive with state-
of-the-art algorithms. In addition, we also discuss several
advantages of this approach for which conventional methods
are not applicable such as its high adaptability to any type of
music score.

Keywords Music staff removal · Optical music recogni-
tion · Pixel classification · Supervised learning

1 Introduction

Music constitutes one of the main tools for cultural trans-
mission. That is why musical documents have been carefully
preserved over the centuries. In an effort to prevent their
deterioration, the access to these sources is not always
possible. This implies that an important part of this histor-
ical heritage remains inaccessible for musicological study.
Digitizing this content allows a greater dissemination and
integrity of this culture. Furthermore, the massive digiti-
zation of music documents opens several opportunities to
apply music information retrieval algorithms, which may be
of great interest for music analysis. Since the manual tran-
scription of music sources is a long, tedious task—which
often requires expert supervision—the development of auto-
matic transcription systems is gaining importance over the
last decades [4,22,23].

Optical music recognition (OMR) can be defined as the
ability of a computer to understand the musical information
contained in the imageof amusic score. Theprocess basically
consists in receiving a scanned music score and exporting its
musical content to some machine-readable format (Fig. 1).
This task can be considered very similar to that of optical
character recognition. Nevertheless, its higher complexity
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and particular notation, in comparison with text, lead to the
need of specific developments [1].

OMR has to deal with many aspects of musical notation,
one of which is the presence of the staff, the set of five par-
allel lines used to define the pitch of each musical symbol.
Although these lines are necessary for human readability,
they complicate the automatic segmentation and classifica-
tion of musical symbols. Some works have approached the
problem maintaining the staves [3,24,25]; however, a com-
mon OMR preprocessing includes the detection and removal
of staff lines [28]. This task is aimed at removing the staff
lines of the score, maintaining as much as possible the sym-
bol information.

Although staff lines detection and removal may be seen
as a simple task, it is often difficult to get accurate results.
This is mainly due to problems such as discontinuities,
skewing, slant or paper degradation (especially in ancient
documents). Given that, the more accurate this process, the
better the detection of musical symbols, much research has
been devoted to this process, which can be considered nowa-
days as a research topic by itself.

Notwithstanding all these efforts, the staff removal stage is
still inaccurate and it often produces noise, for example staff
lines not completely removed. Although more aggressive
methods thatminimize noise can be used, theymight produce
partial or total loss of some musical symbols. The trade-off
between these two aspects, in addition to the accuracy of the
techniques, has hitherto led to the inevitable production of
errors during this stage. Moreover, the differences between
score style, sheet conditions and scanning processes lead
researchers to develop some kind of ad hoc method for staff
detection and removal, which usually presents little robust-
ness when it is applied to different staves.

From another point of view, the process of removing staff
lines can be defined as a classification problem in which,
given some foreground pixel, it must be guessed whether that
pixel is a part of a staff or a symbol (i.e. binary classifica-
tion). Note that addressing the problem in this way, both staff
detection and removal can be performed at the same time.

Fig. 1 The task of optical music recognition (OMR) is to analyse an
image containing a music score to export its musical content to some
machine-readable format. aExample of input score for anOMRsystem.
b Symbolic representation of the input score

To the best of our knowledge, this approach still remains
unexplored. Hence, this work aims at providing a first insight
into the staff removal process modelled as a binary clas-
sification task. To this end, a set of features based on
neighbourhood pixels is extracted at each foreground pixel.
At the experimentation stage, several common pattern recog-
nition algorithms will be applied using these features. Our
main intention is to show that this simple and general
approach deserves further consideration since its perfor-
mance reaches the level of state-of-artmethodswhile offering
several advantages that the others cannot.

This paper is organized as follows: Sect. 2 presents back-
ground on staff detection and removal; Sect. 3 describes
our approach to model the process as a classification task;
Sect. 4 contains the experimentation performed and the
results obtained; Sect. 5 discusses the pros and cons of our
approach, and some additional considerations; and finally,
Sect. 6 concludes the current work.

2 Background

Due to the complexity of music notation, OMR systems rely
on music staff removal algorithms to perform the most rel-
evant task of symbol isolation and segmentation [26]. Note
that this process should not only detect staff lines but also
remove them in such a way that musical symbols remain
intact (see Fig. 2).

Unfortunately, this removal stage is hardly ever perfect.
The need of eliminating every part of the staff often leads
to delete some parts of the musical symbols, which produces
unavoidable errors in posterior stages. The trade-off between
keeping symbols and removing staff lines leads to inevitable
production of extraction and classification errors later. That
is why several methods have been proposed to tackle this
process. A good comparative study, including a taxonomy of
the different approaches, can be found in the work of Dalitz
et al. [7].

Fig. 2 Example of an accurate staff removal process. a Example of
input score for an OMR system. b Input score after staff removal
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In the last years, however, new strategies have been devel-
oped: Cardoso et al. [30] proposed a method that considers
the staff lines as connecting paths between the twomargins of
the score. Then, the score is modelled as a graph so that staff
detection is solved as a maximization problem. This strat-
egy was improved and extended to be used on grey-scale
scores [27]; Dutta et al. [10] developed a method that con-
siders the staff line segment as a horizontal connection of
vertical black runs with uniform height, which are validated
using neighbouring properties; in the work of Piatkowska et
al. [21], a swarm intelligence algorithmwas applied to detect
the staff line patterns; Su et al. [31] start estimating proper-
ties of the staves like height and space; then, they tried to
predict the direction of the lines and fitted an approximate
staff, which was posteriorly adjusted; Geraud [13] developed
a method that entails a series of morphological operators
directly applied to the image of the score to remove staff lines;
and Montagner et al. [19] proposed to learn image operators,
following the work of Hirata [17], whose combination was
able to remove staff lines. Others works have addressed the
whole OMR problem by developing their own, case-directed
staff removal process [29,32].

The current performance of staff removal methods can be
checked in theGREC/ICDAR 2013 staff removal competition
[12,34]. This competitionmakes use of theCVC-MUSCIMA
database [11], which contains handwritten music score
images with a perfect ground truth on staff removal. Many of
the most advanced methods showed a decreasing accuracy
when different distortions were applied to the input scores.
Indeed, the same behaviour may be expected by methods,
especially suitable for some type of score that are subse-
quently applied to very different conditions. Taking into
account the vast variety ofmusicmanuscripts—which is even
wider considering old music—there is a need of developing
staff removal methods that are able to deal with any kind of
score.

In our work, we propose to model the staff removal stage
as a pixel classification problem. That is, extract features
from each foreground pixel and take a decision about keep-
ing or removing it based on supervised learning classification
techniques. Therefore, the accuracy of the method lies in
data instead of in selecting the appropriate series of image
processing steps. Although it may be worse in the cases in
which specific staff removal algorithms have been developed,
it allows us to present a robust approach since it can be effec-
tive in any type of score as long as labelled data are available.
The strategy proposed is described in next section.

3 A classification approach for staff lines removal

As depicted above, several procedures for the staff detection
and removal stage have been proposed. Although most of

them are able to achieve a very good performance in many
cases, they are far from optimal when the style of the score
is changed. The intention of our strategy is to present a new
method that is able to adapt to the actual score style as long
as learning data are available.

To handle this issue, we propose to follow a supervised
learning approach. That is, the task is based on building a
classification model using a training sample with labelled
data. After that, the model is able to receive new unseen
samples and determine the class label [9].

In our context, given an imagedepicting a score,we extract
a labelled set of features from each foreground pixel. These
features are used to train a classification algorithm. At test
phase, each of these pixels is classified between symbol or
staff. Then, depending on what it is pursued—either staff
detection or staff removal—it is removed from the image
those pixels classified as symbol or those classified as staff.
Without loss of generality, we shall assume from now on that
our objective is the staff removal stage since it is the common
preprocessing required in OMR systems.

In this work, the features of each pixel of interest consist
of the values of its neighbouring region. We believe that the
surroundings of each pixel contains contextual information
that can be discriminative enough for this task. Furthermore,
this contextual information can help to avoid misclassifica-
tion due to noise or small deformations of the image.

We shall assume that the input score has been binarized
previously, as it is usual in this field. Nevertheless, our feature
extraction is not restricted to binary images, but it could be
applied to any type of image.

Formally speaking, let I : N × N → {0, 1} define
the input score image. We use wh and ww to denote two
integer values defining the opening of the neighbouring
region in each dimension (horizontal and vertical, respec-
tively). Given a position (i, j) of the input image, a set of
(2wh + 1)(2ww + 1) features (fi, j ) is considered taking the
values of the neighbourhood region centred at (i, j). That is,
fi, j = {I (x, y) : |i − x | ≤ wh ∧ | j − y| ≤ ww}. Then,
the values contained within this set are concatenated follow-
ing some specific order (e.g. by columns) to obtain a proper
feature vector. This process is illustrated in Fig. 3.

To obtain the training set, the feature extraction process
is applied to the foreground pixels of a labelled data set of
scores with and without staff lines. Given a pixel in the posi-
tion (i, j), the feature extraction is applied in the score that
contains staff lines (i.e. in the original one). After that, the
value in the position (i, j) of the score without staff lines is
used to obtain the actual label between staff or non-staff.

This training set is used to feed a supervised learning clas-
sifier. Then, when an input score is received, this classifier
will be able to take a decision about each of its foreground
pixels. If it is classified as staff, the pixel will be removed
from the image.
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Fig. 3 Example of feature extraction considering ww = wh = 4.
Cell in red represents the pixel from which features are being extracted
(colour figure online)

It should be emphasized that the intention of this work is
not to find themost suitable pair of features and classification
algorithm, but to show that this approach allows dealing with
the staff removal stage even with a very straightforward clas-
sification step. Pursuing the best configuration could cause
results depend more on these aspects than on the approach
itself. Thus, a more comprehensive feature extraction and
classification research fall outside the actual intention of this
work.

Next sectionwill present experimentationwith some com-
mon classification algorithms considering several values of
wh and ww.

4 Experimentation

This section details the experimentation carried out to test our
proposal. Taking advantage of the GREC/ICDAR 2013 staff
removal competition, whose data set was publicly available,1

we are going to follow the same experimental set-up to assure
a fair comparison with state-of-art developments.

The data used in this contest are organized in train and
test sets, with 4000 and 2000 samples, respectively. The test
set is further divided into three subsets (TS1, TS2 and TS3)
based on the deformations applied to the scores. Each sample
consists of an image of a handwritten score in both binary
and grey scale with its corresponding ground truth (the score
without staves). We shall use here the binary ones. Figure 4
shows a piece from a score of that set. The number of fore-
grounds pixels per score is around 500,000with 200,000 staff
pixels, both on average.

The training set will be used to learn to distinguish
between staff and symbol pixels by the classification algo-
rithms. Due to the large amount of data available, it is
infeasible to handle it completely. Thus, at each instance only
one score of the training set, chosen randomly, will be used.
If we also consider that one score contains around 500,000

1 http://dag.cvc.uab.es/muscima/.

Fig. 4 Piece of sample from the GREC/ICDAR 2013 staff removal
competition data set. a Score. b Ground truth for staff removal

foreground pixels, this is still too much information to use as
training set.

We must bear in mind that the whole set of foreground
pixels may be used to train the classifiers. Then, to further
reduce the size of the training sample, the condensing algo-
rithm [16] was applied. This algorithm removes the samples
that are not considered relevant enough for the classification
task. After that, the average size of the training sample was
around 20,000. In other words, only 4% of the foreground
pixels of one score randomly selected have been used as
training, which constitutes 0.001% of the available training
information.

On the other hand, test set will be used to assess the results
achieved. As in the competition, the performance metric will
be the F1 score or F-measure:

F1 = 2 TP

2 TP + FP + FN

where TP, FP and FN stand for true positives (staff pixels
classified as staff), false positives (symbol pixels classified
as staff) and false negatives (staff pixels classified as symbol),
respectively.

4.1 Classification techniques

For the classification task, many supervised learning algo-
rithm can be applied. In this work, we are going to consider
the following methods:

– Nearest neighbour (NN) [6]: given a distance function
between samples, this algorithm proposes a label of the
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input by querying its nearest neighbour of the training
set. The Euclidean distance was used for our task.

– Support vector machine (SVM) [33]: it learns a hyper-
plane that maximizes the distance to the nearest samples
(support vectors) of each class. It makes use of kernel
functions to handle nonlinear decision boundaries. In our
case, a radial basis function kernel was chosen.

– Random forest (RaF) [2]: it builds an ensemble classi-
fier by generating several random decision trees at the
training stage. The final output is taken by combining the
individual decisions of each tree.

The methods described above have been applied using the
Waikato Environment for Knowledge Analysis (WEKA)
library [15], each one with their default parametrization
unless where it has been told otherwise. Since our interest
is not focused on finding the best classifier for this task, but
to emphasize the supervised learning approach, we did not
pursue the optimal tuning of these classifiers.

4.2 Results

For our experiments, we shall restrict ourselves to consider
squared neighbouring regions. Concretely, regions with win-
dows of length 1, 2, 3 and 4 in each direction centred at the
pixel. Therefore, each pixel of interest is defined by 9, 25,
49 and 81 binary features, respectively. Results achieved are
given in Table 1.

An initial remark is that the number of features has a
stronger influence in the results than the algorithm used.
For instance, classifiers showed a poor performance when
9 features are considered, but they increase noticeably the
accuracy with 25 features. It is important to stress that each

Table 1 Average F1 score (%) achieved by the different classifica-
tion techniques in combination with different values of neighbouring
squared region over the three test subsets

Test set Classifier Features

9 25 49 81

TS1 NN 68.34 86.10 89.69 91.07

SVM 40.72 87.14 93.95 94.10

RaF 68.06 90.12 93.52 93.89

TS2 NN 77.32 90.05 95.24 96.06

SVM 51.22 97.02 98.11 98.08

RaF 76.46 93.86 96.95 97.78

TS3 NN 71.56 86.23 89.33 90.58

SVM 48.07 87.81 93.92 94.00

RaF 71.15 90.55 93.23 93.39

Average 63.43 89.87 93.77 94.32

Bold values indicate the best results, on average, at each subset. The
average results obtained with each set of features are also showed

configuration outperforms results of any other configuration
with less features, with independence of the algorithm used.
This is also reported in the last row of the table, in which the
average improvement obtained by increasing the number of
features is depicted.

Results seem to be stabilized within the two highest num-
ber of features considered. Thereby includingmore than 81 is
not expected to improve accuracy significantly. In addition,
increasing the number of features may imply some draw-
backs such as efficiency in both learning and testing phase.

Regarding classification techniques, SVM achieves best
results for both each feature extraction considered and each
test subset, although its difference with RaF is hardly sig-
nificant. In turn, NN does present a lower accuracy than the
others. Specifically, SVMwith 81 is reported as the best con-
figuration, on average, and it is also the best result in two of
the three corpora used.

Figure 5 shows an example of the behaviour provided by
our algorithm (SVMwith 81 features), in which a great accu-
racy is achieved. Surprisingly, misclassification is not found
in the edges between symbol and staff, but it mainly occurs
along the staff lines. In fact, looking in more detail, very few
symbol pixels are removed. It should be stressed that most
of these remaining mistakes could be hopefully corrected by
means of a post-processing step.

To analyse our performance against state-of-the-art meth-
ods, Table 2 shows a summary of the results achieved in the
staff removal competition for each test set. These sets com-
prise different deformations applied over original scores: 3D
distortions in TS1, local noise in TS2, and both 3D distortion
and local noise in TS3. For a detailed description about each

Fig. 5 Example of a staff removal process using SVM classifier, 81
features per pixel and only one condensed score as training set. a Input
score. b Score after staff removal
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Table 2 F1 comparison between the best tuning of our method and the
participants in the staff removal contest

Method TS1 TS2 TS3

TAU 85.72 81.72 82.29

NUS 69.85 96.25 67.43

NUASI-lin 94.77 94.76 93.81

NUASI-skel 94.11 93.67 92.78

LRDE 97.73 96.86 96.98

INESC 89.29 97.72 88.52

Baseline 87.01 96.91 89.90

Our method 94.10 98.08 94.00

Best values, on average, achieved on each subset are highlighted

participant and the deformation models applied, reader is
referred to the report of the competition [34]. Our best aver-
age configuration (SVM with 81 features) is also included
for comparison.

Most of the methods proposed in the contest follow a
two-step approach: first, an estimation of the position of the
staff lines and then staff lines removal while keeping symbol
information. This second step is what usually produces the
accuracy loss, since it is difficult to distinguish symbol pix-
els over a staff line. On the contrary, our method is directly
focused on the final task without a first estimation of staff
lines.

According to the results, our method shows the best accu-
racy against local noise (TS2). This is probably because local
noise is less harmful for our feature extraction and classifi-
cation. In turn, they are less generalizable to deal with 3D
distortions (TS1 and TS3), for which our approach suffers
some accuracy loss. Although we only achieve the high-
est score in one of the two subsets considered, our results
are quite competitive as differences among best results and
those obtained by our method are very small. In addition, our
method surpasses many of the participants in the contest in
all sets considered. It should be noted that not only this con-
figuration is competitive but also most of the configurations
given in Table 1, even with a little set of features. Moreover,
we must also remember that for obtaining these results only
0.001% of all available training information was used.

Finally, we focused on assessing whether the amount of
data used to train the classifiers has a strong impact on
the results. To this end, another experiment has been per-
formed in which the number of training samples is iteratively
increased, using a random subset of the training scores as
validation set. As mentioned above, the specific size of the
training set in our previous experiments is given by con-
densing algorithm, which keeps around 20,000 samples,
on average. Figure 6 shows the curves of such experiment
extracting 81 features per pixel (the highest value considered
in our experiments). It can be seen that the performance is

Fig. 6 Performance of the classifiers using 81 features with respect to
the amount of training samples

already stable when classifiers are trained with 2000 sam-
ples. This leads to the insight that results are not expected to
improve significantly if more data were considered.

Given all of above, we consider that our proposal should
merit high interest since its performance is competitive using
a simple strategy that has not been studied so far. Next section
extends the implications that our method has in the ongoing
research on staff removal, supported by the results obtained.

5 Discussion

Since the work presented here is the first approach to the
staff removal task as a pixel classification problem, it opens
several lines of discussion that should be addressed.

The first thing to remark is that the performance of our
method is very competitive, although it does not significantly
outperform all the already proposed ones.While this factmay
question the usefulness of the proposal, relevant additional
advantages are shown. First of all, it is simple, easy to use
and does not require additional knowledge of the field. In
addition, a fine-tuning of the classifiers parameters, as well
as using some kind of advanced feature extraction, clearly
represents room for accuracy improvement.

Unfortunately, this method has also drawbacks that
deserve consideration in future developments. For instance,
approaching the task from a classification point of view is
very expensive. Regardless the specific classifier speed, each
foreground pixel of the score entails a classification process.
Therefore, our method will be usually slower than conven-
tional image processing methods.

From the learning-driven process point of view, the staff
removal stage is as robust as its training set. That is, the
process can be accurate if we have enough data of the target
type of score. Foreground information such as handwritten
notation or noise can also be addressed simultaneously as
long as they appear in the training data. Furthermore, this
paradigm allows the method to be adapted to any type of
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Fig. 7 Training set used for the proof-of-concept experiment over early music scores. a Score. b Ground truth for staff removal

music score, even those quite different such as Gregorian
chant or guitar tablatures. In those cases, classical methods
may fail because of the high variationwith respect to classical
notation or the variable number of staff lines.

To serve as an example,wehave carried out a simpleproof-
of-concept experiment to compare the adaptiveness of our
proposal against a classical one. The experiment is focused
on early music manuscripts so as to analyse the behaviour
of the methods when dealing with quite different musical
scores.

In order to feed the supervised learning classifier, we have
manually labelled a single line of staff of this type (see Fig. 7).
Note that we are just using a very small piece as training set,
which is expected to be available with small effort.

As a representative of classical image processing strate-
gies, we have chosen the LRDEmethod, since it depicted the
best performance in the contest. Its publicly available online
demo2 has been used for this test.

Figure 8 shows the results of a staff removal process apply-
ing both our proposal and this method to an early music
piece of score. For the sake of further analysis, our method is
trained with both specific data and data of CVC-MUSCIMA.
It is important to remark that the LRDEmethod is not able to
remove accurately staff lines in spite of being one of the best
in the contest. On the other hand, our method achieves a very
poor performance if data are not appropriate, as depicted in
Fig. 8c. However, if specific data are used, results are fairly
accurate (Fig. 8d). Although this comparison may not be
totally fair, it clearly illustrates some drawback of develop-
ing image procedures to remove staff lines in contrast to a
learning-based approach.

5.1 Further considerations

In addition to the advantages discussed previously, consid-
ering staff removal as a supervised classification problem
allows us to explore many other paradigms that could be
profitable for this task:

2 https://olena.lrde.epita.fr/demos/staff_removal.php.

– Online learning: new data may be available through the
use of the system [8]. For instance, when user corrects
OMR mistakes, the information could be analysed to
extract new labelled pixels for the staff removal process.
This case may be useful when it is assumed that the data
of the image in process aremore relevant than the training
set itself.

– Active learning: if it is assumed that a user must be super-
vising the OMR task, the system could query about the
category (staff or symbol) of some piece of the score.
The main goal is to reduce the user effort in the whole
process, and therefore, some queries may be needed to
avoid many of the potential mistakes in the classification
stage [14].

– One-class classification: since the staff removal may
entail an imbalanced binary classification with respect to
the training data available, it could also be modelled as
a one-class classification problem [18]. This case seems
to be very interesting because it would need less data
to train (just one of the two classes considered, the one
whose data are more available) and some strategies could
be applied to automatically extract labelled data of that
class from score images.

– Deep learning: taking into account the huge amount of
labelled data present in this task, this paradigmmay learn
the high-level representation inherent to each piece of the
score to learn to distinguishbetween symbol and staff pix-
els more accurately. Convolutional neural networks have
been reported to be especially suitable for performing
such a task [5].

These points represent ideas that could be implemented
to improve the process so that it becomes more adaptive,
efficient and/or effective.Nevertheless, it should benoted that
most of these paradigms can not be applied if conventional
methods for staff removal are used.

On the other hand, one of the main obstacles in the pre-
processing of degraded documents is the binarization step.
However, the method proposed in this work could be trained
to deal with grey-level images, although it would represent
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Fig. 8 Performance of LRDE method and our proposal (SVM classi-
fier and 81 features per pixel) with general and specific data over an
ancient score of early music. a Input score. b Input score after staff

removal by LRDEmethod. c Input score after staff removal by our pro-
posal with CVC-MUSCIMA data. d Input score after staff removal by
our proposal with specific data

a different task. Since background pixels would have to be
classified as well, the complexity of the process would be
increased drastically.

For all the reasons above, we believe that this approach
is worthwhile in its current form since the performance
achieved is comparable to state of the art with a very straight-
forward procedure. Moreover, it is specially interesting
when considering all the research avenues and opportunities
opened, some of which could lead to a significantly higher
performance than that obtained by the methods proposed so
far.

6 Conclusions

In this work, we presented a novel approach for the staff
removal stage, a key preprocessing step in the performance
of most OMR systems. Our strategy models the task as a
supervised learning classification problem, in which each
foreground pixel is classified as staff or symbol using raw
neighbouring pixels as features.

In our experiments, the feature set was demonstrated to
be more relevant than the specific classifier in the accuracy
results. SVM classifier, considering 81 features, reported the
best results on average. In comparison with other state-of-
the-art staff removal processes, our strategy showed a very
competitive performance, even achieving the best results in
some cases, using a very small piece of the training infor-
mation. A proof-of-concept experiment over early music
scores has also been carried out as an example of the robust-
ness of our method. Therefore, this novel approach deserves
further consideration in the field since it also opens sev-
eral opportunities for which conventional methods are not
applicable.

As futurework, some effort should be devoted to overcom-
ing the problem of getting enough data to train the classifiers.
For instance, the conditions of the actual sheet—such as scale
and deformation—could be learned online. Then, the same
conditions could be applied to a reference data set so that spe-
cific labelled data are obtained for each type of score. The
use of adaptive techniques for domain adaptation or transfer
learning is another way to deal with this issue [20]. Simi-
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larly, considering an interactive OMR system, staff removal
learning could be improved through user interaction.

Moreover, there is still plenty of room for improvement
regarding the classification process such as seeking a better
feature set or using other advanced techniques for supervised
learning. Speeding up the process may be also of great inter-
est. For instance, by classifying a relatively small block of
the score at a once, instead of querying every single pixel of
the image.
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a b s t r a c t

This paper proposes a new feature representation method based on the construction of a Confidence
Matrix (CM). This representation consists of posterior probability values provided by several weak
classifiers, each one trained and used in different sets of features from the original sample. The CM
allows the final classifier to abstract itself from discovering underlying groups of features. In this work
the CM is applied to isolated character image recognition, for which several set of features can be
extracted from each sample. Experimentation has shown that the use of CM permits a significant
improvement in accuracy in most cases, while the others remain the same. The results were obtained
after experimenting with four well-known corpora, using evolved meta-classifiers with the k-Nearest
Neighbor rule as a weak classifier and by applying statistical significance tests.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Classification systems have beenwidely studied in pattern recogni-
tion tasks. The classical classification scheme is based on a sequential
model that consists in extracting features from a sample, using a
classification technique and obtaining a final hypothesis [7]. This
scheme has been exploited in order to attain fairly complex techniques
with which to improve classification accuracy, such as Artificial Neural
Networks [11] or Support Vector Machines [4]. The evolution in this
field has led to the development of new schemes in supervised
learning. For example, a new classification scheme has emerged based
on the assumption that it is more robust to combine a set of simple
hypotheses than to use just one complex hypothesis [13].

This scheme can be viewed from different perspectives accord-
ing to the means used to combine decisions. On one hand, there
are algorithms that combine the scores of individual classifiers
(usually weak classifiers) to produce a final score, and which are
commonly referred to as ensemble classifiers. A wide analysis of
this kind of algorithms can be found in Kuncheva [14]. On the
other hand, another approach has recently been proposed which
uses several dissimilarity measures from the samples to obtain
different scores that are subsequently combined. This approach
has several approximations, which are described in Pekalska and
Duin [19]. A more recent paper[12] proposes refinements of error
correction for fusion strategies in the classification.

In this paper we propose a kind of combination of the two
aforementioned schemes: first, each weak classifier –in our case
classifiers based on the nearest neighbor rule (NN) [6]– provides
the probability of belonging to each class. All these probabilities
are in turn combined to form a Confidence Matrix (from here on
referred to as CM) which is used as an input to a final classifier.

The construction of this matrix can be viewed as the same basic
idea as that of the Stacking [32] family algorithms. These algo-
rithms are based on the generation of meta-features. Each feature
represents the a posteriori probability of the actual prototype
belonging to each class depending on each weak classifier. In its
initial version, Stacking is used to obtain the probability of each
possible class using all the weak classifiers, and then it classifies
the samples in the space of meta-features, principally through the
use of a multi-linear regression approach. An evolved version
known as Stacking-C [26] generates these meta-features class by
class, adding an additional feature to indicate whether the sample
belongs to the class being treated.

The construction of the CM just requires different groups of
features to be extracted from the original signal. Each one of these
groups has to be used with a different weak classifier, so that the final
meta-classifier does not have to discover these underlying points of
view by itself. Hence, our work establishes a case of study inwhich the
CM representation is applied to the OCR task since this kind of data is
known to allow several ways of extracting features [22].

In this paper, some meta-classifiers are tested by using original
features and meta-features (CM). The experiments show how the
power of this technique lies in the mapping of features onto meta-
features. When the meta-feature space is used, any advanced
classifier can be applied to recognize the samples without being
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limited to a set of algorithms based on linear regression. That is, the
intention of this paper is to address the construction of a CM that
can be used at the meta-feature level and combined with any meta-
classifier. As discussed in the Experimental section, the accuracy of
the results obtained using CM is, in most cases, significantly better
or, at worst, the same as when using the original features. These
empirical results are obtained by means of several experiments
using different corpora, various evolved meta-classifiers and statis-
tical analysis techniques.

The remainder of the paper is structured as follows: Section 2
describes the construction of the Confidence Matrix. Section 3 details
the experimental setup. Section 4 shows the results obtained. The
paper ends in Section 5 with our conclusions and future work.

2. A new classification scheme based on confidence measures

This section presents a new classification scheme based on the
generation of a Confidence Matrix. This section will present a
generic construction of this representation regardless the specific
task or set of features. The application of this construction for its
use in the OCR task will be addressed in the next section.

IfΩ is a set of class labels and D is the set of weak classifiers, then a
jDj � jΩj matrix is obtained. This matrix (CM) contains the confidence
(represented as probabilities) that the weak classifiers give to each
prototype belonging to each class. That is, CMij represents the
probability that the sample belongs to the classΩi based on the weak
classifier Dj. The CM can thus be viewed as a new feature representa-
tion (meta-features) that can be used to feed the final classifier rather
than using the original features (see Fig. 1).

When this matrix is used, the final classifier does not need to
distinguish the different points of views of the signal. In classical
approaches, the final classifier has the responsibility of discovering
them by itself. Furthermore, unlike that which occurs with the
ensemble classifiers, this new scheme avoids the need to define
distinct dissimilarity measures or types of weak classifiers. It is only
necessary to group the input characteristics according to their nature,
which is often relatively simple for a user with domain expertise.

In order to build the CM, it is necessary to train a set of weak
classifiers, each of which is responsible for exploiting one group of
features separately. One weak classifier is therefore trained for each
set of features, thus producing confidence values that work on the
different points of view of the input data. Each weak classifier must

generate a vector of confidence values that are grouped to form the
final CM (see Fig. 2). Each individual weak classifier can use different
methods or measures to estimate the probability. In our case, the
same methods are used based on different groups of input features,
as will be shown in the Experimental section.

These confidence values should indicate the possibility of the
sample belonging to a certain class. Although these confidence values
do not have to exactly represent a probability, in this paper the
values will be formalized as posterior probabilities. It is thus possible
to state that the CM is composed of the likelihood of the sample
belonging to each class according to each weak classifier considered.

From the algorithmic point of view, the CM representation
entails some interesting advantages: (1) the implementation is
very straightforward and it only requires weak classifiers; (2) the
pipeline of the algorithm can be easily parallelized so that each
weak classifier runs at the same time.

Additionally, there may be some scenarios in which the CM is not
only helpful but necessary. For example, when several input signals
from the same sample come from different, incompatible structures
(e.g. trees, strings or feature vectors). In these cases, scores from
weak classifiers trained separately with each kind of structure can be
easily combined (early fusion) within the CM representation.

Note, however, that this new scheme does not produce a final
decision. It merely maps the input features into another space (meta-
features). This signifies that it is necessary to use an algorithm (meta-
classifier) that employs the CM to make a decision.

From this point of view, CM representation is therefore related
to both early and late fusions. Several inputs are combined with
the CM structure which can be seen as an early fusion for the final
meta-classifiers at the same time it is a late fusion from the weak
classifiers point of view.

Our assumption is that it is usually simple to provide some
good weak classifiers (at least, better than random decisions). If
some good weak classifiers are provided, it is expected that the
final meta-classifiers can detect which meta-features are most
promising to use in the decision. Thus, if some weak classifier is
giving bad meta-features, it is also expected that the final classifier
can detect that it is better to avoid their scores.

Since we only provide a new representation of the input, it
should be emphasized that the main goal is to prove that the use
of the CM either improves on or maintains the accuracy obtained
without it. To this end, a series of meta-classifiers for its use as a
final algorithm will be considered in the experimentation.

Sample Feature extraction Classifier hypothesis

Sample Feature extraction Classifier hypothesis
Confidence

Matrix
Construction

Fig. 1. Classification schemes with and without Confidence Matrix (CM). (a) Classification scheme without CM and (b) classification scheme with CM.

Sample

Weak classifier 1

Weak classifier 2

Weak classifier N

Feature extraction 1

Feature extraction 2

Feature extraction N

Confidence
Matrix

Confidence values 1

Confidence values N

Confidence values 2

Features 1

Features 2

Features N

... ...

Fig. 2. Construction of the Confidence Matrix.
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3. Experimental setup

In this paper, various experiments are carried out to compare the
benefits attained by the use of the CM. The experiments are focused
on classifying binary OCR images, using four different datasets:

� The NIST SPECIAL DATABASE 3 of the National Institute of
Standards and Technology, from which a subset of the upper
case characters (26 classes, [A–Z]) was randomly selected: 6500
images (250 examples per class) from 500 writers.

� The MNIST dataset of handwritten digits (10 classes, [0–9])
[16]: 60,000 training images and 10,000 test images. In our
experiments, both sets will be mixed.

� The United States Postal Office handwritten digit (10 classes)
dataset [9]: 9298 images.

� The MPEG-7 shape silhouette dataset (Core Experiment CE-
Shape-1 part B, 70 classes) [15]: 1400 images. Although this
dataset is not composed by characters, the images contained
are very similar to that of previous datasets. Thus, it is included
in the experiments to test the technique proposed.

3.1. Feature extraction from binary images

As it was mentioned previously, the inclusion of the CM is
projected for tasks in which it is possible to extract different
groups of features. The same feature extraction as that detailed in
[22] was therefore used. Nevertheless, a brief explanation is
provided in the following paragraphs.

As depicted in Section 2, the main idea is to obtain different kinds
of features, each of which will be used on a specific weak classifier. A
preprocessing stage is performed first, during which the image is
binarized using a global histogram threshold algorithm [18]. A
morphological closing filter [27] is then applied in order to correct
any gaps and spurious points that may have appeared. In the next
step, the character is located in the image and the region of interest
(ROI) is selected. The ROI is divided into a sub-structure of smaller
regions in order to extract local features. The number of sub-regions
must be fixed according to each dataset (see Table 1).

Once the image has been preprocessed, the feature extraction
takes place. Three types of features are extracted:

� Foreground features: A vector with the number of foregrounds
pixels in each of the image sub-regions is produced.

� Background features: The background feature extraction is based
on that of [30]. It computes four projections (up, down, left, and
right) which are considered for each pixel in the image. When any
of these projections touches the foreground object, the number
associated with that pixel increases by one unit. It is thus possible
to distinguish four different categories of background pixels,
according to their projection values (1, 2, 3, 4). A fifth category is

also added in order to provide more information: there are two
situations that are similar in geometry but are totally different
from a topological point of view. Our algorithm therefore assigns a
value of 5 to the category if the pixel lies in an isolated background
area, signifying that five vectors are extracted as features, one for
each pixel projection category. Each vector represents the number
of pixels with the particular category in each image sub-region.

� Contour features: The object contour is encoded by the links
between each pair of 8-neighbor pixels using 4-chain codes in a
manner proposed by [17]. These codes are used to extract four
vectors (one for each direction), and the number of each code is
counted in each image sub-region.

3.2. Weak classifiers

In order to construct the CM, a set of weak classifiers with
which to map each group of features onto confidence values is
needed. In this case, a formula based in the Nearest Neighbor (NN)
[6] rule was used since it is a common, robust and simple
technique with which to produce a weak classifier. As discussed
in Section 2, one weak classifier per group of features should be
generated. Each weak classifier is trained using a leaving-one-out
scheme: each single sample is isolated from the training set T and
the rest are used in combination with the NN to produce the
confidence values. The formula detailed below is used in Rico-Juan
and Iñesta [23] and is inspired by Pérez-Cortés et al. [20]. If x is a
training sample, then the confidence value for each class wAΩ is
based on the following equation:

pðwjxÞ ¼ 1
minx0 ATw ;xax0 dðx; x0Þþϵ

ð1Þ

where Tw is the training set for w label and ϵ is a non-zero value
provided to avoid infinity values. In our experiments, the dissim-
ilarity measure dð�; �Þ is the Euclidean distance. After calculating
the probability for each class, the values are normalized such that
∑wAΩpðwjxÞ ¼ 1. Once each training sample has been mapped
onto the CM, the samples can be used in the test phase.

3.3. Evolved meta-classifiers

Once the CM has been calculated as explained in the previous
section, it must be used in combination with a classifier to output a
hypothesis. In this work we shall use well-known evolved meta-
classifiers. The intention of this measure is to avoid the possibility that
improvements in the results may be caused by the use of over simple
classifiers. The underlying idea of meta-classification is to solve the
problem of combining classifiers. A meta-classifier is in charge of
gathering individual classification decisions in order to combine them
into a unique final decision. We shall use the following three meta-
classifiers: Maximum Average Class Probability, Stacking-C, and Rota-
tion Forest.

Note that we are not trying to outperform the existing late
fusion techniques. Since these three classifiers perform some kind
of late fusion by their own, our intention is just to find out
whether our CM representation can improve the performance
achieved with classical feature vectors.

In addition to these three meta-classifiers, Support Vector
Machines and Multi-Layer Perceptron algorithms are also included
in the experimentation. All these techniques will be experimen-
tally compared with and without the use of the CM.

3.3.1. Maximum average class probability
This meta-classifier is based on combining decisions by using the

voting methods from the weak classifier hypothesis with the average
rule [14]. In this case, each weak classifier classifies a new sample by

Table 1
Mean error rates (standard deviation) of 4-cross-validation preliminary experiment
with different sub-region sizes. Results for each database using the MACP (Max-
imum Average Class Probability) algorithm are shown.

Subregion NIST MNIST USPS MPEG-7

02�02 39.7 (1.6) 35.5 (1.5) 38.5 (1.7) 41.2 (1.8)
03�03 19.1 (1.4) 21.2 (1.3) 23.1 (1.5) 26.0 (1.6)
04�04 10.1 (1.2) 16.4 (1.1) 16.4 (1.2) 12.4 (1.1)
05�05 8.5 (0.9) 13.1 (1.0) 10.2 (1.0) 9.3 (1.0)
06�06 8.3 (1.0) 11.2 (0.9) 6.1 (0.9) 8.1 (0.9)
07�07 8.5 (1.0) 12.0 (1.0) 4.2 (0.8) 9.2 (1.0)
08�08 8.7 (0.9) 13.3 (1.0) 5.3 (0.9) 10.0 (1.0)
09�09 10.0 (1.0) 15.4 (1.1) 6.8 (1.1) 12.5 (1.1)
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Table 2
Comparison of NIST classification average error rate per class with 4-cross-validation, comparing the methods with and without CM.

Dataset RoF RaF RoF J48 MACP Stacking SVM MLP

With Without With Without With Without With Without With Without With Without

A 3.5 4.0 5.0 6.5 7.0 6.0 9.5 8.5 9.0 18.5 1.0 10.5
B 6.5 6.0 6.5 10.0 6.0 5.5 7.5 14.5 11.5 14.5 2.5 58.0
C 4.0 3.0 4.5 6.0 5.5 4.5 8 8.5 11.5 12.5 4.0 8.5
D 10.5 14.0 11.0 18.5 14.5 11.5 16.5 22 33.5 43.5 8.0 61.5
E 2.5 6.0 4.0 11.0 5.0 6.0 6.5 9 1.5 20.5 6.0 35.5
F 2.5 3.0 4.5 4.0 2.0 3.5 3 5.5 6.0 14.0 3.5 30.0
G 7.5 9.0 8.0 10.0 9.5 8.5 10 17 8.5 25.0 7.0 32.5
H 3.5 7.5 6.5 6.5 5.0 7.5 5.5 13.5 2.0 22.0 4.5 33.5
I 6.5 10.5 4.5 8.0 6.0 7.5 9 11 42.5 45.5 5.5 72.5
J 5.0 6.0 8.0 5.0 7.5 5.5 8 9.5 13.5 45.0 5.0 58.0
K 4.0 7.0 5.0 9.0 9.5 9.0 7.5 18 5.0 26.0 4.0 46.5
L 3.5 4.0 5.5 6.0 4.5 6.0 4 3.5 25.5 28.5 4.5 7.5
M 4.0 2.5 5.5 7.0 5.0 3.5 4.5 6.5 7.0 18.0 5.0 34.5
N 7.0 8.5 10.5 10.0 10.5 8.5 12 20 8.5 38.5 6.0 55.5
O 12.0 13.0 12.0 14.5 18.5 11.0 19.5 15.5 16.5 18.0 10.0 38.0
P 4.0 5.0 5.0 5.0 3.0 3.5 4 5 16.0 13.0 5.0 34.5
Q 13.5 16.0 12.0 15.0 7.5 15.0 13 24 25.0 39.0 5.5 16.0
R 5.0 7.0 7.5 6.5 9.5 9.0 9 13 20.0 26.5 4.0 55.5
S 5.0 6.5 7.0 8.0 4.5 9.5 8 10.5 9.0 14.0 4.5 7.0
T 1.0 2.5 2.0 2.5 1.0 2.0 3.5 2.5 14.5 20.0 2.0 52.5
U 6.5 10.0 6.5 12.0 10.5 12.0 15 11 18.5 29.5 8.0 59.0
V 8.5 8.5 11.0 10.0 10.5 8.0 10.5 10 22.5 34.5 9.0 38.5
W 7.0 6.5 6.5 8.0 4.5 6.5 5 6.5 7.5 23.5 4.0 12.0
X 7.5 8.5 9.5 11.5 4.5 11.0 8.5 16.5 17.0 25.0 4.5 33.0
Y 8.0 12.5 9.0 10.5 6.5 8.5 7 14 12.0 27.5 7.0 57.0
Z 3.0 2.0 3.5 3.5 3.0 3.0 5 3.5 11.0 13.5 4.0 30.0

Avg. error 5.8 7.3 6.9 8.6 7.0 7.4 8.4 11.5 14.4 25.2 5.2 37.6

The values in bold type represent the best result obtained by each method (with or without CM). The underlined value emphasize the best dataset average error.

Table 3
Comparison of MNIST classification average error rate per class with 4-cross-validation, comparing the methods with and without CM.

Dataset RoF RaF RoF J48 MACP Stacking SVM MLP

With Without With Without With Without With Without With Without With Without

0 1.0 5.0 1.0 4.5 3.0 1.0 2.5 1.0 8.3 5.9 0.9 50.9
1 3.5 2.0 3.5 3.0 3.0 4.5 3.0 2.0 11.9 20.6 3.3 58.6
2 7.0 8.5 7.5 8.0 8.0 15.5 11.5 8.5 10.4 27.3 3.4 10.1
3 9.5 13.0 11.5 12.0 14.0 14.5 12.0 15.0 20.3 15.0 6.8 53.9
4 4.5 7.5 6.5 8.5 4.0 9.0 5.0 8.0 12.1 22.3 3.3 76.3
5 7.0 13.0 9.5 13.0 9.5 17.0 11.5 17.0 6.9 26.5 4.1 78.5
6 2.5 3.0 3.0 3.5 4.5 3.0 6.5 4.0 10.4 7.5 1.6 1.9
7 5.0 8.5 4.5 8.0 10.0 9.5 9.0 12.0 43.0 30.9 3.6 3.8
8 7.0 13.5 9.5 16.0 13.5 17.0 12.5 15.5 9.6 22.0 5.5 56.9
9 7.5 12.5 8.0 10.0 11.0 10.0 10.5 8.5 13.8 21.0 8.3 80.0

Avg. error 5.5 8.7 6.5 8.7 8.1 10.1 8.4 9.2 14.7 19.9 4.1 47.1

The values in bold type represent the best result obtained by each method (with or without CM). The underlined value emphasize the best dataset average error.

Table 4
Comparison of USPS classification average error rate per class with 4-cross-validation, comparing the methods with and without CM.

Dataset RoF RaF RoF J48 MACP Stacking SVM MLP

With Without With Without With Without With Without With Without With Without

0 3.0 4.5 3.0 3.9 3.0 2.0 5.0 2.0 0.6 0.0 1.6 37.2
1 4.5 7.0 5.5 5.5 3.9 3.9 3.9 5.5 1.5 65.8 0.5 27.7
2 2.5 3.9 3.0 3.5 3.5 3.5 3.9 3.5 0.2 98.7 1.3 40.8
3 4.0 6.0 6.9 6.5 4.5 4.5 4.0 5.0 82.7 90.7 1.8 34.9
4 4.0 6.5 4.5 7.0 4.5 4.5 5.0 5.5 34.2 99.7 1.8 99.7
5 3.0 5.0 3.5 6.0 5.0 4.0 4.5 4.0 79.7 79.7 2.1 79.7
6 1.5 3.0 2.5 2.0 1.5 1.0 1.5 0.0 5.7 84.7 1.0 51.1
7 3.5 4.0 4.5 4.5 3.5 3.5 2.5 4.5 25.1 73.2 1.1 31.1
8 2.0 4.5 2.0 4.0 4.0 3.5 2.5 3.5 82.7 82.7 1.2 19.9
9 1.5 3.0 2.0 3.0 4.0 1.5 2.5 2.0 42.1 88.2 1.5 18.9

Avg. error 2.9 3.7 3.7 4.6 3.7 3.2 3.5 3.5 35.4 76.3 1.4 44.1

The values in bold type represent the best result obtained by each method (with or without CM). The underlined value emphasize the best dataset average error.
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computing the a posteriori probability for each class. The class that
obtains the maximum average from among these values is selected.
This method was chosen as baseline because of the good results
obtained previously for this type of tasks [22]. In this previous work,
the classification error rate was lower than 1-NN technique applied to
each group of individual features (image, background, contour) and
than a 1-NN technique gathering as input the three groups of features.

3.3.2. Stacking-C
Given that our classification scheme is based on the main idea

of Stacking algorithms, we have included this algorithm to prove
the improvement that can be obtained by means of the CM. We
have selected one of the most successful algorithms from this
family: Stacking-C [26], an extension to Stacking with which to
accurately address multi-label classification problems.

Table 5
Comparison of MPEG-7 classification average error rate per class with 4-cross-validation, comparing the methods with and without CM.

Dataset RoF RaF RoF J48 MACP Stacking SVM MLP

With Without With Without With Without With Without With Without With Without

Bat 6.3 6.3 18.8 18.8 6.3 6.3 18.8 18.8 25.0 31.3 6.3 43.8
Beetle 12.5 0.0 0.0 12.5 12.5 0.0 12.5 12.5 25.0 37.5 0.0 50.0
Bird 43.8 50.0 43.8 56.3 25.0 50.0 50.0 37.5 68.8 56.3 43.8 81.3
Butterfly 12.5 18.8 25.0 56.3 31.3 12.5 12.5 18.8 31.3 6.3 18.8 56.3
Camel 0.0 12.5 6.3 12.5 6.3 6.3 6.3 0.0 25.0 0.0 12.5 87.5
Cattle 0.0 0.0 0.0 6.3 0.0 0.0 0.0 0.0 25.0 12.5 6.3 68.8
Chicken 43.8 37.5 37.5 43.8 18.8 25.0 25.0 18.8 81.3 68.8 43.8 100.0
Classic 0.0 12.5 6.3 25.0 0.0 0.0 0.0 0.0 50.0 18.8 12.5 43.8
Comma 0.0 0.0 0.0 0.0 6.3 0.0 0.0 0.0 0.0 25.0 0.0 6.3
Crown 6.3 6.3 6.3 0.0 6.3 6.3 6.3 6.3 6.3 6.3 6.3 37.5
Cup 6.3 6.3 6.3 12.5 6.3 0.0 6.3 6.3 12.5 6.3 12.5 6.3
Deer 31.3 43.8 31.3 56.3 43.8 37.5 31.3 37.5 62.5 68.8 50.0 87.5
Device0 0.0 0.0 0.0 0.0 6.3 0.0 0.0 0.0 31.3 37.5 81.3 25.0
Device2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 6.3 43.8 31.3 0.0 100.0
Device3 0.0 0.0 0.0 0.0 0.0 0.0 6.3 0.0 43.8 62.5 0.0 31.3
Device4 0.0 6.3 0.0 0.0 0.0 0.0 0.0 0.0 18.8 37.5 0.0 43.8
Device6 0.0 0.0 0.0 0.0 0.0 0.0 12.5 0.0 0.0 18.8 0.0 0.0
Device9 6.3 0.0 6.3 6.3 0.0 0.0 6.3 12.5 31.3 6.3 0.0 68.8
Dog 6.3 0.0 12.5 0.0 6.3 6.3 12.5 18.8 18.8 50.0 18.8 43.8
Elephant 31.3 25.0 25.0 37.5 31.3 12.5 25.0 6.3 56.3 43.8 37.5 56.3
Fish 18.8 18.8 18.8 18.8 12.5 12.5 12.5 12.5 25.0 18.8 18.8 81.3
Flatfish 6.3 12.5 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3 25.0
Fly 25.0 12.5 25.0 31.3 6.3 25.0 25.0 37.5 37.5 12.5 37.5 100.0
Fork 12.5 12.5 31.3 18.8 18.8 12.5 18.8 12.5 50.0 31.3 43.8 62.5
Frog 12.5 18.8 18.8 25.0 18.8 12.5 37.5 6.3 31.3 50.0 31.3 37.5
Guitar 12.5 12.5 18.8 18.8 0.0 6.3 18.8 6.3 93.8 43.8 43.8 62.5
Hammer 6.3 12.5 6.3 12.5 6.3 6.3 6.3 6.3 93.8 12.5 12.5 62.5
Horse 37.5 25.0 31.3 25.0 25.0 12.5 56.3 18.8 43.8 75.0 25.0 93.8
Horseshoe 0.0 0.0 0.0 0.0 0.0 0.0 12.5 0.0 0.0 18.8 0.0 68.8
Jar 0.0 12.5 0.0 25.0 0.0 12.5 12.5 25.0 50.0 75.0 6.3 75.0
Key 0.0 6.3 6.3 0.0 6.3 6.3 6.3 6.3 6.3 43.8 6.3 43.8
Lizzard 12.5 18.8 18.8 37.5 37.5 31.3 43.8 25.0 56.3 62.5 37.5 43.8
Lmfish 12.5 31.3 12.5 31.3 18.8 12.5 25.0 12.5 25.0 56.3 31.3 62.5
Misk 0.0 0.0 6.3 0.0 0.0 0.0 0.0 0.0 0.0 37.5 0.0 43.8
Octopus 18.8 25.0 12.5 18.8 12.5 18.8 12.5 12.5 37.5 50.0 18.8 62.5
Pencil 0.0 12.5 0.0 12.5 6.3 0.0 18.8 18.8 100.0 56.3 37.5 100.0
Personal_car 0.0 6.3 0.0 6.3 12.5 0.0 6.3 12.5 31.3 6.3 6.3 87.5
Pocket 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3 12.5 12.5 0.0 6.3
Ray 18.8 25.0 0.0 25.0 6.3 0.0 31.3 12.5 25.0 37.5 0.0 37.5
Sea_snake 12.5 31.3 12.5 31.3 25.0 18.8 25.0 43.8 37.5 18.8 25.0 81.3
Shoe 0.0 0.0 0.0 6.3 0.0 0.0 0.0 0.0 12.5 12.5 0.0 62.5
Spoon 31.3 68.8 43.8 50.0 37.5 62.5 43.8 87.5 100.0 75.0 68.8 87.5
Spring 6.3 18.8 18.8 12.5 12.5 18.8 6.3 18.8 87.5 87.5 6.3 68.8
Stef 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3 12.5 18.8 6.3 81.3
Tree 12.5 6.3 12.5 6.3 6.3 6.3 12.5 6.3 31.3 100.0 6.3 62.5
Turtle 31.3 31.3 31.3 37.5 6.3 18.8 31.3 12.5 37.5 12.5 18.8 93.8
Watch 6.3 12.5 6.3 18.8 12.5 6.3 6.3 25.0 12.5 6.3 6.3 68.8

Avg. error 7.3 9.6 8.2 11.9 7.4 6.9 10.3 9.1 24.9 29.8 12.3 52.2

The values in bold type represent the best result obtained by each method (with or without CM). The underlined value emphasize the best dataset average error.

Table 6
Summary of the average error rates obtained by the ensembles in the corpus considered.

Dataset RoF RaF RoF J48 MACP Stacking SVM MLP

With Without With Without With Without With Without With Without With Without

NIST 5.8 7.3 6.9 8.6 7.0 7.4 8.4 11.5 14.4 25.2 5.2 37.6
MNIST 5.5 8.7 6.5 8.7 8.1 10.1 8.4 9.2 14.7 19.9 4.1 47.1
USPS 2.9 3.7 3.7 4.6 3.7 3.2 3.5 3.5 35.4 76.3 1.4 44.1

MPEG-7 7.3 9.6 8.2 11.9 7.4 6.9 10.3 9.1 24.9 29.8 12.3 52.2
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3.3.3. Rotation Forest
Rotation Forest (RoF) [24] is an ensemble method that is focused

on building accurate and diverse classifiers. It trains a set of decision
trees (forest), each of which uses an independent feature extraction.
RoF makes use of a base classifier to generate the decision trees. In our
work, two alternatives will be considered: C4.5 [21] (J48 implementa-
tion [8]) and Random Forest (RaF) [3]. The first alternative is proposed
by the original RoF article and by WEKA Data Mining tool [8] as a
default parameter, whilst the latter is considered in this paper due to
its best performance in our OCR preliminary experiments despite not
being a common ensemble in RoF experimentation.

3.3.4. Support Vector Machines
Support Vector Machines (SVM) is a common pattern recogni-

tion algorithm developed by Vapnik [29]. It seeks for a hyperplane
which maximizes the separation (margin) between the hyper-
plane and the nearest samples of each class (support vectors). The
libSVM implementation [8] with Polynomial kernel is used in our
experimentation.

3.3.5. Multi-Layer Perceptron
Artificial Neural Networks is a family of structures developed in

an attempt to mimic the operation of the nervous system to solve
machine learning problems. The topology of a neural network can
be quite varied. For this work, the common neural network called
Multi-Layer Perceptron (MLP) [25] is used, as implemented in [8].

4. Results

The results of each dataset are detailed in the following
subsections. Table 6 shows a summary of the average final results.
A short discussion about the statistical significance of the results is
also developed at the end of this section. The WEKA version 3.6.9
tool [8] has been used for testing RoF and Staking-C algorithms
with their default parameters.

Note that our main goal is not to measure the goodness of each
considered ensemble but to compare their results with and with-
out using the CM representation proposed.

4.1. NIST SPECIAL DATABASE 3

For this dataset, the best number of image sub-regions is 6,
signifying that ð6� 6Þþð6� 6Þ � 5þð6� 6Þ � 4¼ 360 features are
extracted from each of the samples in this set. The results of the
experimentation is shown in Table 2. Upon viewing the results it
will be noted that the inclusion of the CM has, on average,
improved the results of all the algorithms.

Note that the improvement achieved by using the CM in both
SVM and MLP is remarkably high. The latter case is specially
interesting since this algorithm has the best error rate when using
CM representation, which did not occur without it.

4.2. MNIST

The number of optimum image sub-regions in this dataset is
also 6, signifying that 360 features are again used. Table 3 details
the results of the experiment for this dataset. The results follow a
similar trend to those of the NIST dataset. In this case, the
improvement achieved by the inclusion of the CM would appear
to be even more noticeable. MLP (with CM) was again reported as
being the best classifier. Ta
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4.3. USPS

The preliminary results as regards obtaining the best number of
image sub-regions is 7 in the case of the USPS dataset, and ð7�
7Þþð7� 7Þ � 5þð7� 7Þ � 4¼ 490 features are therefore consid-
ered. The results of the final experiment are shown in Table 4. This
is the first case in which the inclusion of the CM does not improve
all the classifiers considered, since MACP increases its error rate
from 3.2 to 3.7 when using the CM. The other classifiers decrease
or maintain their error rates with the CM. Once again, the MLP
(with CM) classification achieved the best classification result.

4.4. MPEG-7

As occurred for the NIST and MNIST, the best image sub-region
size for the MPEG-7 database is 6, and 360 features are therefore
used to classify the samples. Table 5 shows the results of the
classification experiment with this database. The results of the
datasets in which all the classifiers obtain a perfect classification
have been removed owing to the size of the table. Note that some
classifiers are enhanced with the inclusion of the CM while others
are not. This also occurred in previous databases, but in this case
the best classification was obtained for the MACP without CM.

4.5. Statistical significance

The intention of this experimental section is to assess whether
the inclusion of the CM can achieve significantly better classifica-
tion results. We shall therefore use the KEEL [1] software, which
contains statistical tools. These tools will allow us to quantify the
difference between the results with and without the CM. Specifi-
cally, a Wilcoxon 1�1 test was performed. The significance
p-values considering all the experiments are shown in Table 8.
These values represent the overlap between the two distributions,
assuming that the classifiers are better with the CM. We can
consider the p-values as a confidence measure for comparison. The
significance of a low value is a high probability that the distribu-
tions compared are different.

As is shown in this table, most of the values are lower than
0.05, signifying that the use of CM significantly decreases the error
rate at a confidence level of 95%. Special cases are reported for the
USPS and MPEG-7 datasets using MACP and Stacking-C meta-
classifiers for which the significance test yielded that the CM does
not improve the accuracy although, in the opposite case (values in
parentheses), CM does not worsen it either. This signifies that
throughout the experiments the inclusion of the CM has signifi-
cantly improved, or in the worst cases maintained, the results of
the meta-classifiers.

Note the good performance of the MLP classifier when CM is
included, given that it is significantly better and obtains some of
the lowest error rates in the entire corpora.

Table 7 also shows a summary of the average execution time in
order to assess how the inclusion of the CM affects the cost of the
ensembles. In general, it is clear that the MACP obtains the lowest
time because it computes few calculations, while Stacking-C obtains

the highest times. With regard to the results obtained when using
or not using CM, there is a considerable amount of variability
depending on both the corpus and the algorithm, particularly in the
case of decision tree based algorithms.

5. Conclusions

A new approach with which to transform original features into a
Confidence Matrix (CM) is presented. This CM consists of a set of
posterior probability values which were obtained by using several
weak classifiers. This approach enables the features to be transformed
into a new space (meta-features), thus allowing the dimensionality of
the data (in our case) to be reduced and amoremeaningful value to be
provided in each dimension. This is expected to help to reduce the
error rate of the final classifier.

In our experimentation, 1-NN was used as a weak classifier, and
several algorithms (MACP, Stacking-C, RoF RaF, RoF J48) were
considered as final meta-classifiers. A 4-fold cross-validation was
conducted for each of the four different datasets, and a statistical
significance test was also applied in order to measure the effect of
including the CM in a comprehensive manner. These tests reported
that the inclusion of the CM can significantly improve the results
of evolved meta-classifiers. In most of the cases considered, the
results were either improved or remained the same. With regard
to the execution time, there is no clear trend in the results (see
Table 7). The inclusion of the CM decreases the execution time of
the most complex ensembles considered (RoF and Stacking-C) in
some corpora and increases it in others.

Although our case of study is focused on OCR classification, our
intention is that the CM representation can be used in any task as
long as several different feature extraction techniques can be applied
to the data. The main drawback is that it requires the user to be
an active part of the process by extracting these different sets of
features. Therefore, an interesting option for future work would be to
find a way to extract different groups of features automatically. A
bagging system could be explored in order to obtain different weak
classifiers trained with a different subset of features. The way in
which RoF builds its forests also represents an idea to explore.

One of the main lines of future research is to test our CM
against other meta-classification schemes. On one hand, meta-
feature extraction methods and early fusion methods could be
applied in order to compare its performance with CM. Special
interest arises in the comparison with embedding methods [19],
since its requirements are quite similar. Nevertheless, embedding
methods need to tune correctly some other parameters such as
dimensionality or pivot selections so a comprehensive review and
experimentation would be necessary. On the other hand, there are
several late fusion algorithms (such as those reported in [28,5,10]).
It would be of great interest to compare their performance both
against our proposal and in combination with it.

The goodness of including the CM could also be tested against
other benchmark corpora with lower features per prototype, such
as UCI Machine Learning Repository [2]. In our experiments, the
original prototypes have between 360 and 490 features, while the

Table 8
Wilcoxon statistical significances (p-values) reported in datasets considered with 4-cross-validation, assuming that the classifiers are better with CM than without it. The
numbers in parentheses represent the opposite relationship (without CM is better than with it) when the main p-value is close to 1. The values in bold type represent a level
of significance that is higher than α¼0.95.

Dataset RoF RaF RoF J48 MACP Stacking-C SVM MLP

NIST 0.000004 0.000288 0.404899 0.000643 0.000007 0.000004
MNIST 0.007649 0.001312 0.168282 0.132416 0.126279 0.004317
USPS 0.0059 0.0043 1 (0.796) 0.9582 (0.9582) 0.016605 0.004317
MPEG-7 0.017337 0.002064 1 (0.15168) 1 (0.399268) 0.001516 0.000007
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datasets of the UCI have between 17 and 35. What is more, the
features of the datasets belonging to UCI have some unknown
data, and a measure of similarity other than the Euclidean distance
such as the HVDM (Heterogeneous Value Difference Metric) [31]
would therefore have to be used to deal with these unknown data.
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5.1 Results with handwritten music symbols

Given that this work could be generalized to deal with any kind of isolated sym-
bols, we decided to include experimentation with several datasets so that the
paper was useful to a wider audience. We also stated that it was focused to Opti-
cal Character Recognition (OCR), understood as any kind of isolated symbol but
not only to alphanumerical characters. In fact, one of the dataset used contains
silhouettes of general shapes (MPEG-7).

Considering the scope of this thesis, our main intention was to use this ap-
proach to classify images of isolated music symbols. Nonetheless, reviewers con-
sidered that it was better to restrict ourselves to the use of well-known datasets.
Therefore, the paper finally lacked of results from isolated music symbols.

That is why this section includes the results obtained using the Handwritten
Online Music Symbols (HOMUS) dataset. HOMUS is a labelled set of isolated
symbols written using an electronic pen. As a part of this thesis, the dataset is
described thoroughly in Chapter 6.

From the shape written by a user, an image of the symbol can be rendered so
that a corpus of images showing isolated music symbols can be obtained. Table 5.1
shows the results of applying the strategy developed in this chapter to this set.
The subregions considered per image are 8. For the sake of compactness, average
results are directly reported.

Classifier Original features CM representation
RoF RaF 18.9 ± 0.9 15.4 ± 0.7
RoF J48 20.8 ± 0.8 16.6 ± 0.8
MACP 17.4 ± 1.4 19.0 ± 0.7
StackingC 19.2 ± 0.9 18.9 ± 1.1
MLP 75.4 ± 4.7 24.2 ± 4.3
SVM 14.6 ± 0.9 11.8 ± 0.7

Table 5.1: Classification average error rate (± standard devation) over HOMUS
dataset with 4-cross-validation, comparing the classifiers with and without CM
representation.

It can be seen that the premise demonstrated in the paper is still applicable
for isolated music symbols: generally, it is more profitable to use the Confidence
Matrix rather than the raw set of features.
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Abstract—A profitable way of digitizing a new musical compo-
sition is by using a pen-based (online) system, in which the score
is created with the sole effort of the composition itself. However,
the development of such systems is still largely unexplored.
Some studies have been carried out but the use of particular
little datasets has led to avoid objective comparisons between
different approaches. To solve this situation, this work presents
the Handwritten Online Musical Symbols (HOMUS) dataset,
which consists of 15200 samples of 32 types of musical symbols
from 100 different musicians. Several alternatives of recognition
for the two modalities –online, using the strokes drawn by the
pen, and offline, using the image generated after drawing the
symbol– are also presented. Some experiments are included aimed
to draw main conclusions about the recognition of these data. It is
expected that this work can establish a binding point in the field
of recognition of online handwritten music notation and serve as
a baseline for future developments.

I. Introduction

Composing music with pen and paper is still a common
procedure. However, there may be several reasons for expor-
ting a music score to a digital format: storage, distribution and
reproduction; using its information in the search of musical
pieces; grouping of styles and detection of plagiarism; or for
building digital libraries. Conventional digital score editors put
musical symbols on a score by using point and click actions
with the mouse. These tools represent a tedious effort for the
user, leading to consume a lot of time. The use of digital
instruments seems a more comfortable alternative. Digital
instruments (such as a MIDI piano) can be connected directly
to the computer and transfer the information while playing the
musical piece. However, this type of transcription is not error-
free and rarely catch all the nuances that may contain a score.
Moreover, the music sheet can be scanned in order to use
an automatic score transcription tool –commonly referred as
Optical Music Recognition (OMR) systems [1]–. This option
represent an effortless alternative for the user. Unfortunately,
OMR systems are far from achieving accurate transcriptions,
especially for handwritten scores [2]. Thus, the transcription
has to be corrected afterwards.

Although one of the above methods can be used, it is more
profitable digitizing the score at the same time the composer
writes. In this way, the score is digitized with the sole effort
of the composition itself. With an online transcription system,
many of the problems above discussed can be avoided, plus
additional advantages (e.g., the ability to quickly reproduce the
current composition). Furthermore, recognition of this kind of
musical symbols could have use in other contexts. For instance,

it is feasible to think of a scenario in which an OMR system
allows corrections using a digital pen, rather than having to use
the conventional mechanism of a score editor. This approach
has been already applied to Handwritten Text Recognition [3].

Some previous studies have been carried out but this field
still remains largely unexplored. One of the major absences is
a dataset that serve as reference for research. All the previous
works have worked with its own dataset and its own set
of musical symbols. Therefore, comparative studies to know
which approaches perform better than others have not been
conducted so it is still unclear what is the current status of the
research. The present work aims to set a reference point for
research on recognition of online handwritten musical symbols.
To this end, a large dataset is provided for free access 1,
covering the most used symbols in the composition of musical
scores. To establish the first baseline, experimentation with
well-known pattern recognition algorithms is presented so that
more information about the dataset can be known such as the
difficulty of the recognition task or which techniques seem
more promising. It is also expected that the results can serve
as baseline for future comparisons and developments.

The rest of the paper is structured as follows: Section II
describes the nature of the recognition of online handwritten
music notation. The description of the dataset is shown in
Section III. Section IV presents some baseline techniques for
this dataset. Experiments are presented in Section V. Finally,
conclusions are drawn in Section VI.

II. Recognition of Pen-Based HandwrittenMusic Notation

Over decades, much research has been devoted to the
development of friendly music score editors. Despite all these
efforts, there is still no satisfactory solution. The emergence
of tablet computer devices has open new avenues to approach
this problem. With these devices, a musician can compose its
music on a digital score using an electronic pen and have it
effortlessly digitized.

The recognition of online (or pen-based) handwritten music
notation task is defined as recognition of musical symbols at
the time they are being written. The great variability in the
manner of writing the musical symbols is the main difficulty
to overcome. Figure 1 shows some examples of handwritten
musical symbols from different musicians.

1The dataset is available at http://grfia.dlsi.ua.es/homus/
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Fig. 1. Some examples of variability in handwritten musical symbols.

This variability is also a problem in OMR systems, but this
scenario offers important advantages with respect to them: the
staff lines (one of the main issues in offline OMR systems)
do not interfere in the recognition since they are handle
by the underlying system, the symbol detection could be
intrinsically performed somehow, and the information about
how the strokes are drawn is available.

These strokes –considered as the shape between pen-down
and pen-up actions– produce an ordered set of points, which
indicate the path followed by the pen. Similarly, each symbol
can be drawn by one or more strokes. But not only this
information can be extracted. An image of the shape itself
can also be used for the classification (as it would be done in
offline recognition). This modality gives another perspective
of the symbol and it is more robust against the speed of the
user, the order followed to draw a symbol and the number of
strokes used.

A. Background

The first systems for pen-based recognition of musical
scores were based on the use of simple gestures. This is
the case of Presto system [4], which received as input short
gestures that were generally mnemonic of the music symbols.
These gestures were processed and translated to the actual
musical symbols. With the same idea, Polácek et al. [5]
created a new gesture alphabet especially designed for its
use in low-resolution devices. The main drawback of these
approaches is that they require an adaptation of the user to
the gesture alphabet recognized by the system. Subsequently,
there were other works that allowed writing symbols in its
conventional manner. Miyao and Maruyama [6] based its
system on the recognition of primitives (lines, circles, arcs,
etc.), using information both the stroke path and the shape
drawn. After the recognition, these primitives are combined to
reconstruct the musical symbols. A similar approach was used
in [7], in which document spatial structures were defined and
combined with context-free grammars. However, depending on
the musician writing, a musical symbol may consist of different
primitives, so that the rules to rebuild the symbols lack
the robustness needed to handle the different writing styles.
Moreover, systems that have as their objective the recognition
of complete musical symbol can also be found. George [8] used
the images generated by the digital pen to learn an Artificial
Neural Network (ANN) to recognize the symbols. Lee et al.

TABLE I. Features of datasets used in previous works.

Work Classes Users Data
George 20 25 4188 images
Miyao and Maruyama 12 11 13801 strokes
Lee et al. 8 1 400 symbols
Our dataset 32 100 15200 symbols

[9] proposed the use of Hidden Markov Models (HMM) for
recognition of some of the most common musical symbols
using different features of the shape drawn by the pen. These
studies have shown that the complete recognition of symbols
written in the natural form of music is feasible.

The recognition of online handwritten music notation is
still a novel field so it is not yet established guidelines about
which types of algorithms perform better. Aforementioned
works have performed experiments that were only focused
on finding the optimal parameters of the specific algorithm
used. Each of them used its own dataset, its own set of
musical symbols and its own nature of the input (see Table I),
so it is unclear what dataset must be used to evaluate the
performance of new approaches. This has hitherto led to
a lack of comparative experiments to assess which of the
proposed algorithms perform better in this context. To provide
a solution to this problem, this work presents the HOMUS
dataset, described in the next section.

III. The Handwritten OnlineMusical Symbols dataset

This section presents the Handwritten Online Musical
Symbols (HOMUS) dataset. The objective is to provide a
reference corpus for research on the recognition of on-
line handwritten music notation. The dataset is available at
http://grfia.dlsi.ua.es/homus/.

Analyzing previous works, it was observed that most of
them only took into account a small set of the possible musical
symbols. In addition, it is important to stress that each musician
has its own writing style, as it occurs in handwritten text.
Increasing both the set of musical symbols and the number of
different writing styles is advisable if reliable results about the
recognition of online handwritten music notation are pursued.

Following this way, the HOMUS was built by 100 mu-
sicians from the Escuela de Educandos Asociación Musical
l’Avanç (El Campello, Spain) and Conservatorio Superior de
Música de Murcia ”Manuel Massotti Littell” (Murcia, Spain)
music schools, among whom were both music teachers and
advanced students. In order to cover more scenarios, some
of them were experienced in handwritten music composition
while other have few composition experience. Musicians were
encouragingly asked to draw the symbols trying not to do it
in a perfect manner, but in its own, particular style (which is
reflected in the variability shown in Fig. 1). Each of them were
asked to draw four times the 32 classes listed in Table II, which
has resulted in 15200 samples spread over 38 templates 2.
Each sample of the dataset contains the label and the strokes
composing the symbol. These strokes consists of a set of
points relative to a coordinate center. Storing the data in this
way allows covering all the possibilities considered: the image
can be generated from the strokes, every single stroke can be

2The eighth, sixteenth, thirty-second, and sixty-fourth note symbols are
written twice: right and inverted.
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TABLE II. Types of musical symbols in the HOMUS dataset.

Note whole, half, quarter, eighth, sixteenth, thirty-second, sixty-
fourth

Rest whole/half, quarter, eighth, sixteenth, thirty-second, sixty-
fourth

Accidentals flat, sharp, natural, double sharp
Time signatures common time, cut time, 4-4, 2-2, 2-4, 3-4, 3-8, 6-8, 9-8, 12-8
Clef G-clef, C-clef, F-clef
Others dot, barline

extracted easily, and each individual symbol remains isolated.
Since the pitch of the notes is based on its position over the
staff, it is unnecessary to detect it in the classification, but it
may be assigned in a post-processing stage.

It should be noted that not all musical symbols appear in
the dataset. Less relevant symbols such as accidentals, orna-
ments or instrument-specific notation were left out although
they could be added to the score with another mechanism (e.g.,
via a contextual menu). There are other symbols that can not be
present because of their unfixed length (such as ties or slurs)
for which an alternative mechanism of addition can also be
found.

To create the dataset a Samsung Galaxy Note 10.1 device
was used and symbols were written using the stylus S-Pen.
This device was chosen among the standalone friendly options
because of its optimality to work with an e-pen. The device
has a resolution of 1280×800 (149 ppi) and a sampling rate of
16 ms (60 fps). An application that request musical symbols
to be drawn on an empty staff was developed. The staff was
composed of five parallel lines with a line thickness of 3 and
an equal staff line spacing of 14. These two values are provided
as a reference for possible rescaling since they are the common
features for this purpose in OMR systems [10].

In addition to the dataset, this paper is intended to provide
a baseline of the classification rate that can be achieved. Some
basic techniques to recognize HOMUS samples are described
in the next section.

IV. Baseline techniques

In this section, some techniques for the recognition of
the samples contained in the HOMUS dataset are presented.
The goal is not to achieve high success rates, but provide
some notions about the classification of the symbols. It is
also expected that experiments identify the most promising
techniques to recognize this kind of data and the results can
be used as baseline to compare future developments.

The dual nature of the data –using the strokes and using the
image– leads us to explore both ways in the classification of the
symbols. Classification techniques for each of these modalities
are presented in the following subsections.

A. Online Techniques

The online recognition modality uses the strokes made by
the pen. These strokes provide information about how the
shape has been generated segment by segment. This modality
takes advantage of the local information, expecting that a
particular musical symbol follows similar paths. Depending on
the type of musical symbol and the pace of the user, a greater
or lower number of points will be generated. Therefore, each
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Fig. 2. FCC based on the angle between consecutive points.

sample has a different dimension. Due to this, most of the
conventional techniques based on equal-sized feature vectors
can not be applied. For this reason, we will restrict ourselves
to the use of the Nearest Neighbor (NN) technique and Hidden
Markov Models (HMM).

1) Nearest Neighbor: Let X = (x1, . . . , xn) be a set of
labeled samples and let x′ ∈ X be the sample that minimizes
a dissimilarity measure d(x, x′) to a test point x. The NN rule
[11] assigns to x the label associated with x′. The natural
extension of this rule is to use the k-nearest samples (k-NN)
and assign the most frequent label. The performance of this
rule is strongly related to the dissimilarity measure d(x, x′)
utilized. Two alternatives are presented in the following lines:
Edit Distance with Freeman Chain Codes (FCC) and Dynamic
Time Warping (DTW).

Given two strings, the edit distance (or Levenshtein dis-
tance) [12] is the minimum number of edit operations –usually
insertion, deletion and substitution– to convert one string into
another. To use this distance over the samples of the HOMUS,
the set of points that represents a musical symbol has to be
converted into a string. Codification based on Freeman Chain
Code (FCC) [13] is applied. FCC is a typical method to build
strings from image contours. It converts each pair of pixels
into one code in function of the neighboring direction. In this
case, instead of a contour we have a set of points that are
not continuous (because of the device sampling rate). This
situation can be approached in many ways. Between each pair
of points a line that connects them can be interpolated. Thus we
can establish a continuous path and applying the conventional
FCC afterwards. Moreover, each pair of points can be replaced
by a code based on the angle they form (see Fig. 2). These two
approaches (FCC and FCC based on angle) will be evaluated
experimentally. For symbols with multiple strokes, a specific
code is concatenated at the end of each stroke.

On the other hand, DTW is a technique for measuring
the dissimilarity between two time signals which may be of
different durations. It was firstly used in speech recognition
[14] although its use has widely extended to other fields [15],
[16]. Let x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , ym) be two
time series, of length n and m respectively. DTW(i, j) is defined
recursively as



0, j = 0 ∧ i = 0
∞, j = 0 ∧ i > 0
∞, i = 0 ∧ j > 0

d(xi, yi) + min



DTW(i − 1, j)
DTW(i, j − 1)
DTW(i − 1, j − 1)

, otherwise

(1)

Reprinted publication

56



and therefore, DTW(x,y) = DTW(n,m). In our case, xi
and yi are points in a 2-dimensional space. Hence, the dis-
tance d(xi, y j) is the Euclidean distance between two points.
The algorithm is implemented using a dynamic programming
scheme, reducing the complexity to O(nm). Details about the
intrinsic operation of the algorithm can be found in [14].

2) Hidden Markov Models: Hidden Markov Models
(HMM) [17] are statistical models that define an unobservable
Markov process generating an observable output sequence.
They have been successfully used in online handwritten
recognition during the last years [18], [19]. In our work, a
continuous left-to-right topology is used and the models are
trained with the Baum-Welch algorithm [20]. Both the number
of states and the number of Gaussian densities in the mixtures
are adjusted in preliminary experiments.

Feature extraction is performed as described in the work of
Kian et al. [9], which obtained good results for online music
symbol recognition.

B. Offline Techniques

After drawing the symbol, an image can be obtained by
creating lines between pair of consecutive points. After this,
the lines are dilated to simulate a thickness of 3 as used
to collect the samples. The information contained in these
images provide a new perspective on the recognition and it
does not overlap with the nature of the online recognition.
The advantage of this representation is that it is robust against
different speeds or different orders when writing the symbol.

The baseline showed here is inspired by the work of
Rebelo et al. [21] on offline musical symbol recognition.
The algorithms considered are k-Nearest Neighbor, Artificial
Neural Network, Support Vector Machines and Hidden Markov
Models. The images are resized to 20 × 20 and no feature
extraction is performed (except for Hidden Markov Models).

1) k-Nearest Neighbor: The k-Nearest Neighbor (k-NN)
rule, explained in the previous subsection, can also be used
for recognition from images. In this case, a 400-dimensional
vector with real values is received as input. To measure the
dissimilarity between two samples, the Euclidean distance
is used. Some different values for the parameter k will be
evaluated experimentally (1, 3 and 5).

2) Artificial Neural Networks: Artificial Neural Networks
(ANN) emerged as an attempt to mimic the operation of the
nervous system to solve machine learning problems. An ANN
comprises a set of interconnected neurons following a certain
topology. Further details about ANN can be found in [22].

The topology of a neural network can be quite varied.
For this work, the common neural network called Multi-Layer
Perceptron (MLP) is used. This topology was also used for the
same purpose in the work of George [8]. This kind of networks
can be trained with the backpropagation algorithm [23]. The
number of hidden states was fixed to 200.

3) Support Vector Machines: Support Vector Machines
(SVM) is a supervised learning algorithm developed by Vapnik
[24]. It seeks for a hyperplane

h(x) = wT x + b = 0 (2)

which maximizes the separation (margin) between the
hyperplane and the nearest samples of each class (support
vectors). Among the alternatives to extend the algorithm for
multi-class problems, the one-vs-one scheme is used here.

SVM relies on the use of a Kernel function to deal with
non-linearly separable problems. In this work, two kernel
functions will be considered: radial basis function (RBF)
kernel (Eq. 3) and polynomial (Poly) kernel (Eq. 4).

K(x, y) = e−γ·‖x−y‖2 (3)
K(x, y) = 〈x, y〉n (4)

The training of the SVM is conducted by the Sequential
Minimal Optimization (SMO) algorithm [25].

4) Hidden Markov Models: HMM are used here as ex-
plained for the online data. In this case, resizing and feature
extraction are performed like in the work of Pugin [26].

V. Experimentation

The experimental part of this work focuses on providing
the first classification results for the HOMUS dataset. In this
way, we try to show what aspects of these data seem more
appropriate or what are the main challenges to recognize the
different musical symbols. To this end, two experiments are
presented in this section. The first experiment is carried out
to assess if the algorithms can detect the symbols regardless
the particular style of each musician. The second experiment is
aimed to analyze the accuracy of the algorithms when samples
of the same user have been presented during the training stage.
Next subsections describe these experiments.

A. User-independent experiment

In this experiment we aim to assess the difficulty of
recognizing symbols from an unknown user. The samples of
each musician are isolated from the whole dataset and used
as test set (100 sets). Then, a 100-fold cross validation is
conducted using a common 0−1 loss function. The error rates
obtained after applying the algorithms described in Section IV
are shown in Fig. 3 (user-independent columns).

As seen in the results, algorithms are not very reliable in
this scenario since all of them obtain error rates higher than
15 %. DTW obtains the lowest error rate (15.2 %). Among
the offline techniques, SVM with RBF kernel provides the
best error rate (26 %). To measure the significance of the
results, a Wilcoxon statistical test was performed using KEEL
software [27] (see Table III). It can be seen that DTW achieves
significantly better results than other techniques.

B. User-dependent experiment

The latter experiment is focused on assessing how the
classification results are affected when samples of the same
musician are found in the training set. Each musician is
divided into four sets and each one is used as a fold for
a cross-validation experiment. To build the training set, two
alternatives can be used: (1) using only the rest of the samples
of the same musician (user set), and (2) using the rest of the
dataset, including the remaining samples of the same musician
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TABLE III. Summary of theWilcoxon test for user-independent
experiment. •= the method in the row improves the method of the column. ◦=
the method in the column improves the method of the row. Upper diagonal of
level significance α = 0.9, Lower diagonal level of significance α = 0.95

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)
DTW (1) - • • • • • • • • • •
String (2) ◦ - • • • • • • • • •
Angle (3) ◦ ◦ - • • • • • • • •

HMMon (4) ◦ ◦ ◦ - • ◦ • • • • •
MLP (5) ◦ ◦ ◦ ◦ - ◦ ◦ ◦ ◦ ◦ ◦
RBF (6) ◦ ◦ ◦ • • - • • • • •
Poly (7) ◦ ◦ ◦ ◦ • ◦ - • • • •
1NN (8) ◦ ◦ ◦ ◦ • ◦ ◦ - ◦ • •
3NN (9) ◦ ◦ ◦ ◦ • ◦ ◦ • - •

5NN (10) ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ -
HMMoff (11) ◦ ◦ ◦ ◦ • ◦ ◦ ◦ -
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Fig. 3. Mean error rate of classification experiments. String: Freeman Chain
Code, Angle: Freeman Chain Code based on angles, DTW: Dynamic Time
Warping, HMMon: Hidden Markov Models with online features, MLP: Multi-
Layer Perceptron, Poly: Support Vector Machine with Polynomial kernel,
RBF: Support Vector Machine with Radial Basis Function kernel, k-NN: k-
Nearest Neighbor using images, HMMoff : Hidden Markov Models with offline
features.

(whole set). This two options are confronted experimentally in
a 400-fold (four per musician) cross validation. Figure 3 (user-
dependent columns) show the results of this experiment, which
is measure using the 0 − 1 loss function as well.

Algorithms using the online nature of the data have the
best performance while those exploiting offline modality still
have higher error rates. Conventional FCC has reported the
best error rate, on average (7 %). Regarding the two ways of
building the training set, there are no clear trend in the results.
Some algorithms have improved when using the whole dataset
such as NN family and, especially, SVM with a RBF kernel
(from 61 % to 23 %) because of its poor performance with
few training data. However, in other algorithms, the error rate
hardly varies or even rises, as in the case of SVM with a
Polynomial kernel, the MLP or HMM with online features.
The Wilcoxon statistical tests for these experiments are shown
in Table IV and V. If each modality is seen as a whole,
algorithms that work with the online data, except for HMM,
achieve significantly better results than the others.

Comparing these results with those obtained in the previous
experiment we can conclude that including samples of the
same user during the training set can remarkably improve
the performance of some algorithms. For instance, FCC has
improved considerably its performance from 18 % to 7 %
of error rate. Depending on the algorithm used, it is more

TABLE IV. Summary of theWilcoxon test for user-dependent (user set)
experiment. •= the method in the row improves the method of the column. ◦=
the method in the column improves the method of the row. Upper diagonal of
level significance α = 0.9, Lower diagonal level of significance α = 0.95

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)
DTW (1) - • • • • • • • •
String (2) - • • • • • • • •
Angle (3) - • • • • • • • •

HMMon (4) ◦ ◦ ◦ - • • • • • • •
MLP (5) ◦ ◦ ◦ ◦ - ◦ ◦ ◦ •
RBF (6) ◦ ◦ ◦ ◦ • - • • • • ◦
Poly (7) ◦ ◦ ◦ ◦ ◦ - ◦ ◦ ◦ •
1NN (8) ◦ ◦ ◦ ◦ ◦ • - ◦ ◦ •
3NN (9) ◦ ◦ ◦ ◦ • ◦ • • - ◦

5NN (10) ◦ ◦ ◦ ◦ • ◦ • • - ◦
HMMoff (11) ◦ ◦ ◦ ◦ ◦ • ◦ ◦ • • -

TABLE V. Summary of theWilcoxon test for user-dependent (whole
set) experiment. •= the method in the row improves the method of the

column. ◦= the method in the column improves the method of the row. Upper
diagonal of level significance α = 0.9, Lower diagonal level of significance

α = 0.95

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)
DTW (1) - • • • • • • • •
String (2) - • • • • • • • •
Angle (3) - • • • • • • • •

HMMon (4) ◦ ◦ ◦ - • ◦ • ◦ • •
MLP (5) ◦ ◦ ◦ ◦ - • • • • • •
RBF (6) ◦ ◦ ◦ • ◦ - ◦ ◦ ◦ ◦ •
Poly (7) ◦ ◦ ◦ ◦ ◦ • - •
1NN (8) ◦ ◦ ◦ • ◦ • - ◦ •
3NN (9) ◦ ◦ ◦ ◦ • • - •

5NN (10) ◦ ◦ ◦ ◦ ◦ • - •
HMMoff (11) ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ -

convenient to do it with the rest of the dataset or only with the
remaining samples of the same user. Algorithms that exploit
the online modality of the data, except for the HMM, have
shown a significantly better performance in both experiments.
Specifically, DTW has proven to be the best technique since
it improves significantly the results of other algorithms in the
user-independent experiment and no one is significantly better
in the user-dependent experiments. HMM deserves further
consideration because its performance is closely linked to
feature extraction. In any case, in this work we focused on
features used in previous studies for the same task.

VI. Conclusions

The work presented here aims to become a first point of
reference for recognition of online handwritten music notation.
This process is focused on recognizing musical symbols that
are drawn on a digital score using a friendly tablet device and
an electronic pen. In this way, musicians can digitize their
compositions without resorting to conventional music score
editors.

Some previous studies that have worked on this issue have
been presented. However, all of them used their own corpus,
so there is still a lack of comparative experiments that indicate
which algorithms are better for this task. To solve this problem,
this paper has presented the HOMUS (Handwritten Online
Musical Symbols) dataset. This dataset contains 15200 samples
of musical symbols from 100 expert musicians. Within this
set, 32 different types of musical symbols can be found. It is
expected that the dataset provides sufficient samples so that
the results depend on the techniques used for classification.

To establish the first baseline, experiments with well-known
pattern recognition algorithms have been carried out. FCC,
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DTW and HMM have been used to take advantage of the
online nature of these data while k-NN, SVM, ANN and
HMM have been utilized to classify samples from the offline
modality (image). Two experiments were conducted to better
understand this dataset and draw the first conclusions on the
classification of these symbols. The first experiment consists in
measuring the difficulty of recognizing a symbol when it comes
from an unknown musician (user-independent). In the second
experiment, samples of the same musician are included in the
training set (user-dependent). Results showed that recognizing
symbols from unseen styles presents the main difficulty. Error
rates of the user-independent experiment among 32 classes did
not dropped below 15 % in any of the algorithms considered.
Algorithms that exploit the online nature of the data has
proven to be the most promising for the classification task,
achieving results that improve the performance of those which
use the offline modality. Considering all the experiments, DTW
has shown the best performance. Nevertheless, results showed
room for improvement.

These results has also led to the conclusion that a com-
petitive system will need samples of the actual user. This
scenario is feasible in real-world cases. The user can be asked
to perform a training phase before using the system, in which
he writes all the musical symbols with his own style. This extra
effort can prevent a large number of classification errors that
must be posteriorly corrected. Forcing the user to perform this
phase can be actually seen as a way to minimize the human
effort throughout the entire process. The user can also provide
his writing style transparently by means of corrections where
a misclassification is produced (user adaptation techniques).

As future work, the main challenge is to extend this work
to recognize entire music scores.

Acknowledgment

This work was partially supported by a FPU fellow-
ship (AP2012-0939) from the Spanish Ministerio de Ed-
ucacin, Cultura y Deporte, the Spanish CICyT through
the project TIN2009-14205-C04-C1 and Consejerı́a de Edu-
cación de la Comunidad Valenciana through project PROME-
TEO/2012/017.

The authors are grateful to all the people who collaborate
in the creation of the dataset.

References

[1] D. Bainbridge and T. Bell, “The Challenge of Optical Music Recogni-
tion,” Language Resources and Evaluation, vol. 35, pp. 95–121, 2001.

[2] A. Rebelo, I. Fujinaga, F. Paszkiewicz, A. Marcal, C. Guedes, and
J. Cardoso, “Optical music recognition: state-of-the-art and open is-
sues,” International Journal of Multimedia Information Retrieval, pp.
1–18, 2012.

[3] D. Martin-Albo, V. Romero, and E. Vidal, “Interactive off-line hand-
written text transcription using on-line handwritten text as feedback,” in
Document Analysis and Recognition (ICDAR), 2013 12th International
Conference on, 2013, pp. 1280–1284.

[4] J. Anstice, T. Bell, A. Cockburn, and M. Setchell, “The design of a
pen-based musical input system,” in Sixth Australian Conference on
Computer-Human Interaction, 1996. Proceedings., 1996, pp. 260–267.
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Abstract. A comfortable way of digitizing a new music composition is
by using a pen-based recognition system, in which the digital score is cre-
ated with the sole effort of the composition itself. In this kind of systems,
the input consist of a set of pen strokes. However, it is hitherto unclear
the different types of strokes that must be considered for this task. This
paper presents an experimental study on automatic labeling of these
strokes using the well-known k-medoids algorithm. Since recognition of
pen-based music scores is highly related to stroke recognition, it may be
profitable to repeat the process when new data is received through user
interaction. Therefore, our intention is not to propose some stroke label-
ing but to show which stroke dissimilarities perform better within the
clustering process. Results show that there can be found good methods
in the trade-off between cluster complexity and classification accuracy,
whereas others offer a very poor performance.

1 Introduction

Still nowadays many musicians consider pen and paper as the natural tools for
expressing a new music composition. The ease and ubiquity of this method, as
well as the fact of avoiding tedious music score editors, favor this considera-
tion. Nevertheless, after composition is finished, it may be appropriate to have
the score digitized to take advantage of many benefits such as storage, repro-
duction or distribution. To provide a profitable way of performing the whole
process, pen-based music notation recognition systems can be developed. This
way, musicians are provided with a friendly interface to work with and save the
effort of digitizing the score afterwards. Although offline music score recognition
systems (also known as Optical Music Recognition) could be used, it is widely
known that the additional data provided by the time collection sampling of a
pen-based system can lead to a better performance since more information is cap-
tured. The process of recognizing handwritten music notation is very related to
other pattern recognition fields, especially that of Optical Character Recogni-
tion (OCR). Despite similarities between text and music recognition processes,
this latter presents several features that make it be considered a harder task [3].
Therefore, new recognition algorithms must be developed to deal with music
scores. In the case of online recognition, the natural segmentation of the input
c� Springer International Publishing Switzerland 2015
R. Paredes et al. (Eds.): IbPRIA 2015, LNCS 9117, pp. 633–640, 2015.
DOI: 10.1007/978-3-319-19390-8 71
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is the set of strokes. Each stroke is defined as the data collected between pen-up
and pen-down events over the digital surface. Nevertheless, given both the high
variability in handwritten musical notation and differences among writer styles
(see [4]), as well as the immaturity of the field itself, it is still unclear the classes
of strokes that must be considered or which are the most accurate techniques to
recognize them.

This paper presents an experimental study on automatic clustering of the
strokes found in pen-based music notation. From the interactive system point
of view, it is specially interesting to know which algorithms provide the best
results since this clustering might be repeated in order to adapt the recognition
to the style of the actual user. Therefore, this work does not intend to provide
just a proposal of stroke labeling, but to find which techniques would be the
most appropriate within this scenario. The paper is structured as follows: Sect. 2
addresses the intrinsics of the clustering problem described; techniques for mea-
suring dissimilarity between strokes from pen-based music notation are presented
in Sect. 3; Sect. 4 describes the experimental setup, results and analysis; finally,
Sect. 5 concludes.

2 The Clustering Problem

When dealing with a pen-based music recognition task, raw input consists of
a series of strokes. This is the natural segmentation of such systems since the
beginning and ending of a stroke are easily detected by pen-down and pen-up
events. From a labeled set of isolated handwritten musical symbol we can obtain
definitions of these symbols in terms of strokes. If we considered a stroke labeling,
we would reduce this set by assigning the same label to similar strokes. Then,
the first step would be to classify each stroke within a set of labels. A label
would represent a part of a musical symbol, i.e., a white note head or a stem
(Fig. 1(b)), or even a whole symbol (Fig. 1(a)).

(a) Two strokes (b) One stroke

Fig. 1. Half Note symbol written with different set of primitives.

At this point, we have to deal with the open problem of the set of primi-
tives to be considered. Some ad-hoc labeling could be used but it might not be
appropriate for this task due to several reasons: the data would be clustered
considering human similarity perception instead of computer-based similarity,
which is what it is applied in the final system; labels would be created from the
data available at that moment, thus generalization could be poor; clustering may
need to be repeated after user interaction, in which new data would be received
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and, therefore, the system must be adapted to actual user writing style. All these
reasons lead us to perform an algorithmic-based clustering of the strokes found
in pen-based music notation. As aforementioned, the main goal of this paper is
not to give a good proposal of stroke labeling, but to measure the goodness and
generalization of each possible clustering considered.

One of the key questions in any clustering problem is to choose the number
of labels that must be considered (referred here as parameter k). Note that if
music notation can be defined by a formal language, in which the alphabet is
the primitives set, the lower the size of this set the less complex the language.
Therefore, we are interested in lowering k as much as possible. On the other
hand, low values of k can lead to ambiguous definitions, that is, more than one
musical symbol defined by the same sequence of primitives. Considering that
we should avoid these ambiguous definitions, our problem can be modeled as a
constrained clustering problem.

Constrained clustering is the task of clustering data in which some conditions
over the cluster assignments must be fulfilled. In the literature, several works
on constrained clustering can be found [1,17]. The two considered cases are
those of must-link and cannot-link conditions. The first defines pairs of data
points that must be in the same cluster while the latter defines pairs of data
points that must be in different clusters. The constraint in our case is to avoid
more than one musical symbol defined by the same primitives. Let us consider
just two musical symbols (Whole Note and Half Note). Let us assume that we
have some definitions in which these symbols are described in terms of strokes.
That is,

Whole Note → s1

Whole Note → s2 s3

Half Note → s4

Half Note → s5 s6

in which s1, s2, . . . , s6 denote strokes.
Let ζ(s) stands for the label assigned to stroke s. Then, we are looking for a

labeling such that ζ(s1) �= ζ(s4) as well as ζ(s2) �= ζ(s5) ∨ ζ(s3) �= ζ(s6). This
way, none but one symbol could be defined by the same sequence of primitives.
Note that, although we are stating cannot-link conditions, we are not interested
in just pairwise constraints but to n-to-n as shown above.

To our best knowledge, this kind of conditions is not approached in previous
works on constrained clustering. Since developing such algorithm is out of the
scope of the present work, we are going to follow a straightforward approach:
unconstrained clustering will be performed and conditions will be checked after-
wards. The lowest value of k that achieves a valid clustering will be considered.
The problem with this approach is that it may lead to a very high number of
k. Thus, some rate of ambiguous symbols will be allowed. We assume that some
disambiguation can be solved by means of semantic music language models, as
typically happens in offline Optical Music Recognition [11].

Reprinted publication

64



636 J. Calvo-Zaragoza and J. Oncina

The unconstrained clustering process will be guided by a k-medoids
algorithm [16], one of the most common and successful algorithms for data clus-
tering [14]. This algorithm is very related to k-means but instead of taking the
mean point at the expectation step, it searches the point of the cluster that
minimizes the actual cost (set mean). In order to provide a more robust cluster-
ing, the initialization of the method is performed as described for k-means++
algorithm [2]. This algorithm proposes a initialization (first centroids) that is
expected to provide better results and faster convergence. It starts with a random
centroid and the rest of the centroids are chosen randomly following a decreasing
probability with respect to the distance to the nearest centroid already selected.

To perform the clustering we need to define some function that measures
the distance or dissimilarity between two strokes. Next section will describe the
techniques considered for such task.

3 Dissimilarity Functions for Pen-Based Music Notation
Strokes

The data points of our clustering problem are handwritten strokes. Each stroke is
composed of a sequence of consecutive two dimensional points defining the path
that the pen follows. For the clustering algorithm we need to define some tech-
niques to measure the dissimilarity between two given strokes. Below we present
some functions that can be applied directly to the stroke data. Moreover, we
also describe some ways of mapping the strokes onto feature vectors, for which
other several dissimilarity measures can be applied.

Before computing these dissimilarities, a smoothing process will also be con-
sidered. Smoothing is a common preprocessing step in pen-based recognition to
remove some noise and jitters [7]. It consists in replacing each point of the stroke
by the mean of their neighbors points. Some values of neighborhood size will be
considered at the experimentation stage.

3.1 Raw Stroke Distance

The digital surface collects the strokes at a fixed sampling rate so that each
one may contain a variable number of points. However, some dissimilarity func-
tions can be applied to this kind of data. Those considered in this work are the
following:

– Dynamic Time Warping (DTW) [15]: a technique for measuring the dissimi-
larity between two time signals which may be of different duration.

– Edit Distance with Freeman Chain Code (FCC): the sequence of points rep-
resenting a stroke is converted into a string using a codification based on
Freeman Chain Code [5]. Then, the common Edit Distance [9] is applied.

– Edit Distance for Ordered Set of Points (OSP) [13]: an extension of the Edit
Distance for its use over ordered sequences of points.
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3.2 Feature Extraction

On the other hand, if a set of features is extracted from the stroke path, a fixed-
sized vector is obtained. Then, other common distances can be applied. In this
work we are going to consider the following feature extraction and distances:

– Normalized stroke (Norm): the whole set of points of the stroke is normalized
to a sequence of n points by an equally resampling technique. Therefore,
a stroke can be characterized by 2n-dimensional real-valued feature vector.
Given vectors x and y, two different distances are going to be considered:
• Average Euclidean Distance (Norm+Euc) between the points of the

sequences: 1
n

�n
i=1 d(xi, yi)

• Average Turning Angle (Norm+Ang) between segments of the two
sequences: 1

n

�n
i=2 dΘ(xi−1xi, yi−1yi), where xi−1xi represents the segment

connecting points xi−1 and xi, and dΘ is the angular difference in radians.
It has been chosen due to its good results in [8].

– Squared Image: an image of the stroke can be obtained by reconstructing the
drawing made. Preliminary experimentation showed that the best results are
obtained by simulating a pen thickness of 3. Images are then resized to 20×20
as done in the work of Rebelo et al. [10]. A 400-dimensional feature vector is
obtained, for which the Euclidean distance is applied.

– Image Features: the image is partitioned into sub-regions, from which back-
ground, foreground and contour local features are extracted [12]. Then, simi-
larity is measured using Euclidean distance.

4 Experimentation

This section contains the experimentation performed with the musical symbols
of the Handwritten Online Musical Symbols (HOMUS) dataset [4]. HOMUS is
a freely available dataset which contains 15200 samples from 100 musicians of
pen-based isolated musical symbols. Within this set of symbols, 39219 strokes
can be found. Taking advantage of the features of the HOMUS, two experiments
will be carried out: user-dependent and user-independent scenarios. In the first,
the clustering is performed separately for the samples of each writer since it is
interesting to see how clustering behaves for small and similar data. In the latter,
the whole dataset is used at the same time. However, since this can lead to an
unfeasible computation in terms of time, only a subset of samples is selected
at the beginning of the task. This subset selection is performed so that each
symbol of any musician appears at least once. Clustering will be performed on
this subset and the rest of the strokes will be assigned to their nearest cluster
afterwards. In both experiments, some values of neighborhood parameter of the
smoothing will be tested: 0 (no filtering), 1 and 2. Our experiments start with a
low k that is increased iteratively until reaching a valid assignment (see Sect. 2),
with a maximum established to 150. In both cases, we allow an ambiguity rate of
0.1 of the total number of symbols considered. When an acceptable clustering is
obtained, we measure the classification accuracy using a leaving-one-out scheme.
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For the classification step we are going to restrict ourselves to the use of
the Nearest Neighbor (NN) rule with the same similarity used for the clustering.
The obvious reason is to measure the goodness of the stroke dissimilarity utilized
for both clustering and classification. Nevertheless, considering the interactive
nature of the task (the system may be continuously receiving new labeled sample
through user interaction), other reasons also justify this choice: distance-based
classification methods such as NN (or k-NN) are easily adaptable to new data;
Data Reduction techniques based on dissimilarity functions could be applied to
not overflow the system [6]; in addition, fast similarity search techniques could
also be used in order to provide fast response. It is clear, however, that once
strokes are labeled conveniently, other advanced techniques can be applied to
classify this data but that experimentation will be placed as future work.

4.1 Results

Results of the user-dependent experiment described above is shown in Table 1.
Since dataset contains 100 different writers, average results are reported. For the
user-independent experiment, average results from 10 different initial random
subsets are shown in Table 2.

Table 1. Average results (k: number of clusters; acc: classification accuracy) of a
100-fold cross-validation with each writer subset. Several values of neighborhood for
smoothing are considered (0, 1, 2).

Dissimilarity Smoothing (0) Smoothing (1) Smoothing (2)

k acc k acc k acc

DTW 18.1 88.9 18.4 89.4 19.1 88.8

FCC 14.9 87.6 15.7 88.0 15.4 87.8

OSP 15.4 87.7 15.4 88.3 15.1 89.1

Norm+Euclidean 17.5 89.1 17.6 89.0 17.8 88.9

Norm+Angular 18.7 78.7 19.1 79.0 21.0 79.2

Squared Image 30.6 79.0 30.2 78.7 30.5 80.5

Image Features 22.6 89.4 22.5 89.0 24.8 86.7

An initial remark to begin with is that smoothing demonstrates small rele-
vance in the process since results hardly vary among the different values con-
sidered. Moreover, dissimilarities that make use of the image representation of
the stroke obtain very poor results in both experiments. In fact, they obtain
the worst results in the user-dependent experiment and none of them reach a
low enough clustering value in the writer-independent experiment. Although
variability is low when using small and similar data, differences in performance
among methods are increased in the writer-independent experiment. Thorough
the experimentation, OSP and FCC dissimilarities have reported the best results
in terms of number of clusters, in spite of showing a lower accuracy rate than
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Table 2. Average results (k: number of clusters; acc: classification accuracy) of a 10-
fold cross-validation experiment with the whole dataset. Several values of neighborhood
for smoothing are considered (0, 1, 2).

Dissimilarity Smoothing (0) Smoothing (1) Smoothing (2)

k acc k acc k acc

DTW 72.0 81.8 77.0 81.3 86.8 80.0

FCC 52.8 79.3 53.4 80.3 52.4 80.2

OSP 47.9 77.1 49.8 80.7 46.8 81.3

Norm+Euclidean 68.8 83.8 76.1 83.4 86.3 83.4

Norm+Angular 141.4 71.5 143.5 70.7 146.3 70.5

Squared Image >150 - >150 - >150 -

Image Features >150 - >150 - >150 -

DTW or Normalized strokes with Euclidean distance. Nevertheless, it is expected
that both OSP and FCC methods may improve their accuracy performance by
allowing them to use a high number of clusters. Results have reported that the
dissimilarity applied has a big impact in the clustering process, especially when
dealing with a high number of samples. Thus, if the process has to be performed
when new data is available, it is profitable to use methods such as OSP or FCC
that have shown a better ability to group the strokes.

5 Conclusions

This work presents an experimental study on clustering of strokes from pen-based
music notation. The main goal is to show which dissimilarity measure between
strokes performs better since we are interested in repeating the process when new
data is received. Experimentation showed that, although the clustering process
is robust in a user-dependent experiment, much attention should be devoted
to the user-independent scenario. In this last, some techniques like OSP and
FCC achieved good results whereas others, especially image-based techniques,
were reported less suitable for grouping these strokes. As future work, there
are several promising lines that should be explored with respect to clustering.
These lines include approaching the unconstrained clustering problem when n-
to-n constraints are required or developing an efficient clustering that repeats the
process when new data is received taking advantage of the previous assignment.
In addition, once a valid clustering is achieved, some advanced classification
techniques could be considered instead of resorting to the NN rule.
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a b s t r a c t

Prototype Selection (PS) algorithms allow a faster Nearest Neighbor classification by keeping only the
most profitable prototypes of the training set. In turn, these schemes typically lower the performance
accuracy. In this work a new strategy for multi-label classifications tasks is proposed to solve this
accuracy drop without the need of using all the training set. For that, given a new instance, the PS
algorithm is used as a fast recommender system which retrieves the most likely classes. Then, the actual
classification is performed only considering the prototypes from the initial training set belonging to the
suggested classes. Results show that this strategy provides a large set of trade-off solutions which fills
the gap between PS-based classification efficiency and conventional kNN accuracy. Furthermore, this
scheme is not only able to, at best, reach the performance of conventional kNN with barely a third of
distances computed, but it does also outperform the latter in noisy scenarios, proving to be a much more
robust approach.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Since its first proposal in 1951 [1], the k-Nearest Neighbor rule
(kNN) constitutes one of the most well-known algorithms in
Pattern Recognition (PR) for supervised non-parametric classifica-
tion [2], case in which statistical knowledge of the conditional
density functions of the classes involved is not available. Most of
the kNN popularity in classification tasks comes from its con-
ceptual simplicity and straightforward implementation, which can
be described as a distance comparison between elements. More
precisely, given an input x, the NN (kNN) rule assigns to x the label
of the nearest (k-nearest) prototypes of the training set. An
interesting theoretical property of this rule is that its probability
of error is bounded above by twice the Bayes error rate [3]. kNN
algorithm is usually described as a lazy learner which, in opposi-
tion to eager learners, does not build a classification model out of
the training data until a new element has to be classified. Inside
this lazy learning family, kNN is an example of instance-based
method, meaning that no classification rules are obtained out of
the training data, being part or the total amount of training
information itself used for the classification task [4].

Despite the commented kNN popularity in PR, this method suffers
from several drawbacks, out of which three clearly limit its

application [5]: the first one is that, as an instance-based classifier,
storage memory requirements tend to be high for keeping all the
training data; the second limitation is its low computational effi-
ciency since, each time new data has to be classified, many distance
computations are repeated due to the lack of a model; the third
disadvantage is that this method is sensitive to noisy instances,
especially for low k values.

Prototype Selection (PS) is one of the most common techniques for
overcoming the commented drawbacks [6]. This family of methods
reduces the size of the initial training set so as to decrease the
aforementioned computational cost and sensitiveness to noise by
removing both redundant and noisy instances from the initial training
set. However, although this process is expected to either maintain or
even increase the classification results, in practical situations the
accuracy obtained tends to be lower than with the initial set.

In this paper, in order to tackle the commented issue, we propose
a strategy which aims to combine the classification accuracy of
retaining all the training set with the time efficiency PS methods
provide in kNN classification. Our proposal first reduces the training
set by using a PS algorithm; on that reduced set, we perform the
classification of the new element but, instead of retrieving the most
convenient class, a rank of classes is proposed according to their
suitability; these proposals are then used for classifying the new
element on a filtered version of the initial training data in which only
the elements belonging to the previously ranked classes are con-
sidered for the classification task. This scheme is expected to provide
a profitable way of approaching a multi-label classification scenario
as a large quantity of prototypes could be discarded.
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The rest of the paper is structured as follows: Section 2 introduces
some related proposals to this topic; Section 3 thoroughly develops
our proposed approach; Section 4 explains the evaluation methodol-
ogy proposed; Section 5 shows the results obtained as well as a
thorough discussion about them; finally, Section 6 explains the
general conclusions obtained from the work and discusses about
possible future work.

2. Related work

Among the different stages which comprise the so-called
Knowledge Discovery in Databases (KDD), Data Preprocessing
(DP) is the set of processes devoted to provide the information
to the Data Mining (DM) system in the suitable amount, structure
and format. Data Reduction (DR), which constitutes one of these
DP possible tasks, aims at obtaining a reduced set of the original
data which, if provided to the DM system, would produce the
same output as the original data [7].

DR techniques are widely used in kNN classification as a means of
overcoming its previously commented drawbacks, being the two
most common approaches Prototype Generation (PG) and Prototype
Selection (PS) [8]. Both methods focus on reducing the size of the
initial training set for lowering the computational requirements and
removing noisy instances while keeping, if not increasing, the
classification accuracy. The former method creates new artificial data
to replace the initial set while the latter one simply selects certain
elements from that set. The work presented here focuses on PS
techniques, which are less restrictive than PG as they do not require
extra knowledge to merge elements from the initial set. However,
reader is referred to [9] for a detailed introduction and thorough
study of PG techniques. On the other hand, below we introduce the
basics of PS methods due to its relevance in the present paper.

As aforementioned, PS methods aim to reduce the size of the
initial training set to lower the computational cost and remove noisy
instances which might confuse the classifier. Given its importance,
many different approaches have been proposed throughout the years
to carry out this task. Due to this large range of possible strategies,
many different criteria have been posed in order to establish a
taxonomy for these methods. However, in this paper we restrict
ourselves to a criterion which basically divides them into three
different families:

� Condensing: The idea followed by these methods is to reduce as
much as possible the dataset size by keeping only the closest
points to the different class decision boundaries. While accu-
racy on training set is usually maintained, generalization
accuracy is lowered.

� Editing: This approach eliminates instances which produce
some class overlapping, typical situation of elements located
close to the decision boundaries or noisy data. Data reduction
rate is lower than in the previous case but generalization
accuracy is higher.

� Hybrid: These algorithms look for a compromise between the
two previous approaches, which means seeking the smallest
dataset while improving, or at least maintaining, the general-
ization accuracy of the former set.

For a thorough explanation regarding taxonomy criteria for PS
algorithms, the reader may check [5] in which an extensive intro-
duction to this topic as well as a comprehensive classification
taxonomy for the different methods is discussed.

Even though PS methods are expected to keep the same accuracy
as with the initial training set, in practice it becomes difficult to fulfill
this requirement, reason why much research has been recently
devoted to enhance these techniques through data reduction and
learning techniques [7]. Some explored lines to improve accuracy
results have been the use of ensembles together with PS [10] or
hybridizing Feature Selection (FS) schemes with PS using Evolution-
ary Algorithms (EA) [11,12]. On the other hand, and in order to solve
the scalability issue these algorithms show for very large datasets,
some common methods have been the use of stratification [13] and
distributed approaches [14].

In this paper it is proposed a scheme that tries to overcome the
aforementioned drawbacks of PS algorithms in a very different way.
Here, PS is used just as a preprocessing stage for selecting the most
promising labels, which will be used for the actual classification in
the original dataset. It should be noted that this approach does not
constrain the development of PS algorithms as its performance, as a
second stage process, is highly influenced by the initial PS step. In
fact, the better the underlying PS algorithm is used, the better the
performance is expected to be achieved with our scheme.

3. Improving prototype selection k-Nearest Neighbor
classification

Let T be a training set which consists of pairs fðxi; yiÞ
jxiAX ; yiAYgjT ji ¼ 1 drawn from an unknown function f : X-Y. Typi-
cally, X is a feature space and Y is a discrete set of labels or classes.
The main goal in supervised classification is to approximate this
function f.

Given an input xAX , the k-Nearest Neighbor rule hypothesizes
about f(x) by choosing the most frequent label within its k nearest
prototypes of T based on a dissimilarity function d : XÂ X-Rþ [ f0g.

Fig. 1. General scheme of our classification strategy.
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Similarly, a PS method takes T and gives a reduced set RDT
following some criteria (see Section 2). Due to the reduction of the
original set, the approximation of the function may be different.

Considering the operation of kNN, a misclassification with R that
is correctly classified with T has to be produced because of prototypes
of the set T n R. If we assume that PS is carried out due to time
execution, then a profitable procedure is to recover the prototypes of
T n R that play a key role in the approximation of f(x). Obviously,
finding out which ones of the whole set of prototypes must be
reconsidered is not a trivial matter. In this work we propose a
strategy that provides a heuristic solution to this situation.

Our classification strategy is based on a three-phase algorithm,
which basically consists of the following steps (see Fig. 1 to find an
illustration of the process):

1. A given PS algorithm is applied to the whole training set,
producing a reduced set. This process is done just once in a
preprocessing stage.

2. A new input x is given to the classification system. A reduced
set of labels is selected as possible hypotheses for the input x
taking into account only the reduced set. Specifically, we
propose to select the c (parameter) nearest classes of input x.

3. The final hypothesis is decided using the kNN rule with the part
of the initial training set restricted to the c labels proposed in
the previous step (kNNc search).

The main idea is to use the reduced set as a fast recommending
system, which only has to propose some of the possible labels.
After that, the prototypes of those proposed labels are recovered
and the final decision is then computed with them, thereby
speeding-up the original NN classification.

Let us define NNðx; k; TÞ as kNN rule for input x and training set
T. Let nearestLabelsðc; x;RÞ denote the c-nearest labels of x, defined
as a set C such that

C� yAYj min
ðx0 ;y0 ÞAR:y0 ¼ y

dðx; x0Þo min
ðx0 ;y0 ÞAR:y0 AYnC

dðx; x0Þ
� �

s:tjCj ¼ c

That is, the first c labels that appear if we query the prototypes of
the set R in ascendant order to the distance to x.

Let Tw ¼ fðx; yÞAT jy¼wg be the prototypes of the training set
with label w. Then, kNNc search can be performed following
Algorithm 1. Note that the algorithm receives the reduced set R
since PS can be performed offline, before the test stage.

Algorithm 1. kNNc search.

Require: k; cAN;R
C’nearestLabelsðc; x;RÞ
T 0’∅
for all wAC do
T 0’T 0 [ Tw

end for
h’NNðx; k; T 0Þ

Our strategy requires an extra parameter: the scalar value c,
which determines how many classes are recommended. This
parameter allows tuning the classification since it is expected to
affect inversely the accuracy and the computational time. In the
experimentation section these two parameters will be analyzed in
depth. Additionally, some dissimilarity dðÁ; ÁÞ measure is required
over the sample space since it is needed for both the kNN rule and
nearestLabels function.

4. Experimental setup

This section presents the evaluation methodology for the
assessment of the proposed approach, for which the most relevant
issues are the classification strategies, the datasets utilized and the
performance measurement. These three aspects are described in
the following subsections.

4.1. Classification strategies

Our main goal is to compare the performance of our strategy
against classical PS-based classification. To this end, we selected a
representative set of PS algorithms published in the literature:

� Condensing Nearest Neighbor (CNN) [15]: Obtains a subset S out
of the training set T such that every member of T is closer to a
member of S of the same class than to a member of a different
class. Prototypes of T are consulted randomly so different
computations may give a different subset S.

� Editing Nearest Neighbor (ED) [16]: Selects a set S that starts
equal to the original training set T. Each element of S which
does not agree with its neighborhood is removed. As it happens
with CNN, its result depends on the order the prototypes are
consulted. A common extension to this technique is Multi-
Editing (MED) [17], which computes repeatedly the ED algo-
rithm until no more prototypes are removed.

� Multi-Edit Condensing Nearest Neighbor (MCNN) [18]: Applies
ED algorithm and then applies CNN. The process is repeated
until convergence is achieved.

� Fast Condensing Nearest Neighbor (FCNN) [19]: Computes a fast,
order-independent condensing strategy based on seeking the
centroids of each label. We also add a Multi-Edit Fast Conden-
sing Nearest Neighbor (MFCNN) technique which combines the
ideas of MCNN and FCNN.

� Farther Neighbor (FN) and Nearest to Enemy (NE) rank methods
[20]: Give a probability mass value to each prototype following
a voting heuristic. Then, prototypes are selected according to a
parameter specified by the user that indicates the probability
mass desired for each class in the reduced set.

� Decremental Reduction Optimization Procedure 3 (DROP3) [21]:
This algorithm applies an initial noise filtering step so as to
eliminate the dependency on the order of presentation of the
instances; after that, these instances are ordered according to
the distance to their nearest neighbors and then, starting from
the furthest ones, instances which do not affect the general-
ization accuracy are removed.

� Iterative Case Filtering Algorithm (ICF) [22]: Approach which
bases its performance on the coverage and reachability pre-
mises to select the instances subset able to maximize the
prototypes classification accuracy following the NN rule.

� Cross-generational elitist selection, Heterogeneous recombination
and Cataclysmic mutation algorithm (CHC) [23]: Evolutionary
algorithm commonly used as a representative of Genetic
Algorithms in PS. The configuration of this algorithm has been
the same as in [24], that is α¼0.5, Population¼50 and
Evaluations¼10,000.

All these algorithms will be confronted experimentally in order
to measure its performance as PS base strategy of a kNNc search
compared to the results obtained with the retrieval step proposed.
Several values of k (1, 3, 5 and 7) and c (2 and 3) will be analyzed.
Furthermore, kNN rule with the whole training set (no previous PS
performed) will also be included.
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4.2. Datasets

Our experiments are carried out with two different isolated
character datasets: the NIST SPECIAL DATABASE 3 (NIST3) of the
National Institute of Standards and Technology, from which a subset
of the upper case characters was randomly selected (26 classes, 6500
images); and The United States Postal Office (USPS) handwritten digit
dataset [25] (9298 images). In both cases, contour descriptions with
Freeman Chain Codes [26] are extracted and the edit distance [27] is
used as dissimilarity measure. Additionally, we include experiments
with the Handwritten Online Musical Symbol (HOMUS) dataset [28].
This dataset is specially interesting for our work because it contains
15,200 prototypes of 32 different classes. Due to its good results in
the baseline experimentation with this data, we will use Dynamic
Time Warping [29] as dissimilarity measure.

We focused on datasets with many class labels since we consider
that the main idea of kNNc is expected to provide interesting results
in such data.

4.3. Performance measurement

In order to analyze the impact of our strategy in the PS-based
classification, we take into account the following metrics of interest:
accuracy of the strategy, the number of distances computed during
the classification and the time in milliseconds. The two latter figures
provide theoretical and empirical efficiency measures, respectively.
Additionally, we provide an accuracy upper bound for kNNc classi-
fication measured as the percentage of times for which the correct
label is within the c-classes' proposals. Another interesting property
of PS-classification is the tolerance to noise. In order to analyze this
metric, we will add synthetic noise to our data by swapping the
labels of pairs of prototypes randomly chosen. The noise rates
(percentage of prototypes that change their label) considered are
0.1, 0.2, 0.3 and 0.4 since these are the common values in this kind of
experimentation [30].

Given some PS algorithms, the previous metrics are measured
for both values considered for c as well as for PS-based classifica-
tion without the c-classes retrieval step (except for the upper
bound).

These measures allow us to analyze the performance of each
considered strategy. Nevertheless, no comparison between the whole
set of alternatives can be established so that we can determine which
is the best one. The problem is that PS algorithms try to minimize the
number of prototypes considered in the training set at the same time
they try to increase classification accuracy. Most often, these two
goals are contradictory so improving one of them implies a dete-
rioration of the other. From this point of view, PS-based classification
can be seen as a Multi-objective Optimization Problem (MOP) in
which two functions want to be optimized at the same time:
minimization of prototypes in the training set and maximization of
the classification success rate. The usual way of evaluating this kind
of problem is by means of non-dominance concept. One solution is
said to dominate another if, and only if, it is better or equal in each
goal function and, at least, strictly better in one of them. Therefore,
the best solutions (there may be more than one) are those that are
non-dominated.

Thus, the considered strategies will be compared by assuming a
MOP scenario in which each of them is a 2-dimensional solution
defined as (acc,dist) where acc is the accuracy obtained by the
strategy and dist is the number of computed distances during its
classification process. To analyze the results, the pair obtained by
each scheme will be plotted in 2D point graphs where the non-
dominated set of pairs will be enhanced. In the MOP framework,
the strategies within this set can be considered the best without
defining any order among them.

5. Results

This section shows the results obtained using the app-
roach presented in Section 3 with the experimentation described
previously.

In sight of the large amount of experimentation carried out
because of the number of possible combinations of schemes, noise
scenarios and datasets considered, it is unpractical to present all the
obtained results due to space limitations. Thus, figures presented
actually constitute the average values of the three considered evalua-
tion datasets.

For the sake of clarity, we are showing the obtained results in
two different sections: a first one in which the considered datasets
are evaluated in their current form and a second one in which the
same evaluation is carried out with synthetic noise added to
the data.

5.1. Non-added noise scenario

Results presented in this first subsection are obtained without
adding artificial noise to the datasets. They can be checked in
Table 1.

An initial remark to begin with is that, as no information is
discarded, conventional kNN achieves the highest accuracy for all k
values when only considering PS. However, the amount of dis-
tances computed is the maximum among all the algorithms.

ED and MED algorithms do not significantly reduce the size of
the set, maintaining the accuracy in relation to the scores achieved
by the kNN implementations. Due to this fact, the introduction of
the kNNc approach does not produce a remarkable improvement
over the simple PS implementation: accuracy is slightly increased
as well as the amount of distances to be computed.

On the other hand, CNN and its extensions exhibit an interesting
behavior: all of them achieve a great reduction rate, especially MCNN
and MFCNN, as well as a great performance in terms of accuracy (for
instance, the latter performs roughly 10% of the distances kNN does
but obtaining only 4% less in terms of accuracy). On top of that, the
introduction of kNNc does improve results in this case. Let us take
the 3NN3 with CNN case: although the number of calculated
distances is increased with respect to the PS classification, the
accuracy is improved to the point of reaching performance of kNN
with barely a third of distances to be computed.

EN and FN methods obtain some of the highest reduction rates
(roughly ranging from 1% to 13% of the distances computed by kNN),
also depending on its parameterization (the probability mass
selected), though accuracy figures are noticeably affected: results
get to achieve 15% points less in terms of accuracy with respect to the
best result. As in the previous case, the inclusion of kNNc seems to
come with some overall upturn: setting c¼3, the accuracy is
improved, in the best case scenario, to just 1% lower than the best
score, despite being the number of distances to be computed around
29% of the maximum.

Hybrid algorithms DROP3 and ICF achieve great reduction rates
as well (around 6–14% of the total of distances with respect to kNN),
but they also experiment a significant decrease in their accuracies,
with figures of about 10% and 20% lower than the maximum score.
However, when using the proposed approach, there is a remarkable
improvement: for instance, in the 3NN3 case, DROP3 increases its
accuracy in a 10%, a result roughly 1% lower than the kNN one,
computing just a fourth of the maximum number of distances.

The CHC evolutionary algorithm, just as the EN and FN methods
when set to 0.1, performs one of the highest reduction rates as
depicted in the 1NN case, in which the number of distances is
reduced to just the 2% of the maximum, obtaining an accuracy
close to 82% of the total. As in the other selection algorithms, when
applying the kNNc method to CHC there is a general accuracy

J. Calvo-Zaragoza et al. / Pattern Recognition 48 (2015) 1608–1622 1611Chapter 8. Improving kNN classification in PS scenarios using class proposals
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improvement of about 6% and 8% for c¼2 and c¼3 respectively,
together with a 10% and 15% increase in the number of distances
for the same cases.

On average, the accuracy improvement is more significant
when passing from the basic PS scheme to the kNNc one than
the gain obtained by increasing the number of proposals c,
contrasting with the noticeable accuracy rise in the upper bounds
in the same situation. This fact clearly points out that the major
issue remains at the classification stage since, although the kNNc
step is able to give highly accurate recommendations, the overall
performance is not capable of reaching these upper limits.

The upper bound ratio does improve as the c value increases
since a larger number c of classes are recommended. An increase in
this c parameter causes a fixed rise in the number of distances to be
computed since the classes in the datasets proposed are balanced.
However, as it can be checked in the results, there is not such a
linear relation between the upper bound figure and the number of
distances computed: for instance, in MFCNN with k¼5, the upper
bounds are 94.9% for c¼2 and 97% for c¼3 with 21.9% and 26.9% of
distances respectively, depicting that this 2% improvement is around
a 5% increase in terms of computational cost but in order achieve a
100% upper bound (the remaining 3%), almost an additional figure of
73% of distances has to be computed. This non-linear behavior,
which can be checked in all the other configurations as well, shows a
clear dependency with the PS strategy used: a certain PS algorithm
with an outstanding performance would require an elevated num-
ber of distances to show an improvement whereas an algorithm
with a poor performance might exhibit a remarkable accuracy
upturn without such distances increase. As a consequence, as the
commented upper bounds are the ones which depict the maximum
theoretical classification figures which can be expected, the obtained
accuracy does also show this non-linearity with respect to the
number of distances.

Finally, the increase in the k value does not have any noticeable
effect on the accuracy obtained by each algorithm, possibly due to
the fact that the datasets are hardly noisy.

As aforementioned, the PS-based classification can be seen as a
MOP problem in which accuracy and distances computed have to be
simultaneously optimized despite being typically opposed goals.
Results of the strategies considered are shown in Fig. 2 facing these
two metrics. Optimal solutions, defined using the non-dominance
criterion described in Section 4, are remarked in this figure as well
as being highlighted in Table 1. Since most of the algorithms gather
in a small area, this particular region has been widened for a better
visualization.

A first interesting outcome withdrawn from applying this criter-
ion is that the kNN algorithm (with no PS) does not belong to the
optimal set of solutions since kNN3 CNN scheme achieves the same
accuracy with a lower number of distances computed.

Moreover, it can be also observed that, except for editing
approaches, each main scheme – PS, kNN2 and kNN3, drawn in
red, green and blue points respectively – entails a cloud of points in
different regions of the space. Therefore, kNNc scheme is providing a
great range of new options in the trade-off between distances and
accuracy not explored in previous works. Furthermore, many kNN2
and kNN3 strategies are found within the optimal set of solutions.
Therefore, the user is provided with a wide range of options from
which to choose depending on the metric to emphasize (distances
or accuracy). For example, let us assume a scenario like that depicted
in Fig. 2 in which we are restricted to perform at maximum 25% of
the distances. Thanks to 3NN2 scheme with MFCNN prototype
selection, we could achieve an accuracy of 90.3% (just 0.6% below
the best accuracy) with around 22% of distances computed.

5.2. Noisy scenario

In this subsection the figures obtained when synthetic noise is
added are presented. Experimentation was carried out for each of
the noise configurations considered in Section 4. As results show a
qualitatively similar trend along these noise possibilities, remarks
will not focus on a particular configuration but on the general
behavior. In addition, and due to space limitations, results of only
two of the noise scenarios tackled are shown: an intermediate
situation (20% noise rate scenario), for which results can be verified
in Table 2, and one for the most adverse situation considered (40% of
synthetic noise rate), whose results can be checked in Table 3.

Synthetic noise addition to the samples changes the previous
situation drastically. kNN, which scored the best results for each
single k value, now exhibits a remarkable decrease in accuracy,
becoming more noticeable as the noise rate is increased. As expected,
the use of different k values does improve the accuracy, especially in
the case of k¼7, in which kNN scores the maximum classification
rate, drawing in these terms with ED.

ED and MED algorithms are able to manage this noisy situation:
the size reduction is sharper than in the previous case since the
elements removed are the ones leading to confusion. As it happened
in the non-added noise scenario, the use of kNNc with these
algorithms does not carry a remarkable improvement in accuracy,
though it does in the classification upper bounds, getting even to the
point of decreasing the performance when low k values are used.

Fig. 2. Distances computed (%) against accuracy achieved by the algorithms. Average results when no noise is added to the samples. The non-dominated front is remarked.
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This particular effect is likely to happen since the samples added by
our second step are, theoretically, the noisy ones discarded by the PS
algorithm, thus confusing the classifier when low k values are used.

CNN and FCNN show some of the worst accuracies obtained in
these experiments in terms of PS as they are very sensitive to
noise: as stand-alone PS algorithms, they are not able to discard
the noisy elements, thus leading to a situation in which there is
neither an important size reduction nor a remarkable perfor-
mance. Furthermore, the use of different k values does not upturn
the accuracy results. On the other hand, the use of the second
kNNc step does improve their accuracy, but still the results remain
far from the classification bounds. However, as with ED and MED,
introducing high k values enhances the obtained accuracy with
respect to the low k values with the c class recommendation.

MFCNN and MCNN are not as affected as CNN and FCNN are at PS
stage since they introduce an ED phase in the process: whereas the
latter approaches obtained around 50% and 60% in terms of accuracy
with around 60% and 70% of computed distances, the former
algorithms do achieve precision rates around 80% with roughly 10%
of the distances. The improvement obtained when using kNNc with
these strategies is also noticeable with high k values. Moreover, as it
happened in the non-added synthetic noise configuration, kNNc
schemes are able to score results not significantly different from the
ones achieved by the best performing algorithms (for instance, ED
and MEDwith k¼7) with just around 25% of the maximum distances
computed.

EN and FN methods demonstrated to be interesting algorithms in
the non-added noise scenario as they both obtained good accuracies
while achieving some of the highest reduction rates. Attending now
to the results obtained in the proposed noisy situations, these
methods do also stand as an interesting alternative for PS as they
behave amazingly well in both terms of accuracy and size, especially
the 2-EN and 2-FN configurations: whereas, on average, hardly any
of these algorithms score lower accuracies than 80%, the 2-EN and 2-
FN ones are always able to score precision results above that mark,
in some situations with distance ratios in the range from 3% to 10%.
Including kNNc does improve the performance (as in the other
cases, for the most part when using high-enough k values) and in
spite of not outperforming other strategies (an exception to this
assertion is the 2-NE0.30 case with k¼7 and c¼3 in Table 3),
accuracies obtained are not significantly different from the best
performing algorithms. In addition, distances computed roughly
range from 10% to 30% of the maximum, constituting a remarkable
trade-off result. It is important to highlight that, in sight of the

results obtained, these particular algorithms stand as an attractive
alternative to some of the other studied methods for any noise
situation as they do not perform any editing operation.

Hybrid algorithms DROP3 and ICF, just as CNN and FCNN, are not
capable of coping with noisy situations either since accuracy results
are similar or even lower (for instance, the ICF method in which with
40% of synthetic noise is not able to reach 50% of accuracy in any of
the proposed PS schemes). However, it must be pointed out that,
despite achieving similar accuracy rates, hybrid algorithms do it with
a lower amount of distances: as an example, check the 7NN case with
40% of noise in which CNN achieves an accuracy of 52.8% with 73.8%
of the total of distances while DROP3 gets 56.6% with just 6.6% of
distances. On the other hand, adding the kNNc scheme remarkably
enhances the accuracy achieved by these algorithms (in the 7NN3
configuration of ICF, the accuracy is improved in almost 30% with
respect to the PS situation) but it also noticeably increases the
number of distances to be computed up to, on average, 15% more.

Regarding the CHC evolutionary algorithm when tackling noisy
situations, although it still shows one of the highest reduction
figures amongst the studied methods (rates around 2–5%), its
classification performance is significantly affected as no result is
higher than 70%. In this case, the inclusion of kNNc has a similar
effect to the hybrid algorithms as it shows a notorious accuracy
increase (fixing c¼3, classification figures improve around 20%
and 25% for noise rates of 20% and 40% respectively) paired with a
rise in the number of distances of about 10% and 15% points when
setting c¼2 and c¼3 respectively.

In terms of the classification upper bounds defined with kNNc,
as in the scenario without synthetic noise, bounds get higher as
the number c of class proposals is increased. On average, and as
already commented, there is not such a significant increase
between c¼2 and c¼3 as the one observed when comparing PS
and c¼2. An exception to this remark can be observed, though, in
both CNN and FCNN strategies as well as with the hybrid (DROP3
and ICF) and the evolutionary (CHC) algorithms in which, as they
are not capable of coping with the noise effects, a high number c of
class proposals are required.

As in the non-added noise scenario, it is possible to check the
non-linear relation between the upper bound and the number of
distances to be computed. For instance, for a figure noise of 40%, the
2-FN0.10 algorithm with k¼1 retrieves upper bounds of 90.6% for
c¼2 and 93.9% for c¼3 with distance figures of 15.1% and 20.5%
respectively, which shows that there is 3.3% of improvement with
just a 5.4% increase in the total of distances to be computed. These

Fig. 3. Distances computed (%) against accuracy achieved by the algorithms. Average results when 20% of noise is added to the samples. The non-dominated front is
remarked.
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last figures clearly contrast with the 79.5% increase in the distances
required so as to be able to improve the 93.9% bound figure to the
maximum (barely, 6%). Also, as in the scenario without synthetic
noise, the accuracy follows the same non-linear trend of the upper
limits but with the remarkable influence of the noise, which might
seriously affect the performance: for instance, in the same case of
the 2-FN0.10 algorithm with k¼1 and a noise figure of 40%, there is
an accuracy improvement from the initial 81.8–84.3% when going
from the initial PS to the c¼2 scheme by computing close to 11%
more of distances; however, the use of c¼3 takes an additional cost
of 5% in the distances but, instead of improving results, there is an
actual accuracy decrease of almost 0.5%. This clearly shows that the
non-linear behavior is not only dependent on the PS algorithm but
also on the noise the system is dealing with.

On the other hand, Figs. 3 and 4 show the results of the strategies
considered facing accuracy and distances computed. Note that the
optimal strategies (non-dominated solutions) are remarked. As
occurred in the scenario without noise, PS and kNNc schemes are
present within this optimal set. Following the MOP scenario no
order can be established within the non-dominated solutions.
Nevertheless, it can be checked that now the kNNc strategies are
the most numerous.

As it happened in the previous situation in which no noise was
added, the basic kNN algorithm is again out of the optimal set of
solutions as now kNN3 is not only able to reach its performance
with a lower number of distances computed, but it also does obtain
a better classification accuracy. Specially interesting are the cases of
5NN3 MFCNN and 5NN3 MCNN, for 20% of noise, and 7NN3 MFCNN
and 7NN3 2-NE0.30, for 40% of noise, which achieve better perfor-
mance with just around 25–30% of distances computed.

5.3. Statistical significance test

The aim of this section is to assess whether the inclusion of the
second step of the kNNc scheme leads to significantly better
classification accuracies. We shall therefore use the KEEL [31]
software, which contains statistical tools that allow us to quantify
the difference between the results with and without this step.
Specifically, a Wilcoxon 1Â1 test was performed between PS and
each kNN2 configuration for the same algorithm as well as
between kNN2 and kNN3. The first one checks whether there is
a significant accuracy upturn between the kNN2 approach and the
basic PS scheme, which is the main contribution of this paper. The
second one is performed to assess whether the accuracy in kNN3

is significantly better than the one obtained in kNN2, which may
justify providing more class proposals.

The significant (asymptotic) p-values considering all the experi-
ments are shown in Table 4. These values represent the overlap
between the two distributions, assuming that kNNc accuracy is
better. We can consider the p-values as a confidence measure for the
comparison. The significance of a low value is a high probability that
the distributions compared are different.

As is shown in the first column, all the values are lower than 0.05,
depicting that the inclusion of our second step leads to a significant
accuracy improvement at a confidence level of 95%. Moreover, the
second column shows that, except for the two particular configura-
tions of k¼1 with synthetic noise rates of 20% and 40%, proposing an
additional label does lead to higher accuracy as the rest of the
confidence values are also lower than 0.05.

6. Conclusions

k-Nearest Neighbor (kNN) classification is one of the most com-
mon, easy and simple algorithms for supervised learning which
usually achieves an acceptable performance. Within this context,
Prototype Selection (PS) algorithms have demonstrated their utility
by improving some kNN issues such as computational time, noise

Table 4
Asymptotic p-value obtained in Wilcoxon 1 vs. 1 statistical significance test. First
column assumes that accuracy of kNN2 is better than accuracy of PS. Second
column assumes that accuracy of kNN3 is better than accuracy of kNN2. Bold values
represent a level of significance higher than α¼0.95.

Noise (%) k kNN2 vs PS kNN3 vs kNN2

0 1 0.000032 0.000035
3 0.000044 0.000038
5 0.000051 0.000038
7 0.000044 0.000044

20 1 0.00007 0.117066
3 0.000035 0.00001
5 0.000038 0.000047
7 0.000048

40 1 0.000065 0.86278
3 0.000048 0.005203
5 0.000044 0.000032
7 0.000021 0.00001

Fig. 4. Distances computed (%) against accuracy achieved by the algorithms. Average results when 40% of noise is added to the samples. The non-dominated front is
remarked.

J. Calvo-Zaragoza et al. / Pattern Recognition 48 (2015) 1608–16221620 Reprinted publication

84



removal or memory usage. Nevertheless, PS often leads to a decrease
of the classification accuracy. To this end, we propose a two-step
strategy in which the PS algorithm is exploited by using its reduced
set to select the c nearest classes for a given input. Afterwards, only
these c classes are taken into account in the classification stage with
the original set. Therefore, some misclassification produced by using
the reduced set can be corrected with neither increasing the
computation too much nor requiring the whole training set to be
stored in the memory at the same time.

Experimentation in which our strategy was faced against conven-
tional PS-based classification was conducted. A representative set of
PS algorithms was chosen and several metrics of interest were
collected in classification experiments with somemulti-label datasets.

Results showed that our proposal provides a new range of
solutions in the trade-off between accuracy and efficiency. In the
best cases, our strategy equals the accuracy of kNN classification
with just 30% of distances computed. In addition, in the presence of
noisy data, our search achieves a remarkably profitable performance
since, in combination with the appropriate PS algorithm, it improves
the kNN classification with a higher efficiency. Furthermore, in all
cases considered, statistical tests revealed that kNNc accuracy is
significantly better than the one obtained with just PS.

Some interesting conclusions were also drawn with respect to
the tuning parameter c. The profitability of increasing c did show a
non-linear tendency with respect to both the maximum achievable
classification rate and the actual accuracy obtained. The improve-
ment gain decreases as the number of recommendations c gets
higher, depicting an asymptotic behavior. Therefore, an optimal c
value may be found on the trade-off between accuracy and
efficiency depending on the conditions of the considered scenario.

This work has opened some promising future work lines when
computing a hypothesis in the second step. Results showed that
there is a great gap between the upper bound of the classification
(rate in which the correct label is within the c classes proposal)
and the empirical classification rate. Therefore, other kind of
search could be performed in this second step instead of resorting
again to the kNN classification.
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Abstract Data reduction techniques play a key role in

instance-based classification to lower the amount of data to

be processed. Among the different existing approaches,

prototype selection (PS) and prototype generation (PG) are

the most representative ones. These two families differ in

the way the reduced set is obtained from the initial one:

While the former aims at selecting the most representative

elements from the set, the latter creates new data out of it.

Although PG is considered to delimit more efficiently

decision boundaries, the operations required are not so well

defined in scenarios involving structural data such as

strings, trees, or graphs. This work studies the possibility of

using dissimilarity space (DS) methods as an intermediate

process for mapping the initial structural representation to a

statistical one, thereby allowing the use of PG methods. A

comparative experiment over string data is carried out in

which our proposal is faced to PS methods on the original

space. Results show that the proposed strategy is able to

achieve significantly similar results to PS in the initial

space, thus standing as a clear alternative to the classic

approach, with some additional advantages derived from

the DS representation.

Keywords kNN classification � Prototype generation �
Structural pattern recognition � Dissimilarity space

1 Introduction

In the pattern recognition (PR) field, two fundamental

approaches can be found depending on the model used for

representing the data [12]: a first one usually known as

structural or syntactical, in which data are represented as

symbolic data structures such as strings, trees, or graphs,

and a second one known as statistical or feature represen-

tation, in which the representation is based on numerical

feature vectors that are expected to sufficiently describe the

actual input.

The election of one of these approaches has some

noticeable implications and consequences: Structural

methods offer a wide range of powerful and flexible high-

level representations, but only few PR algorithms and

techniques are capable of processing them; statistical

methods, in spite of being less flexible in terms of repre-

sentation, depict a larger collection of PR techniques [5].

Independently of whether we use a structural or a feature

representation, instance-based PR methods, for which the

k-nearest neighbor rule (kNN) is the most representative,

may be applied for classification tasks. Generally, these

methods just require to work over a metric space, i.e., that

in which a distance between two points can be defined.

Instead of obtaining a set of classification rules out of the

available information, they need to examine all the training

data each time a new element has to be classified. As a

consequence, they not only depict considerable memory

requirements in order to store all these data, which in some

cases might be a very large number of elements, but also

show a low computational efficiency as all training infor-

mation must be checked at each classification task [28].

Data reduction techniques, a particular subfamily of data

preprocessing methods, try to solve these limitations by

means of selecting a representative subset of the training
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data [19]. Two common approaches for performing this

task are prototype generation (PG) and prototype selection

(PS). Both families of methods focus on reducing the size

of the training set for lowering the computational require-

ments while maintaining, as far as possible, the classifi-

cation accuracy. The former family creates new artificial

data to replace the initial set while the latter one simply

selects certain elements from that set.

It must be pointed out that the two aforementioned DR

paradigms do not show the same dependency on the data

representation used. PS algorithms have been widely used

in both structural and feature representations as the ele-

ments are not transformed but simply selected. On the

other hand, PG methods require to modify or create data in

order to intelligently place new elements and, while this

process can be easily performed in feature representations,

it becomes remarkably difficult for structured data, at least

in terms of developing a generic strategy for any type of

data structure (e.g., strings, trees, or graphs).

In this paper, we study the possibility of applying PG

methods to structured representations by means of using

dissimilarity space (DS) methods so as to solve the afore-

mentioned obstacle. By using DS techniques, the initial

structural representation can be mapped onto a feature-

based one, thereby allowing the use of statistical PG

techniques not available in the original space. Our intention

is to assess whether this approach deserves further con-

sideration when faced against the classical choice of

applying PS in the initial structural space.

This paper expands the initial idea proposed in the work

of Calvo-Zaragoza et al. [8] by providing a more far-

reaching experimentation, in which a broader number of

DS methods is considered. Stronger statements about the

performance of the proposal are drawn, supported by a

comprehensive evaluation in terms of number of datasets

and statistical significance tests.

The rest of the paper is structured as it follows: Sect. 2

introduces the task of data reduction; Sect. 3 explains the

idea of dissimilarity space and its application to our case;

Sect. 4 describes the evaluation methodology proposed;

Sect. 5 shows and thoroughly analyzes the results obtained;

finally, Sect. 6 explains the general conclusions obtained

and discusses possible future work.

2 Background on data reduction

Among the different stages which comprise the so-called

knowledge discovery in databases, data preprocessing is

the set of tasks devoted to provide the information to the

data mining system in the suitable amount, structure, and

format [25]. Data reduction (DR), which constitutes one of

these possible tasks, aims at obtaining a reduced set with

respect to the original data which, if provided to the sys-

tem, would produce the same output as the original

data [19].

DR techniques are widely used in kNN classification as

a means of overcoming its previously commented draw-

backs, being the two most common approaches prototype

generation (PG) and prototype selection (PS) [29]. Both

methods focus on obtaining a smaller training set for

lowering the computational requirements and removing

ambiguous instances while keeping, if not increasing, the

classification accuracy.

PS methods try to select the most profitable subset of the

original training set. The idea is to reduce its size to lower

the computational cost and remove noisy instances which

might confuse the classifier. Typically, three main families

can be considered based on the objective pursued during

the process:

• Condensing The idea followed by these methods is to

keep only the most representative prototypes of each

class and reduce as much as possible the dataset. While

accuracy on training set is usually maintained, gener-

alization accuracy is lowered.

• Editing These approaches focus on eliminating

instances which produce some class overlapping,

typical situation of elements located close to the

decision boundaries or noisy data. Data reduction rate

is lower than in the previous case, but generalization

accuracy tends to be higher.

• Hybrid These algorithms look for a compromise

between the two previous approaches, which means

seeking the smallest dataset while improving, or at least

maintaining, the generalization accuracy of the former

set.

Given its importance, many different approaches have been

proposed throughout the years to carry out this task. The

reader may check the work of Garcia et al. [18] for an

extensive introduction to this topic as well as a compre-

hensive experimental comparison for the different methods

proposed. Since trying to maintain the same accuracy as

with the initial training set is difficult to fulfill in practical

scenarios, much research has been recently devoted to

enhance this process through the combination with other

techniques. Some of these include feature selection [35],

ensemble methods [20], or modifications to the kNN

rule [7].

On the other hand, PG methods are devoted to creating a

new set of labeled prototypes that replace the initial

training set. Under the DR paradigm, this new set is

expected to be smaller than the original one since the

decision boundaries can be defined more efficiently.

Depending on the focus where placing the new prototypes,

three main families of strategies can be found:
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• Centroid-based subsets of prototypes of the initial

training set are grouped taking into account proximity,

labeling, and representation criteria. Then, the centroid

of this subset is generated as a new prototype for the

final set.

• Position adjustment from an initial subset of the

training set, selected following any strategy (for

instance, a PS method), prototypes are moved around

their neighborhoods following a particular heuristic.

The objective was to find the location in which they can

be more profitable for classification purposes.

• Space partitioning the idea is to divide the input space

into regions of interest. Then, representatives of each

space are generated. Variations in space division and

generation within each one provide the different

methods of this family.

Reader is referred to the work of Triguero et al. [34] to find

a further extension to this introduction to PG methods.

Under the same conditions, PG is expected to perform

better than PS since the former can be seen as a general-

ization of the latter. Nevertheless, while PS only needs

information about similarity or proximity between different

prototypes, for which one can use the same dissimilarity

function considered for the kNN rule, PG needs informa-

tion about the representation space. Indeed, the PG family

represents a more restrictive option than the simple selec-

tion of prototypes because it is hard to be used under

structural spaces. In these cases, it is difficult to develop

generic operations such as ‘‘move a prototype toward a

specific direction’’ or ‘‘find the centroid of a subset of

prototypes.’’ Thus, generating new prototypes in structural

data is not a trivial matter.

Given the theoretical advantages of PG over PS meth-

ods, finding strategies to generate prototypes on structural

data would be of great interest. In this work, it is proposed

a method that fills this gap. It consists of a two-stage

algorithm which first maps the structural data onto features

vectors, after which common PG techniques can easily

work. To perform this mapping, we resort here to the so-

called dissimilarity space representation. Next section

details our proposal.

3 Prototype generation over structural data using
dissimilarity space representation

Current PG algorithms assume that data are defined over a

vector space. Thus, it is feasible to perform geometric

operations to find new points of interest in which new

labeled prototypes can be generated. The intention is to

maintain the accuracy of the kNN classifier with fewer

prototypes than in the original training set.

Nevertheless, when working over a structural space, it is

just known a distance function that allows knowing the

proximity between two points of the space (this is also

referred as metric space). In that case, PG algorithms are

not able to generalize the geometric operations utilized in

the vector space. Serve as an example the median opera-

tion: Its computation is easy for n-dimensional points,

whereas it becomes NP-complete when points are

strings [22]. Some examples of works addressing related

issues include the work of Abreu and Rico-Juan [1], in

which the median of a string set is approximated using edit

operations, or Ferrer and Bunke [16], in which an iterative

algorithm for the computation of the median operation on

graphs is exposed. Nevertheless, all of them take advantage

of the knowledge of the specific structural data to create

these new prototypes. Therefore, generalization to other

structural representations cannot be assumed.

We propose a new strategy as a possible solution to the

problem stated above. The process itself follows a simple

procedure which consists in mapping data onto a new

vector, or feature, space. This process, known as embed-

ding, has been extensively studied for decades [4, 23].

Once data are represented as feature vectors, conventional

prototype generation strategies may be used.

In this work, we are going to restrict ourselves to a

particular family of embedding algorithms known as dis-

similarity space (DS) representation [13]. Broadly, DS

representations are obtained by computing pairwise dis-

similarities between the elements of a representation set,

which actually constitutes a subset of the initial structural

training data selected following a given criterion.

The choice of using DS instead of other techniques is

justified by some reasons directly related to the actual

object of study:

1. It only requires a distance or dissimilarity function

between prototypes. Taking into account that this work

focuses on DR techniques for improving kNN classi-

fication—which also needs this function—the require-

ment is assumed to be effortless.

2. The intention of the work is to measure the perfor-

mance of PG on the new space. Therefore, it is

preferable that results are more related to the PG

technique instead of the quality of the embedding

method. That is why it is considered a simple method

(but with a strong background) rather than a more

complex one.

During experimentation, the classification results obtained

after applying a set of PG techniques to the DS represen-

tation will be compared to the results obtained when using

PS techniques in the initial structural space so as to check

whether our approach can be useful in these situations. On
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the other hand, below we introduce the DS transformation

and the particular strategies considered.

3.1 Dissimilarity space transformation

Let X denote a structural space in which a dissimilarity

function d : X � X ! Rþ is defined. Let Y represent the

set of labels or classes of our classification task. Let T be a

labeled set of prototypes such that T ¼ fðxi; yiÞ :
xi 2 X ; yi 2 YgjT ji¼1.

In order to map the prototypes of T onto a feature space

F , DS-based methods seek for a subset R out of the

training set (R � T). The elements of R, usually known as

pivots, are noted as ri with 1� i� jRj. Then, a prototype

x 2 X can be represented in F as a set of features

ðv1; v2; v3; . . .; vjRjÞ such that vi ¼ dðx; riÞ. This way, an |R|-

dimensional real-valued vector can be obtained for each

point in the space X . Different heuristics were proposed in

the work of Pekalska et al. [30] for the selection of pivots,

some of which have been considered for our work and are

briefly described below.

3.1.1 RandomC

The RandomC strategy selects a random subset of proto-

types, in which the number of prototypes of each class is

exactly c (tuning parameter), that is, jRj ¼ cjY j. In order to

compare the influence of parameter c in the feature rep-

resentation, some different values will be considered at

experimentation stage.

3.1.2 kCenters

This strategy performs a k-medoids clustering process on

every class considered. The initialization is performed as

proposed in the work of Arthur and Vassilvitskii [3] (k-

means??). The different centroids obtained after the

process are included in R, i.e., jRj ¼ kjYj. As happened in

the previous case, the value k may alter the representation

of the new space so some tuning will be considered during

the experimentation.

3.2 EditCon

The main idea behind EditCon is to select the most rep-

resentative prototypes of the training set to be used as

pivots. To this end, this technique applies two PS algo-

rithms to the initial training set: As a first step, an editing

process [37] is used to remove noisy information; then, a

condensing process [21] is performed so as to keep only

the informative elements. No parameters are considered in

this case.

4 Experimentation

Figure 1 shows the implemented setup for performing the

experimentation. As it can be checked, out of the initial

structural elements, a feature representation is obtained

using a particular DS method. DR techniques are then

applied to both data representations but, while PS methods

are applied to structural and feature representations, PG is

only performed on the latter. Finally, the nearest neighbor

(NN) algorithm, parameterized with k = 1, is used for the

classification.

For these experiments, different configurations of the

c and k parameters of the RandomC and kCenters,

respectively, have been tested. The values considered have

been 5, 10, and 15 prototypes per class.

We shall now describe the different datasets, data

reduction strategies studied, and the performance metrics

considered for this study.

4.1 Datasets

Five different datasets of isolated symbols have been

considered: the National Institute of Standards and Tech-

nology DATABASE 3 (NIST3), from which a subset of the

upper case characters was randomly selected, the Mixed

National Institute of Standards and Technology dataset

(MNIST) [27] of handwritten digits, the United States

Postal Office handwritten digits dataset (USPS) [24], the

MPEG-7 shape silhouette dataset [26], and the Handwritten

Prototypes
(structural)

Dissimilarity Space

Prototype Selection

Prototype Selection

Prototype Generation

1-NN

1-NN

1-NN

Statistical classification

Structural classificationFig. 1 Experimental setup

tested. DS is used for mapping

structural data into a feature-

based space. PS is applied to

both structural and feature data

while PG is only performed on

the latter. 1-NN is used for the

classification in all cases
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Online Musical Symbol (HOMUS) dataset [6]. In terms of

class representation, these datasets can be considered as

being totally balanced. Freeman Chain Codes [17] have

been considered as contour descriptors. Since these struc-

tural data are represented with strings, the well-known edit

distance [36] is considered as dissimilarity. Once data are

mapped onto feature vectors, the Euclidean distance is

used.

A fivefold cross-validation process has been applied for

each dataset to examine the variance to the training data.

Reader is referred to Table 1 to find more details about

the composition of the datasets.

4.2 Data reduction strategies

A representative set of DR algorithms covering a wide

range of selection variants was used for the experimenta-

tion. However, in order to perform a fair comparison

between the two DR strategies, we are only showing the

results for the PS algorithms retrieving similar size

reductions to the PG algorithms. These techniques are

briefly introduced in the following lines.

4.2.1 Prototype selection (PS) algorithms

• Fast condensing nearest neighbor (FCNN) [2] com-

putes a fast, order-independent condensing strategy

based on seeking the centroids of each label.

• Farther neighbor (FN) [31] gives a probability mass

value to each prototype following a voting heuristic

based on neighborhood. Prototypes are selected accord-

ing to a parameter (fixed to 0.3 in our case) that

indicates the probability mass desired for each class in

the reduced set.

• Cross-generational elitist selection, heterogeneous

recombination, and cataclysmic mutation algorithm

(CHC) [14]: evolutionary algorithm commonly used

as a representative of genetic algorithms in PS. The

configuration of this algorithm has been the same as

in [9].

This subset of techniques is expected to cover three typical

searching methodologies of PS: FCNN as condensing, FN

as heuristic approach, and CHC as evolutionary search.

4.2.2 Prototype generation (PG) algorithms

• Reduction by space partitioning 3 (RSP3) [32] divides

the space until a number of class-homogeneous subsets

are obtained; a prototype is then generated from the

centroid of each subset.

• Evolutionary nearest prototype classifier (ENPC) [15]

performs an evolutionary search using a set of proto-

types that can improve their local quality by means of

genetic operators.

• Mean squared error (MSE) [10] generates new proto-

types using gradient descent and simulated annealing.

Mean squared error is used as cost function.

The parameters of these algorithms have been established

following the work of Triguero et al. [34]. As in the pre-

vious case, we try to consider a representative set of gen-

eration techniques: MSE as a classical method, ENPC as

evolutionary search, and RSP3 as heuristic approach.

4.3 Performance measurement

In order to assess the results, we have considered as metrics

of interest the classification accuracy of the reduced set as

well as its size. While the former indicates the ability of the

DR method to choose the most relevant prototypes, the

latter one depicts its reduction skills.

For these figures of merit, we show the results obtained

when averaging the scores for each dataset, which allows to

understand the general performance of each scenario at a

glance. Nevertheless, in order to perform a rigorous com-

parison among the strategies, a significance test has been

performed facing accuracy and set size figures.

It must be considered that, although these measures are

suitable to evaluate the performance of each single

strategy, it is not possible to establish a clear comparison

among the whole set of alternatives to determine the best

one. DR algorithms aim at minimizing the number of

prototypes considered in the training set while, at the

same time, increasing the classification accuracy. Most

often, these two goals are contradictory so improving one

of them implies a deterioration of the other. From this

point of view, classification in DR scenarios can be seen

as a multi-objective optimization problem (MOP) in

which two functions have to be simultaneously optimized:

reduction in the training set and maximization of the

classification success rate. Usually, the evaluation of this

kind of problems is carried out in terms of the non-

dominance concept. One solution is said to dominate

another if, and only if, it is better or equal in each goal

function and, at least, strictly better in one of them. The

set of non-dominated elements represents the different

optimal solutions to the MOP. Each of them is usually

Table 1 Description of the

datasets used in the

experimentation

Name Instances Classes

NIST3 6500 26

MNIST 70,000 10

USPS 9298 10

MPEG-7 1400 70

HOMUS 15,200 32
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referred to as Pareto optimal solution, being the whole set

usually known as Pareto frontier.

Finally, classification time is also considered in this

study to assess the influence of the type of data represen-

tation in these terms.

5 Results

Average results in terms of classification accuracy and set

size obtained on the different datasets are presented in

Table 2. Additionally, Table 3 shows the corresponding

average classification times. Normalization (in %) is done

with respect to the whole dataset. ALL refers to results

obtained when using the whole training set (no DR algo-

rithm is applied). Furthermore, Table 4 shows the average

number of attributes obtained in each dataset when

applying the different DS processes to the initial structural

space.

For a better understanding, Fig. 2 shows graphically the

results in a 2D representation where accuracy and size are

confronted. Non-dominant elements representing the Par-

eto frontier are highlighted.

A first initial remark is that, on average, the DS process

implies a reduction in classification accuracy. For a given

algorithm, when comparing the accuracy results obtained

in the initial space with any of the corresponding DS cases,

there is a decrease in these figures. For instance, when

considering the ALL case, average classification accuracy

goes from 90.8 % in the initial space to figures around

88 % in the different DS spaces considered, which is

around a 3 % decrease in accuracy simply because of the

mapping stage.

For both structural and feature-based representations, PS

techniques depict a decrease in the classification accuracy

when compared to the ALL case. This effect is a conse-

quence of the reduction in the set size. In the DS space,

however, PG achieves slightly better classification results

Table 2 Results obtained with the different DS algorithms configurations considered

ALL PS PG

FCNN 1–FN0.3 CHC RSP3 ENPC MSE

Acc Size Acc Size Acc Size Acc Size Acc Size Acc Size Acc Size

No DS 90.8 100 87.9 22.0 84.6 13.9 81.0 3.6 – – – – – –

RandomC(5) 87.4 100 84.1 26.8 80.7 16.5 75.5 3.6 85.8 31.5 85.6 15.0 83.3 14.3

RandomC(10) 88.0 100 84.5 26.2 81.3 16.5 75.8 3.3 86.2 31.0 86.0 14.4 85.5 14.4

RandomC(15) 88.2 100 84.9 26.0 81.6 16.5 76.6 3.3 86.7 31.3 86.1 14.3 84.1 14.4

kCenters(5) 87.9 100 84.1 26.4 81.2 16.5 76.6 3.4 86.2 30.2 85.9 14.8 83.8 14.3

kCenters(10) 88.0 100 84.5 26.1 81.1 16.5 76.7 3.6 86.6 30.9 86.2 14.4 84.2 14.4

kCenters(15) 88.3 100 85.1 25.7 81.4 16.5 77.0 3.5 86.7 30.7 86.3 14.1 84.2 14.4

EditCon 88.0 100 84.9 25.9 81.5 16.6 75.8 3.7 86.5 32.6 86.2 14.5 83.7 14.4

Figures shown represent the average of the results obtained for each single dataset. No DS depicts results obtained in the initial structural space.

Selection and generation techniques are regarded as PS and PG, respectively. ALL stands for the case in which no selection or generation is

performed. Normalization (%) is performed with respect to ALL case of each dataset separately

Table 3 Average classification

time (in seconds) for the

different DS algorithms

configurations considered

ALL PS PG

FCNN 1–FN0.3 CHC RSP3 ENPC MSE

No DS 877.3 221.3 136.7 50.7 – – –

RandomC(5) 3.15 0.91 0.56 0.13 1.09 0.46 0.13

RandomC(10) 5.07 1.5 0.96 0.28 1.71 0.72 0.14

RandomC(15) 6.72 2.03 1.36 0.47 2.21 0.92 0.18

kCenters(5) 3.17 0.90 0.56 0.13 1.06 0.47 0.08

kCenters(10) 5.05 1.48 0.96 0.29 1.68 0.71 0.14

kCenters(15) 6.73 2.01 1.36 0.48 2.18 0.9 0.18

EditCon 20.75 7.2 5.39 2.92 6.53 2.48 0.39

Figures shown represent the obtained when processing each single dataset. No DS depicts results obtained

in the initial structural space. Selection and generation techniques are regarded as PS and PG, respectively.

ALL stands for the case in which no selection or generation is performed
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with similar reduction rates than the PS algorithms,

somehow showing the superior robustness of these meth-

ods. As an example, for RandomC(5), ENPC achieves an

accuracy of 85.6 % with a set size of 15 %, whereas

1-FN0:3 roughly gets to a classification rate of 80.7 % with

a 16.5 % of the initial set.

Nevertheless, the main outcome out of the results

obtained by the PG algorithms is that the scores obtained in

the DS space are quite similar to the ones obtained by PS

schemes in the initial structural space. Although this point

shall be later thoroughly assessed through statistical tests,

these figures may allow us to qualitatively see the proposed

strategy as a clear competitor of PS in structural data.

In terms of classification times, results show DS

strategies as much faster than structural ones (several

orders of magnitude) due to the complexity reduction

achieved by using Euclidean distance instead of Edit

distance.

Regarding the considered DS strategies, it can be

checked that the results are not remarkably affected by the

DS algorithm considered as neither accuracy values nor

sizes show dramatic changes among them. In the same

sense, parameters of RandomC and kCenters do not seem

to have a remarkable influence either as figures obtained by

the different configurations are very similar.

When considering the non-dominance criterion, we can

see that most elements defining the Pareto frontier are PS

configurations in the structural space, more precisely CHC,

FCNN, and the ALL configuration (see Fig. 2). When

mapping to the statistical space, CHC extends the frontier

as, despite its accuracy loss, it achieves remarkable

reduction rates. Concerning our proposal of PG in the DS

space, we can see that the different configurations fill some

areas of the space where the rest of the considered

approaches do not have a relevant presence. It is also

interesting to point out the presence of ENPC as part of the

non-dominant elements set, thus remarking the interest of

the strategy proposed in the paper.

Finally, some remarks can be done attending to the

information in Table 4 regarding the number of attributes

in the feature space for the datasets considered together

with the general performance information in Table 2. As it

can be seen, the election of a particular DS method implies

a great difference in the number of attributes. For instance,

RandomC(5) supposes one-third of the number of attributes

in RandomC(15) and around one-seventh of the ones

Table 4 Number of features in the dissimilarity space for each DS algorithm and dataset

RandomC(5) RandomC(10) RandomC(15) kCenters(5) kCenters(10) kCenters(15) EditCon

NIST3 130 260 390 130 260 390 520

MNIST 50 100 150 50 100 150 650

USPS 50 100 150 50 100 150 680

MPEG-7 350 700 1050 350 700 1050 210

HOMUS 160 320 480 160 320 480 1760

Average 148 296 444 148 296 444 764

Fig. 2 Average results of the

different configurations

considered, facing accuracy and

size of the reduced set. Non-

dominated elements defining the

Pareto frontier are highlighted
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retrieved by the EditCon algorithm. Nevertheless, accuracy

results (cf. Table 2) do not report a clear difference in the

results. As an example, in the ALL situation, kCenters(5)

and EditCon report a very similar average accuracy

(around 80 %) but with a great difference in terms of

number of attributes.

5.1 Statistical significance

As aforementioned, in order to statistically estimate the

competitiveness of the proposed strategy, a Wilcoxon rank-

sum test [11] has been performed. As we aim at assessing

the competitiveness of using PG in DS spaces against PS in

the initial space, accuracy and set size figures shall be

compared. Table 5 shows the results of this test when

considering a significance p\0:05.

We note that PG strategies are not competitive in

accuracy against the ALL case in the structural space as

they achieve significantly lower classification rates. In

terms of reduction, as expected, all PG strategies signifi-

cantly outperform the ALL case, as the latter does not

perform any kind of reduction.

When compared to the PS algorithms in the structural

space, it can be checked that RSP3 does not achieve a

remarkable reduction rate as set sizes are significantly

higher than the ones in the initial space. However,

regarding classification rate, RSP3 stands as a clear com-

petitive algorithm as results are never significantly worse

than the ones by the PS strategies.

The evolutionary algorithm ENPC achieves noticeable

reduction rates as, except when compared to CHC, fig-

ures are significantly similar to, or even better than, the

considered PS strategies. Classification rates are, in gen-

eral, similar to the ones in PS except for the CHC algo-

rithm, in which ENPC always shows a significant

improvement, and some particular cases of FCNN, in

which ENPC shows a significant decrease.

MSE shows the poorest performance of the considered

algorithms with respect to accuracy. This can be clearly

seen when compared to the FCNN or the CHC cases in

which the results of the tests are significantly worse than

the ones of the other PG strategies. Although this poor

performance could be due to a sharp reduction rate, this is

not the case. For instance, if we check the ENPC and MSE

Table 5 Results obtained for

the statistical significance tests

comparing PG in the DS space

with PS in the structural one

PG DS method ALL PS

FCNN 1-FN0.3 CHC

Acc Size Acc Size Acc Size Acc Size

RSP3 RandomC(5) 7 4 = 7 = 7 4 7

RandomC(10) 7 4 = 7 4 7 4 7

RandomC(15) 7 4 = 7 4 7 4 7

kCenters(5) 7 4 = 7 4 7 4 7

kCenters(10) 7 4 = 7 4 7 4 7

kCenters(15) 7 4 = 7 4 7 4 7

EditCon 7 4 = 7 4 7 4 7

ENPC RandomC(5) 7 4 7 = = = 4 7

RandomC(10) 7 4 = 4 = = 4 7

RandomC(15) 7 4 = 4 = = 4 7

kCenters(5) 7 4 7 = = = 4 7

kCenters(10) 7 4 = 4 = = 4 7

kCenters(15) 7 4 = 4 = = 4 7

EditCon 7 4 7 = = = 4 7

MSE RandomC(5) 7 4 7 = = = = 7

RandomC(10) 7 4 7 = = = = 7

RandomC(15) 7 4 7 = = = 4 7

kCenters(5) 7 4 7 = = = 4 7

kCenters(10) 7 4 7 = = = 4 7

kCenters(15) 7 4 7 = = = 4 7

EditCon 7 4 7 = = = = 7

For each comparison, accuracy and set size are assessed. Symbols 4, 7, and = state that results achieved by

elements in the rows significantly improve, decrease, or do not differ, respectively, to the results by the

elements in the columns. Significance has been set to p\ 0.05
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cases with RandomC(10) against FCNN, we can see that,

while the former achieves accuracy results similar to the PS

algorithm with a significantly lower set size, MSE shows

worse classification results than the PS strategy with a

similar set size.

5.2 Discussion

Experiments show that the performance of PG in the fea-

ture-based space seems to be somehow bounded by the DS

mapping process: The PG configurations considered are

capable of retrieving classification rates similar to the ones

achieved when not performing data reduction in this new

space; however, these figures are still far from the ones

achieved in the original space without any reduction either.

While this could be a particularity of a precise DS method,

our experiments show that this effect is inherent to the

mapping process itself. A possibility to consider to palliate

this effect would be the use of more robust embedding

algorithms.

Taking this limitation into account, we can see the

proposed strategy of PG in the DS space as very compet-

itive when compared to PS in the initial space: Considering

the performance limitation due to the space mapping, and

except for the case in which we compare MSE with FCNN,

accuracy results achieved by PG are similar or even better

than the ones by PS. This proves that PG algorithms can

cope with the aforementioned drop.

Regarding the reduction capabilities, the proposed

scheme achieves similar figures to the ones obtained by PS

in the initial space: Except when considering RSP3, which

does not achieve great reduction figures, or when com-

paring to CHC, which performs the sharpest reduction,

sizes do not significantly differ in the comparison.

In general, we can see that the proposed strategy of

mapping the initial structural representation to a statis-

tical one for then performing PG is able to achieve

classification and reduction rates significantly similar to

the ones obtained by PS in the initial space. This fact

clearly questions the usefulness of the method as it does

not improve over the results obtained in the classical

scenario. However, if we consider computational cost for

the classification, we can see that the proposed strategy

stands as a very interesting alternative as it achieves

statistically similar results in significantly shorter (sev-

eral orders of magnitude) time lapses (see Table 3) than

the structural representations. Additionally, if speed is

the major concern, the proposed DS mapping with PG

still stands as an interesting approach since a remarkable

amount of fast search algorithms have been proposed for

feature-based space, in contrast to fast searching in

metric spaces [33].

6 Conclusions

Prototype generation techniques for data reduction in

instance-based classification aim at creating new data out

of the elements of a given set so as to lower memory

requirements while precisely defining the decision bound-

aries. Although these methods are commonly used in sta-

tistical pattern recognition, they turn out to be quite

challenging for structural data as the merging operations

required cannot be as clearly defined as in the former

approach. It has been proposed the use of dissimilarity

space representations, which allow us to map structural

data representations onto feature ones, to benefit from the

advantages prototype generation methods depict.

The experimentation performed shows some important

outcomes. In our results, PG approaches applied to struc-

tural data using DS representation are capable of compet-

ing with PS methods in the original space even though the

mapping process implies information losses. Nevertheless,

when compared to the figures obtained in the non-reduced

structural space, PG methods depict lower accuracy results.

Finally, classification using DS representations has been

proved as a faster option than the one performed in the

structural space as costly distance functions like edit dis-

tance are replaced by low-dimensional Euclidean distance.

This evinces the proposed approach as an interesting trade-

off option between precision and time consumption.

Given the accuracy drop observed in the dissimilarity

space mapping process, more sophisticated methods should

be considered to check whether that loss could be somehow

avoided. Additionally, experimentation could be extended

including other prototype generation algorithms not con-

sidered in the present study.
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Chapter 10

Recognition of Pen-based Music
Notation

Abstract

This work presents a statistical model to recognize pen-based music composi-
tions using stroke recognition algorithms and finite-state machines. The series
of strokes received as input is mapped onto a stochastic representation, which
is combined with a formal language that describes musical symbols in terms of
stroke primitives. Then, a Probabilistic Finite-State Automaton is obtained, which
defines probabilities over the set of musical sequences. This model is eventually
crossed with a semantic language to avoid sequences that does not make musi-
cal sense. Finally, a decoding strategy is applied in order to output a hypothesis
about the musical sequence actually written. Comprehensive experimentation
with several decoding algorithms, stroke similarity measures and probability den-
sity estimators are tested and evaluated following different metrics of interest.
Results found have shown the goodness of the proposed model, obtaining com-
petitive performances in all metrics and scenarios considered.

10.1 Introduction

Despite several efforts to develop light and friendly software for music score
edition, many composers still prefer pen and paper to express their new music
compositions. Once the artistic process is over, however, they resort to this kind
of tools to transcribe the musical content to some digital format. Although this
process is not always mandatory, it entails several benefits such as an easier stor-
age, organization, distribution or reproduction of the music scores.

A profitable way of performing the whole process is by means of a pen-based
music notation recognition system. Such systems make use of an electronic pen,
with which music symbols are drawn over a digital surface. The system collects
user strokes and then processes them to recognize the composition. The goal is
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to present the score actually written to the user in the desired format. It should
be noted that this task can be considered very similar to the Optical Character
Recognition (OCR) task, for which pen-based research has been widely carried
out (Plamondon and Srihari, 2000; Mondal et al., 2009; Liu et al., 2013). Neverthe-
less, the complexity of musical notation in comparison to text leads to the need of
specific developments as pointed out by Bainbridge and Bell (2001).

A straightforward approach to solve the task stated above is to resort to Optical
Music Recognition (OMR) systems, which are devoted to understanding music
scores from their image. That is, an image can be generated from pen strokes
to make it pass through an OMR system (offline recognition). Nevertheless, the
performance of current OMR systems is far from optimal, especially in the case
of handwritten notation (Rebelo et al., 2012). Note that the main intention of a
pen-based score composition system is to provide musicians with an interface as
friendly as possible. Therefore, they are expected to compose without paying
attention to achieving a perfect handwriting style so that notation would be even
harder than usual to be recognized.

Fortunately, pen-based (or online) recognition brings new features that make
the task be very different to the offline case, some of which include:

- Staff lines: a staff is composed of five parallel lines, in which musical sym-
bols are placed in different heights depending of their pitch. Staff detec-
tion and removal is one of the most difficult issues to overcome in offline
OMR systems (Dalitz et al., 2008), since symbol detection and recognition
are based on the accuracy of this step. Nevertheless, in a pen-based system
the problem is harmless because the staff lines are handled by the system
itself and their removal can be done effortlessly.

- Segmentation: the input of a pen-based system is naturally segmented by
pen strokes. Each stroke is easily detected by pen-down and pen-up actions
over the digital surface. This allows avoiding a lot of potential mistakes that
may be caused by a bad segmentation in OMR systems.

- Online data: drawing symbols in the pen-based scenario produces a time
signal of coordinates indicating the path followed by the pen. Although the
image of the score can be rebuilt from the strokes, online data is available to
be used in the recognition. This dynamic information is valuable for shape
recognition (Kim and Sin, 2014).

All these features lead towards the development of specific pen-based algo-
rithms that are able to improve the performance of current offline OMR systems.

In this work it is proposed an approach for solving this task using finite-state
machines and dissimilarity measures between strokes. For a given input, the com-
bination of these artefacts is able to produce a probabilistic model that defines the
probability of each possible musical sequence. The use of decoding algorithms
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(for instance, searching the most probable sequence) provides a hypothesis about
the sequence actually written.

The rest of the paper is structured as follows: Section 10.2 presents some re-
lated work about pen-based music recognition; Section 10.3 delves in the details of
the construction of the probabilistic model; Section 10.4 describes the experimen-
tation carried out and the results obtained; finally, Section 10.5 draws the main
conclusions and discusses some future work.

10.2 Related works

Notwithstanding the benefits offered by pen-based music recognition systems on
music composition, few attention has been paid to their development. Decades
ago, some works were proposed based on the use of a gesture alphabets so that
each musical symbol was associated with a simple gesture (Anstice et al., 1996; Ng
et al., 1998). These gestures were generally mnemonic of the actual symbols they
represented. The main concern of these approaches is that they did not provide
a natural interface to musicians, who had to learn a new way of writing music.
Poláček et al. (2009) developed a similar idea for its use on low-resolution dis-
plays.

More recently, many works have dealt with the problem of recognizing pen-
based isolated musical symbols. For instance, George (2003) used the images
generated by the digital pen to learn an Artificial Neural Network to recognize
the symbols. Lee et al. (2010) proposed the use of Hidden Markov Models for the
recognition of some of the most common musical symbols using different features
of the shape drawn by the pen. Calvo-Zaragoza and Oncina (2014)1 presented a
free dataset of pen-based music symbols written by different musicians, as well
as an experimental baseline study taking into account several recognition algo-
rithms.

While the recognition of isolated symbol might have its interest, the actual
challenge is the recognition of pen-based music sequences. On this issue, there
have been less attempts. Miyao and Maruyama (2004, 2007) proposed a system
based on the recognition of predefined strokes primitives (such as note-heads,
lines, dots, etc.). Once the strokes were classified by using both time-series data
and image features, musical symbols were detected following a heuristic approach
that made use of a set of predefined rules. Macé et al. (2005) proposed a generic
approach for pen-based document recognition applied to music scores. This ap-
proach was based on the use of a stroke recognizer and ad-hoc Context-Free Gram-
mars, which defined the spatial structure of the document.

Unfortunately, these solutions were not satisfactory from a user point of view.
The only way of having symbols recognized is by following the rules of the sys-
tem. Therefore, these solutions forced users to adapt to system style when what
should be pursued is just the opposite.

1This cite corresponds to the work presented in Chapter 6.
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For all comments above, there is still a need of developing a user-centred mu-
sic composition system. The main goals are to provide an ergonomic interface,
which is indeed fulfilled with the use of the e-pen, and to provide an adaptive be-
haviour. To serve as an example, Table 10.1 shows some musical symbols written
by different musicians. This implies that recognition must be guided by a learning
process, which allows the system to know how musicians are going to write their
music.

Table 10.1: Different handwriting styles for some musical symbols.

Label Symbol Style 1 Style 2 Style 3 Style 4

C-Clef

Eighth Note

Sixteenth
Rest

Our proposal follows a stroke-based approach, in which the writing style is
learned from labelled data. By using pairwise stroke similarity functions it is pos-
sible to build a finite-state machine that represents the stochastic set of solutions.
Then, following some decoding strategy, a hypothesis about the sequence actually
written is provided. Next section will describe in depth how to build such model.

10.3 Recognition with Finite-State Machines

This section describes our approach to recognize handwritten musical sequences
written with an e-pen.

In this work it is assumed that a training set with samples of how the musi-
cal symbols are written by users is available. This corpus might be obtained by
either asking the user to go through a training phase before using the tool or by
using some existing dataset (like the one mentioned in the previous section). This
will allow defining a set of construction rules from stroke primitives to musical
symbols.

For a given input, the probability of each stroke to belong to each stroke prim-
itive is computed. This estimation, as well as the construction rules defined in the
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training phase, will be used to obtain a probabilistic machine that is able to give
a probability to each of the possible musical sequences. Nevertheless, given the
formal system in which music is framed, it is known that there exists several se-
quences of musical symbols that do not make sense. Therefore, a semantic model
will be used to tune this probabilistic machine in order to avoid those sequences
that are not well-formed.

Finally, several decoding strategies will be applied to provide an hypothesis
that will be considered as solution to the task.

10.3.1 Symbol generation from stroke primitives

The input to the system consists of the set of time-ordered strokes drawn by the
user. Each symbol may be written with a single stroke or with several ones. For
instance, a Quarter Note ( ˇ “) can be a black note head followed by a stem (Fig. 10.1(a)),
or just the quarter note primitive if the symbol was written with a single stroke
(Fig. 10.1(b)). If symbols are to be recognized from this kind of input, it is needed
to know how each musical symbol can be written from strokes.

(a) Two strokes (b) One stroke

Figure 10.1: Quarter Note written with different sets of strokes.

As mentioned above, it is assumed that a dataset of labeled pen-based musical
symbols is available. Therefore, we have a set of series of strokes labeled by the
musical symbol they represent. Due to the stroke feature space, it is very unlikely
to have equal strokes written more than once so using this dataset to learn may
be useless. Nevertheless, if similar strokes are grouped under the same label, the
complexity of this process is diminished, allowing a higher generalization as well.

Once strokes have been labelled (we will revisit this issue later), musical sym-
bols can be defined from sequences of stroke primitives. Let us denote Σ =
{σ1, . . . , σ|Σ|} the set of musical symbols and Π = {π1, . . . , π|Π|} the set of stroke
primitives (possible labels assigned to a stroke). Table 10.2 illustrates an exam-
ple of dataset of musical symbols, in which strokes are also labelled. In this case,
Σ = { ˘ “, ¯ } and Π = {st, wh, hn}.

From the dataset of labelled musical symbols followed by their labelled se-
quence of strokes, a set of construction rules R = {(σ, (πi1 , . . . , πin)) : σ ∈ Σ, πij ∈
Π}|R|i=1 can be obtained. That is, sequences of stroke primitives describing how spe-
cific musical symbols can be written. For instance, the dataset showed previously
would be represented by the following set of rules:
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Table 10.2: Example of a dataset of pen-based musical symbols with labeled
strokes.

Stroke Primitives (Π)

stem (st) white notehead (wn) half note (hn)

Musical Symbols (Σ)

Whole Note ( ¯ ) Half Note ( ˘ “)

( ¯ , wn )

( ˘ “ , hn )

( ˘ “ , st wn )

(10.1)

It should be stressed that it is possible to find the same musical symbol defined
many times by the same sequence of stroke primitives. In other words, there are
some stroke sequences that are more likely to describe a musical symbol than
others. We use this fact to define a prior probability for each rule in R.

Let Rσ = {(σ, π̄) ∈ R : σ ∈ Σ, π̄ ∈ Π+} represent the set of rules whose musical
symbol is σ. Then, the prior probability of a rule (σ, π̄) ∈ Rσ, denoted by p(π̄|σ), is
defined as:

p(π̄|σ) =
#((σ, π̄))∑

(σ,π̄′)∈Rσ #((σ, π̄′))
(10.2)

where #((σ, π̄)) denotes the number of times that rule appears in the dataset. Note
that

∑
(σ,π̄)∈Rσ p(π̄|σ) = 1, for any σ ∈ Σ.

At this point, there still exists the open question of how to label each stroke. It
is clear that the alphabet of musical symbols is defined by the task itself, but it is
not for the stroke primitives. This problem has been covered in the work of Calvo-
Zaragoza et al. (2015a)2, in which an automatic labelling of strokes is proposed
given an ambiguity rate allowed. A stroke labelling is ambiguous if, and only if, two
different musical symbols can be defined by the same set of primitives. We use

2This cite corresponds to the work presented in Chapter 7.
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here this approach to label the strokes of our dataset. Several ambiguity rates will
be considered during the experimentation. The more ambiguity allowed, the more
accurate the stroke recognition. In turn, the actual recognition of music symbols
becomes harder.

10.3.2 Input processing

Next lines describe how to build a finite-state machine that defines probabilities
over the allowed musical sequences. This machine will be conditioned by both
the input received and the construction rules presented in the previous section, as
well as a formal language that defines which sequences make musical sense.

Probability estimation

The input to the system is given by a sequence of strokes s̄ = (s1, . . . , s|s̄|), in which
each stroke is defined by an ordered sequence of 2D coordinates.

The first step to recognize this input is to know which types of strokes have
been actually written. Since this process is not error-free, a way of approaching it
is by computing the probability of each received stroke to be each stroke primitive
considered.

Although there exists several ways of computing probabilities from labeled
data (for instance, Hidden Markov Models), our estimation is going to be gov-
erned by dissimilarity functions between strokes. We denote this dissimilarity as
d(·, ·). Our choice is justified by the fact that the stroke labeling is directed by
a dissimilarity function. Furthermore, this paradigm is specially suitable for in-
teractive scenarios like the one found in our task, as the simple addition of new
prototypes to the training set is sufficient for incremental learning, whereas the
size of the dataset can be controlled by dissimilarity-based data reduction algo-
rithms (García et al., 2015).

To estimate a probability from a given dissimilarity, two different strategies are
considered: Parzen Window and Nearest Neighbour.

- Parzen Window (Parzen, 1962) is a non-parametric technique to estimate
probability density functions from training samples. Given a series of sam-
ples x1, x2, . . . , xn from an unknown distribution p, an estimated density p̂ in
a point x following Parzen Window method is

p̂(x) =
1

n

n∑
i=1

1

h
ϕ

(
d(x, xi)

h

)
(10.3)

The term ϕ refers to the window function, a symmetric function that integrates
to one. The parameter h, called the bandwidth of the window, should be
defined according to the volume of the considered region.
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One of the main issues of the Parzen Window estimation is the choice of
the window function ϕ. In practice, it is commonly assumed a standard
Gaussian kernel:

ϕ(u) =
1√
2π
e−

1
2
u2 (10.4)

- Nearest Neighbour: the problem of choosing the adequate window function
ϕ can be avoided by only considering the nearest sample of the training data.
This is called Nearest Neighbour estimation (Duda et al., 2001).

Given a series of samples x1, x2, . . . , xn from an unknown density function
p, a common estimation for a point x becomes

p̂(x) =
1

minni=1 d(x, xi)
(10.5)

Note that a dissimilarity function between strokes is needed to make use of the
previous probability density function estimators. The digital surface collects the
strokes at a fixed sampling rate so that each one may contain a variable number
of 2D points. Several functions for measuring dissimilarity can be applied to this
kind of data. Those considered in this work include:

• Dynamic Time Warping (DTW): a technique for measuring the dissimilarity
between two time signals which may be of different duration. It was firstly
used in speech recognition Sakoe and Chiba (1990), although its use has
been extended to other fields Hartmann and Link (2010); Kim and Sin (2014).

• Edit distance with Freeman Chain Code (FCC): the sequence of points rep-
resenting a stroke is converted into a string using a codification based on
Freeman Chain Codes Freeman (1961). Then, the common Edit distance
Levenshtein (1966) between strings is applied.

• Normalized Stroke (NS): the whole set of points of the stroke is normalized
to a sequence of n points by an equally resampling technique. Therefore, a
stroke is characterized by an n-dimensional feature vector of 2D coordinates.
Given two vectors of this kind, an accumulated Euclidean distance between
the points of the sequences can be computed.

• Edit distance for Ordered Set of Points (OSP) Rico-Juan and Iñesta (2006):
an extension of the edit distance for its use over sequences of consecutive
points.
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Building a Probabilistic Automaton

At this point it is known both the probability of each stroke to be each stroke
primitive and the musical symbol construction rules from stroke primitives. This
knowledge can be merged to obtain a machine that defines the probability of se-
quences of musical symbols.

The machine to be built is a Probabilistic Finite-State Automaton (PFA). A PFA
is a generative device for which there are a number of possible definitions (Paz,
1971; Vidal et al., 2005).

Definition 1. A Probabilistic Finite-State Transducer (PFA) is a tupleA = 〈Σ, Q, I,F, δ),
where:

- Σ is the alphabet;

- Q ={q1,. . . , q|Q|} is a finite set of states;

- I : Q→ R ∩ [0, 1] (initial probabilities);

- F : Q→ R ∩ [0, 1] (final probabilities);

- δ : Q× Σ×Q→ R ∩ [0, 1] is the complete transition function; δ(q, a, q′) = 0 can
be interpreted as “no transition from q to q′ labelled with a”.

I, δ and F are functions such that:

∑
q∈Q

I(q) = 1, (10.6)

and ∀q ∈ Q,
F(q) +

∑
a∈Σ, q′∈Q

δ(q, a, q′) = 1. (10.7)

Given x ∈ Σ∗, an accepting x-path is a sequence γ = qi0a1qi1a2 . . . anqin where
x = a1 · · · an, ai ∈ Σ and δ(qij−1

, aj, qij) 6= 0, ∀j such that 1 ≤ j ≤ n. Let ΓA(x)
be the set of all paths accepting x. The probability of the path γ is defined as
PrA(γ) = I(qi0) ·

∏n
j=1 δ(qij−1

, aj, qij) · F(qin) and the probability of the sequence x
is obtained by summing over the probabilities of all the paths in ΓA(x).

The construction of our PFA is done as described in Algorithm 1. The machine
generates as many states as strokes are in the input plus 1. The ith state represents
that every stroke from the first until the (i−1)th has been processed (state 0 means
that no stroke has been processed so far). This is why the only initial state is the
first and the only final state is the last one. For each state, the set of construction
rules is queried and a new edge is created for every single rule. These edges go
from the current state to a state as far as strokes primitives contain the rule. The
label of the edge is given by the musical symbol of the rule. Note that those edges
that would end beyond the last state will be discarded. Finally, the probability of
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∅/0 s1/0 s2/1

1 p(hn| ˘ “) p(hn|s1)/ ˘ “ p(hn| ˘ “) p(hn|s2)/ ˘ “

p(st wh| ˘ “) p(st|s1)p(wh|s2)/ ˘ “

p(wn| ¯ ) p(wh|s1)/ ¯ p(wh| ¯ ) p(wh|s2)/ ¯

Figure 10.2: Example of PFA generated from an input of two strokes and the set
of construction rules defined in Eq. 10.1. An arrow toward a state represents its
initial probability (omitted when 0). Text inside states represents the last stroke
processed and the probability of stop. Text over edges represents the probability
of the transition and its label.

these edges is given by the product of the probability of the strokes to be the prim-
itives of the rule as well as by the prior probability of the rule itself. Calculation
of these probabilities was showed above so it is assumed that they are available
when running Algorithm 1.

Data: s̄ = (s1, . . . , s|s̄|), R = {(σ, (πi1 , . . . , πin)) : σ ∈ Σ, πij ∈ Π}|R|
Result: (Q,Σ, I,F, δ) : PFA
Q← {q0, . . . , q|s̄|}
I(q0)← 1
F(q|s̄|)← 1
forall the qi ∈ Q do

forall the (σ, (πi1 . . . πin)) ∈ R do
if i+ n ≤ |s̄| then

δ(qi, σ, qi+n)← p(π1 . . . πn|σ)
∏n

k=0 p(πk+1|si+k)
end

end
end

Algorithm 1: Building a PFA from an input sequence and the set of symbol con-
struction rules.

Figure 10.2 shows an example of PFA given a input sequence s̄ = s1s2 and the
set of construction rules of Eq. 10.1. Although this is not the case, different paths
may have the same probability depending on the set of rules.

Avoiding not well-formed sequences

The machine obtained in the previous section is able to define a probability for
every sequence in Σ∗. However, it is clear that not all these sequences are gram-
matically correct. Hence, the next step is to ensure that only well-formed sequences
have a non-null probability of being produced.
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q0start

q1

q2
¯

˘ “

˘ “, ¯

˘ “, ¯

Figure 10.3: An example of DFA that accepts only sequences whose first symbol is
a Half note. Double circle indicates a final state.

To this end, it is assumed that well-formed musical sequences can be defined
by means of a regular language. That way it is possible to build a Deterministic
Finite-State Automaton that only accepts those sequences that fulfill the music
constraints.

Definition 2. A Deterministic Finite-State Automaton (DFA) is a tupleD = (Q,Σ, δ, q0, F )
where:

- Q is the set of states;

- Σ is the alphabet;

- δ : Q× Σ→ Q is the transition function;

- q0 is the initial state;

- F ⊆ Q is the set of accepting states.

A sequence σ̄ ∈ Σ∗ is accepted by the DFA if, and only if, δ∗(q0, σ̂) ∈ F .

Let us once again consider a little alphabet of musical symbols Σ = { ˘ “, ¯ }.
Figure 10.3 shows a toy DFA which only accepts sequences that begin with a Half
note ( ˘ “). Note that this language does not make any musical sense but it is used
here as an easy example to guide the explanation.

The semantic information provided by the DFA can be merged with the pre-
vious PFA. Our goal is to change the probabilities so that sequences that do not
belong to the language are nullified (zero probability). To generate this machine,
the intersection of the DFA and the PFA is computed. The output of this intersec-
tion is a new probabilistic machine for which sequences that do not belong to the
language finish in a non-final state, ie. a state with a stop probability equal to 0.

The intersection between such machines can be obtained computationally by
following Algorithm 2. Given a PFAA and a DFAD, we get a new PFA B. This new
machine has QA × QD states. We denote each of these states using a pair (qa, qd).
The first element indicates the state of A and the second one the state of D that
the new state is representing. The initial probabilities of B are equal to those in A
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for every state that also represents an initial state in D. Otherwise, probabilities
are equal to 0. Similarly, the final probabilities of B are equal to those in A as long
as the state is also in the set of final states of D. Finally, the probability from a
state (qa, qd) to (qa′ , qd′) with a symbol σ is equal to the transition from qa to qa′ in
A with this symbol as long as a transition from qd to qd′ with σ is allowed in D. A
post-processing step may normalize the new PFA so that it fulfils the conditions
stated in Def. 1.

Data: A = (QA,Σ, IA,FA, δA) : PFA, D = (QD,Σ, δD, qD0 , FD) : DFA
Result: B = (QB,Σ, IB,FB, δB) : PFA
QB ← QA ×QD
forall the qb = (qa, qd) ∈ QB : qd = qD0 do

IB(qb)← IA(qa)
end
forall the qb = (qa, qd) ∈ QB : qd ∈ FD do

FB(qb)← FA(qa)
end
forall the qb = (qa, qd) ∈ QB do

forall the qb′ = (qa′ , qd′) ∈ QB do
forall the σ ∈ Σ do

if δD(qd, σ) = qd′ then
δB(qb, σ, qb′)← δA(qa, σ, qa′)

end
end

end
end

Algorithm 2: Building a new PFA from the information provided by a PFA and
a DFA.

An example of this intersection is showed in Fig. 10.4. For the sake of clarity,
unreachable states are omitted. It should be stressed that now the path ( ¯ , ˘ “) has
the same probability as before but the final probability of the sequence is 0 due to
the null stop probability of state (s2, q2). Useless paths could be removed to reduce
the complexity of the generated machine.

10.3.3 Decoding strategies

At this point, our model is able to assign a probability to each valid sequence
of musical symbols. The last step is to apply some kind of decoding strategy
to output a hypothesis about the input sequence of strokes. The possibility of ap-
proaching this stage following different strategies is another interesting advantage
of our approach. The decoding strategies considered here are listed below:
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(∅, q0)/0 (s1, q1)/0 (s2, q1)/1

(s1, q2)/0 (s2, q2)/0

1

p(hn| ˘ “) p(hn|s1)/ ˘ “ p(hn| ˘ “) p(hn|s2)/ ˘ “

p(wh| ¯ )p(wh|s2)/ ¯

p(st wh| ˘ “) p(st|s1)p(wh|s2)/ ˘ “
p(wn| ¯ ) p(wh|s1)/ ¯

p(wh| ¯ ) p(wh|s2)/ ¯

p(hn| ˘ “) p(hn|s2)/ ˘ “

Figure 10.4: PFA obtained by the intersection of the PFA showed in Fig. 10.2
and the DFA showed in Fig. 10.3. An arrow toward a state represents its initial
probability (omitted when 0). Text inside states represents the intersection of the
original states where it comes from, as well as the probability of stop. Text over
edges represents the probability of the transition and its label.

- Most probable path (MPP): it seeks for the most probable path of the PFA,
and then it outputs the sequence associated to this path. This is typically
computed with an efficient Viterbi alike algorithm.

- Most probable sequence (MPS): searching the most probable sequence of a
distribution defined by a PFA is known to be NP -Hard (Casacuberta and
de la Higuera, 2000). Nevertheless, a recent development allows its com-
putation with a complexity of the inverse of the probability of the most
probable sequence (de la Higuera and Oncina, 2014). We use here this ap-
proach.

- Optimum decoding to minimize number of corrections (MNC): if it is as-
sumed that the output is going to be corrected by a human supervisor and
after each correction the machine is allowed to output a new hypothesis
(interactive approach), the optimum way of minimizing the expected num-
ber of sequential corrections is by computing the algorithm developed by
Oncina (2009).

Each of these strategies will be compared experimentally.

113



10.4 Experimentation

This section describes the experimentation performed to assess the goodness of
our proposal.

The HOMUS dataset (Calvo-Zaragoza and Oncina, 2014) of pen-based musi-
cal symbols will be used in this experimentation. This set contains 15200 samples
from 100 different musicians. Taking advantage of its configuration, the series of
experiments consists in recognizing semi-synthetic pen-based music scores from
two different scenarios: user-dependent, in which both learning and test data
come from the same musician, and user-independent, when all data available is
mixed. The former scenario is aimed at measuring the performance when the user
is known by the system, whereas the latter one simulates a more general situation.

The input of both experiments is a series of 1000 sequences of musical symbols,
generated randomly respecting the language model defined. Each sequence is
used to generate a pen-based score using the available data from the HOMUS.
Figure 10.5 illustrates an example of this generation. Sequences generated contain
17.1 musical symbols, on average (± 3 of standard deviation), with a variable
number of strokes depending on the synthetic generation.

Language
Model

G-Clef 4-4-Time Half-Note Quarter-Note
Quarter-Rest Barline Whole-Note Barline

Pen-based
symbols set

Figure 10.5: Example of the procedure used to generate semi-synthetic pen-based
scores for experimentation.

The stroke labeling process is performed automatically as mentioned in Sec-
tion 10.3.1. We will allow different ambiguity rates, denoted as α, ranging from
0 to 0.3 depending on each scenario. Higher values of ambiguity are expected to
give very poor results.

Recalling from Section 10.3.2, we need to develop a DFA that indicates which
musical sequences are allowed. For these experiments we shall restrict ourselves
to scores with a common time metric (4

4 or S), one of the most common in modern
Western music.

With respect to the performance evaluation, there are different ways of mea-
suring the goodness of a hypothesis depending on the main goal pursued. To this
end we take the following metrics of interest:
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- Error rate (Er): it provides the number of times (over the total) that the first
hypothesis provided by the system is the actual input. It is used when a 0/1
loss function is assumed.

- Average edit distance (Ed): it provides the expected number of corrections
per sequence by computing the average edit distance between the solutions
of the system and the actual inputs. It is the unnormalized version of the
Word Error Rate.

- Average number of corrections (C): a good way of measuring the perfor-
mance of this kind of systems is by counting the number of corrections the
user would have to make until getting the sequence actually written (Vidal
et al., 2007). After each correction, the system is allowed to recompute a new
hypothesis, which is expected to be more accurate since some parts of the
solution are known.

Next subsections present the results achieved in each scenario. It is important
to stress that a comparative experiment with other approaches is not included. As
stated in Section 2, no fully learning-based music notation recognition has been
proposed so far and, therefore, a fair comparison is not possible.

10.4.1 User-dependent experiment

The user-dependent experiment consists in the following steps: for every sequence,
a user is randomly selected and an automatic stroke labeling is performed with
different ambiguity rates ranging from 0 to 0.2. For each of them, data is split into
test and train set. The test set is used to build the pen-based score fulfilling the def-
inition of the sequence generated, whereas the train set is used for both extracting
the set of construction rules of musical symbols and training the stroke probability
estimators. The machine obtained is then decoded to produce a hypothesis about
the input sequence. Finally, aforementioned performance evaluation is applied.

Table 10.3 shows the results achieved in such experiment. Although further
analysis is presented below, an initial remark to begin with is that performance
is quite promising. Results yield that 90 % of these sequences are perfectly rec-
ognized (Er = 0.10). From another point of view, results report 0.3 mistakes per
sequence (Ed) or 0.28 corrections needed per sequence (C). This implies that the
post-processing user correction phase could be assumed effortlessly, regardless of
the use of an interactive approach.

Looking in more detail, the allowable ambiguity rate in stroke labeling has a
special impact on the results. In most cases, results of the same probability es-
timator with the same decoding strategy are noticeably worse as ambiguity rate
becomes higher. For instance, NN estimation with FCC and decoded by MPS
achieves an error rate of 0.10 with α = 0, but error rates of 0.17 and 0.38 with
α = 0.1 and α = 0.2, respectively, are obtained. This tendency is depicted in
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Table 10.3: Mean results of the user-dependent experiment with 1000 random se-
quences of length 17.1 (on average). Several allowable ambiguity rates (α) for the
automatic stroke labeling are considered.

Prob. Dissim. Decod.
α = 0 α = 0.1 α = 0.2

Er Ed C Er Ed C Er Ed C

NN

FCC

MPP 0.11 0.31 0.36 0.19 0.62 0.31 0.42 1.54 0.73

MPS 0.10 0.30 0.36 0.17 0.55 0.28 0.38 1.39 0.65

MNC 0.10 0.31 0.35 0.18 0.59 0.26 0.40 1.46 0.62

DTW

MPP 0.16 0.56 0.45 0.32 1.12 0.55 0.54 2.08 1

MPS 0.16 0.57 0.44 0.33 1.13 0.53 0.48 1.97 0.9

MNC 0.17 0.58 0.44 0.32 1.13 0.52 0.51 2.04 0.91

NS

MPP 0.19 0.70 0.60 0.36 1.38 0.63 0.54 2.37 1.09

MPS 0.19 0.70 0.59 0.34 1.33 0.59 0.52 2.25 1.02

MNC 0.19 0.69 0.58 0.34 1.32 0.58 0.54 2.37 1.05

OSP

MPP 0.10 0.30 0.51 0.23 0.8 0.37 0.45 1.87 0.81

MPS 0.10 0.30 0.51 0.19 0.73 0.34 0.40 1.7 0.75

MNC 0.10 0.30 0.51 0.2 0.75 0.35 0.43 1.8 0.77

Parzen

FCC

MPP 0.14 0.50 0.34 0.23 0.83 0.44 0.43 1.71 0.76

MPS 0.13 0.50 0.33 0.2 0.74 0.38 0.39 1.57 0.68

MNC 0.13 0.50 0.31 0.21 0.78 0.39 0.42 1.65 0.71

DTW

MPP 0.27 1.01 0.79 0.49 2.11 1.14 0.65 3.06 1.60

MPS 0.26 0.94 0.72 0.45 1.96 1.03 0.61 2.89 1.50

MNC 0.26 0.94 0.70 0.45 1.92 0.99 0.65 2.94 1.46

NS

MPP 0.19 0.72 0.52 0.37 1.56 0.79 0.57 2.69 1.29

MPS 0.19 0.74 0.48 0.34 1.48 0.74 0.56 2.6 1.24

MNC 0.19 0.74 0.48 0.34 1.51 0.75 0.57 2.66 1.22

OSP

MPP 0.17 0.57 0.48 0.29 1.05 0.54 0.46 1.9 0.88

MPS 0.16 0.56 0.45 0.23 0.88 0.46 0.43 1.73 0.79

MNC 0.16 0.59 0.46 0.25 0.96 0.45 0.45 1.8 0.8
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Fig. 10.6, which shows the average results among the different decoding strate-
gies and probability density estimator for each ambiguity rate considered. Note
that results degenerate as α becomes higher. A remarkable exception is presented
for NN estimation with FCC when number of corrections (C) is considered as
evaluation metric. In this case, the best result (which is also the best with respect
to the whole experiment) are that with α = 0.1.
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Figure 10.6: Impact of the stroke labelling ambiguity over the results achieved.
Average results among all decoding strategies and probability density estimators
are showed with respect to the ambiguity rate allowed.

Not surprisingly, stroke probability estimation is also a relevant factor. How-
ever, accuracy seems to be more in the dissimilarity function rather than the prob-
ability density estimator. As a whole conclusion to this respect, NN with FCC
seems to be the most accurate stroke probability estimator for this task. On the
other hand, results hardly vary among the decoding strategies considered, espe-
cially in the case of α = 0. Despite this fact, best average results for Er and Ed are
achieved by the MPS strategy, whereas MNC has the lower number of corrections
needed. MPP does have the worst average results in most of the cases.

10.4.2 User-independent experiment

The user-independent experiment exposes a more general scenario, that in which
the system does not know what kind of handwriting style will receive and, there-
fore, must learn from samples of many different musicians. Given the large num-
ber of different strokes found in this scenario, the automatic labeling fails to obtain
a non-ambiguous clustering using less than 500 labels (maximum considered).
This is why the experiments are shown with ambiguity rates of 0.1, 0.2 and 0.3.
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Table 10.4 shows the results obtained in this experiment. As a general anal-
ysis, the results are worse than in the previous case, since the complexity of the
task is higher, but the best values obtained are still quite competitive: 64 % of the
sequences were perfectly recognized with the first hypothesis; on average, only
1.10 of editing operations are necessary, with only 0.54 corrections considering an
interactive case. These figures demonstrate that the use of an interactive approach
is very profitable in this scenario, unlike what happened in the previous one.

Once again, the ambiguity rate seems to be the most important factor for the
recognition (Fig.10.7 shows the average tendency with respect to this factor). Since
a null ambiguity rate is not possible, it is still unknown the best case within the
user-independent scenario. However, results with α = 0.1 are at the same level
than those of α = 0.2 in the user-dependent case. This lead us to believe that
the user-independent scenario would not be very far from the user-dependent
scenario if an optimal stroke labelling could be performed.
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Figure 10.7: Impact of the stroke labelling ambiguity over the results achieved.
Average results among all decoding strategies and probability density estimators
are showed with respect to the ambiguity rate allowed.

On the other hand, probability estimation has a higher impact in this scenario.
For instance, Parzen estimation using DTW achieves pretty poor results in all
cases considered. Depending on each particular case, NN using FCC or Parzen
using NS are reported as the best configurations.

The decoding algorithm depicts less relevance on the results, as happened in
the previous scenario. Nevertheless, MPS generally achieves slightly better results
for Er and Ed, whereas MNC does for C.
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Table 10.4: Mean results of the user-dependent experiment with 1000 random se-
quences of length 17.1 (on average). Several allowable ambiguity rates (α) for the
automatic stroke labelling are considered.

Prob. Dissim. Decod.
α = 0.1 α = 0.2 α = 0.3

Er Ed C Er Ed C Er Ed C

NN

FCC

MPP 0.39 1.52 0.59 0.94 4.70 2.37 0.94 6.81 4.11

MPS 0.36 1.10 0.56 0.85 4.10 2.23 0.92 6.50 3.55

MNC 0.36 1.13 0.54 0.89 4.32 2.20 0.93 6.60 3.55

DTW

MPP 0.59 2.04 1.07 0.94 4.78 2.76 0.98 7.43 4.64

MPS 0.54 1.90 0.90 0.90 4.58 2.46 0.95 7.04 4.12

MNC 0.56 2.00 0.90 0.91 4.58 2.46 0.97 7.11 4.07

NS

MPP 0.57 2.18 0.91 0.90 4.73 2.58 0.96 7.06 4.32

MPS 0.55 2.13 0.88 0.94 4.91 2.50 0.94 6.60 4.07

MNC 0.56 2.13 0.88 0.94 4.91 2.51 0.95 6.68 4.04

OSP

MPP 0.54 2.18 0.93 0.92 4.29 2.40 0.95 6.57 3.86

MPS 0.54 2.26 0.91 0.90 4.11 2.18 0.93 6.59 3.73

MNC 0.54 2.28 0.90 0.91 4.16 2.17 0.93 6.59 3.73

Parzen

FCC

MPP 0.68 2.90 1.31 0.92 5.13 2.83 0.97 6.94 4.45

MPS 0.48 1.75 0.85 0.91 4.31 2.32 0.95 6.37 3.62

MNC 0.50 1.76 0.84 0.91 4.36 2.31 0.95 6.37 3.62

DTW

MPP 0.90 4.75 2.62 1.00 6.73 4.13 0.98 7.86 5.68

MPS 0.79 3.53 1.71 0.97 6.05 3.39 0.98 7.73 4.78

MNC 0.79 3.54 1.69 0.97 6.05 3.38 0.98 7.73 4.74

NS

MPP 0.45 1.57 0.73 0.91 4.93 2.74 0.94 6.95 4.20

MPS 0.37 1.16 0.62 0.83 3.90 2.33 0.94 6.60 3.64

MNC 0.37 1.19 0.60 0.85 4.39 2.32 0.94 6.60 3.64

OSP

MPP 0.76 3.58 1.71 0.96 5.89 3.33 0.98 7.67 5.02

MPS 0.66 2.53 1.30 0.96 5.10 2.76 0.96 7.07 4.11

MNC 0.67 2.53 1.23 0.96 5.16 2.75 0.96 7.07 4.11
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10.5 Conclusions

This work presented a novel approach to the recognition of pen-based music
compositions using stroke similarity algorithms and finite-state machines. Our
approach is able to learn writing styles from data and, therefore, notation is not
restricted to predefined rules or gestures.

The series of strokes received as input is mapped onto stroke primitive proba-
bilities with similarity-based probability density estimators. These probabilities
are combined with a set of learned rules describing musical symbols in terms
of these primitives. Then, a probabilistic model is obtained, which is eventually
crossed with a formal language to avoid those sequences that do not make mu-
sical sense. A decoding algorithm is finally applied to produce a hypothesis as
solution to the task.

A comprehensive experimentation has been carried out in which several met-
rics of interest have been evaluated considering a number of probability density
estimators, stroke similarity functions and decoding strategies. Two main scenar-
ios were considered: user-dependent and user-independent.

As expected, the user-dependent experiment showed better recognition re-
sults. Its best results yielded that only 10 % of the hypotheses were wrong, whereas
the other only needed few corrections (below 0.3, on average). However, the user-
independent scenario also showed competitive results, obtaining only 36 % of
erroneous hypotheses, needing around 1 correction (0.5 in the interactive case),
on average, otherwise.

It was found in both scenarios that the accuracy of the recognition was closely
related to the degree of allowed ambiguity in the automatic stroke labelling pro-
cess. An option to be considered is to improve this process. In fact, the method
used was unable to get a non-ambiguous stroke labelling in the user-independent
scenario and, therefore, there is still room for improvement. The dissimilarity
measure utilized, to a lesser extent, also proved to be an important parameter to
consider. In this regard, NN estimation using FCC dissimilarity was reported as
the best choice in a broad sense.

As future work the interest is on the development of an interactive system, in
which user corrections are used to continuously improve the performance of the
system. The main concern is to provide a transparent and user-friendly way to
receive feedback while the user is using the system, and how this feedback can
be efficiently exploited. A final user-end application that takes advantage of the
research explained here is also to be considered.
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Chapter 11

Pen-based Multimodal Interaction
with Music Notation

Abstract

The need of digitizing early music sources is demanding the development of new
ways of dealing with music notation. This paper describes a work carried out
under the development of a project focused on the automatic transcription of
early music manuscripts. Assuming that current technologies cannot guarantee
a perfect transcription, our intention is to develop an interactive system in which
user and software collaborate to complete the task. Since conventional score post-
editing might be tedious, the user is allowed to interact using an electronic pen.
Although this provides a more ergonomic interface, this interaction must be de-
coded as well. In our framework, the user traces the symbols using the electronic
pen over a digital surface, which provides both the underlying image (offline data)
and the drawing made by the e-pen (online data) of each symbol to improve clas-
sification. Applying this methodology over 70 scores of the target musical archive,
a dataset of 10230 samples of 30 different symbols was obtained and made avail-
able for research purposes. Classification over this data is presented, in which
symbols are recognized by using the two modalities extracted from the sources.
The combination of modes has demonstrated its good performance, decreasing
the error rate of using each modality separately and achieving an almost error-
free performance.

11.1 Introduction

Music constitutes one of the main tools for cultural transmission. That is why
musical documents have been preserved over the centuries, scattered through
cathedrals, museums, or historical archives. In an effort to prevent their deteri-
oration, the access to these sources is not always possible. This implies that an
important part of this historical heritage remains inaccessible for musicological
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study. Occasionally, these documents are transcribed to a digital format for an
easier access, distribution and study, without compromising their integrity.

On the other hand, it is important to point out that the massive digitization
of music documents also opens several opportunities to apply Music Information
Retrieval algorithms, which may be of great interest. Since the handmade tran-
scription of these sources is a long, tedious task, the development of automatic
transcription systems for early music documents is gaining importance over the
last few years.

Optical Music Recognition (OMR) is a field devoted to providing computers
the ability to extract the musical content of a score from the optical scanning of its
source. The output of an OMR system is the music score encoded in some struc-
tured digital format such as MusicXML, MIDI or MEI. Typically, the transcription
of early music documents is treated differently with respect to conventional OMR
methods due to specific features (for instance, the different notation or the quality
of the sheet). Although there exist several works focused on early music docu-
ments transcription (Pinto et al., 2003; Pugin, 2006), the specificity of each type
of notation or writing makes it difficult to generalize these developments. This
is especially harmful to the evolution of the field because it is necessary to im-
plement new processing techniques for each type of archive. Even worse, new
labelled data are also needed to develop techniques for automatic recognition,
which might imply a significant cost.

Notwithstanding the efforts devoted to improving these systems, their per-
formance is far from being optimal (Rebelo et al., 2012). In fact, assuming that
a totally accurate automatic transcription is not possible, and might never be,
user-centred recognition is becoming an emergent framework. Instead of a fully-
automatized process, computer-aided systems are being considered, with which the
user collaborates actively to complete the recognition task (Toselli et al., 2010).

The goal of this kind of systems is to facilitate the task for the user, since it is
considered the most valuable resource (Andrés-Ferrer et al., 2011). In the case of
the transcription of early music documents, the potential user is the expert mu-
sicologist who understands the meaning of any nuance that appears in the sheet.
However, very often these users find the use of a pen more natural and comfort-
able than keyboard entry or drag-and-drop actions with the mouse. Using a tablet
device and e-pen, it is possible to develop an ergonomic interface to receive feed-
back from users’ drawings. This is specially true for score post-edition where the
user, instead of sequentially inputting symbols has to correct some of them, and
for that, direct manipulation is the preferred interaction style.

Such an interface could be used to amend errors made by the system in a
simpler way for the user, as has been proposed for automatic text recognition (Al-
abau et al., 2014). However, there are studies showing that, when the task is too
complex, users prefer to complete the task by itself because the human-machine
interaction is not friendly enough (Romero and Sanchez, 2013). Therefore, this
interface could also be used to develop a manual transcription system that would
be more convenient and intuitive than conventional score editors. Moreover, this
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transcription system might be useful in early stages of an OMR development, as it
could be used to acquire training data more efficiently and ergonomically, which
is specially interesting for old music notations.

Unfortunately, although the user is provided with a more friendly interface to
interact with the system, the feedback input is not deterministic this way. Unlike
the keyboard or mouse entry, for which it is clear what the user is inputting, the
pen-based interaction has to be decoded and this process might have errors.

For all reasons above, this article presents our research on the capabilities of
musical notation recognition with a system whose input is a pen-based interface.
To this end, we shall assume a framework in which the user traces symbols on
the score, regardless of the reason of this interaction (OMR error correction, dig-
itizing the content, acquire labelled data, etc.). As a result, the system receives
a multimodal signal: on one hand, the sequence of points that indicates the path
followed by the e-pen on the digital surface, usually referred to as online modality;
on the other hand, the portion of image below the drawn containing the original
symbol, which represents the offline modality. One of the main hypothesis of this
study is that the combination of both modalities leads to better results than using
just either the pen data or the symbol image.

The rest of the chapter is structured as follows: Section 11.2 introduces the cor-
pora collected and utilized, which comprises data of Spanish early music written
in White Mensural notation; Section 11.3 describes a multimodal classifier that ex-
ploits both offline and online data; Section 11.4 presents the results obtained with
such classification; and Section 11.5 concludes the present work.

11.2 Multimodal data collection

This work is a first seed of a case study to digitize a historical musical archive
of early Spanish music. The final objective of the whole project is to encode the
musical content of a huge archive of manuscripts dated between centuries 16th to
18th, handwritten in mensural notation, in the variant of the Spanish notation at
that time (Ezquerro, 2001). A short sample of a piece from this kind of document
is illustrated in Fig. 11.1.

This section describes the process developed to collect multimodal data of iso-
lated musical symbol from images of scores. A massive collection of data will
allow us to develop a more effective classification system and to go deeper into
the analysis of this kind of interaction. Let us note that the important point in
our interactive system is to better understand user actions. While a machine is
assumed to make some mistakes, it is unacceptable to force the user to draw the
same symbol of score many times. To this end, our intention is to exploit both
offline data (image) and online data (e-pen user tracing) received.

Our idea is to simulate the same scenario of a real application. Therefore, we
loaded the images of the scores on a digital surface to make users trace the sym-
bols using the electronic pen. The natural symbol isolation of this kind of input
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Figure 11.1: Example of page of a music book written in handwritten white men-
sural notation from Spanish manuscripts of centuries 16th to 18th.

is the set of strokes —data collected between pen-down and pen-up actions. To
allow tracing symbols with several strokes, a fixed elapsed time is used to detect
when a symbol has been completed. If a new stroke starts before this time lapse,
it is considered to belong to the same symbol than the previous one.

Once online data is collected and grouped into symbol classes, the offline data
is also extracted from this information. A bounding box is obtained from each
group of strokes belonging to the same symbol, storing the maximum and mini-
mum values of each coordinate (plus a small margin) among all the trace points
collected. This bounding box indicates where the traced symbol can be found in
the image. Therefore, with the sole effort of the tracing process, both online and
offline data are collected. Note that the extraction of the offline data is driven
by the tracing process, instead of deciding at every moment the bounds of each
symbol.

Figure fig:tracing illustrates the process explained above for a single symbol.
Although the online data is drawn in this example, the actual information stored
is the sequence of 2D points in the same order they were collected, indicating the
path followed by the e-pen.

Following this approach, several advantages are found: the final effort of col-
lecting multimodal data is halved, since the online data collection simultaneously
provides the offline data collection; the collected data mimics the scenario that
might be found in the final application, when the user interacts with the machine;
and the process becomes more user-friendly, which usually leads to a lower num-
ber of errors.

The collection was extracted by five different users from 70 different musical
scores of different styles from the Spanish white mensural notation of 16th-18th
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Figure 11.2: Example of extraction of a minima. Above, the sequence of points
collected by the e-pen. The box represents the bounding box of the sequence.
Below, the multimodal data extracted from the same sample.

centuries. The Samsung Galaxy Note Pro 12.2 device (247 ppi resolution) was used
and symbols were written by means of the stylus S-Pen. All the score images
used are in the same scale, in which staff lines spacing is about 24 DP.1 Due to
the irregular conditions of the documents, this value is approximate but it can be
used for normalizing with respect to other scores.

The obtained dataset consists of 10230 samples, each of which contains both
a piece of image and the strokes followed during its tracing. These samples are
spread over 30 classes. Table 11.1 lists the set of labels, including a typographic
example and the number of samples per each. The number of symbols of each
class is not balanced but it depicts the same distribution found in the documents.

Every symbol that must be differentiated for preservation purposes was con-
sidered as a different class. For instance, there are two f-clef types because the
graphical symbol is quite different despite having an equal musical meaning.
However, the orientation of the symbols does not make a different class since the
same graphical representation with a vertical inversion can be found. In the case
it was needed, the orientation could be obtained through an easy post-processing
step.

1DP stands for device independent pixels in (Android) mobile application development
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Table 11.1: Details of the dataset obtained through the tracing process over 70
scores (images from Capitán font).

Label Symbol # Label Symbol #

barline 46 brevis 210

coloured brevis 28 brevis rest 171

c-clef 169 common time 29

cut time 56 dot 817

double barline 73 custos 285

f-clef 1 52 f-clef 2 43

fermata 75 flat 274

g-clef 174 beam 85

longa 30 longa rest 211

minima 2695 coloured minima 1578

minima rest 427 semibrevis 1109

coloured semibrevis 262 semibrevis rest 246

semiminima 328 coloured semiminima 403

semiminima rest 131 sharp 170

proportio maior 25 proportio minor 28
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11.3 Multimodal classification

This section provides a classification experiment over the data described previ-
ously. Two independent classifiers are proposed that exploit each of the modalities
presented by the data. Eventually, a late-fusion classifier that combines the two
previous ones will be considered.

Taking into account the features of our case of study, an instance-based classi-
fier was considered. Specifically, the Nearest Neighbour (NN) rule was used, as it
is one of the most common and effective algorithms of this kind (Cover and Hart,
1967). The choice is justified by the fact that it is specially suitable for interactive
scenarios like the one found in our task: it is naturally adaptive, as the simple ad-
dition of new prototypes to the training set is sufficient (no retraining is needed)
for incremental learning from user feedback. In addition, the size of the dataset
can be controlled by distance-based prototype reduction algorithms (García et al.,
2015) .

Decisions given by NN classifiers can be mapped onto probabilities, which
are needed for the late fusion classifiers. Let X be the input space, in which a
pairwise distance d : X × X → R is defined. Let Y be the set of labels considered
in the classification task. Finally, let T denote the training set of labelled samples
{(xi, yi) : xi ∈ X , yi ∈ Y}|T |i=1.

Let us now assume that we want to know the posterior probability of each
class y ∈ Y for the input point x ∈ X (P (y|x)) following the NN rule. A common
estimation makes use of the following equations (Duda et al., 2001):

p(y|x) =
1

min(x′,y′)∈T :y′=y d(x, x′) + ε
(11.1)

P (y|x) =
p(y|x)∑

y′∈Y p(y
′|x)

, (11.2)

where ε is a contemptible value used to avoid infinity calculations. That is, the
probability of each class is defined as the inverse of the distance to the nearest
sample of that class in the training set. Note that the second term is used to ensure
that the sum over the probability of each class is 1. Finally, the decision ŷ of the
classifier for an input x is given by a maximum a posteriori criterion:

ŷ = arg max
y
P (y|x) (11.3)

11.3.1 Offline classifier

The offline classifier takes the image of a symbol as input. To simplify the data,
the images are converted to greyscale. Then, since they can be of different sizes,
a fixed resizing process is performed, in the same way that can be found in other
works, like that of Rebelo et al. (Rebelo et al., 2010). At the end, each image
is represented by a integer-valued feature vector of equal length that stores the
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Figure 11.3: Offline modality of a cut time symbol for classification: feature vector
containing the greyscale value of each position of the rescaled image.

Figure 11.4: Online modality of a cut time symbol for classification: sequence of
coordinates indicating the path followed by the e-pen during the tracing process.

greyscale value of each pixel (see Fig. 11.3). Over this data, Euclidean distance
can be used for the NN classifier. A preliminary experimentation fixed the size of
the images to 30× 30 (900 features), although the values within the configurations
considered did not vary considerably.

11.3.2 Online classifier

In the online modality, the input is a series of 2D points that indicates the path
followed by the pen (see Fig. 11.4). It takes advantage of the local information, ex-
pecting that a particular symbol follows similar paths. The information contained
in this modality provides a new perspective on the recognition and it does not
overlap with the nature of the offline recognition.

The digital surface collects the strokes at a fixed sampling rate so that each one
may contain a variable number of points. However, several distance functions can
be applied to this kind of data. Those considered in this work are the following:

• Dynamic Time Warping (DTW) (Sakoe and Chiba, 1990): a technique for
measuring the dissimilarity between two time signals which may be of dif-
ferent duration.

• Edit Distance with Freeman Chain Code (FCC): the sequence of points rep-
resenting a stroke is converted into a string using a codification based on
Freeman Chain Code (Freeman, 1961). Then, a Edit Distance (Levenshtein,
1966) can be applied to measure distance.
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• Edit Distance for Ordered Set of Points (OSP) (Rico-Juan and Iñesta, 2006):
an extension of the Edit Distance for its use over ordered sequences of points,
such those collected by the e-pen.

11.3.3 Late-fusion classifier

A straightforward late fusion has been used here. The idea is to combine linearly
the decisions taken by the two base classifiers. That is, probabilities of individual
classifiers are combined by a weighted average:

Pfusion(y|x) = α · Pon(y|x) + (1− α) · Poff(y|x) (11.4)

where Poff and Pon denote the probabilities obtained by offline and online classi-
fiers, respectively. A parameter α ∈ [0, 1] is established to tune the relevance given
to each modality. We will consider several values of α ranging from 0 to 1 during
experimentation.

11.4 Experimentation

Experimentation followed a 10-fold cross-validation scheme. The independent
folds were randomly created with the sole constraint of having the same num-
ber of samples per class (where possible) in each of them. All the dissimilarities
described in the previous section for the online classifier will be tested.

Table 11.2 illustrates the error rate (%) achieved with respect to α for this ex-
periment. Note that α = 0 column yields the results of the offline classifier as well
as α = 1 is equal to the online classifier. A summary of the average results is also
illustrated in Fig 11.5.

An initial remark to begin with is that the worst results of the late-fusion classi-
fiers are achieved when each is modality is used separately, with an average error
of 11.77 for the offline modality and of 11.35, 9.38 and 5.26 for DTW, FCC and OSP,
respectively. Not surprisingly, best results are those that combine both natures of
the data, satisfying the hypothesis that two signals are better than one.

Results also report that the tuning of α is indeed relevant since it makes the
error vary noticeably. An interesting point to mention is that, although the online
modality is more accurate than the offline one by itself, the best tuning in each
configuration always gives more importance to the latter. This might be caused
by the lower variability in the writing style of the original scribes.

The best results, on average, are reported by the late-fusion classifier consider-
ing OSP distance for the online modality, with an α = 0.2. In such case, just 2 % of
error rate is obtained, which means that the interaction is well understood by the
system in most of the cases. Note that a more comprehensive search of the best
α may lead to a better performance (for instance, in the range (0.2, 0.4)), but the
improvement is not expected to be significant.
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Table 11.2: Error rate (average ± std. deviation) obtained for a 10-fold cross val-
idation experiment with respect to the value used for tuning the weight given to
each modality (α) and the distances for the online modality (DTW, FCC and OSP).
Bold values represent the best average result for each configuration considered.

α DTW FCC OSP

0.0 11.8 ± 1.5 11.8 ± 1.5 11.8 ± 1.5

0.1 5.3 ± 0.4 5.5 ± 1.1 4.9 ± 0.7

0.2 4.7 ± 0.4 4.1 ± 1.0 3.0 ± 0.2

0.3 5.4 ± 0.4 3.9 ± 0.8 2.2 ± 0.4

0.4 6.4 ± 0.3 4.1 ± 0.7 2.0 ± 0.4

0.5 7.4 ± 0.5 4.6 ± 0.7 2.2 ± 0.5

0.6 8.2 ± 0.6 5.2 ± 0.9 2.5 ± 0.5

0.7 9.1 ± 0.5 5.9 ± 1.0 3.0 ± 0.6

0.8 9.8 ± 0.5 6.6 ± 0.9 3.4 ± 0.6

0.9 10.5 ± 0.8 7.3 ± 0.9 4.2 ± 0.5

1.0 11.3 ± 0.8 9.3 ± 0.7 5.2 ± 0.5
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Figure 11.5: Average results with respect to the weight (α) given to each modality
for the configurations considered, from offline (α = 0) to online (α = 1).
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Although the results report a fair accuracy, the use of semantic music models is
expected to avoid some of these mistakes by using contextual information. There-
fore, a nearly optimal performance could be obtained during the interaction with
the user.

11.5 Conclusions

This paper presents a new approach to interact with musical notation, based on
the use of an electronic pen. Our framework assumes that the user traces each
musical symbol of the score, and the system receives a multimodal input accord-
ingly: the sequence of coordinates indicating the trajectory of the e-pen (online
mode) and the underlying image of the score itself (offline mode).

This framework has been applied to a music archive of Spanish music from
the 16th to 18th centuries, handwritten in white mensural, with the objective of
obtaining data for our experiments. The result of processing this collection has
been described and made available for research purposes.

Experimentation with this dataset is presented, considering several classifiers.
The overall analysis of this experiments is that it is worth to consider both modal-
ities in the classification process, as accuracy is noticeably improved with a com-
bination of them than that achieved by each separately.

As a future line of work, the reported analysis will be used to build a whole
computer-aided system, in which the user interacts with the system by means of an
electronic pen to digitize music content. Since the late-fusion classifier is close to
its optimal performance, it seems to be more interesting to consider the develop-
ment of semantic models that can amend misclassifications by using contextual
information (e.g., a score starts with a clef). In addition, further effort is to be
devoted to visualization and the user interface.
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Conclusion
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Chapter 12

Concluding remarks

This chapter concludes the dissertation. It includes a summary of the research
carried out, a brief discussion of the general contributions and some of the main
opened lines of future work.

12.1 Summary

This thesis aims at proposing contributions to the automatic recognition of mu-
sic notation based on a Pattern Recognition perspective. The research focuses its
efforts on specific aspects that dovetail with this overall objective.

Chapters 3, 4 and 5 deal with general aspects of the OMR field. In the first one,
an new approach for old printed music is proposed. The distinctive feature of this
system is that it avoids the staff lines removal. Results show that, at least for some
kind of notation, it is advisable to address the problem in this way since many er-
rors in both extraction and classification are prevented. Chapter 4 continues with
aspects related to staff lines. It is proposed to solve that step as a classification
problem at pixel level. Experimentation reports that this approach is competitive
with respect to state-of-the-art strategies, including some additional advantages
related to supervised classification. Moreover, Chapter 5 proposes a new algo-
rithm to classify symbols based on the NN rule. It combines ideas of ensemble
classifiers and dissimilarity spaces to improve the accuracy.

Chapters 6, 7, 10 and 11 develop the human-machine interaction for music
notation by means of e-pen technologies. Those chapters deal with both the au-
tomatic recognition of isolated handwritten symbols as well as the use of such an
interface to interact with an OMR system or to develop a system for pen-based
score creation.

Finally, Chapters 8 and 9 address improvements to the efficiency of classifi-
cation based on the NN rule. This classifier is a good choice from the point of
view of an interactive scenario. In turn, it leads to a high computational com-
plexity. Therefore, the use of strategies that make use of Prototype Reduction
algorithms is proposed to alleviate this situation. Specifically, Chapter 8 proposes
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a new heuristic to combine the efficiency of using Prototype Selection algorithms
with the accuracy of using the full available data. Chapter 9, however, proposes
a way to use Prototype Generation algorithms in tasks for which the input is not
represented as a features vector. Both studies have demonstrated significant im-
provements treating the database presented in Chapter 6. Nevertheless, in order
to reach a wider audience, they also include experimentation with several well-
known datasets that allows generalising these contributions to other classification
tasks.

12.2 Discussion

Given that the substantial part of the dissertation consists of a compilation of
papers, the main discussions of each contribution can be found in their corre-
sponding chapter. From a global point of view, however, this thesis has shown
that it is profitable to develop those aspects of OMR in which Pattern Recognition
can make significant contributions.

As depicted in the diversity of issues addressed in the publications, it can be
seen that the thesis has been flexible in its main line, incorporating new ideas
emerged in the course of the research on the automatic recognition focused on
musical notation. The research covers different parts of the process such as the
removal of the staff lines, new approaches to interact with the system and im-
provements in the classification of symbols, both in accuracy and efficiency.

It can be concluded that the research conducted involves an interesting re-
search for the scientific community, as demonstrated by publications in high-
impact journals and conferences, backed by peer-review committees. As evidence
of quality, it can be pointed out that 5 of these works are published in journals in-
dexed in the Journal Citation Reports, located within the first quartiles, whereas the
rest are published in relevant international conferences. Additionally, two works
have been described that are still to be considered for publication on the day of
the submission of this dissertation.

On the other hand, this series of publications not only demonstrate that the
research carried out is able to depict a relevant contribution in the field of study
but also proves that the knowledge needed for research dissemination has been
acquired.

12.3 Future work

The research lines started in this thesis can not be considered as completely fin-
ished. On the contrary, the conducted research has opened new avenues that are
interesting to consider in the near future:

1. The approach to build OMR systems that avoid the removal of staff lines
must be considered to analyse other types of scores. It remains to evaluate
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whether this strategy can definitely be established as a new alternative for
the construction of these systems or reduced only to those who have a sheet
style like the one considered in this thesis. Moreover, one issue to consider is
that segmentation of symbols also follows a supervised learning approach,
instead of using heuristics based on unsupervised learning. For example, a
classifier could learn to discriminate which parts of the staff represent the
bound of a music symbol.

2. It has been shown that removing staff lines can be approached as a super-
vised classification task. In this regard, it would be interesting to generalize
this process so that it can be used with greyscale images, thereby avoiding
the problems produced by a wrong binarization. In addition, more research
should be devoted to overcoming the problem of getting enough data to
train these classifiers when a new type of sheet is received.

3. The recognition of pen-based music notation had been little explored so far.
The work done in this thesis represents an important seed but there is still
room for further research in that direction. The addition of pen-based inter-
action in the workflow of a fully functional OMR system is still to be studied.
It would be interesting to see how the system itself and the user collaborate
to complete the task with minimal effort. In addition, the interaction should
not only correct errors produced but help the system to dynamically modify
its behaviour.

4. So far, most of OMR systems have followed a conventional pipeline based
on segmentation and classification steps. As future work, the performance
of holistic Pattern Recognition should be considered for this task. For in-
stance, considering the use of models such as Hidden Markov Models or
Recurrent Neural Networks, which are giving good results in the automatic
recognition of handwritten text.

5. In recent years, deep neural networks have been a remarkable leap in the
ability to learn intrinsic representations of input data. Specifically, Convo-
lutional Neural Networks have shown a great ability in classification tasks
involving images (Ciresan et al., 2012). Therefore, it would be interesting
to consider this new paradigm to improve the results obtained in the OMR
field.

It should be noted that depending on the degree of depth pursued, each of
these lines can be seen as either a sequel of the work presented in this dissertation
or the start of a specific research project.
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