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Highlights 

The methodology obtains the eigenvectors of a symmetric or Hermitian matrix using a genetic 

algorithm.  

Also the target vector space can be either real or complex. 

The method searches the eigenvectors and calculates the eigenvalues afterwards. 

 The method obtains precise results in the real and complex cases. 
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ABSTRACT 

The eigenvalues and eigenvectors of a matrix have many applications in engineering and 

science. For example they are important in studying and solving structural problems, in the 

treatment of signal or image processing, in the study of quantum mechanics and in certain 

physical problems. It is therefore essential to analyze methodologies to obtain the eigenvectors 

and eigenvalues of symmetric and Hermitian matrices.In this paper the authors present a 

methodology for obtaining the eigenvectors and eigenvalues of a symmetric or hermitian matrix 

using a genetic algorithm. Unlike other methodologies, the process is centred in searching the 

eigenvectors and calculating the eigenvalues afterwards.  In the search of the eigenvectors a 

genetic-based algorithm is used. Genetic algorithms are indicated when the search space is 

extended, unknown or with an intricate geometry. Also, the target vector space can be either real 

or complex, allowing in this way a wider field of application for the proposed method. The 

algorithm is tested comparing the results with those obtained by other methods or with the 

values previously known. So, seven applications are included: a real symmetric matrix 

corresponding to a vibrating system, a complex hermitian matrix and an important application 

of the diagonalization problem (Coope matrix) corresponding to quantum mechanics examples, 

a physical problem in which data are analysed to reduce the number of variables, a comparison 

with the power method and the studies of a degenerate and an ill-conditioned matrix. 

Keywords:  eigenvector, eigenvalue, genetic algorithm, symmetric matrices, Hermitian 

matrices, computational methods 

Corresponding author: villacampa@ua.es;francisco.navarro@ua.es 

1. Introduction.  

The problem of determining the set of eigenvectors and eigenvalues of a matrix is 

known as the complete eigenvalue problem. This matter is presented in several 

problems, as solving differential equations, studying the stability and behaviour of 

mechanical structures and determining the allowed states of quantum systems. 
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Given a matrix a, A, representing a linear transformation on a vector space  KV   

defined over a field K, the problem results in the determination of the vectors, 

eigenvectors u, and scalars, eigenvalues ʎ, that solve the equation: 

 A u u   (1.1) 

A classic approach is to calculate the eigenvalues as the solution of:   

  det 0A I    (1.2) 

That is, solving a polynomial equation (characteristic polynomial)   0P . Once the 

eigenvalues are known, the eigenvector corresponding to each eigenvalue i  is 

calculated solving the linear system: 

   ( ) 0i

iA I u   
 (1.3) 

 Leverrier and Krylov methods can be used to solve the characteristic polynomial 

(Stoer, 2002,[1]; Endre, 2003, [2]; Demidovich, 1993, [3]; Volkov, 1987,                        

[4]). However, the calculation of the numeric solution has instability problems because 

of the dependence of the zeroes estimation from the polynomial coefficients. Moreover, 

there are numerical methods for diagonalizing a symmetric matrix (Parlettt,1981, [5]; 

Wilkinson,1965 [6]; Cullun, 1985 [7]). Sometimes not all the eigenvalues are 

calculated, limiting the efforts to some of them. 

The eigenvalue problem can also be converted in an optimization problem, where an 

adequate function can be minimized or maximized computing its gradient and hessian, 

and obtaining the eigenvectors of the matrix. In this case the non-deterministic and 

stochastic methods can be of interest. These methods, that have been applied in physics, 

economy and other fields, can be found in several papers (Kirkpatrick, 1983 [8]; Van 

Laarhoven, 1987 [9]; Goldberg, 1989 [10]).   

Some authors (Subhajit, 2011 [11]) have used genetic algorithms to calculate some of 

the eigenvalues by means of the Rayleigh quotient.  

Other methods that don’t need to solve the characteristic polynomial are the power 

method and its variants, (Demidovich, 1993 [3]; Volkov, 1987 [4]). Let the eigenvalues 

1 2, ,.., n    ordered by their magnitudes, 

 1 2 .. n      (1.4) 

When considering the repeated action of the matrix over an arbitrary vector (expressed 

using the eigenvectors basis) 

  1 2 1 2.. ..
1 2 1 2 2

n nA y A y u y u y u y u y u y u
n n n

                      (1.5) 
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                          1 2 2

1 1 2

1 1

..

N N

N N n n

nA y y u y u y u



 

    
              
     

                           (1.6) 

 The convergence to the first eigenvector depends on the relation  2 1  . There are 

variations of the method to accelerate the convergence velocity: the shifted power 

method, Aitken’s method, (Demidovich, 1993 [3]; Volkov, 1987 [4]), or the Jacobi 

method and others if the matrix is symmetric. When the first eigenvector is calculated, a 

process of deflation removes it from the search space.  

Other possibility that can be used is the QR method that makes orthogonal transforms 

according to the spectral theorem for symmetric matrices (Golub, G.H,1996 [12]; Endre 

Süli,2003 [13] ). So, the QR decomposition method factors any matrix A as A=QR, 

where Q is an orthogonal matrix and R is a non-singular upper matrix. This is the base 

of the QR eigenvalue algorithm used for symmetric and Hermitian matrices. A variation 

of this method, known as Shifted QR makes a previous modification of the matrix A, 

QRIA   to speed up the convergence of the algorithm.  

 

2. Numeric methodology 

 

In the present paper an implementation of a genetic algorithm is presented for 

calculating the first eigenvector and eigenvalue of a symmetric or hermitian matrix. To 

determine the rest of eigenvectors, the matrix is modified by a rotation that transforms 

the first vector of the canonical basis into the calculated eigenvector. The eigenvectors 

of the transformed matrix have the first component equal to zero. 

Once all the eigenvectors have been calculated, the change of basis can be inverted, 

obtaining the components of the eigenvectors in the canonical basis. 

 

2.1. Search of the first eigenvector. 

Given a matrix A, obtaining the eigenvectors is equivalent to solve the equation: 

                                                                     i i iA u u  
                                            (2.1) 

For simplicity, it can be assumed the normalized eigenvectors, 1iu  . Vectors iu  and 

its images  iz A u   are collinear, and so that it meets: 

                                               
2T T T

i i i i i i i i iu z u A u u u u                                            (2.2) 
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Given any vector of module 1 close to the eigenvector ix u e  , the image can be 

decomposed into two parts one collinear and one perpendicular:                                         

     

 

i i i i i i

i i

z A x A u e u A e x e A e x A I e

x x z x z

   

    

                    

        
                                            

So, if the vectors are normalized, 1u  any unitary vector close to the 

eigenvector, ix u e   has an image which has parallel and orthogonal components:  

                                                  
 iz A x x z       

                                           (2.3) 

One way to measure the quality of x as eigenvector is considered the perpendicular 

component module: 

             

   

       

22
2

2 2 2

2 2 2 2 2

2 2 2 2

2 2

1

cos
1 2 1 1

1 cos sin

TT

T T T T

z z x xz xz x
z

x xz z z

z x z x z x z x z x

z z z z



 


  

     

      
        

  

     

(2.4)   

, where α is the angle between the vectors x and z. 

Following these arguments, the next function can measure the proximity to the 

eigenvectors: 

                                 
 

 sin

T

I

A x x A x x
x

A x


    
  


                                    (2.5)   

In the above figure 1, the function (2.5) is represented for a bi-dimensional symmetric 

matrix. Also, the vectors z  can be seen: 

 

 

Figure 1- Perpendicular error and level curves of error function  xI  
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    But this is not the only possibility, because other functions can also be considered: 

 
   

 

2 2 2

2
2 2 2

2 2 cos 2 1 cos

T T

II

z x z xz x z z
x x x

z x z z z z

 

 
            

     

              (2.6) 

The behaviour of these functions is different when the angle is near zero: 

                                               
   sin 3I x o    

                                              (2.7) 

                                         
     22 1 cos 4II x o      

                                     (2.8) 

The functions (2.7) and (2.8) can be used as fitness functions in the genetic algorithm. 

Once the eigenvector iu  is determined, the corresponding eigenvalue can be obtained 

considering that: 

   
   

1 1

1 1
k k

n n
k i ik

i i k i i k i k ik k
k ki i

A u A u
A u a u a a

u n u n
   

 

 
             

       (2.9) 

,because the components of the error ka  are usually small and distributed around zero. 

However, problems could appear when vectors with 1k

iu   cause an over-

consideration of the particular quotient, sometimes very far from the searched 

eigenvalue. To avoid this, a weighted average (using the squares of the components 

iu as weights), can be considered: 

      
 

 
   

2

2
1 1 1

1

1 1

1

k
n n n

ki k k T

i i i i i i k in k
k k k ki
i

k

A u
u A u u u A u a

u
u

 
  




             


                   (2.10) 

,because the vectors are unitary. 

2.2. Dimensional reduction of the problem. The next eigenvectors.  

 

Initially, the case of a matrix with real eigenvectors is studied. After, the complex case 

is considered. 

2.2.1. Dimensional reduction for real matrices. 

When the first eigenvector 1u  has been obtained, the vector 1

1

1

0nx

e
 

  
 

 of the canonical 

basis is rotated taking it to the direction of the vector 1u . 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Regardless of indices, the eigenvector u has the components: 
1

R

u




 
  
 

. 

where  1  is a scalar  and 
R  a vector of dimension d-1. The symmetric matrix can be 

decomposed in similar blocks  

                             
1 1

T T

R R

m p m p
A

p M p M

 


 

      
         

      
                                  (2.11) 

It is necessary to rotate in the plane defined by the vectors 1

1

0
e

 
  
 

, 
1

R

u




 
  
 

.  

Denoting by   the Kronecker product, the rotation matrix has the form: 

                                         

 

1

1

1

1

T

R

T

R R R

Q
I

 

  


 
 

    
  

                                        (2.12) 

The matrix in this new basis is, A’:  

                                            ' TA Q A Q                                                                   (2.13) 

The next eigenvectors have a zero in the first component, that is, the dimension of the 

search space is n-1. When the eigenvectors are found, the change of basis must be 

inverted: 

When further eigenvector 
1

1

2 2

0
B

R B

u


 
  
 

 has been obtained, it is necessary to transform 

it to put it in the original base, 0B . For this:    

                                                    
 0

1

2 1 2

0

B

R B

u Q


 
   

 
                                                (2.14) 

,where  1Q   is the matrix corresponding to the rotation.  

The expression of the matrix A in the new basis A’ has the form: 

                                        
1 0

1

1 1

0

0

T

B B
red

A Q A Q
A

 
     

                                    (2.15) 

 

In the same way it is obtained for the k-th eigenvector: 

                                           0 1
1 3 2

k
k k k kB B

u Q Q Q u


    
                                          (2.16) 
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2.2.2. Dimensional reduction for complex matrices. 

In the case of a hermitian matrix the only difference are the vectors that take part of the 

rotation.  

Now, the rotation takes the vector 1e  to the vector 

1

†
1 1

1

R
u



 



 
 

  
 
 

, where 
1

R





 
 
 

 is the 

first obtained eigenvector, and †u  is the complex conjugate of the vector u . 

The complex eigenvector must satisfy the equation: 

                                 
† †

1 1

R R

m p m p
A

p M p M

 


 

      
         

      
                               (2.17) 

The norm of the vector is: 

                                                            
2 † 1u u u                                                  (2.18)                         

Imposing the additional condition that the first component is real; 

                                          
2 21

2 2

1 1 1

1 1 1

R

w w u


  

 
      

 
          

                                                                                                                                   (2.19)  

This normalized vector has the form: 

                                       

11

11 †

1 1

1

11

R R
R

w
v

w




   




  
    

         
     

   

                       (2.20) 

As in the real case (2.12), the matrix Q that changes between the old and the new basis 

can be calculated: 

                      

 

†

1
1

1

† † †

1 1 1

1 1 11

1

1

R

R R R

Q

I

 




     

  

 
 

 

   
   
  

                                       (2.21) 

,and the matrix in the new basis: 

                                      ' TA Q A Q                                                                      (2.22) 

 

3. Genetic algorithms 
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There are a lot of problems that can be solved searching the solution in a space of states. 

Several strategies try to generate new states and test them: uninformed search, greedy 

search, A*-search, gradient descent algorithms, simulated annealing, genetic algorithms, 

(Russell, 2004 [14]). 

There are problems in which the solution consists not only in an element of the search 

space the intermediate steps are also of interest (robot navigation problem or a sliding 

tile puzzle). On the other side, some problems need only the solution element to be 

considered as solved (natural language processing, electronic circuit design and the n-

queens problem are examples of this kind of problems). In the second case, local 

searching algorithms (genetic algorithms are into this kind) are of interest. 

Genetic algorithms (GA) are non-deterministic optimization methods (Holland, 1975 

[15]). These methods are based on the theory of evolution by natural selection, where 

biological diversity and species adaptation to natural environments are originated by 

biological processes as reproduction (with genetic information interchange), mutations 

and individual selection. Genetic algorithms (first used in 70’s) try to mimic these 

natural processes, creating an initial population of individuals with characteristics that 

determine its fitness to the problem solution. The evolutive process consists in the 

creation of new individuals using the characteristics of the best adapted of each 

generation.  

The existence of a fitness function allows using GA as an alternative way of searching 

in spaces, characterizing each solution candidate as a point in that space.  

Genetic algorithms combine the effects of two processes: the survival of the fittest and a 

random interchange of characteristics between individuals of the population of 

candidate solutions. Such combination allows using GA as a searching algorithm for 

optimization problems (Golberg, 1989 [16]). A very interesting property of GA is its 

highly potential for parallelizability. 

In a general description of how a GA works, it starts with a randomly generated initial 

population, corresponding to potential solutions of the considered problem. On every 

individual there is defined a fitness function that gives an indication of how far the 

individual is from a solution of the problem (in the biological simile this is equivalent to 

the capacity of the individual obtaining natural resources). Using the operations 

crossover and mutation, a new generation of individuals is obtained. Sometimes, some 

of these new individuals have better fitness values, that is, are better solutions 
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candidates. The iteration over time causes that considering the best candidate, the 

algorithm converges to the solution. 

The algorithm can be resumed as: 

g=0 

Generate initial population, P(g);  

evaluate P(g); 

repeat 

g:=g+1; 

  generate P(g) from P(g-1); // crossover and mutation 

evaluate P(g); 

until convergence  

4. The proposed genetic method  

Sometimes the best option to solve a problem is using hybrid techniques, taking 

advantages of all the methods and reducing the problems inherent to each of them. For 

example, the A*-search algorithm used in autonomous robot navigation, vehicles or 

video games characters, (Schwab, 2004 [17]), uses too much memory. To avoid this 

problem, techniques as the iterative deepening A* (IDA*) are developed, combining the 

A*-search and an iterative deepening search (Russell, 2004 [14]).   

Other hybrid techniques combine informed strategies (like A*) with irrevocable 

searches (like gradient descent).  

In this paper the proposed algorithm combines the philosophy of genetic algorithms 

with modified crossover and mutation operators that improve the convergence velocity. 

4.1. Vector representation and fitness function.  
 

Usually, a candidate point xi= (xi1, xi2, …xin) is represented using an array of bits, called 

chromosome. Each component is codified with b bits, so the entire point is represented 

by n b  bits. 

In the proposed method a chromosome is codified as an array of doubles (x1, x2, …xn). 

The considered vectors are normalized: 

                                                             2 1Kx

k

                                                      (4.1) 

The initial population is generated creating individuals with random components 

obtained from a constant distribution in the interval [-1,1], normalizing each vector 
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afterwards. The population is uniformly distributed over the n-dimensional hypersphere 

with radius 1. 

 

 

Figure 2. Example of initial population 

 

 

 

4.2.  Selection of individuals  

 

Given a population, the process of determining the individuals that will take part in the 

crossover operation is called selection. Under some circumstances (survival of the fittest 

individual) the algorithm obtains improvements in the best fitness.  

The functions defined in (2.7) and (2.8) can be used as fitness functions in the genetic 

algorithm. However, there are not significant differences between the convergence rates 

of the respective derived algorithms. 

In the considered algorithm the selection is completely deterministic because just the 

NP individuals with the best fit are selected (NP is the size of the population). 

                                                                                                                        

 

4.3. Crossover operator  

Crossover operator interchanges the genetic material between the previously selected 

individuals of the population. The combination of two vectors results in a new vector 

obtained from a probability distribution as shown in figure 3.  
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Figure 3 Influence area for the crossover operator.  

 

For each survivor a couple is randomly selected from the rest of survivors. These pairs 

are combining using the crossover operation. In such operation, giving the pair of 

vectors (x1, x2, …xd) and (y1, y2, …yd), the descendant is constructed using the 

expression: 

                         (4.2) 

That is, the new vector is normally distributed around the mean vector with the variance 

being a function F of the respective fitness.  

 

4.4. Mutation  

The mutation operator modifies some of the components of the vector. With a small 

probability of mutation the individual is very similar to its parents.  

This operator maintains a minimum degree of diversity in the components of the 

candidate vectors. If some of these components have converged for the entire 

population the crossover operator cannot change it. 

The modification a component has the expression: 

                                                              (4.3) 
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Figure 4 Influence area of mutation perturbation 

 

Figure 4 shows the probability distribution for the mutated vector around the initial 

vector. 

5. Examples  

The proposed algorithm is tested in seven problems, comparing the results with those 

obtained by other methods or with the values previously known.  

Firstly the methodology has been tested in a symmetric matrix that represents a system 

of masses connected by springs. Furthermore two Hermitian matrices corresponding to 

quantum mechanics problems have been selected. 

Secondly the Principal Component Analysis (PCA) has been applied by the 

diagonalization of the data covariance matrix comparing the results. 

Finally it has been selected three examples in order to compare the methodology with 

the power method and the QR algorithm, including the studies of a degenerate and an 

ill-conditioned matrix.  

In the examples the mutation probability has been set to 0.005 (0.5 %), and the 

population size is 100. 

5.1. Example 1.Vibration problem 

Eigenvalue/Eigenvector analysis is useful for a wide variety of differential equations, 

and it can be used in the study of vibration problems. Considering a system of masses 

connected by springs, it can be split in a number of pieces with mass m. Each one of 

these pieces is under uniform tension, T.  Each mass, has a displacement from the 

equilibrium position, xi. The equations containing the dynamics of each of this spring 

pieces have the form: 

                                                                                   (5.1) 

With an adequate selection of units 1,1  m , the system can be written as: 
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                                                                                                                      (5.2) 

 

2,

( , ) 1, i j 1

0

i j

A i j

otherwise

 


  



  (5.3) 

In table 1 the eigenvalues obtained by the algorithm and those provided by Matlab can 

be compared.  

 

 Results 

Eigenvalue nº Genetic Algorithm Matlab 

1 -3.918985947090077 -3.918985947228995 

2 -3.682507065763702 -3.682507065662362 

3 -3.309721467871853 -3.309721467890570 

4 -2.830830026020166 -2.830830026003773 

5 -2.284629676550326 -2.284629676546571 

6 -1.715370323452336 -1.715370323453430 

7 -1.169169974012325 -1.169169973996227 

8 -0.690278532110185 -0.6902785321094292 

9 -0.317492934347117 -0.3174929343376384 

10 -0.081014052781915 -0.08101405277100521 

 

Table 1 Eigenvalue in an interconnected spring’s system 

 

Figure 5 shows average of the error over 100 executions of the algorithm for the best 

individual in each generation for the first three eigenvectors: 
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                                          Figure 5 Evolution of the error for the three first eigenvectors 

 

 

5.2. Example 2. Hermitian matrix. 

To check the behaviour of the algorithm in the case of a Hermitian matrix, a quantum 

mechanics example is considered, comparing the obtained values and the exact numeric 

solutions. 

Given a quantum system with total angular momentum of 5/2, a basis for the state space 

is formed by the eigenvectors of the ZJ  operator, represented as 
5 2

5 2

5 2
Z

m

J
m

m



.  

The quantum operator YJ  can be written in that basis as: 

 

0 5 0 0 0 0

5 0 8 0 0 0

0 8 0 9 0 0

0 0 9 0 8 0

0 0 0 8 0 5

0 0 0 0 5 0

Y

i

i i

i i
J

i i

i i

i

  
 
   

 
   

 
   

   
 
    ( 5.4) 

Its eigenvalues are well known, being proportional to  5, 3, 1, 1, 3, 5      . 

The eigenvectors have been obtained after 7000 generations. Table 2 shows the exact 

eigenvalues and the values obtained by the genetic algorithm. The relative error is also 
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calculated. 

Exact eigenvalue Calculated eigenvalue % Error 

5 4.99999999978128 94.4 10  

3 3.0000000000209 107.0 10  

1 0.998640586530327 1.4 310

 

-1 -0.998640586493665 1.4 310

 

-3 -3.0000000000619 92.1 10  

-5 -4.99999999977693 94.5 10  

 

 Table 2 Exact value, approximate solution and error 

 

The following Figure 6 shows the evolution for the error in each generation:  

 

 

Figure 6. Error evolution for the first eigenvectors 

5.3. Example 3. Coope Matrix  

An important application of the diagonalization problem is quantum mechanics. Under 

some conditions, solving Schrödinger equation is equivalent to the calculation of the 

eigenvalues and eigenvectors of the following matrix (Coope matrix): 
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2 1,
( , )

1,i j

i i j
H i j

 
 


                                    

There are previous works (Subhajit, 2011 [11]) where the problem is solved for the first 

eigenvalues using a genetic algorithm. For the methodology introduced in the present 

paper, a study for the relationship between the matrix size and the temporal cost of the 

program is done. With the obtained data the algorithm performance is estimated (table 

4). 

Matrix dimensión Time(seconds) 

5 0,48243333 

8 1,71365 

10 5,13338667 

12 13,9806667 

15 31,9464667 

17 63,6046333 

 

Table 3. Computational time for the algorithm 

 

In the next figure, the data from table 3 is represented, obtaining the relationship 

between the dimension of the matrix and the computing time. 

 

 

Figure 7 Adjust of computational efficiency of the algorithm 
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Another study is to consider the reduced problems, calculating only five eigenvectors 

for each matrix. The resulting times are: 

 

Figure 8 Adjust of computational efficiency of the algorithm for the  

reduced problem (only five eigenvectors). 

 

5.4. Example 4. Principal component analysis 

Principal component analysis (PCA) is a statistical method used to convert a set of 

observations of D variables into a set of D’ (D’≤D) uncorrelated orthogonal variables 

called principal components. Obtaining these components is equivalent to the 

diagonalization of the covariance matrix of the data. 

These components are obtained in a form that is ordered using the variance (including 

the most part of the variability of the data).  

PCA is used in several fields, by example in signal processing, mechanical engineering, 

linear algebra, meteorological science, structural dynamics, medical diagnostic, 

neuroscience, etc. 

The next example is a physical problem in which data are analyzed to reduce the 

number of variables in the data. The dataset is available in the UCI Machine Learning 

Repository ([18]).  

The description of the dataset given by the authors is: “The data are Monte Carlo 

program generated ([19]) to simulate registration of high energy gamma particles in a 
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ground-based atmospheric Cherenkov gamma telescope using the imaging technique. 

Cherenkov gamma telescope observes high energy gamma rays, taking advantage of the 

radiation emitted by charged particles produced inside the electromagnetic showers 

initiated by the gammas, and developing in the atmosphere. This Cherenkov radiation 

(of visible to UV wavelengths) leaks through the atmosphere and gets recorded in the 

detector, allowing reconstruction of the shower parameters. The available information 

consists of pulses left by the incoming Cherenkov photons on the photomultiplier tubes, 

arranged in a plane, the camera. Depending on the energy of the primary gamma, a total 

of few hundreds to some 10000 Cherenkov photons get collected, in patterns (called the 

shower image), allowing to discriminate statistically those caused by primary gammas 

(signal) from the images of hadronic showers initiated by cosmic rays in the upper 

atmosphere (background). 

Typically, the image of a shower after some pre-processing is an elongated cluster. Its 

long axis is oriented towards the camera centre if the shower axis is parallel to the 

telescope's optical axis, i.e. if the telescope axis is directed towards a point source. A 

principal component analysis is performed in the camera plane, which results in a 

correlation axis and defines an ellipse. If the depositions were distributed as a bivariate 

Gaussian, this would be an equidensity ellipse. The characteristic parameters of this 

ellipse (often called Hillas parameters) are among the image parameters that can be used 

for discrimination. The energy depositions are typically asymmetric along the major 

axis, and this asymmetry can also be used in discrimination. There are, in addition, 

further discriminating characteristics, like the extent of the cluster in the image plane, or 

the total sum of depositions.” 

The dataset is formed by 10 variables: 

1. fLength: continuous. Major axis of ellipse [mm] 

2. fWidth: continuous. Minor axis of ellipse [mm] 

3. fSize: continuous. 10-log of sum of content of all pixels [in #phot] 

4. fConc: continuous. Ratio of sum of two highest pixels over fSize [ratio] 

5. fConc1: continuous. Ratio of highest pixel over fSize [ratio] 

6. fAsym: continuous. Distance from highest pixel to centre, projected onto major 

axis [mm] 

7. fM3Long: continuous. 3rd root of third moment along major axis [mm] 
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8. fM3Trans: continuous. 3rd root of third moment along minor axis [mm] 

9. fAlpha: continuous. Angle of major axis with vector to origin [deg] 

10. fDist: continuous. Distance from origin to centre of ellipse [mm] 

A principal component analysis performed by the free computational software R ([20]) 

has obtained seven vectors as the main contributors to the variance (accounting for the 

0.99999). In the proposed methodology the eigenvectors for the covariance matrix have 

been calculated. The results are similar in both cases as can be seen with detail in Annex 

I. 

The next table shows a short comparison between both results, where the proportion of 

variance of each component can be seen: 

 

 Comp. 1 Comp. 2 Comp. 3 Comp. 4 Comp. 5 Comp. 6 Comp. 7 

Standard deviation 81,1159 62,0795 44,9042 36,42471 24,70197 20,82304 10,8319 

Proportion of variance 0,4405 0,258 0,135 0,08882 0,04085 0,02903 0,00785 

Cumulative proportion 0,4405 0,6985 0,8335 0,92226 0,96311 0,99214 0,99999 

Error module 0,00163 0,00347 0,00181 0,01393 0,00995 0,00150 0,01625 

 

Table 4 Proportion of variance of each component 

The errors between the R-software and the genetic method eigenvectors are displayed in 

the Error module row. These errors have been calculated as: 

  
2

i i

i genetic R

i

error V V   

5.5. Example 5. Comparison with the power method 

 Given the matrix A, the Matlab implementation of the power method has been used to 

obtain the eigenvalue with the greatest absolute value and the corresponding 

eigenvector. The results are compared with those obtained using the new method. 























1234

2123

3212

4321

A  
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Using Matlab, the obtained eigenvector is v= [1, 0.8198, 0.8198, 1], and the 

corresponding eigenvalue must verify: ʎ*v =A*v=[9.0990, 7.4594, 7.4594, 9.0990]. 

According with the proposed methodology, the obtained eigenvector is: 

v= [1, 0.8207, 0.8197, 1] and the resulting value for ʎ is 9.09902, so the results are 

similar.   

5.6. Example 6. Degenerate matrix 

For the degenerate matrix B, the results obtained with the QR algorithm in Matlab and 

the genetic algorithm are equal. That is, a triple eigenvalue λ=1 and a single one, λ=5  

2 1 1 1

1 2 1 1

1 1 2 1

1 1 1 2

B

 
 
 
 
 
 

 

5.7. Example 7. And ill conditioned matrix 

Given the stochastic matrix M, which has high-magnitude elements, the results obtained 

with Matlab using 32 digits and arithmetic precision (considering this as the exact 

solution) are shown in Table 5 The results obtained with the proposed methodology are 

coincident with Matlab (arithmetic precision), as can be checked in the same table. 


















1919

92029

192940

101010

101010

101010

M  

 32Dig Precision arithmetic Genetic algorithm 

ʎ1 
-3,96678784561050e+23 

 

9.981818 9.98182 

 

ʎ2 
-8,10000976406272e+19 

 

9,9000*1019 9.9e+19 

ʎ3 
1,00000000000000e+40 

 
1,000000* 1040

 1e+40 

 

Table 5 Comparison of eigenvalues  
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6. Conclusions 

In this paper the authors have developed a non-deterministic method, based on a genetic 

algorithm, to obtain the solution to the complete eigenvector problem. The main result 

is the set of eigenvectors, and from them it is possible to estimate the corresponding 

eigenvalues. 

The method can be used with symmetric and hermitian matrices that are common in 

scientific and engineering problems. 

The selected examples show that the methodology obtains precise results in the real and 

complex cases, comparing them with the values obtained by other tools or theoretically. 

In the third example, the velocity of convergence decreases with the matrix dimension. 

The reason of this is that the search is random in a neighbourhood of the parent vectors. 

This volume increases with the dimension as 
nL  where L is the radius of the zone 

affected by the normal distribution in the operations of crossover and mutation.  

The future lines of research include designing new fitness functions and improvements 

in the crossover and mutation operators to increase the convergence velocity. Another 

study will be the comparisons of the proposed methodology with the classical genetic 

algorithm approach of binary coding, trying to understand the causes of the better 

behaviour of the proposed method. 
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ANNEX. I 

R –Principal Components results: 

PC1=(0,3278123051 ; 0,1138100005 ; 0,0030607669 ; -0,0009271091 ; -0,0005218824 ; -

0,3807000111 ; -0,0716522956 ; 0,0033740577 ; -0,0535411190 ; 0,8524267069) 

PC2=(0,1344063317 ; 0,0538837224 ; -0,0006593720 ; 0,0002582053 ; 0,0001527100 ; -

0,6938974103 ; -0,5626201689 ; 0,0010323557 ; 0,1183514088 ; -0,4086413654) 

PC3=(-0,0655078481 ; 0,0189938175 ; -0,0010593176 ; 0,0005103997 ; 0,0002946359 ; 

0,5400768346 ; -0,8131211084 ; 0,0124715329 ; 0,0531065391 ; 0,1988007027) 

PC4=(0,863988253 ; 0,319766485 ; 0,006930287 ; -0,002605551 ; -0,001512759 ; 

0,285130223 ; 0,075884464 ; 0,011894809 ; 0,092513865 ; -0,235496475) 

PC5=(0,0945511967 ; -0,0197548493 ; 0,0026518525 ; -0,0015389987 ; -0,0009193406 ; -

0,0054838792 ; -0,1022108038 ; -0,0097559004 ; -0,9842422099 ; -0,1065577049) 

PC6=(1,985520e-02 ; -2,325923e-02 ; -1,334415e-04 ; 3,464377e-05 ; 2,215016e-05 ; 

8,839391e-03 ; -9,938329e-03 ; -9,993549e-01 ; 1,289978e-02 ; 3,348567e-03) 

PC7=(-0,338166662 ; 0,938307839 ; 0,010882323 ; -0,003062871 ; -0,001813869 ; -

0,021981496 ; 0,029176149 ; -0,029750433 ; -0,053260554 ; -0,005865354) 

Genetic algorithm results: 

PC1=(0,328496 ; 0,113855 ; 0,00248505 ; -0,00131838 ; -0,00106787 ; -0,380012 ; -0,0710994 

; 0,00326351 ; -0,0527718 ; 0,85256) 

PC2=(0,135853 ; 0,0542528 ; -0,00112985 ; 0,000615244 ; -0,00289937 ; -0,693855 ; -

0,562397 ; 0,00103028 ; 0,118527 ; -0,408431) 

PC3=(-0,0649912 ; 0,0206752 ; -0,00104675 ; 0,000684572 ; 0,000435467 ; 0,540202 ; -

0,81311 ; 0,0123226 ; 0,0531574 ; 0,198504) 

PC4=(0,863418 ; 0,318954 ; 0,0118596 ; 0,00968647 ; -0,000239244 ; 0,285831 ; 0,0779287 ; 

0,0112382 ; 0,0958263 ; -0,235503) 

PC5=(0,0961946 ; -0,0137564 ; -0,00469309 ; 0,000866045 ; -0,000865649 ; -0,00493433 ; -

0,101872 ; -0,0098289 ; -0,98419 ; -0,10679) 

PC6=(0,0192692 ; -0,023674 ; 0,0011457 ; -5,56369e-05 ; -0,00010642 ; 0,00864459 ; -

0,00988361 ; -0,999359 ; 0,0128022 ; 0,00338023) 

PC7=(-0,337772 ; 0,938708 ; -0,00393605 ; 0,000388873 ; -6,7101e-05 ; -0,0226902 ; 

0,0308158 ; -0,0298931 ; -0,0482828 ; -0,0056205)
 

 


