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ABSTRACT  18 

This paper presents a study on the possibility of using fly ash cement as grouts for micropiles. 19 

This type of special geotechnical work is commonly used for many applications. Generally, 20 

micropiles grouts are prepared using Portland cement, although the standards do not restrict 21 

the cement type to use, as long as they achieve a strength requirement. In this research, fly 22 

ash cement grouts made with w:c ratios 0.40, 0.45, 0.50 and 0.55 were studied from 2 up to 23 

90 days of age. Their microstructure was characterized using the non-destructive impedance 24 

spectroscopy technique, electrical resistivity, and mercury intrusion porosimetry. Their 25 
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durability properties have been studied by determining the water penetration under pressure, 26 

and the chloride diffusion coefficient. The compressive strength was also measured and 27 

determined, and a maximum water:cement ratio, different for each cement type was obtained. 28 

All the results were compared to those obtained for Portland cement grouts. The results 29 

obtained confirm that the performance of micropiles made using fly ash cement grouts is 30 

adequate, and as it is well know the cements with mineral admixtures provide environmental 31 

benefits, so the use of cement including fly ash will contribute to the sustainability, with 32 

similar properties to those given by OPC. 33 

Keywords: micropiles, special geotechnical works, fly ash, durability, microstructure, 34 

impedance spectroscopy, water:cement ratio. 35 

1.-INTRODUCTION 36 

In the field of geological engineering, the use of special geotechnical works has become very 37 

important. Some of the most commonly used special geotechnical works for civil engineering 38 

structures and for building foundations are piles, micropiles, soil anchors and jet grouting 39 

injections. There are great differences between those types of works and one of these 40 

differences is related to the material in which the steel reinforcement elements are embedded. 41 

In the case of the piles, concrete is usually used. However, for micropiles, soil anchors and jet 42 

grouting injections, the reinforcement elements are embedded in cement grouts, although 43 

mortars might also be used. This fact is very important, because the behaviour of the cement 44 

grouts and mortars shows many differences compared to concrete. For example, in general  45 

the porosity of hardened grouts is greater than the porosity of concretes [1], [2], and it could 46 

influence the durability and mechanical properties of the elements of each particular special 47 

geotechnical work. But on the other hand, a higher amount of cement might improve the 48 

durability of this type of elements. So, a different performance could be expected if the 49 

material used to protect the reinforcement steel elements is cement grout or concrete, as it is 50 

https://www.researchgate.net/publication/230604521_Impedance_Spectroscopy_Study_of_Hardened_Portland_Cement_Paste?el=1_x_8&enrichId=rgreq-656980ba9d6c447515d68c3c85077339-XXX&enrichSource=Y292ZXJQYWdlOzMwMjQ3MzcxNTtBUzozNjA0ODQ2NDI1NDE1NjlAMTQ2Mjk1NzY0NDU4Nw==
https://www.researchgate.net/publication/223498323_Microstructural_modifications_in_Portland_cement_concrete_due_to_forced_ionic_migration_tests_Study_by_impedance_spectroscopy?el=1_x_8&enrichId=rgreq-656980ba9d6c447515d68c3c85077339-XXX&enrichSource=Y292ZXJQYWdlOzMwMjQ3MzcxNTtBUzozNjA0ODQ2NDI1NDE1NjlAMTQ2Mjk1NzY0NDU4Nw==
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usual for the majority of civil engineering structures. Furthermore, the uncertainties can 51 

increase as a function of the cement type used, especially if it is used a sustainable cement, 52 

which incorporates some kind of active addition, instead of an ordinary Portland cement, as it 53 

is the usual practice. 54 

Between the different types of grouted special geotechnical works, in the particular case of 55 

this research the micropiles have been studied. Micropiles are cylindrical members with 56 

diameters of under 300 mm, drilled and grouted with cement grout or mortar injected in one 57 

or two phases, reinforced with steel tubing and sometimes strengthened with one or several 58 

ribbed bars [3]. In Fig. 1.a and 1.b it is shown an example of micropiles use, and four 59 

different sections of a micropile, depending on the type of reinforcement employed [3–5]. 60 

Regarding the different standards about micropiles materials and implementation existing all 61 

over the world, it is important to highlight the Spanish / European Standard for micropile 62 

construction UNE-EN 14199 [4] and the US Department of Transportation, Federal Highway 63 

Administration’s manual entitled Implementation manual for Micropile Design and 64 

Construction Guidelines FHWA-SA-97-070 [3]. Moreover, in Spain the Ministry of Internal 65 

Development has published a guide for designing and building micropiles in road works [5], 66 

which develops and supplements the contents of European micropiles standard [4]. 67 

Nowadays the global warming constitutes an important environmental problem, and one of 68 

the ways to solve it is reducing the CO2 emission of the industries. In the particular case of 69 

cement industry, the use of active additions to improve their sustainability is an important 70 

field of study [6–10]. The most popular active additions are ground granulated blast-furnace 71 

slag, fly ash and silica fume. In general, these additions are wastes of other industrial 72 
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processes, but their hydration reaction produces materials similar to those of clinker 73 

hydration. So, they can be reused to replace a percentage of this clinker in the cement final 74 

manufacture product. 75 

As it has been abovementioned, one of the most popular active additions is fly ash, whose 76 

effects on the properties of cement-based materials are the object of considerable research [6, 77 

11, 12]. One of the main property of this admixture is its capacity for reacting with 78 

portlandite, which is a product of the hydration of the calcium silicates of the clinker, through 79 

the pozzolanic reactions [11, 13, 14] . New hydrated phases are obtained as products of these 80 

reactions that improve the properties of cement-based materials. Fly ash performs very well 81 

particularly for structures in marine environments [6, 15–17]. 82 

Nevertheless, in spite of this good behavior for many uses, the cements containing active 83 

additions in general, and especially fly ash, are not commonly used for preparing cement 84 

grouts for micropiles. There are not strong reasons which talk out of its use for this purpose. 85 

Moreover, regarding other special geotechnical works, the situation is very similar and only 86 

there are few studies in this field. One of these researches has been recently published and it 87 

deals with the optimization of both the w:c ratio and the binder design, by using silica fume 88 

in order to modify the viscosity [18] and to improve the service behavior of cement grouts. 89 

With respect to fly ash, there are some studies that claim the feasibility of using fly ash in 90 

structural fills, and other geotechnical applications [19, 20]. In view of that, as it has been 91 

shown, up to our knowledge the performance of fly ash cements for micropiles grouts has not 92 

been studied, especially with regard to their microstructure and durability, despite the fact 93 

that there are many evidences that they could produce an improvement compared to ordinary 94 

Portland cement. Besides, regarding the compressive strength, fly ash grouts could also 95 

perform well, mainly in the long term [21, 22]. 96 

                                                
 

https://www.researchgate.net/publication/229114532_Benefits_of_Slag_and_Fly_Ash?el=1_x_8&enrichId=rgreq-656980ba9d6c447515d68c3c85077339-XXX&enrichSource=Y292ZXJQYWdlOzMwMjQ3MzcxNTtBUzozNjA0ODQ2NDI1NDE1NjlAMTQ2Mjk1NzY0NDU4Nw==
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On this point, in the Spanish / European Standard for micropile construction UNE-EN 14199 97 

[4] no cement type is explicitly specified. The only restriction on this aspect is reaching a 98 

minimum compressive strength. Similarly, the Ministry of Internal Development’s guide for 99 

designing and building micropiles in road works [5] and the US Manual FHWA-SA-97-070 100 

[3] lay down the minimum compressive strength for micropiles, but not the type of cement to 101 

be used and it is acceptable the use of a wide range of water:cement ratios. Despite that, as it 102 

has been previously mentioned, at least in Spain cement grouts for micropiles are usually 103 

prepared with ordinary Portland cement (CEM I). 104 

Then, this research aims to study of the possibility of using fly ash cement as an 105 

advantageous material for micropile preparation. To the purpose, the microstructure, 106 

durability and mechanical properties of cement grouts for micropiles have been studied. The 107 

grouts have been prepared using different dosages (w:c ratios), and using an ordinary 108 

Portland cement, and a fly ash-rich commercial cement, to study the viability of using this 109 

cement type. 110 

The characterization of the microstructure of the grouts has a lot of interest, because it is 111 

directly related to the durability properties and the mechanical properties of these materials 112 

[23], [24]. In this work, it has also been used non-destructive techniques for studying the 113 

grouts porous network, such as impedance spectroscopy [1, 2, 25–27] and electrical 114 

resistivity by means of Wenner four-point test [28]. These techniques are nowadays an 115 

important research field because they have many advantages, for example the possibility of 116 

using the same samples for all the tests throughout the research. This fact permits a better 117 

monitoring of the microstructure evolution. 118 

In relation to durability of fly ash cement grouts, its study is consequently highly pertinent, 119 

especially in the particular context of micropiles, where the reinforcement elements are 120 

embedded in the hardened cement grouts instead of concrete, as it has been abovementioned. 121 

https://www.researchgate.net/publication/230604521_Impedance_Spectroscopy_Study_of_Hardened_Portland_Cement_Paste?el=1_x_8&enrichId=rgreq-656980ba9d6c447515d68c3c85077339-XXX&enrichSource=Y292ZXJQYWdlOzMwMjQ3MzcxNTtBUzozNjA0ODQ2NDI1NDE1NjlAMTQ2Mjk1NzY0NDU4Nw==
https://www.researchgate.net/publication/223498323_Microstructural_modifications_in_Portland_cement_concrete_due_to_forced_ionic_migration_tests_Study_by_impedance_spectroscopy?el=1_x_8&enrichId=rgreq-656980ba9d6c447515d68c3c85077339-XXX&enrichSource=Y292ZXJQYWdlOzMwMjQ3MzcxNTtBUzozNjA0ODQ2NDI1NDE1NjlAMTQ2Mjk1NzY0NDU4Nw==
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In this research, water penetration under pressure was the test used to assess durability, due to 122 

water is the main vehicle for the ingress of aggressive agents in cement-based materials [23, 123 

29]. Grout resistance to chloride ingress was also analysed, inasmuch as these ions are among 124 

the primary inducers of steel corrosion, and they can be present in waters and soils in contact 125 

with micropiles. The mechanical property studied was compressive strength, since as noted 126 

above, this is the main and fundamental parameter specified for codes and standards for 127 

determining whether a cement is apt for this application. 128 

Finally, because the grouts in these applications harden in contact with the surrounding 129 

terrain, exposing it to possible aggressive agents, its properties were characterised from very 130 

early ages (2 days) and up to 90 days. 131 

 132 

2.- EXPERIMENTAL PROCEDURE 133 

2.1.- Sample preparation 134 

The tests were performed on cement grouts (pastes). These grouts were prepared using two 135 

types of commercial cements, a type CEM I 52.5 R/SR Portland cement, (CEM I hereafter), 136 

and a pozzolanic cement with a fly ash content from 36 to 55% of total binder, type CEM 137 

IV/B(V) 32.5 N (labelled CEM IV hereafter), according to Spanish / European standard 138 

UNE-EN 197-1 [30]. The reason for using these commercial cements instead of preparing 139 

mixes with ordinary Portland cement and fly ash, is that the accurate preparation of the mixes 140 

at the construction site would complicate the process of grouting the micropiles. 141 

With regard to the dosage of the grouts, four different water to cement ratios were used: 0.4, 142 

0.45, 0.5 and 0.55. As mentioned before, the Spanish guide for designing and building 143 

micropiles in road works [5] allows w:c ratios of from 0.4 to 0.55, while Spanish / European 144 

standard UNE-EN 14199 [4] specifies that the ratio must be lower than 0.55. Manual FHWA-145 

SA-97-070 [3], in turn, stipulates that the w:c ratio in grout for micropiles must lie between 146 
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0.4 and 0.5. Then, the w:c ratios studied in this work permit to analyse the influence of this 147 

parameter, according to the abovementioned standards. However, it is important to emphasize 148 

that in the case of Spain, the grouts are usually prepared with w:c ratio 0.5, in spite of the 149 

abovementioned different dosages allowed by the standards and manuals. 150 

Several types of specimens were prepared. All the samples were kept in a 95% RH chamber 151 

with a temperature of 20ºC for 24 hours immediately after setting up the grouts. On one hand, 152 

cylindrical specimens were prepared and cast in molds of 10 cm diameter and 15 cm height. 153 

After the 24-hours curing time, they were demolded and cut to obtain slices of approximately 154 

1 cm thickness. Other cylindrical specimens were cast to diameters of 10 and 15 cm and a 155 

height of 30 cm. The 10-cm diameter samples were used to study the variations in electrical 156 

resistivity and the 15-cm specimens to determine compressive strength and the penetration of 157 

water under pressure. Finally, prismatic specimens with dimensions 4 cm x 4 cm x 16 cm 158 

were also prepared (UNE-EN 196-1:2005 [31]) to compare their compressive strength to the 159 

strength obtained for the 15-cm diameter x 30-cm high specimens. 160 

When the 24-hours curing had finished, all the specimens were submerged in distilled water 161 

until the testing age. These curing conditions are intended to simulate the conditions of 162 

micropiles that are cast in situ and stay in contact with soil and water from the very first day. 163 

The only exception was the 15-cm diameter x 30-cm high specimens, which were stored in a 164 

humidity chamber at 20ºC and 95% RH as specified in Spanish /European standard UNE-EN 165 

12390-2 [32], to which refers the Spanish guide for designing and building micropiles in road 166 

works [5] for those particular specimens. 167 

 168 

2.2.- Mercury intrusion porosimetry 169 

The grouts microstructure was characterized using mercury intrusion porosimetry, as well as 170 

the non-destructive techniques previously mentioned. This is a well-known and extensively 171 
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used technique [33], although it has some drawbacks [34]. The porosimeter employed was an 172 

Autopore IV 9500 from Micromeritics. This porosimeter allows determining pore diameters 173 

between 5 nm and 0.9 mm. Before the test, samples were oven dried for 48 hours at 50ºC. 174 

Two measurements were made on each material. Total porosity and pore size distribution 175 

were studied through intrusion curves. The tests were performed at 2, 28 and 90 days of age. 176 

 177 

2.3.- Impedance spectroscopy 178 

The impedance measurements on the cement grouts were carried out using the impedance 179 

analyzer Agilent 4294A, which allows capacitance measurements in the range from 10-14 F to 180 

0.1 F, with a maximum resolution of 10-15 F. Impedance spectra of samples were obtained in 181 

the frequency range from 100 Hz to 100 MHz, using two different methods. For both 182 

methods, the electrodes were circular (Ø = 8 cm) and made of flexible graphite, attached to a 183 

copper piece with the same diameter. First, impedance spectra were obtained with a 184 

contacting method, being the electrode in direct contact with the sample. Afterwards, the 185 

measurements were also performed using a non-contacting method. This method minimizes 186 

the possible contributions of the sample-electrode interface as shown elsewhere [35], and 187 

minimizes as well the runaway capacitance existing due to the border effect [36]. It consists 188 

of placing a polyester sheet (100 µm thick) between the sample and each electrode. The 189 

impedance of the polyester sheets is subtracted from the total impedance measurement, to get 190 

only the impedance response of the sample. As this setup gives an almost capacitive 191 

impedance spectrum, the answer of the sample is transformed to a spectrum in capacities 192 

using the Cole-Cole transformation [1].  193 

For validating the obtained impedance spectra, the Kramers–Kronig (K–K) relations were 194 

used, to ensure causality, linearity and stability of the measurements [37]. As an example, Fig. 195 

2 depicts the Cole-Cole plots at different ages for CEM IV grouts, while Fig. 3 shows the 196 
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validation of the impedance spectrum of a CEM IV grout using the K-K relations, as 197 

mentioned before. The differential impedance analysis was developed by Stoynov et al. [38], 198 

and gave excellent results on cementitious materials [1]. It was applied to the spectra before 199 

assuming the equivalent circuit as valid for fly ash cement grouts. Fig. 4 shows the result of 200 

the analysis on one impedance spectrum. The result is valid for all the data obtained, and the 201 

two maxima that shows the plot of the time constant of the material, τ, at each frequency, 202 

versus number of points, indicate the presence of two time constants in the impedance 203 

spectrum. The number of time constants justifies the fitting of the obtained data to the 204 

equivalent circuits proposed by Cabeza et al. [1], which included two time constants. These 205 

circuits are shown in Fig. 5. Both circuits have been used for different types of materials [1, 9, 206 

27]. The fitting of the measured data to the model proposed is made using a Simplex 207 

optimization method, which is described elsewhere [35]. Regarding the impedance 208 

parameters, it is important to emphasize that the resistance R2 and the capacitances C1 and C2 209 

can be obtained using both contacting and non-contacting methods. In this research, the 210 

evolution of those parameters has been studied from non-contacting measurements because 211 

of its higher accuracy. For each cement type and w:c ratio four different samples with 212 

approximately 1 cm thickness were tested. The evolution of impedance parameters has been 213 

followed until 90 days of hardening. 214 

The main advantages of using this technique, in addition to being non-destructive, are that the 215 

measurement is global, over the whole area of the surface, and it does not give local 216 

information on the microstructure of the sample, as the mercury porosimetry does. The non-217 

destructive character allows also to follow the evolution of the microstructure of the same 218 

sample over the time, and the rest of available techniques do not allow this follow up. It has 219 

to be pointed out here that this technique has been mainly used for OPC samples, where there 220 

https://www.researchgate.net/publication/230604521_Impedance_Spectroscopy_Study_of_Hardened_Portland_Cement_Paste?el=1_x_8&enrichId=rgreq-656980ba9d6c447515d68c3c85077339-XXX&enrichSource=Y292ZXJQYWdlOzMwMjQ3MzcxNTtBUzozNjA0ODQ2NDI1NDE1NjlAMTQ2Mjk1NzY0NDU4Nw==
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is not a pozzolanic reaction as it happens in fly ash cements. The possibility of frequent 221 

measurement on samples allows to study the effect of this pozzolanic reaction more properly. 222 

 223 

2.4.- Electrical resistivity 224 

This parameter gives information about connectivity and pore size in a material. In this 225 

research the electrical resistivity was determined in cement grouts specimens using the 226 

Wenner four-point test  described in Spanish standard UNE 83988-2 [39]. This very well-227 

known method is widely used in cement-based materials [40-41]. Specimen electrical 228 

resistivity was measured directly on a Proceq analyser. 229 

 230 

2.5.- Water penetration under pressure 231 

The samples tested were cylinders of 15 cm diameter and 30 cm height according to the 232 

Spanish / European standard UNE-EN 12390-8 [42]. The test consists of applying water to 233 

the specimens at a pressure of 500±50 kPa for 72±2 hours. When the test had concluded, the 234 

samples were split axially and the depth of water penetration was measured in each half. 235 

Despite this test is designed for hardened concretes, it was applied here to the cement grout 236 

because the standards on micropiles [5] refer to the provisions of Spanish Structural Concrete 237 

Code EHE-08 for characterizing most grout properties [43]. 238 

Regarding the conditioning of the specimens before the test, the standard UNE-EN 12390-8 239 

does not specify a certain procedure. Then, in this research the specimens were kept for 72 240 

hours prior to the test at a temperature of 20±2 °C and relative humidity of 50%, as suggested 241 

the standard. Two samples were tested at 28 and 90 days of age, for each type of cement and 242 

w:c ratio. Finally, the results obtained were the mean and maximum depths of the water 243 

penetration front for each sample. 244 

 245 
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2.6.- Forced migration test 246 

The study of the resistance against chloride ingress of the hardened cement grouts has a lot of 247 

interest. In this research, the forced chloride migration test was performed on water-saturated 248 

cement grouts, according to the standard UNE 83987 [44]. The main result obtained is the 249 

non-steady-state chloride diffusion coefficient Dns, in m2/s. Samples of approximately 1 cm 250 

thick were tested. The experimental procedure of the test [45] is based on monitoring the 251 

anolyte conductivity, which has been shown to be proportional to the chloride concentration 252 

of the anolyte. 253 

The cement grouts were saturated for 24 hours before the migration tests, according to ASTM 254 

Standard C1202-97 [46]. The sample was placed in a cell between two electrolyte containers, 255 

whose capacity was 500 ml. The surface of the sample exposed to the migration test was 256 

circular of 6.5 cm diameter. The stainless steel electrodes, for establishing the driving electric 257 

field, were placed in the apertures of the cell and the distance between them was 25 cm. The 258 

catholyte and anolyte chambers were filled with a 1 M NaCl solution and with distilled water, 259 

respectively. The applied driving voltage was 12 V, although the effective potential drop 260 

between both sides of the cement grout disc was measured periodically. The conductivity 261 

measurements of the anolyte solution were performed every 12 hours since the beginning of 262 

the test. These measurements were performed with a Crison GLP31 conductimeter, with 263 

automatic compensation of the readings to 25ºC standard temperature. Temperature data of 264 

the electrolytes were also recorded. 265 

For each cement type and w:c ratio three different samples were tested. The tests were 266 

performed at 2, 28 and 90 days of age. The reason for performing a first test at 2 days has to 267 

do with the real service conditions of micropiles. As it has been said before the micropiles 268 

stay in contact with soil and water from the moment they are cast. That means that they can 269 

be in contact with aggressive substances (in case there are in water or soil) from the very 270 
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beginning. So, performing that test can give us important information on the real service 271 

conditions and the real degradative processes that could take place in a micropile in service, 272 

and study the viability of using fly ash cement to construct those elements. 273 

 274 

2.7.- Determination of compressive strength 275 

As it was stated in the introduction the standards do not restrict the cement type for 276 

micropiles, as long as they achieve a compressive strength requirement. The Implementation 277 

manual FHWA-SA-97-070 [3] suggests that the neat cement grouts should reach a 278 

compressive strength between 28 and 35 MPa at 28 days of age. In the case of standard UNE-279 

EN 14199 [4], the minimum compressive strength required for the grouts at 28 days is 25 280 

MPa.  281 

The reference standards for micropiles [4, 5] establish that the compressive strength must be 282 

determined using cylindrical samples with double length than diameter. For that reason the 283 

compressive strength was determined in samples with 15 cm diameter and 30 cm height. The 284 

compressive strength was measured following the standard UNE-EN 12390-3:2009 [47]. 285 

For each condition (cement type and w:c ratio) two measurements were taken. 286 

 287 

3.- EXPERIMENTAL RESULTS 288 
 289 

3.1.- Mercury intrusion porosimetry results 290 

As it was stated in the experimental section two samples were tested for each condition. Fig. 291 

6 shows the intrusion curve obtained for CEM I samples tested at 28 days hardening. The 292 

results for the two samples are shown, one using continuous line and symbol, and the second 293 

measurement made with a dotted line. As it can be seen in Fig. 6 there may be minor 294 

differences among the two samples in some cases, but there is a good reproducibility. For the 295 

sake of simplicity only one measurement will be shown in the rest of the figures.  The second 296 
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result that could be extracted from this figure is that the increases in w:c ratio increases the 297 

total porosity of the samples. This result is general for every cement type and age. 298 

A more interesting analysis can be extracted from Fig. 7, where the time evolution of the 299 

porosity is studied for samples with w:c ratio 0.5. It can be easily observed that the total 300 

porosity decreases with time, but some differences can be seen as a function of the cement 301 

type (Fig. 7.a for CEM I results and Fig. 7.b for CEM IV results).  302 

First of all, for every studied age the total porosity of the samples prepared with CEM IV is 303 

higher than for the samples prepared with CEM I. This result could be also expected since the 304 

strength class of CEM IV is lower than the strength class of CEM I (see experimental 305 

procedure section). Samples prepared with CEM I show a very small evolution of the pore 306 

network between 28 and 90 days, whereas there is a greater evolution for CEM IV samples. 307 

This evolution produces a pore network with higher amount of small pore diameter (below 308 

100 nm) at 90 days for the CEM IV as compared with CEM I pore network. This evolution 309 

and the final pore network are mainly due to the pozzolanic reactions of the fly ash.  310 

 311 

3.2.- Impedance spectroscopy results 312 

The resistances R1 and R2 are related to the pores of the sample which are filled with 313 

electrolyte [26]. Changes in the value of the resistance may come from the variation of the 314 

pore dimensions, or by the drying of the pores [1, 48, 49]. The evolution with time of 315 

resistance R1 can be observed in Fig. 8 for both types of cement grouts. For CEM I samples, 316 

the resistance R1 kept practically constant or hardly increased with time. At early ages, CEM 317 

IV grouts showed lower R1 values than those observed for CEM I ones. Nevertheless, since 318 

approximately 20 days, the resistance R1 started to increase for CEM IV samples. First, this 319 

rise of R1 was slow and at 30 hardening days the values of this parameter for CEM IV grouts 320 

were still lower or similar to those observed for CEM I ones. Since then, the CEM IV R1 321 

https://www.researchgate.net/publication/230604521_Impedance_Spectroscopy_Study_of_Hardened_Portland_Cement_Paste?el=1_x_8&enrichId=rgreq-656980ba9d6c447515d68c3c85077339-XXX&enrichSource=Y292ZXJQYWdlOzMwMjQ3MzcxNTtBUzozNjA0ODQ2NDI1NDE1NjlAMTQ2Mjk1NzY0NDU4Nw==
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values started to increase faster and at 90 hardening days their values were higher compared 322 

to CEM I ones. 323 

The results of resistance R2 are depicted in Fig. 9. In general, the evolution of this parameter 324 

was very similar to that previously described for resistance R1. 325 

The changes with hardening time of capacitance C1 for CEM I and CEM IV specimens are 326 

shown in Fig. 10. This capacitance is related to the solid fraction in the samples [26]. For the 327 

majority of the samples studied, this parameter increased with time. At early ages, the 328 

capacitance C1 was lower for CEM IV samples than for CEM I ones. At 90 days, this 329 

parameter was very similar for both types of cement, or even it was a little higher for CEM 330 

IV grouts. 331 

The results of capacitance C2 for both types of cement studied are depicted in Fig. 11. This 332 

parameter is related to the pore surface in contact with electrolyte present in the material [48, 333 

50]. At early ages, the capacitance C2 increased with age for CEM I samples and showed 334 

higher values than those observed for CEM IV ones. However, it kept practically constant or 335 

hardly increased since approximately 20 days for the majority of CEM I grouts. On the other 336 

hand, the capacitance C2 for CEM IV samples showed low values at early ages, but this 337 

parameter continuously increased with age, and at 90 days the capacitance C2 was similar or 338 

even higher for CEM IV samples than for those prepared using CEM I. 339 

 340 

3.3.- Electrical resistivity results 341 

The results of the electrical resistivity measured using the Wenner method are shown in Fig. 342 

12. As it can be seen it is noticeable that the values of resistivity for the cement containing fly 343 

ash are much higher than for the ordinary Portland cement. Moreover, in the case of cement 344 

type IV clearly the higher is the w:c ratio the smaller is the resistivity. The resistivity for both 345 

cement types increases with the hardening time. 346 
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 347 

3.4.- Water penetration under pressure 348 

The results of the water penetration under pressure (maximum and average penetration) are 349 

shown in Fig. 13. As it can be seen in the plots, the average penetration measured following 350 

the standard UNE-EN 12390-8, is always smaller for cement type IV, containing fly ash, than 351 

for ordinary Portland cement (CEM I). As could be expected, the increase in the w:c ratio 352 

also causes an increase of the average penetration of water in the samples. The values of 353 

average penetration show a decreasing tendency with the hardening age for both cement 354 

types. The results of the maximum penetration depth are very similar to these about the 355 

average penetration depth. 356 

 357 

3.5.- Forced migration tests 358 

The results of non-steady-state chloride diffusion coefficient (Dns) for CEM I and CEM IV 359 

grouts are shown in Fig. 14. This coefficient decreased with age for the majority of CEM I 360 

and CEM IV grouts. At all ages, CEM IV grouts showed very low diffusion coefficients in 361 

comparison to those observed for CEM I ones. 362 

 363 

3.6.- Compressive strength results 364 

The results of the compressive strength measured in cylindrical specimens fulfilling the 365 

indications of the standard UNE-EN 14199 are shown in Fig. 15. It is clear there that the 366 

samples prepared with CEM I have a higher strength than the samples prepared with fly ash 367 

cements (CEM IV). This result is in coincidence with the different strength class of the 368 

cements used (see section 2.1). The compressive strength increases with time, regardless the 369 

cement type and the w:c ratio. As it was explained in the experimental section, the 370 

requirement of the standard is that the minimum compressive strength at 28 days should be 371 
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25 MPa for the grouts. Taking this into account it can be established that both cement types 372 

could be used. There is only a limitation in the w:c ratio. For ordinary Portland cement a 373 

maximum w:c of 0.5 should be used, while for the fly ash cement a maximum w:c ratio of 374 

about 0.45 should be selected.  375 

 376 

4.- DISCUSSION OF RESULTS 377 
 378 

The total porosities for CEM IV grouts were higher than those observed for CEM I ones at all 379 

hardening ages studied (Fig. 7). This result is consistent with findings reported by other 380 

investigations [6, 12, 51]. On the other hand, at early ages (2 and 28 days) CEM IV samples 381 

had a coarser porous network than CEM I ones. However, the microstructure of CEM IV 382 

grouts was more refined in the long-term, as showed their greater volume of finer pores at 90 383 

days (see Fig. 7.b). It is well-known that the portlandite is necessary to start the pozzolanic 384 

reactions of fly ash [6, 11, 12, 14] , and it is formed during the clinker hydration. Then, it is 385 

needed more time to start the fly ash pozzolanic reactions and, as a consequence, to observe 386 

the effects of this addition in the microstructure of the grouts. This fact could explain the pore 387 

size distribution of CEM IV grouts in the short-term, especially at 2 hardening days, when it 388 

is probably that the degree of development of the pozzolanic reactions of fly ash was very 389 

low. Besides, the progressive pore refinement with age showed by CEM IV grouts, could be 390 

due to the formation of additional CSH phases [51] as products of fly ash pozzolanic 391 

reactions, which leads to a more compact porous structure of fly ash hardened grouts. 392 

Regarding impedance spectroscopy results, the resistances R1 and R2 are associated with the 393 

electrolyte present in the pores of the sample. Since all the samples were kept under 394 

immersion, as stated in the experimental section, the changes in the value of the resistances 395 

can only come from changes in the pore dimensions [52]. In the short-term, the lower 396 

resistances observed for CEM IV grouts (see Fig. 8 and Fig. 9) could be related to the their 397 
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coarse microstructure, due to the still limited formation of new hydrated products from fly 398 

ash pozzolanic reactions, as has been already explained. On the other hand, the important 399 

increase with time of the resistances R1 and R2 for CEM IV grouts would show a progressive 400 

closing of their pore structure, probably related to the development of pozzolanic reactions, 401 

as indicated the pore size distribution results. In view of that, the results of resistances R1 and 402 

R2 corroborate the important pore refinement of grouts microstructure produced by fly ash, 403 

previously observed by mercury intrusion porosimetry. 404 

The dielectric capacitance C1 is related to the solid fraction of the samples, then it is expected 405 

that this parameter increases as solid formation is produced due to the development of clinker 406 

hydration and pozzolanic reactions of fly ash. This parameter is independent of pore size 407 

distribution. In general, the capacitance C1 increased with age for the majority of the samples 408 

studied. This would indicate a progressive formation of solid phases. This is in accordance 409 

with the abovementioned decrease with age of total porosity. The apparent disagreement 410 

among the values of total porosity and capacitance C1 for samples prepared with different 411 

cement types (CEM I and CEM IV) come from the fact of the different chemical composition 412 

of the materials, fact that will change the dielectric properties and as a result, the value of the 413 

capacitance.  414 

The capacitance C2 is associated with the pore surface in contact with the electrolyte present 415 

in the material and it is related to the amount of wet pore surface. Since samples are kept 416 

submerged, it is expected that pores would be saturated. So changes in the capacitance C2 417 

would be mainly due to the formation of CSH gel layers on pore walls, which will occupy the 418 

pores [26]. These products are deposited on the pore surface and they form rough structures, 419 

which increase the specific surface of the pores and the tortuosity of the pore network. This 420 

rise of pore specific surface brings about an increase of the solid-electrolyte interface, which 421 

entails higher values of capacitance C2. In general, the capacitance C2 increased with age for 422 
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both types of cement studied. At early ages, the lower values of this parameter were observed 423 

for CEM IV grouts. However, in the long-term the capacitance C2 was similar for CEM I and 424 

CEM IV grouts, although it was a little higher for CEM IV ones, see Fig. 11. 425 

In general terms, these results are in keeping with pore size distributions obtained using 426 

mercury intrusion porosimetry and with the results of resistances R1 and R2. The low 427 

capacitances C2 for CEM IV grouts in the short-term could be due to the scarce development 428 

of fly ash pozzolanic reactions, as has been already explained. The important rise with 429 

hardening age of this parameter could be related to the formation of additional CSH phases, 430 

as products of pozzolanic reactions. These CSH phases would be formed over the existing 431 

pore surface, increasing the pore surface, the tortuosity of pore network and the solid-432 

electrolyte interface, as suggest the capacitance C2 results. Finally, the higher values of this 433 

parameter at later ages for CEM IV grouts than those observed for CEM I ones would 434 

indicate that their microstructure was more refined, which would corroborate the mercury 435 

intrusion porosimetry results. 436 

The results of the Wenner resistivity test are coincident with the results of the resistances 437 

measured with impedance spectroscopy. This result is the expected, and in agreement with 438 

the rest of microstructural characterization. However, the impedance spectroscopy gives a 439 

more in deep information, due to the analysis of the capacitances. The resistivity for fly ash 440 

cement gives a better correlation of the resisitivity with the total porosity. 441 

Regarding the results of microstructure characterization, it seems that the use of a fly ash 442 

cement for preparing cement grouts for micropiles could produce a more refined porous 443 

network of the hardened cement grout (cement paste) in the long-term (90 days), compared to 444 

ordinary Portland cement. The microstructure of cement-based materials is related to their 445 

service properties and especially to their durability [24]. As a consequence it could be 446 

expected an improvement of the micropiles durability if they are made using a fly ash cement. 447 
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Besides, the use of this type of cement would also bring about an increasing of the initiation 448 

period of steel corrosion, which would extend the expected service life of the micropiles. 449 

With regard to w:c ratio, the results obtained indicate that this parameter does not seem to 450 

produce so much influence on the microstructure of cement grouts as the type of cement, 451 

except the expected increase of porosity when the w:c ratio is higher. 452 

Finally, it is worth to emphasize that the results of the non-destructive technique of 453 

impedance spectroscopy are in agreement with those obtained using mercury intrusion 454 

porosimetry. 455 

The results of water penetration under pressure show that there is a bigger influence of the 456 

smaller pore dimensions than of the total porosity. That is the reason why the penetration of 457 

water under pressure is lower for cement containing fly ash than for ordinary Portland cement. 458 

This result is essential for the use of CEM type IV to grout micropiles. The penetration of 459 

water is one of the main durability indicators [23], and this result confirms that the aggressive 460 

will have a smaller penetration in the micropiles made of CEM IV, and so will the aggressive 461 

substances, so these cement types, in addition to being more sustainable, will guarantee in a 462 

more efficient way the durability of the micropiles. 463 

Chlorides can produce the corrosion of reinforcing steel bars and pipes, especially in 464 

micropiles in contact with waters with high contents of this aggressive. The non-steady-state 465 

chloride diffusion coefficient showed much lower values for CEM IV grouts at all ages than 466 

for CEM I ones, as it can be seen in Fig. 14. Many studies have demonstrated that the use of 467 

fly ash produces a substantial improvement in chloride ingress resistance [53, 54] . The low 468 

diffusion coefficients of CEM IV grouts in the short-term, even though the cement paste is 469 

more porous, and with bigger pores, can be explained as being a consequence of the higher 470 

binding capacity of fly ash cement, as compared to Portland cement. This binding capacity is 471 

due to the high content of calcium aluminates brought by the ash [53]. At later ages, the 472 
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higher microstructure refinement could also contribute to the decrease of chloride diffusion 473 

coefficient observed for CEM IV grouts, besides the abovementioned binding capacity of fly 474 

ash. 475 

The results of the chloride diffusion coefficient would confirm the fact that the use of fly ash 476 

cement for preparing cement grouts for micropiles would produce an improvement of their 477 

durability, not forgetting the economic and environmental benefits that bring the use of a 478 

waste such as the fly ash. Moreover, it is important to emphasize that at 90 hardening days, 479 

the non-steady-state chloride diffusion coefficient for CEM IV grouts were very similar for 480 

samples prepared with w:c ratios between 0.4  and 0.55. 481 

The results of the compressive strength, as it was explained in the results section limit the 482 

maximum w:c ratio, that is not in compliance with the standard, so, from the point of view of 483 

the application of these cements for micropiles grouting this parameter should be controlled 484 

before using them.  485 

In order to check the possibility of injecting the grouts to prepare micropiles, its fluidity was 486 

measured. The results of the fluidity of all the tested cement grouts, are shown in Table 1. As 487 

it can be seen  in the table the fly ash cement shows a greater workability than the ordinary 488 

Portland cement,  as it is reported in the literature [55-59]. As it can be seen in the table the 489 

lower is the w:c ratio the better is the fluidity of the fly ash cement compared with the 490 

ordinary Portland cement. This result proves that even though the fly ash cement requires a 491 

lower w:c ratio to achieve the minimum resistance, it could be pumped to prepare the 492 

micropiles in the same conditions as the CEM I. 493 

 494 

5.- CONCLUSIONS 495 

The main conclusions that can be drawn from the results previously discussed can be 496 

summarized as follows: 497 
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1. The cement grouts made using fly ash cement exhibited higher microstructure 498 

refinement in the long-term (90 hardening days) than those prepared using ordinary 499 

Portland cement. 500 

2. The use of fly ash cement for micropiles grouts produced an important improvement 501 

of their resistance against chloride ingress. 502 

3. The results of the non-destructive technique of impedance spectroscopy were in 503 

keeping with those obtained using mercury intrusion porosimetry. In view of that, the 504 

impedance spectroscopy can be used for studying the microstructure development of 505 

fly ash cement grouts. The resistivity gives only results about resistance, which are 506 

consistent with the results of impedance spectroscopy. 507 

4. The penetration of water under pressure guarantees the lower penetration of water 508 

and/or aggressive substances in the micropiles prepared with fly ash cement, giving a 509 

more sustainable and durable structure. 510 

5. The reduced porosity of the cement matrix due to the lowering of the w:c ratio has 511 

certainly a positive effect on the durability in general. In the case of the resistance to 512 

chloride penetration, the effect of w:c ratio on this resistance is less evident as this 513 

parameter is influenced by the ability of the matrix to bind chlorides. However, the 514 

w:c ratio is determinant from the point of view of the compressive strength, and has to 515 

be taken into account to fulfill the minimum values required by the standards. 516 

6. In view of the results obtained in this research, and under these conditions, the 517 

performance of micropiles made using fly ash cement grouts is adequate compared to 518 

ordinary Portland cement grouts.  519 

 520 
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Fig. 1 – (a) Schematic representation of a road tunnel cross-section whose crown is supported 

by an umbrella of micropiles reinforced with steel pipe (left) and different sections of a 

micropile, depending on the type of reinforcement employed (right). (b) Excavation process 

of a tunnel face stabilized using a subhorizontal micropiles umbrella [3-5]. 

Fig. 2 – Evolution of the Cole–Cole plots for a CEM IV grout prepared with w:c ratio 0.4, 

obtained using the non-contacting method. 

Fig. 3 – Example of an impedance spectrum obtained for a CEM IV grout with w:c ratio 0.5 

at 54 hardening days, validated using the Kramers–Kronig (K–K) relations, see the text for 

details. 

Fig. 4 – Differential impedance analysis of the impedance spectrum shown in Fig. 3. The 
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presence of two maxima in the plot reveals the presence of two time constants in the 

impedance spectrum. 

Fig. 5 – Equivalent circuits with two time constants proposed by Cabeza et al.[1] and used for 

the fitting of the impedance spectra obtained for samples using the contacting method (a) and 

the non-contacting method (b). 

Fig.6 – Variation of the intrusion curves with w:c ratio for CEM I samples after 28 days 

hardening. Two samples were tested for each condition and the duplicate results are also 

shown in the graph 

Fig.7 – Curves of intrusion volume for CEM I and CEM IV grouts with w:c ratio 0.5 for all 

the tested ages 

Fig.8– Results of resistance R1 for CEM I and CEM IV grouts. 

Fig.9 – Results of resistance R2 for CEM I and CEM IV grouts. 

Fig.10 – Results of capacitance C1 for CEM I and CEM IV grouts. 

Fig.11 – Results of capacitance C2 for CEM I and CEM IV grouts. 

Fig.12 - Results of electrical resistivity as a function of cement type, w:c ratio and age 

Fig.13 - Results of water penetration under pressure as a function of cement type, w:c ratio 

and age. The average penetration is depicted using a continuous line, while the maximum 

penetration is depicted with a dotted line. 

Fig.14 – Results of non-steady-state chloride diffusion coefficient (Dns) for CEM I and CEM 

IV grouts. 

Fig.15 - Results of compressive strength for CEM I and CEM IV grouts as a function of w:c 

ratio and age. Red line at 25 MPa denotes the minimum required strength at 28 days by the 

Spanish standard. 
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Fig. 1 – (a) Schematic representation of a road tunnel cross-section whose crown is 

supported by an umbrella of micropiles reinforced with steel pipe (left) and different sections 

of a micropile, depending on the type of reinforcement employed (right). (b) Excavation 

process of a tunnel face stabilized using a subhorizontal micropiles umbrella [3-5]. 
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Fig. 2 –Evolution of the Cole–Cole plots for a CEM IV grout prepared with w:c ratio 0.4, 

obtained using the non-contacting method. 
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Fig. 3 –Example of an impedance spectrum obtained for a CEM IV grout with w:c ratio 0.5 

at 54 hardening days, validated using the Kramers–Kronig (K–K) relations, see the text for 

details. 
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Fig. 4 –Differential impedance analysis of the impedance spectrum shown in Fig. 3. The 

presence of two maxima in the plot reveals the presence of two time constants in the 

impedance spectrum. 

 

  

 

Fig. 5 – Equivalent circuits with two time constants proposed by Cabeza et al.[1] and used 

for the fitting of the impedance spectra obtained for samples using the contacting method (a) 

and the non-contacting method (b). 
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Fig. 6 Variation of the intrusion curves with w:c ratio for CEM I samples after 28 days 

hardening. Two samples were tested for each condition and the duplicate results are also 

shown in the graph 
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Fig. 7 Curves of intrusion volume for CEM I and CEM IV grouts with w:c ratio 0.5 for all 

the tested ages 
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Fig. 8 –Results of resistance R1 for CEM I and CEM IV grouts. 
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Fig. 9 –Results of resistance R2 for CEM I and CEM IV grouts. 
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Fig. 10 –Results of capacitance C1 for CEM I and CEM IV grouts. 
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Fig. 11 –Results of capacitance C2 for CEM I and CEM IV grouts. 
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Fig. 12 .- Results of electrical resistivity as a function of cement type, w:c ratio and age 
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Fig. 13 .- Results of water penetration under pressure as a function of cement type, w:c 

ratio and age. The average penetration is depicted using a continuous line, while the 

maximum penetration is depicted with a dotted line. 
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Fig. 14 –Results of non-steady-state chloride diffusion coefficient (Dns) for CEM I and 

CEM IV grouts. 
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Fig. 15 .- Results of compressive strength for CEM I and CEM IV grouts as a function of 

w:c ratio and age. Red line at 25 MPa denotes the minimum required strength at 28 

days by the Spanish standard. 
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Table 1.- Results of fluidity of the samples made by letting flow the cement paste from 

the cone described in standard UNE-EN 1015-3 

Cement type CEM I CEM IV 

w:c 0.4 0.45 0.5 0.55 0.4 0.45 0.5 0.55 

Aver. diam., 

mm 
13.75 16.65 21.25  24.15 16.35 20.4 22.9 24.4 
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