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Abstract. Quantum spin tunneling and Kondo effect are two very different quantum phenomena that pro-
duce the same effect on quantized spins, namely, the quenching of their magnetization. However, the nature
of this quenching is very different so that quantum spin tunneling and Kondo effect compete with each
other. Importantly, both quantum spin tunneling and Kondo effect produce very characteristic features in
the spectral function that can be measured by means of single spin scanning tunneling spectroscopy and
allows to probe the crossover from one regime to the other. We model this crossover, and the resulting
changes in transport, using a non-perturbative treatment of a generalized Anderson model including mag-
netic anisotropy that leads to quantum spin tunneling. We predict that, at zero magnetic field, integer
spins can feature a split-Kondo peak driven by quantum spin tunneling.

1 Introduction

Quantum spin tunneling (QST) and Kondo effect are two
ubiquitous and widely studied [1–3] phenomena in the
broad field of nanoscale magnetism. They both turn a
spin system with a doubly degenerate ground state into
a system with a unique ground state with null magneti-
zation. QST affects quantized integer spins with magnetic
anisotropy, such as single molecule magnets [1], magnetic
impurities in insulators [2] and magnetic adatoms [4,5]
and molecules [6] on surfaces. The Kondo effect is most
often associated with half-integer spins, but it has been ob-
served in a variety of integer spin systems, such as quan-
tum dots with an even number of electrons [7], various
integer spin magnetic molecules [8–10] and molecular oxy-
gen (spin S = 1) adsorbed on gold [11].

The Kondo effect arises when a local spin is exchange
coupled to itinerant electrons that respond dynamically
to screen the magnetic moment of the impurity [3]. This
dynamical response leads to a resonance in the local den-
sity of states at zero energy, that emerges as a zero bias
Fano feature in the transport spectroscopy curves, G(V ),
where G ≡ dI

dV . The observation of the Kondo resonance
in individual magnetic atoms [12] and molecules [9] by
means of Scanning Tunneling Microscope (STM) spec-
troscopy has been reported numerous times in the last
two decades. The natural energy scale that characterizes
the Kondo effect is roughly given by the width of this
resonance which depends on the tunneling rate Γ for elec-
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trons between the localized atomic orbitals and the ex-
tended states of the surface, and the charging energy of
the atom, UN ≡ E(N + 1) − E(N).

QST can occur for integer spins with negative domi-
nant uniaxial anisotropy D < 0: in this case the ground
state of a spin S is doubly degenerate and consists of
the two states with opposite and maximal spin projec-
tion mz = ±S, which are separated by an energy bar-
rier ∼DS2. A finite in-plane magnetic anisotropy E then
allows quantum tunneling between the two spin states,
lifting the degeneracy [13,14] of the ground state by the
tunnel splitting Δ0. Thus the ground state is a linear com-
bination of two spin states with opposite spin projection
and null magnetization [15,16]. The dynamical spin re-
sponse function acquires a pole at �ω = Δ0 so that QST
can be probed spectroscopically. Whereas in large spin
molecular magnets Δ0 is so small that it can only be
inferred indirectly [14], for systems with S = 1, 2, such
as magnetic adatoms and small magnetic molecules de-
posited on conducting substrates, the spin excitations, and
thereby the QST splittings, have been resolved directly by
means of inelastic electron tunneling spectroscopy (IETS)
using STM [4]. The corresponding G(V ) spectra show
step features and, in general, no Kondo peak. It is cus-
tomarily assumed that these excitation energies are a
property of the atomic/molecular quantized spin, weakly
dressed [4,16–18] by its Kondo exchange coupling.

Whether a given magnetic atom or molecule will
show a stepwise G(V ) spectrum [4–6] or a zero bias
Kondo resonance depends on the strength of the Kondo
exchange J which is controlled by the ratio Γ/U .
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Thus, FePc molecules, that in vacuum have S = 1, dis-
play a Kondo feature when deposited on Au (111) [9] and
inelastic steps when deposited on oxidized Cu (110) [6].
Moreover, the joint observation of a zero bias Kondo res-
onance together with stepwise inelastic spin excitations
has been reported for individual magnetic atoms [17,19].
Importantly, it is possible to devise experiments [8,17,20]
in which the Kondo interaction could be tuned, making
it relevant to address the question of how the G(V ) spec-
tra evolve from the weak to the strong coupling regime.
The magnitude of the quantum spin tunneling splitting
can also be modulated by application of a magnetic field
along the hard axis direction [13,14]. In this work we ad-
dress how the competition between Kondo screening and
QST affect the STM inelastic conductance and we predict
a new physical phenomenon, the splitting of the Kondo
peak at zero magnetic field due to quantum spin tunneling.

Both the inelastic steps [21] and the Kondo fea-
tures [22–25] can be described using a Kondo Hamiltonian
where the atomic spin is described with a single-ion quan-
tized spin interacting, via exchange, with the conduction
electrons of the surface. In particular, the interplay be-
tween magnetic anisotropy and Kondo screening has been
thoroughly studied using the Kondo model [17,18,22–25].
Here we present a more general approach, based on a non-
perturbative treatment of a multi-orbital Anderson model
for the adatom coupled to the substrate, that permits
to include atomic charge fluctuations that are effectively
frozen in the Kondo model. As we show below, valence
fluctuations have a similar effect on the spectra as Kondo
exchange. In addition, density functional theory (DFT)
calculations show that often charge is not quantized in
magnetic adatom systems [26,27].

2 Model and method

We consider tunneling between an STM tip and a mag-
netic adatom coupled to a surface as shown in Fig-
ure 1a. Assuming weak coupling to the STM tip (tunnel-
ing regime) [28] the low-bias conductance can be directly
related to the adatom density of states (technically, the
many-body spectral function) ρα(ω),

G(V ) =
2e2

�

∑

α

Γ tip
α ρα(eV), (1)

where Γ tip
α = π|V tip

α |2ρtip is the (weak) tunneling rate of
electrons between the adatom orbitals α and the STM
tip. We have assumed the DOS of the STM tip ρtip is en-
ergy independent around the Fermi level. Note however,
that in general different orbitals couple differently to the
STM tip so that the contribution of the individual chan-
nels to the total conductance may differ. We neglect di-
rect tunneling into surface states in equation (1). This is
a good approximation when the magnetic atoms are sepa-
rated from the metallic surface by a decoupling insulating
layer, such as Cu2N/Cu(100) [4,17,19], CuO/Cu [6] and
h-BN/Rh(111) [20]. This approximation does not capture

STM tip

adatom

substrate

(a)

1.1

1.2

1.3

1.4

1.5

1.6

1.7

 0  1  2  3  4  5  6  7

ρ d
(ω

) (
a.

u.
)

(d)

 101

 102

 103

 104

 105

 0  1  2  3  4  5  6  7

Σ m
A~

m
(ω

) 
(a

.u
.)

ω (meV)

(d)

Fig. 1. (a) Schematic model of experimental setup for mea-
suring excitation spectra of a magnetic adatom on a surface
with STM tip. (b) Schematic energy spectrum of adatom GS
multiplet for S = 1 for negative uniaxial anisotropy D < 0 and
finite in-plane anisotropy E. (c) Same as (b) but for S = 2.
(d) Comparison of PP spectrum Ãm(ω) = Am(ω)/f(−ω) for
the four lowest excitations (bottom) and the real electron spec-
trum (top) for S = 2, D = −1.55 meV and E = 0.35 meV. The
vertical grey lines indicate the positions of the PP energies E∗

m

w.r.t. the GS PP energy E∗
0 .

the Fano interference effect relevant [12] when the tip-
atom channel interferes with the direct tip-surface tunnel-
ing path [29].

We describe the magnetic atom on the surface by a
multi-orbital Anderson model,

H = Himp + Hbath + Vhyb, (2)

where the Hamiltonian of the Anderson impurity site Himp

describes the strongly interacting 3d-levels that yield the
spin of the magnetic atom, and includes a term that ac-
counts for magnetic anisotropy:

Himp = εdN̂d +
∑

ασ �=α′σ′
U n̂ασ n̂α′σ′ −

∑

α�=α′
JH Sα · Sα′

+ DŜ2
z + E(Ŝ2

x − Ŝ2
y). (3)

εd are the single-particle energies of the d-levels, N̂d =∑
α,σ n̂ασ is the number operator for all d-levels α =

1, . . . , M , n̂ασ = d†ασdασ is the number operator of
an individual d-level α with spin σ, U is the effective
Coulomb repulsion, JH the Hund’s coupling, and Sα

measures the total spin of an individual d-level α, i.e.
Sα =

∑
σσ′ d†αστσσ′dασ′ . The crystal field splitting of the

d-levels together with the spin-orbit coupling (SOC) gives
rise [2] to magnetic anisotropy (MA) which in our sim-
plified model is taken into account by the effective spin
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Hamiltonian given by the last term of (3) where D is the
uniaxial anisotropy and E the in-plane anisotropy [1].

The second term in (2) describes the conduction elec-
tron bath in the surface:

Hbath =
∑

k,α,σ

εkαc†kασckασ . (4)

The third term in (2) is the so-called hybridization term
which describes the coupling between the impurity and
the conduction electron bath:

Vhyb =
∑

k,α,σ

Vkα(c†kασdασ + d†ασckασ). (5)

Integrating out the bath degrees of freedom one obtains
the so-called hybridization function:

Δhyb
α (ω) =

∑

k

|Vkα|2
ω + μ − εkα + iη

. (6)

Its (negative) imaginary part Γα(ω) = −Im Δhyb
α (ω) de-

scribes the single-particle broadening of individual impu-
rity levels α due to the coupling to the conduction elec-
trons. Note that we have assumed here that each impurity
level α couples to different conduction electron states (la-
beled by α) in the substrate so that each impurity level
has its own bath. This assumption is justified because of
the different symmetries of the d-orbitals. In the case of
coupling of two orbitals to the same conduction electron
states, off-diagonal elements in the hybridization function
Δhyb

αα′(ω) would occur, describing substrate mediated hop-
ping between impurity levels. In adatom-substrate sys-
tems these off-diagonal elements are often either zero or
very small [30,31].

We now solve the Anderson model (2) within the so-
called One-Crossing Approximation (OCA) [32–34]. The
first step is an exact diagonalization of the isolated impu-
rity Hamiltonian (3):

Himp =
∑

m

Em |m〉 〈m| . (7)

The many-body eigenstates |m〉 are eigenstates of the total
number of electrons of the impurity, i.e. N̂d |m〉 = Nm |m〉,
and the total spin S2 of the impurity, i.e. Ŝ2 |m〉 =
Sm(Sm + 1) |m〉. For a ground state (GS) with integer
spin S, and magnetic anisotropy with negative uniaxial
anisotropy D �= 0 and finite in-plane anisotropy E �= 0,
the (2S +1) degeneracy of the GS multiplet is completely
lifted. This is schematically shown in Figures 1b, 1c for
S = 1 and S = 2 and D < 0 [2,4]: for D < 0 and E = 0
the GS is doubly degenerate with the GS doublet having
the maximal spin projection mz = ±S. A finite in-plane
anisotropy E allows for quantum tunneling between both
spin directions thus lifting the degeneracy of the GS dou-
blet, which now becomes split by Δ0, the bare quantum
spin tunneling. The quantum states of the split doublet are
thus linear combinations |±〉 ∼ |mz = +S〉 ± |mz = −S〉.

In the next step a diagrammatic expansion of the
many-body eigenstates |m〉 of the (isolated) impurity
Himp in terms of the hybridization (5) is developed. Vhyb

connects eigenstates |m〉 and |n〉 of Himp with occupation
numbers differing by one (Nm = Nn ± 1, see (A.1) in the
Appendix). It is these fluctuations between the impurity
GS and excited states with one more or one less electron
that give rise to the Kondo effect. To this end one intro-
duces so-called pseudo-particles (PPs) m corresponding
to the many-body eigenstates |m〉. The full propagator of
such a PP m can be written as:

Gm(ω) =
1

ω − λ − Em − Σm(ω)
, (8)

where Σm(ω) is the PP self-energy which describes the
renormalization (real part) and broadening (imaginary
part) of the PP m due to the interaction with other PPs m′
mediated by the conduction electron bath (see Eq. (A.11)
in Appendix). −λ is the chemical potential for the PPs
which has to be adjusted such that the total PP charge
is constrained to one (see Eqs. (A.4) and (A.6) in the
Appendix).

OCA consists in a diagrammatic expansion of the
PP self-energies Σm in terms of the hybridization func-
tion Δhyb

α to infinite order but summing only a sub-
set of diagrams (only those involving conduction electron
lines crossing at most once). This leads to a set of cou-
pled integral equations for the PP propagators and self-
energies that have to be solved self-consistently. Once
the OCA equations are solved the real electron spec-
tral function ρα(ω) for the impurity levels entering equa-
tion (1) for calculating the conductance spectrum is ob-
tained from convolutions of the PP spectral functions
Am(ω) = −Im Gm(ω)/π (see Eqs. (A.16)–(A.17) in Ap-
pendix) which feature sharp resonances at the renormal-
ized many-body energies E∗

m = Em + Re Σm(E∗
m). The

differences between the renormalized energies of the ex-
cited states E∗

m and the GS E∗
0 yield the real electronic

excitations as shown in Figure 1d.

OCA captures both the weak and strong coupling
Kondo regimes, and has shown to produce reliable spectra
for the single-orbital Anderson model, as long as the tem-
peratures are not too low compared to the Kondo tem-
perature [35,36]. For the general multi-orbital situation
considered here, benchmarking of spectra is difficult since
Numerical Renormalization Group [37] is computation-
ally too demanding to be applied. Using Continuous-Time
Quantum Monte-Carlo, it has been shown [38] that OCA
is markedly superior to the simpler Non-Crossing Approx-
imation (NCA) for dealing with multi-orbital Anderson
models, although certain sum rule violations are found.
Very importantly, OCA has shown excellent agreement
with experiments in very complex multi-orbital sys-
tems [17,39,40]. More details about the OCA method are
given in the Appendix.
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Fig. 2. Results for spin S = 1 and for D < 0, and temperature
kT = 0.1 meV. (a)–(d) Spectra ρd(ω) in dependence of dif-
ferent system parameters: (a) changing E while keeping fixed
Δ1 = |D| + E = 10 meV and Γ/π = 100 meV. (b) Chang-
ing Γ for D = −9.9 meV and E = 0.1 meV. (c) Tempera-
ture dependence for Γ/π = 100 meV, D = −9.75 meV and
E = 0.25 meV. (d) Same as (c) but for D = −9.9 meV and
E = 0.1 meV. (e) Effective QST Δ̃0 as a function of Γ . (f) Spec-
tra for D = −9.75 meV, E = 0.25 meV and Γ/π = 100 meV
for different energy level shifts δεd. In parenthesis the total
occupancy Nd of the impurity is given.

3 Results

We assume that the spin S of the impurity is carried by 2S
active impurity levels close to half-filling. For all impurity
levels we assume the same energy-independent broaden-
ing Γ . The important energy scale is the Kondo exchange
coupling J ∼ Γ/U which can be varied by either chang-
ing Γ or the charging energy U which depends on the
Coulomb repulsion U . Here we choose to vary Γ and fix
the Coulomb repulsion to U = 4 eV. The Hund’s coupling
whose main effect is to favor the formation of a high-spin
ground state is fixed to JH = 1 eV.

We first study the competition between Kondo quench-
ing and QST for a magnetic atom with spin S = 1, at
the point of electron-hole (e-h) symmetry. In this case
the competition is controlled by two energy scales, the
in-plane anisotropy E, that drives the QST, and Γ , that
favors Kondo coupling. We assume D < 0 so that, for
E = 0, the ground state is the doublet of eigenstates
of Sz with mz = ±1 and the state with mz = 0 is the
first excited state (see Fig. 1b). Because of the two-fold
degeneracy of the GS the Kondo effect can take place
(top curve in Fig. 2a). Spin-flip events for the GS dou-
blet m = ±1 occur via the excited state m = 0 and hence

are reduced by a factor of J/D compared to the Kondo ex-
change J of the corresponding spin-1 Kondo model with-
out anisotropy. Note that such a spin-flip process involves
the simultaneous scattering of two conduction electrons.
This is possible since we are considering a multichannel
situation as each impurity orbital is connected to its own
bath. In the situation of just a single screening channel,
the spin-flip between the m = ±1 GS doublet would be
inhibited when D becomes bigger than the Kondo tem-
perature, leading to a split-Kondo feature [41,42].

The in-plane anisotropy term E > 0 produces the QST
that leads to a splitting of the m = ±1 doublet, so that the
bare excitation energies are Δ0 = 2E and Δ1 = |D| + E.
At weak coupling (small Γ ), the spectra show two steps
corresponding to inelastic spin transitions between the
renormalized spin levels (bottom curve in Fig. 2a). Our
calculations show that the effect of decreasing E (Fig. 2a)
and increasing Γ (Fig. 2b) is similar. In both instances
the renormalized QST splitting Δ̃0 decreases, and the line
shapes evolve from square steps at small Γ or large E to a
characteristic triangular shape, very often seen in experi-
ments [4,5,19], that can only be captured in part when go-
ing beyond second order perturbation theory in the Kondo
exchange [24,25]. Whereas the reduction of the renormal-
ized QST splitting Δ̃0 as E decreases is trivially accounted
for by the fact that Δ0 = 2E, the red-shift renormaliza-
tion of the spin excitation energies due to Kondo coupling
(Fig. 2e) is a many-body effect, in line with previous re-
sults [16–18,43,44]. In our approach the renormalization
of the spin excitations ultimately originates in the renor-
malization of the many-body energies E∗

m by the real part
of the PP self-energy Σm(ω) (see Eq. (8)). We would like
to stress at this point that the splitting of the Kondo peak
is exactly given by the effective QST Δ̃0. Hence Figure 2e
really is a prediction for the splitting of the Kondo peak
by QST which can be measured experimentally.

At intermediate coupling, the renormalization of the
line shape and energy of the lowest energy spin excita-
tion turns them into a split Kondo peak. This is one of
the important results of this work: in the absence of a
magnetic field the competition between QST and Kondo
effect yields a split-Kondo state whose characteristic sig-
nature can be measured by STM spectroscopy. As shown
in Figures 2c and 2d, the temperature dependence of the
spectra in the case of intermediate coupling (split-Kondo)
is quite different from that of weak coupling (step-like).
For weak coupling (Fig. 2c), at low temperatures two clear
steps are obtained, with slight triangular departures from
the step-wise behavior, due to Kondo interactions, that
are captured as well by perturbative calculations [25].
As the temperature is increased, the low energy step is
smeared out and, eventually, is no longer resolved. On the
other hand, at intermediate coupling (Fig. 2d), a zero-
field split Kondo peak is obtained at low temperatures.
As we increase kBT the QST splitting of the Kondo peak
disappears due to thermal smearing, resulting in a sin-
gle peak. At strong coupling, the effective QST Δ̃0 van-
ishes (Fig. 2e), so that the ground state and the first ex-
cited state become effectively degenerate: Kondo coupling

http://www.epj.org
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Fig. 3. Results for spin S = 2 with D = −1.55 meV and
E = 0.35 meV, and temperature kT = 0.2 meV. (a) Spectral
function ρd(ω) for different values of single-particle broaden-
ing Γ . (b) Temperature dependence of spectral function for
Γ/π = 100 meV. (c) QST Δ̃0 as a function of single-particle
broadening Γ . (d) Effect of charge fluctuations: spectra for
Γ/π = 100 meV for different energy level shifts δεd. In paren-
thesis the total occupancy Nd of the impurity levels is given.

quenches QST splitting [16]. At this point, the spectra
show a Kondo peak (top curves in Figs. 2a and 2b).

We now consider the effect of valence fluctuations. This
effect is particularly important since DFT calculations
show that often the average occupation of the d shell is
not quantized [26,27]. In our model, we control the valence
mixing by shifting the impurity levels by an amount δεd,
taking the system out of the e-h symmetry point, lead-
ing to deviations from integer occupation number of the
impurity shell. Valence fluctuations have a similar effect
on the spectra as increasing the Kondo screening, leading
e.g. to a considerable enhancement of the Kondo peak [45].
Similarly, also the renormalization of the excitation ener-
gies and especially of the QST by the Kondo is enhanced
by the introduction of charge fluctuations, as can be seen
in Figure 2f. Increasing δεd leads to the step features as-
sociated with spin excitations moving to lower energies.
Also the up-bending of the lowest energy steps associated
with QST and the conversion into a split-Kondo peak is
induced by increasing valence fluctuations. Different from
the case when Γ increases, the spectra also become some-
what asymmetric as the e-h symmetry is broken by the
valence fluctuations.

The competition between Kondo effect and QST is also
present for higher integer spin systems. In Figure 3 we
show results for spin S = 2, and magnetic anisotropy pa-
rameters D = −1.55 meV and E = 0.35 meV chosen to
reproduce spectra for Fe on Cu2N [4]. The energy level
diagram, and the spin composition of the corresponding
states, are shown in Figure 1. Here the QST splits both
the m = ±2 ground state doublet, by an amount Δ0 ∝ E2

D
as well as the m = ±1 doublet by 2E. Thus, the magnetic
anisotropy completely lifts the degeneracy of the GS quin-
tuplet leading to step features in the calculated spectral

functions (Fig. 3a) that, for small values of Γ , resemble
those measured for Fe on Cu2N [4], and correspond to
inelastic spin excitations from the ground state. As Γ is
increased, the inelastic spin excitation step features both
move to lower energies and become broader, indicating
both the renormalization of the associated excitation en-
ergies and the decrease of the lifetimes due to the exchange
coupling. As in the S = 1 case, the step features associ-
ated with QST develop a triangular shape with increas-
ing Γ and finally turn into a split-Kondo peak. As Γ is
increased, the effective QST Δ̃0 is renormalized but re-
mains finite in the range of physically reasonable values
of Γ (up to 1eV) considered here (see Fig. 3c). We note
that generally the Kondo coupling is also weaker for S = 2
than for S = 1 since higher order processes are necessary
to screen the spin. For a somewhat smaller E (not shown)
the splitting of the Kondo peak can also vanish for spin
S = 2. Figure 3b shows the temperature dependence of
the spectrum for the case of relatively small coupling Γ .
As the temperature is lowered, initially flat steps appear
in the spectrum, which become increasingly triangular as
the temperature is lowered further. As in the case of spin
S = 1, increasing the valence fluctuations by detuning
the system from ph symmetry has a similar effect as in-
creasing Γ (see Fig. 3d), leading to a red-shift of the spin
excitation energies. The detuning from ph symmetry also
leads to an up-bending of the initially flat step features
associated with QST and to the conversion into a split-
Kondo peak.

The picture that emerges from our calculations is the
following. An atom with integer spin S, described with
Hamiltonian (3), is a closed quantum system whose quan-
tum ground state has a built-in coherence between the two
classical ground states, with Sz = ±S, associated to the
QST splitting Δ0, that would determine the frequency of
the Rabi flops of the magnetization if the atom was ini-
tially prepared in an eigenstate of Sz. As the coupling
to the surface electrons is turned on, the atomic spin be-
haves like a quantum open system. This results both in the
renormalization (reduction) of this Rabi frequency as well
as spin relaxation, leading to a broadening of the steps.
For sufficiently large coupling the QST splitting can be
completely quenched, in line with previous results [16],
and quantum coherence between the states with opposite
Sz is lost. At that point Kondo screening takes over, and
the zero bias Kondo feature appears.

Interestingly, the evolution between the strong cou-
pling Kondo regime and the weak coupling with step-wise
excitations is continuous. At intermediate couplings the
spectral functions show a split Kondo peak, that resem-
bles the Zeeman split Kondo peak, but is driven by QST
instead. The strength of the Kondo coupling is controlled
both by Γ and by the departure from the e-h symmetry
point, that we change by tuning δεd. Importantly, both
the weak coupling picture with step-wise excitations as-
sociated with spin transitions, and the strong coupling
Kondo regime, are also obtained in the case when the
charge on the atom is not quantized, as suggested by DFT
calculations [26,27].
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4 Conclusions

In summary, we have studied the competition between two
important physical phenomena that affect integer spins,
namely QST and Kondo screening. Our calculations per-
mit to trace the evolution from the weak Kondo coupling
regime, where the stepwise dI/dV spectra are renormal-
ized, resulting in the shift and the broadening of the spin
excitation energies, to the strong coupling regime, where
the zero bias Kondo peak appears. This accounts for sev-
eral experimental observations [17,20]. For strong Kondo
coupling, QST can be completely quenched. Importantly,
for the intermediate coupling regime we predict a new
physical effect: for B = 0 an energy split Kondo peak can
arise, because of quantum spin tunneling splitting, in anal-
ogy with the B �= 0 Zeeman split Kondo peak, recently
investigated more closely by spin-polarized STM [46].
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Appendix: One-crossing approximation

The starting point are the eigenstates |m〉 and cor-
responding eigenenergies Em of the isolated impurity
Hamiltonian (7). In terms of the impurity eigenstates |m〉
we can rewrite the hybridization term Vhyb as:

Vhyb =
∑

m,n

∑

k,α,σ

Vkα

(|m〉 〈m| d†ασ |n〉 〈n| ckασ + h.c.
)
.

(A.1)
Vhyb connects eigenstates of Himp with different occupa-
tion numbers, i.e. Nm = Nn ± 1. It is the fluctuations
between the GS and excited states of the atom give rise
to the Kondo effect. Since the electron-electron interaction
on the impurity (U and JH) is generally large compared
to the hybridization (Vkα), a perturbative treatment in
terms of the latter is justified.

We are now going to develop a perturbation theory for
the many-body eigenstates |m〉 of Himp in terms of the
hybridization term Vhyb. In order to proceed we associate
so-called pseudo-particle (PP) field operators a†

m, am with
the many-body eigenstates |m〉 of Himp:

|m〉 = a†
m

∣∣0̃
〉

and am |m〉 =
∣∣0̃

〉
, (A.2)

where
∣∣0̃

〉
is the PP vacuum. The auxiliary fields a†

m and
am obey either commutation or anticommutation rules de-
pending on whether the corresponding many-body state
is bosonic (even number of electrons) or fermionic (odd
number of electrons):

[am, a†
m] = 1 (Bosons); {am, a†

m} = 1 (Fermions). (A.3)

Note that a†
m and am are only auxiliary fields that per

se do not have a physical meaning. In order to give this
construction a physical significance one has to impose an
additional constraint that enforces the conservation of the
PP number to one, i.e. the system can only be in one and
only one state |m〉 at a time:

Q =
∑

m

a†
mam ≡ 1. (A.4)

The PPs are related to the real electrons by:

dασ =
∑

m,n

〈m| dασ |n〉 a†
man. (A.5)

In the PP picture the Hamiltonian of the isolated atom
becomes

Himp =
∑

m

Ema†
mam + λ

(
∑

m

a†
mam − 1

)
, (A.6)

where the last term is a Lagrangian constraint imposing
the afore mentioned conservation of the PP charge Q. The
Lagrange multiplier λ can be seen as a (negative) chemi-
cal potential for the PPs. Imposing the constraint via the
Lagrange multiplier is done e.g. in the Slave-Boson Mean-
Field Approximation of the Anderson model [47]. How-
ever, for the diagrammatic expansion it is more convenient
to work in the grand-canonical ensemble with respect to
the PP charge Q. The expectation values of a physical
observable A can be calculated in the grand canonical
PP ensemble and then projected to the physical subspace
(Q = 1) via the Abrikosov trick [48]:

〈A〉 = lim
λ→∞

〈QA〉λ
〈Q〉λ . (A.7)

In the PP picture the hybridization term (A.1) becomes:

Vhyb =
∑

m,n

∑

k,α,σ

Vkα

(
Dασ†

mn a†
manckασ + Dασ

mnc†kασa†
man

)

(A.8)
where we have introduced the matrix elements Dασ

mn =
〈m| dασ |n〉 and Dασ†

mn = 〈m|d†ασ |n〉. The hybridiza-
tion term Vhyb is now treated as a perturbation to the
Hamiltonian of the uncoupled impurity and bath H0 =
Himp + Hbath. The introduction of PPs obeying (anti-)
commutation relations allows us to make use of the ma-
chinery of quantum field theory to develop a diagrammatic
perturbation expansion since Wick’s theorem applies.

We now introduce the bare PP propagators G0
m(τ) =

−〈Tτam(τ)a†
m(0)〉0 which will be denoted by dashed lines:

G0
m(iω) =

1
iω − λ − Em

=
m

. (A.9)
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The bath electron propagator is denoted by a full line:

gkασ(iω) =
1

iω − εkα
=

kασ
. (A.10)

Expanding the full PP propagator Gm(τ) =
〈Tτam(τ)a†

m(0)〉 in terms of the hybridization Vhyb,
we can integrate out the bath electrons, and end up with
an effective retarded two-particle interaction between
PPs mediated by the bath electrons:

Ṽhyb(τ − τ ′) =
∑

α,σ,m,n,m′,n′
Dασ†

mn Dασ
n′m′

× a†
m(τ)an(τ)

[
∑

k

|Vkα|2gkασ(τ − τ ′)

]

× a†
n′(τ ′)am′(τ ′). (A.11)

The term in square brackets is called the hybridization
function Δα(τ − τ ′) which in the real frequency domain is
given by equation (6).

The full PP propagators are denoted by double dashed
lines. In terms of a PP self-energy Σm(ω) which captures
the interaction with other PPs via Vhyb, the full propaga-
tor can be written as:

Gm(iω) =
1

iω − λ − Em − Σm(iω)
=

m
.

(A.12)
In lowest order (2nd order in Vkα or 1st order Δα) the PP
self-energy is given by the following diagrams:

Σm(ω) =

ασ

m′
+

ασ

m′
. (A.13)

The conduction electron line (full lines) ασ correspond to
the hybridization function Δα(ω).

The first diagram (“backward” diagram) corresponds
to adding an electron to the impurity site, i.e. Nm′ =
Nm + 1 and the second diagram (“forward” diagram) to
removing an electron, i.e. Nm′′ = Nm−1. The non-crossing
approximation (NCA) consists in an infinite resummation
of these lowest order diagrams where conduction elec-
tron lines do not cross (hence the name) [49]. Replacing
the bare propagators by full propagators in the above
self-energy diagrams, one obtains the NCA self-energy
diagrams:

ΣNCA
m (ω) =

ασ

m′
+

ασ

m′

= −
∑

m′ασ

∫
dν

π

[|Dασ
mm′ |2 f(ν) Γα(ν) Gm′(ω+ν)

+ |Dασ
m′m|2 f(−ν) Γα(ν) Gm′(ω − ν)

]

(A.14)

where Γα(ω) ≡ −ImΔα(ω) is the single-particle broaden-
ing of the impurity levels α by the coupling to the conduc-
tion electron bath, and f(ν) is the Fermi function. Hence
the NCA self-energy for a PP m is given by a convolu-
tion of the imaginary part of the hybridization function
Γα with the propagators of all other PPs m′ that m is
interacting with via the conduction electron bath.

The OCA diagrams are second order in Δα(ω) and
involve crossing conduction electron lines:

ΣOCA
m (ω) = ΣNCA

m (ω)

+
m′ m′′ m′′′

ασ α′σ′

+
m′ m′′ m′′′

ασ α′σ′

+
m′ m′′ m′′′

ασ α′σ′

+
m′ m′′ m′′′

ασ α′σ′

.

(A.15)

The algebraic expressions for the OCA self-energy are
much more complicated than the NCA ones, and involve
double convolutions of two hybridization functions with
three PP propagators. The exact expressions can be found
in references [33,34].

The NCA/OCA equations are a set of coupled integral
equations that have to be solved self-consistently since the
self-energy of a PP m depends on the full propagators of
other PPs m′. Once the NCA/OCA equations are solved,
the real impurity electron propagator can be determined
by making use of the relation (A.5). Hence the real elec-
tron propagator can be calculated from a two-particle cor-
relation function for PPs:

Gασ(τ) = −〈Tτdασ(τ)d†ασ(0)〉
= −

∑

m,n,m′,n′
Dασ†

mn Dασ
nm〈Tτa†

m(τ)an(τ)a†
nam〉.

(A.16)

In NCA the vertex correction Λ is neglected. It is then
found that the real electron spectral function ρασ(ω) =
−ImGασ(ω)/π can be calculated from a convolution of
PP spectral functions Am(ω) = −Im Gm(ω)/π:

ρα(ω) =
1

〈Q〉λ
∑

mm′

∫
dε e−βε [1 + e−βω]

× |Dασ
mm′ |2 Am(ε) Am′(ω + ε), (A.17)

where Q is the PP charge which can be calculated directly
from the PP spectral functions:

〈Q〉 =
∫

dω e−βω
∑

m

Am(ω). (A.18)

Again the corresponding expression for calculating the real
electron spectral function within OCA is much more com-
plicated as it involves double convolutions of PP correla-
tion functions and the hybridization function [33,34].
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