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Abstract

Many criteria of ageing for random variables or vectors have been proposed in the literature over
many years. For instance, a random variable is increasing in failure rate (IFR) if, and only if, it can
be ordered with an exponentially distributed random variable in the univariate convex transform
order proposed by van Zwet [35]. Recently, Belzunce et al. [9] introduced a multivariate general-
ization of the convex transform order. In this work, we proposed a new multivariate IFR notion
for multivariate distributions based on comparisons in this new order with a properly de�ned ex-
ponentially distributed random vector. Properties, applications and illustrations of this new notion
are given as well.

Keywords: Standard Construction, Multivariate Distributional Transform, Multivariate Convex
Transform Order, Multivariate IFR distributions

1. Introduction

Notions of ageing play an important role in reliability theory, survival analysis and other �elds.
By ageing we mean �the phenomenon whereby an older system has a shorter remaining lifetime, in
some statistical sense than a younger one� (see Bryson and Siddiqui [14]). In this context, ageing
notions are usually de�ned through di�erent properties of well-known functions like the survival,
hazard rate and mean residual life. For example, the increasing [decreasing] failure rate (IFR [DFR])
notion is one of the most studied and can be de�ned in terms of the hazard rate function as we
recall next.

Given a random variable X with absolutely continuous distribution function F , survival function
F = 1−F and density function f , the hazard or failure rate function is given by r(x) = f(x)/F (x),
for all x such that F (x) < 1. This is one of the basic functions in the context of reliability and
survival analysis where a random variableX represents the random lifetime of a unit or a mechanism
and it can be considered as the rate at which a unit fails when survive up to a �xed time x. For
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instance, if r(x) is a nondecreasing [nonincreasing] function in x, then X is said to be IFR [DFR]
(see, e.g., Barlow and Proschan [8] and Lai and Xie [22]).

As pointed out by Belzunce and Shaked [11] and Belzunce and Shaked [12], the great majority
of ageing notions can be characterized by means of stochastic comparisons. In particular, some
ageing notions can be stated through stochastic comparisons among the random variable and an
exponential distribution. Recall that a system or unit with an exponentially distributed lifetime
posses the nonageing property. More precisely, the IFR [DFR] notion can be characterized in terms
of the convex transform order introduced by van Zwet [35]. Let us recall its de�nition.

Let X and Y be two random variables with interval supports (�nite or in�nite) and distribution
functions F and G, respectively. From now on, let us denote by G−1(u) = inf{x : G(x) ≥ u}
the generalized quantile function corresponding to Y . It is well known that the transformation
φ(x) = G−1F (x) maps X onto Y , that is,

Y =st φ(X). (1)

Note that it also holds φ(x) = G
−1
F (x). According to this notation, X is said to be smaller than

Y in the convex transform order, denoted by X ≤c Y , if φ(x) is convex in the support of X.
From this point of view, we can say that Y is obtained through a convex transformation of the

sample space of X. In fact, the convex transform order is closely connected with the notion of
skewness. Particularly, if X and Y are two nonnegative random variables such that X ≤c Y , it has
been accepted (see, for instance, Arnold and Groeneveld [5]) that any measure γ of skewness should
satisfy that γ(X) ≤ γ(Y ) or, roughly speaking, Y is more right-tailed than X. This is the case of
some well known measure like the Fisher's and Bowley's coe�cients and some other measures (see
MacGillivray [23]).

Under the previous assumptions, a random variable X is IFR [DFR] if, and only if, it is smaller
[larger] in the convex transform order than an exponentially distributed random variable E with
scale parameter λ = 1, i.e., E ∼ Exp(1), that is,

X is IFR [DFR] ⇔ X ≤c [≥c]E,
⇔ X ≤c [≥c]aE + b, for all a > 0, b ∈ R, (2)

where the second characterization follows from the well-known fact that the convex transform order
is preserved by translations and positive scale changes.

Other characterizations of the IFR [DFR] notion are given in terms of stochastic comparisons
of residual lives for some other stochastic orders, like the usual stochastic, hazard rate, dispersive,
increasing concave and Laplace transform orders (see Belzunce and Shaked [11]).

In the multivariate case, di�erent generalizations of the IFR [DFR] have been proposed. For
instance, some of them are given in terms of multivariate extensions of the hazard rate function
from a mathematical point of view (see Block and Savits [13], Johnson and Kotz [19], Rüschendorf
[30] and Savits [31]), while some others are given from a dynamic version of the hazard rate function
(for a recent review, the reader can look at Shaked and Shanthikumar [33]).

Even more, multivariate generalizations by means of stochastic orders can be also found. In
particular, there are two di�erent proposals. Next, we describe them (see Arias-Nicolás et al. [2],
Roy [28] and Roy [29]).

On one hand, the univariate IFR [DFR] notion can be characterized by dispersive comparisons
of residual lives Xt = (X − t|X > t). In particular, a random variable X is IFR [DFR] if, and
only if, Xt′ ≤disp Xt whenever 0 ≤ t ≤ t′ (see Belzunce and Shaked [11] and Belzunce and Shaked

2



[12] for further details). Arias-Nicolás et al. [2] introduced a multivariate IFR notion based on the
previous characterization comparing multivariate residual lives in the multivariate dispersive order
proposed by Fernández-Ponce and Suárez-Llorens [17]. It is worth to mention that the de�nition
of this multivariate dispersive order involves a particular transformation which will be recalled in
Section 2, by means of the standard construction.

On the other hand, Roy [28] gave the de�nition of a new multivariate extension of the IFR
notion. Then, Roy [29] proposed a multivariate convex order in terms of convex comparisons
among a certain type of conditional random variables constructed with the margins of the random
vector. In the same paper, Roy [29] characterized the multivariate IFR notion proposed by Roy [28]
by using jointly the multivariate convex order and a Gumbel multivariate exponentially distributed
random vector. This approach is a natural extension of the characterization given in (2).

The aim of this paper is to propose a new multivariate IFR [DFR] ageing notion as a natural
generalization of (2). A �rst approach in this sense can be seen in Mulero [24]. It is apparent that
a multivariate convex order and a multivariate exponential distribution are required. On one hand,
we considered the so-called mct order recently de�ned by Belzunce et al. [9] whose de�nition is
based on the mapping also used by Arias-Nicolás et al. [2]. On the other hand, in contrast to the
previous proposal by Roy [29] who considered an existing multivariate exponential distribution, a
suitable exponentially distributed random vector is introduced. Properties and relationships of the
new multivariate notion are studied and some examples related with well-known models such as
normal distributions or generalized ordered statistics are provided.

The paper is organized as follows. In Section 2, we recall the de�nition of the multivariate
convex transform order proposed by Belzunce et al. [9] and some of its properties. In Section 3,
we introduce a new family of exponential random vectors and use it together with the previous
multivariate convex order to de�ne a new multivariate IFR notion and study its interpretation
and properties. In Section 4, some examples related to two well known probabilistic models are
presented. In Section 5, we study this notion in some distributions through di�erent plots. Finally,
in Section 6, we give a brief summary of the work.

Throughout this paper, �increasing� means �nondecreasing� and �decreasing� means �nonincreas-
ing�. Given a vector (or matrix) v, we denote as vt the transposition of v. Moreover, we will denote
by =st, the equality in law, and by ≤a.s., the almost surely inequality. For any random vector X, or
random variable, we will denote by (X|A) a random vector, or random variable, whose distribution
is the conditional distribution of X given A.

2. Multivariate convex orders

Given two continuous random vectors X = (X1, . . . , Xn) and Y = (Y1, . . . , Yn), it is possible to
�nd a function Φ which maps the random vector X onto Y as a generalization of (1). In particular,
Φ is constructed in terms of the standard construction of Y and the multivariate distributional
transform of X which play the role of the quantile and the distribution function of the random
variables, respectively. Let us recall the de�nitions.

The problem of de�ning a suitable multivariate extension of the univariate quantile function
has a long history in statistics and probability. In this paper, we consider the so-called standard
construction, also known as multivariate quantile transformation, which is widely used in simulation
theory (we refer the reader to Arjas and Lehtonen [3], O'Brien [25], Rosenblatt [27] or Rüschendorf
[30] for further information). Next, we recall the de�nition.
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Given a continuous random vector Y = (Y1, . . . , Yn), its standard construction is de�ned as

QY(u1, . . . , un) = (QY,1(u1), QY,2(u1, u2), . . . , QY,n(u1, . . . , un)),

where
QY,1(u1) = G−1Y1

(u1),

QY,2(u1, u2) = G−1(Y2|Y1=QY,1(u1))
(u2),

...
QY,n(u1, u2, . . . , un) = G−1

(Yn|⋂n−1
j=1 {Yj=QY,j(u1,u2,...,pj)})

(un),

for all ui ∈ (0, 1), i = 1, 2, . . . , n, where G−1Z denotes the quantile function of Z.
It is well-known that if U = (U1, . . . , Un) is a random vector with independent and uniformly

distributed components on the interval (0, 1), then

Y =st QY(U). (3)

On the other hand, given another continuous random vector X = (X1, . . . , Xn), its multivariate
distributional transform is de�ned as

DX(x1, . . . , xn) = (DX,1(x1), DX,2(x1, x2), . . . , DX,n(x1, . . . , xn)),

where
DX,1(x1) = FX1

(x1),
DX,2(x1, x2) = F(X2|X1=x1)(x2),

...
DX,n(x1, . . . , xn) = F(Xn|⋂n−1

j=1 {Xj=xj})(xn),

(4)

for all xi in the support of Xi, where FZ denotes the distribution function of Z.
Again, if U = (U1, . . . , Un) is a random vector with independent and uniformly distributed

components on the interval (0, 1), then

U =st DX(X). (5)

Given two continuous random vectors X = (X1, . . . , Xn) and Y = (Y1, . . . , Yn), let Φ = QY ◦
DX, de�ned for all (x1, . . . , xn) in the support of X, as

Φ(x1, . . . , xn) = (Φ1(x1),Φ2(x1, x2), . . . ,Φn(x1, x2, . . . , xn))

where
Φ1(x1) = F−1Y1

(FX1(x1)),

Φ2(x1, x2) = F−1(Y2|Y1=Φ1(x1) )

(
F(X2|X1=x1)(x2)

)
,

...

Φn(x1, . . . , xn) = F−1
(Yn|⋂n−1

j=1 {Yj=Φj(x1,...,xj)} )

(
F(Xn|⋂n−1

j=1 {Xj=xj} )(xn)
)
,

(6)

Since (3) and (5), it can be seen that the function Φ maps the random vector X onto Y, i.e.,
Y =st Φ(X) which is the key property of this function.

From the increasingness of both the distribution function and its inverse, Φi(x1, . . . , xi) is in-
creasing in xi, for all i = 1, . . . , n. Hence the Jacobian matrix of Φ is always a lower triangular
matrix with strictly positive diagonal elements.
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Remark 1. As a clear extension of the univariate case, Fernández-Ponce and Suárez-Llorens [17]
proved in Theorem 3.1 that if we have k : Rn → Rn such that Y =st k(X) and k has a lower
triangular Jacobian matrix with strictly positive diagonal elements, then k has necessarily the form
of the function Φ given in (6).

As a consequence of Remark 1, if we interchange the role that play X and Y in (6), we easily
obtain that the function that maps Y onto X is the inverse of the corresponding that maps X onto
Y, i.e.,

QX ◦DY = (QY ◦DX)
−1
. (7)

On the other hand, Belzunce et al. [9] proposed the so-called mct-order which is a generaliza-
tion of the univariate convex transform order. In particular, they required the convexity of the
components of Φ. Next, we recall this de�nition.

De�nition 1. Let X = (X1, . . . , Xn) and Y = (Y1, . . . , Yn) be two random vectors. Let Φ =
(Φ1, . . . ,Φn) be the transformation described in (6). Then, X is said to be smaller than Y in the
multivariate convex transform order, denoted by X ≤mct Y, if, and only if, Φi : Ri → R is convex
in its support, for all i = 1, . . . , n.

Remark 2. For two univariate random variables, Φ is always increasing. Therefore, if Φ is convex,
its inverse is concave. Unlike the univariate case, in the multivariate case, the transformation Φ is
not necessarily increasing for all components. Hence if Φ is a multivariate convex function, as in
De�nition 1, it does not necessarily imply that its inverse is concave. A straightforward computation
shows that this last property holds when Φi is increasing, for all i = 1, . . . , n.

3. A new de�nition of multivariate IFR [DFR] distributions based on the standard
construction

In this section, a new multivariate IFR ageing notion is proposed, as a direct extension of
the univariate characterization given in (2). For our purpose, a properly de�ned exponentially
distributed random vector is introduced. Note that Corollary 2 in Belzunce et al. [9] inherently
deals with this multivariate exponential distribution.

De�nition 2. Let Y = (Y1, . . . , Yn) be a random vector. Then, Y is said to follow a multivariate
conditional exponential distribution with parameter matrix A = (aij) ∈ Mn×n and constant vector
b ∈ Rn, denoted by Y ∼ MCE(A,b), if Yt =st AEt + bt, where A is a lower triangular matrix
with strictly positive diagonal elements and E = (E1, . . . , En) denotes a multivariate random vector
with independent and identically distributed (for short, i.i.d.) exponential marginal distributions
with common parameter λ = 1.

Under this notation, E ∼ MCE(In×n,0n), where In×n and 0n represent the identity matrix
and the null vector, respectively.

Remark 3. It is worth to mention that this kind of distributions have been used in reliability in
other contexts. For instance, Freund [18] provided a failure mechanism of a two-component system
assuming that components have constant failure rates when both are in operation. In this approach,
a failure of a component does not result in its replacement, but it changes the failure rate of the
non-failed component as it has a higher workload.
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Let us suppose that a system has two independent components with lifetimes Xi ∼ Exp(1/θ0),
for i = 1, 2. After the failure of a component, the conditional distribution for the lifetime of the
remaining component is also assumed to be exponential with scale parameter, or failure rate, 1/θ1.
Under these assumptions, the bivariate random vector whose marginal distributions represent the
�rst and second failures is given by (T1, T2) such that

T1 = min{X1, X2} =st Exp(2/θ0),
T2 = T1 + Y2,

where Y2 ∼ Exp(1/θ1) and T1 and Y2 are independent. In this case, the joint density function of
(T1, T2) is given by

f(T1,T2)(t1, t2) = fT1
(t1)f(T2|T1=t1)(t2) = 2θ−10 θ−11 exp{−2θ−10 t1 − θ−11 (t2 − t1)},

where 0 ≤ t1 ≤ t2. Just by construction, it is easy to see that (T1, T2) ∼ MCE(A2×2,0n) where
the lower triangular matrix A = (aij) ∈M2×2 satis�es that a11 = a21 = θ0/2 and a22 = θ1.

Given Y ∼MCE(A,b), it is remarkable that Yi is always a linear combination of independent
shifted exponential distributions, for all i = 1 . . . , n. Furthermore, the name �conditional expo-
nential� comes from the property that the following sequential conditional distributions are shifted
exponential distributions, that is,

Y1 ∼ a11E1 + b1,
(Y2|Y1 = y1) ∼ a21α1 + a22E2 + b2,

(Y3|Y1 = y1, Y2 = y2) ∼ a31α1 + a32α2 + a33E3 + b3,
...(

Yn

∣∣∣⋂n−1j=1 Yj = yj

)
∼

∑n−1
j=1 anjαj + annEn + bn,

(8)

where the conditional distributions are well de�ned. It is not di�cult to see that

(α1, . . . , αn−1)t = A−1n−1(y1 − b1, . . . , yn−1 − bn−1)t,

where An−1 is a submatrix formed by deleting the n-th row and n-th column of A. Since (8), the
joint density function of a multivariate conditional exponential distribution can be easily computed.

Remark 4. Let Y1 ∼ MCE(A1,b1) and Y2 ∼ MCE(A2,b2) be two multivariate conditional
exponential distributions. With a straightforward computation, it can be showed that

Yt
2 =st A2A

−1
1 (Y1 − b1)t + bt2.

Just taking into account that A−11 is a lower triangular matrix with strictly positive diagonal ele-
ments, we have that A2A

−1
1 is also a lower triangular matrix with strictly positive diagonal ele-

ments. Therefore, from Proposition 2 in Belzunce et al. [9], all multivariate conditional exponential
distributions are equal in the mct-order, i.e., Y1 =mct Y2.

From the de�nition of the multivariate conditional exponential distribution and clearly inspired
in (2), we propose a new multivariate IFR ageing notion based on the mct-order.
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De�nition 3. Let X = (X1, . . . , Xn) be an absolutely continuous random vector. Then, X is said to
be mct-IFR [mct-DFR] if there exists a particular multivariate conditional exponential distribution,
Y ∼ MCE(A,b), such that X ≤mct [≥mct]Y. We will call the random vector Y an upper bound
exponential distribution associated with X.

Remark 5. Just by taking n = 1, De�nition 3 is an extension of the univariate characterization
given in (2). From Remark 2, it is worth to mention that checking the convexity of Φ is not
equivalent to check the concavity of Φ−1, for n > 1. Therefore, if we interchange the role that
play X and Y in De�nition 3 and we require concavity instead of convexity it will lead us to a
complementary ageing de�nition as we will see later in Counterexample 2.

Remark 6. Before studying the main properties, note that if X is mct-IFR, then there exists
Y ∼ MCE(A,b) such that X ≤mct Y. Therefore, from Remark 4, we easily obtain that X ≤mct
Y =mct Y′ for any Y′ ∼MCE(A′,b′). At this point, it is natural to wonder if the previous result
implies that X ≤mct Y′. The answer is not, due to fact that the multivariate transform convex order
is not transitive in general, see Example 3 in Belzunce et al. [9]. Hence if X is mct-IFR, we can
not conclude that it is ordered in the mct-order sense with any multivariate conditional exponential
distribution unlike the univariate case.

This is not surprising if we recall that the function Φ that maps a random vector onto another
one depends on the standard construction and this one is related to the dependence structure of the
corresponding random vectors, for more details about that dependency see Fernández-Ponce et al.
[15]. However, Proposition 4 in Belzunce et al. [9] states conditions to ensure the transitivity. In
particular, X ≤mct Y′ holds if the a�ne function given in Remark 4, A′A−1(y−b)t + (b′)t, which
maps Y onto Y′ is increasing, i.e., the matrix A′A−1 has nonnegative coe�cients.

Finally, by changing the constant vector b, the upper bound distribution is not unique.

Next, some desirable properties associated with De�nition 3 are presented. First, we show
that random vectors with independent IFR [DFR] marginal distributions are mct-IFR [mct-DFR].
Therefore, a random vector with independent components inherits the univariate ageing properties
of the marginal distributions. It is worth to mention that most of the multivariate extensions of
the IFR notion satisfy this kind of property (see, among others, Block and Savits [13], Johnson and
Kotz [19], Savits [31], Arias-Nicolás et al. [2], Roy [28], Roy [29] and Fernández-Ponce et al. [16]).

Proposition 1. Let X = (X1, . . . , Xn) be an absolutely continuous random vector with independent
components. Then, X is mct-IFR [mct-DFR] if, and only if, Xi is IFR [DFR], for all i = 1, . . . , n.

Proof. We just need to prove that E ∼MCE(In×n,0n) is an upper bound exponential distribution
associated with X. Due to the fact that X and E share the same independence copula, just using
Theorem 3 in Belzunce et al. [9], we have that X ≤mct [≥mct]E holds if, and only if, Xi ≤c [≥c]Ei,
for all i = 1 . . . , n. Since (2), the last condition holds if, and only if, Xi's are IFR [DFR], for all
i = 1 . . . , n.

Some results that can help us to provide many possible examples are stated in Propositions 2
and 3. Their proofs are an immediate consequence of the transitivity property of the mct-order
described in Proposition 4 in Belzunce et al. [9] and have been omitted.

Proposition 2. Let X = (X1, . . . , Xn) be an absolutely continuous mct-IFR distribution and let
Y ∼MCE(A,b) be an upper bound exponential distribution associated with X. Let Φ = QY ◦DX

the transformation that maps X onto Y. If Φ(x) is increasing for all x in the support of X, then
any random vector X′ such that X′ ≤mct X is also mct-IFR.
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Proposition 3. Let X = (X1, . . . , Xn) be an absolutely continuous mct-DFR distribution, then any
random vector X′ such that X ≤mct X′ is also mct-DFR whenever the transformation Φ = QX′◦DX

that maps X onto X′ is increasing for all x in the support of X.

Note that given a random vector X, it is remarkable that �xing a common copula, a constructive
way of �nding X′ such that X ≤mct X′ or X′ ≤mct X is described in Section 3 in Belzunce et al.
[9]. It is clear that this fact allows us to construct many examples using the previous propositions.

Now, we present some examples related to linear transformations where we can also apply the
previous propositions.

Example 1. Let X = (X1, . . . , Xn) be an absolutely continuous mct-IFR distribution satisfying the
conditions in Proposition 2. Let X′ = XBt be a linear transformation of X, where B is a lower
triangular matrix with strictly positive diagonal elements. From Proposition 2 in Belzunce et al. [9]
X′ =mct X, in particular X′ ≤mct X holds. Therefore, using Proposition 2 X′ is mct-IFR.

Example 2. Let X = (X1, . . . , Xn) be an absolutely continuous mct-DFR distribution. Let X′ =
XBt be a linear transformation of X, where B = {aij} is a lower triangular matrix such that aij ≥ 0
with strictly positive diagonal elements. From Proposition 2 in Belzunce et al. [9] X =mct X′, in
particular X ≤mct X′ holds and, using Remark 1 the transformation Φ that maps X onto X′ has the
form Φ(X) = XBt, which is trivially increasing. Therefore, using Proposition 3 X′ is mct-DFR.

The previous examples will allow us to interpret an interesting model as a generalization of the
model by Freund [18].

Example 3. In the literature, a multivariate Weibull distribution in the sense of Freund can be
found. This is a more general situation than the exponential one shown in Remark 3 (for further
information, see Rinne [26] and references therein). For the sake of simplicity, we again restrict to
a system with two components as in Remark 3.

Let Xi ∼ W (1/θ0, k0), i = 1, 2, be two independent components which follow, when both are
in operation, the same Weibull distribution with shape and scale parameters k0 > 0 and θ0 > 0,
respectively, where we recall that

FW (1/θ0,k0)(t) = 1− exp{−(θ−1o t)k0}, ∀x ≥ 0.

After the failure of a component, the remaning lifetime of the other one is still Weibull. In particular,
the shape parameter k1 maybe remains as k0, but the scale parameter θ1 is not generally equal to
θ0. Analogously to Example 3, the bivariate random vector whose marginal distributions represent
the �rst and second failures is given by (T1, T2) such that

T1 = min{X1, X2} =st W ( k0
√

2/θ0, k0),
T2 = T1 +M2,

where M2 ∼ W (1/θ1, k1) and T1 and M2 are independent. Just by construction is easy to observe
that (T1, T2) = (W1,W2)Bt such that W1 =st W ( k0

√
2/θ0, k0) and W2 =st W (1/θ1, k1) are indepen-

dent and the lower triangular matrix B = (bij) ∈M2×2 satis�es that b11 = b21 = b22 = 1 > 0.
From Proposition 1, (W1,W2) is mct-IFR [mct-DFR] if, and only if, Wi, for i = 1, 2 is IFR

[DFR], that is, ki > [<]1, for i = 1, 2. In case Wi is IFR, for i = 1, 2, it easily follows, from
Example 1, that (T1, T2) is mct-IFR. On the other hand, if Wi is DFR, for i = 1, 2, taking into
account that the function which maps (W1,W2) onto (T1, T2) is increasing it follows using Example
2 that (T1, T2) is mct-IFR. Therefore, if k0, k1 > [<]1, (T1, T2) is mct-IFR [mct-DFR].
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Remark 7. Just recalling that the de�nition of the mct-order depends on the standard construction
which, in turn, is based on sequential conditional distributions, it is not surprising that De�nition
3 is not invariant under permutation of the marginal distributions. Let us consider the following
example: let X and Y be two independent DFR univariate random variables. From Proposition 1,
it can be seen that the random vector X = (X1, X2) is mct-DFR. Now, if we consider the lower
triangular matrix A = (aij) ∈ M2×2 such that a11 = a21 = a22 = 1, using Example 2, we have
that XAt = (X1, X1 +X2) is also mct-DFR. However, in general, we cannot expect the mct-DFR
property for the random vector (X1 + X2, X1) as can be seen using the following reasoning: if we
assume that (X1 + X2, X1) is mct-DFR, using Theorem 1 the sum X1 + X2 is also DFR. Since
we have not considered any restriction for X1 and X2, our �rst assumption is in contradiction
with the well-known fact that the sum of two independent DFR random variables is not necessarily
DFR. The above drawback naturally arises in the multivariate case, where several notions that are
not invariant under permutation can be found. For instance, most of the dispersive orders de�ned
in Belzunce et al. [10] and the multivariate ageing notions de�ned in Arias-Nicolás et al. [2] and
Fernández-Ponce et al. [16] depends on the permutation of the components. The notion of history
de�ned in Shaked and Shanthikumar (1991) also re�ects the e�ect of the time over the failure
probability of the components where these histories depend on the permutation of the components.
Of course, De�nition 3 can be restricted just for tandom vectors that are mct-IFR [mct-DFR] for
any permutation of the marginal distributions. For example, by Proposition 1, a random vector with
independent IFR [DFR] components is mct-IFR [mct-DFR] for any permutation of their marginal
distributions, and it will be shown in Theorem 2 that this is also the case of the multivariate normal
distribution. We can also restrict our study to the interesting case of exchangeable distributions,
see Spizzichino [34], where the e�ect of the permutations is avoided. Far from be a drawback, there
are many real situations where a particular permutation could determine a di�erent aging property.
In the context of computational engineering, situations where some components are �more relevant�
can be easily encountered. For instance, the sequence of multiple components failure {CPU, RAM
card, display card, monitor} could have di�erent ageing properties than that by {monitor, display
card, CPU, RAM card}. Another situation of interest is the case where we consider increasingly
ordered sequences of failure times. This is the case of the usual order statistics in which, given
the failure times of n independent components, the random vector of order statistics is the random
vector of the increasingly ordered failure times. In other situations we have the sequence of failure
times of unit subjected to a repair policy. For example in a unit subjected to a minimal repair policy
the failure times are increasingly ordered, and correspond to the epoch times of nonhomogenepous
Poisson process. Additional examples will be provided in Section 4 as particular cases of the model
of generalized order statistics.

The following result shows that if a random vector X is mct-IFR [mct-DFR], then the sequential
conditional distributions associated with X are univariate IFR [DFR].

Theorem 1. Let X be a mct-IFR [mct-DFR] distribution. Then,

X1 is IFR [DFR],

and the conditional distributionXi

∣∣∣∣∣∣
i−1⋂
j=1

{Xj = QX,j(u1, . . . , uj)}

 is IFR [DFR],

for all i = 2, . . . , n and uj such that 0 < uj < 1, j = 1, . . . , i− 1.

9



Proof. Let Y ∼MCE(A,b) be the corresponding upper bound exponential distribution associated
with X. From Proposition 1 in Belzunce et al. [9], we have that

X1 ≤c [≥c]Y1,Xi

∣∣∣∣∣∣
i−1⋂
j=1

{Xj = QX,j(u1, . . . , uj)}

 ≤c [≥c]

Yi
∣∣∣∣∣∣
i−1⋂
j=1

{Yj = Qy,j(u1, . . . , uj)}

 ,

for all i = 2, . . . , n and uj such that 0 < uj < 1, j = 1, . . . , i − 1. The proof follows directly
just taking in account that all sequential conditional distributions associated with Y are univariate
shifted exponential distributions, see (8), and using (2).

The previous result also shows that, when we consider a particular permutation of the com-
ponents, the time of a component is IFR [DFR] for any previous sequence of failure times. This
is very common in reliability where most of the MIFR [MDFR] de�nitions given in the literature
depend either on the stochastic comparison or the comparison of the hazard rate given some history
for the components. In general a history for a set of components is any event where we know the
identity of the components that are still alive and the failure times for the components that have
failed. In our case, the events on which we consider the conditional distribution have the form⋂i−1
j=1{Xj = QX,j(u1, . . . , uj)}. For further research, this fact could help to relate our new ageing

notion to previous notions in the literature.
Next, we show that the reciprocal of Theorem 1 is not true in general.

Counterexample 1. Let X = (X1, X2) ∼ (E1, E1E2) be a bivariate random vector such that E1

and E2 are two independent exponential distributions with scale parameter λ = 1. A straightforward
computation shows that

X1 ∼ Exp(1),

(X2|X1 = x1) ∼ Exp

(
1

x1

)
, for all x1 ∈ (0,∞), (9)

which means that all sequential conditional distributions are constant hazard rate, i.e., they are both
IFR and DFR. However, X is neither mct-IFR nor mct-DFR distribution. First, we will prove that
X is not mct-IFR. Without loss of generality, we consider Y = (Y1, Y2) ∼MCE(A2×2,02). From
expression (8) for n = 2, we easily obtain that

G−1Y1
(u1) = −a11 log(1− u1),

G−1(Y2|Y1=y1)
(u2) =

a21
a11

y1 − a22 log(1− u2). (10)

Therefore, using jointly (9) and (10) it is apparent that

Φ1(x1) = G−1Y1
(FX1

(x1)) = a11x1,

Φ2(x1, x2) = G−1(Y2|Y1=Φ1(x1))

(
F(X2|X1=x1)(x2)

)
= a21x1 + a22

x2
x1
.

It is clear that Φ1 is an a�ne function. However, computing the Hessian matrix of Φ2, we obtain
that

HΦ2(x1,x2) =

(
2a22

x2

x3
1
−a22
x2
1

−a22
x2
1

0

)
,

10



where the principal minors are given by

δ1 = 2a22
x2
x31

> 0, for all x1, x2 ∈ R+,

δ2 = −a
2
22

x41
< 0, for all x1 ∈ R+.

From Sylvester criterion and just observing that the second leading principal minor is always nega-
tive, we have that Φ2 is neither a concave nor convex function. Therefore, there exists no bivariate
exponential conditional distribution Y ∼MCE(A2×2,b2) such that X ≤mct Y.

In order to prove that X is not mct-DFR either, we now compute the function which maps Y
onto X. From (7), this function Φ−1 is given by

F−1X1
(GY1(y1)) = Φ−11 (y1) =

1

a11
y1,

F−1
(X2|X1=F

−1
X1

(GY1
(y1)))

(
G(Y2|Y1=y1)(y2)

)
= Φ−12 (y1, y2) =

1

a11a22
y1y2 −

a21
a211a22

y21 . (11)

Under a similar argument, the Hessiam matrix of (11) is given by

HΦ−1
2 (y1,y2)

=

− 2a21
a211a22

1
a11a22

1
a11a22

0

 ,

where the second leading principal minor is always negative. Therefore, there exists no bivariate
exponential conditional distribution Y ∼MCE(A2×2, b2) such that Y ≤mct X.

We �nalize the exposure of the main properties recalling Remark 5. In particular, the next
counterexample shows that replacing concavity instead of convexity in De�nition 3 leads in practice
to a complementary ageing notion.

Counterexample 2. Let us consider X = (X1, X2) be a classical bivariate Pareto distribution,
denoted by P(α1, α2, a), with survival function given by

F̄ (x1, x2) =

(
x1
α1

+
x2
α2
− 1

)−a
,

where xi ≥ αi > 0, a > 0. It is well known that marginal distributions of X are distributed
as univariate Pareto distributions with a common shape parameter, i.e., Xi ∼ P(αi, a), having

distribution functions FXi(xi) = 1−
(
αi

xi

)a
, i = 1, 2. Just computing the conditional density, it can

be seen that

F(X2|X1=x1)(x2) = 1−
(

α2x1
α2x1 + α1x2 − α1α2

)(a+1)

.

Without loss of generality, let Y = (Y1, Y2) ∼ MCE(A2×2,02) be an exponential conditional dis-
tribution. Therefore, from (10), we have that the function Φ that maps X to Y is given by

Φ1(x1) = −a11a log
(α1

x1

)
,

Φ2(x1, x2) = −a21a log
(α1

x1

)
− a22(a+ 1) log

( α2x1

α2x1+α1x2−α1α2

)
.

11



On the other hand, from (7), the function Φ−1 that maps Y to X is given by

Φ−11 (y1) = α1 exp

{
y1
a11a

}
,

Φ−12 (y1, y2) = α2 − α2 exp

{
y1
a11a

}
+ α2 exp

{
a22(a+ 1)− a21a
a11a22a(a+ 1)

y1 +
1

a22(a+ 1)
y2

}
.

From (2) and due to the well known fact that the classical univariate Pareto distribution is DFR,
Φ−11 is an increasing convex function and, from Remark 2, Φ1 is a concave function. Hence X can
not be mct-IFR, which is consistent with the univariate ageing property. Just taking derivatives, it
is not di�cult to see that the Hessian matrices of Φ2 and Φ−12 are given by

HΦ2(x1,x2) =

(
[a22(a+ 1)− a21a] 1

x2
1
− a22(a+ 1)α2

2h −a22(a+ 1)α1α2h

−a22(a+ 1)α1α2h −a22(a+ 1)α2
1h

)
,

where h = (α1x2 + α2x1 − α1α2)−2 and

HΦ−1
2 (y1,y2)

=

− α2

(a11a)2
exp{ y1

a11a
}+ α2

(
a22(a+1)−a21a
a11a22a(a+1)

)2
w α2

a22(a+1)

(
a22(a+1)−a21a
a11a22a(a+1)

)
w

α2

a22(a+1)

(
a22(a+1)−a21a
a11a22a(a+1)

)
w α2

(a22(a+1))2w

 ,

respectively, where w = exp
{
a22(a+1)−a21a
a11a22a(a+1) y1 + 1

a22(a+1)y2

}
.

It is proven that the second leading minor of HΦ−1
2 (y1,y2)

is given by

δ2 = −
(

α2

a11a22a(a+ 1)

)2

exp

{
y1
a11a

}
w < 0, for all y1 ≥ 0.

Therefore, as a direct consequence of the Sylvester criterion, Φ−12 is neither concave nor convex.
Hence X is not mct-DFR. Therefore, X is neither mct-IFR nor mct-DFR in the sense of De�nition
3. However, just taking a11 = a22 = 1 and a21 = (a+ 2)/a, the concavity of Φ easily holds, which
is a clear generalization of the univariate case.

4. Applications and examples

Next, two examples of known probabilistic models that satisfy the new multivariate ageing
property are provided.

4.1. Multivariate normal distributions

The univariate normal distribution is a classical example of IFR. Next, we prove that a multi-
variate normal distribution is mct-IFR.

Theorem 2. Let X ∼ Nn(µ,Σ) be a multivariate normal distribution. Then, X is mct-IFR.

Proof. We just need to prove that E ∼MCE(In×n,0n) is an upper bound exponential distribution
associated with X. From Example 2 in Belzunce et al. [9], we obtain that X =mct Z, where
Z ∼ Nn(In×n,0). Due to the fact that Z and E share the same independence copula, just using
Theorem 1 in Belzunce et al. [9], Z ≤mct [≥mct]E holds if, and only if, Zi ≤c [≥c]Ei holds, for all
i = 1 . . . , n. Since (2), the last condition holds from the well-known fact that univariate normal
distributions are IFR. The proof concludes just using Corollary 1 in Belzunce et al. [9].
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4.2. Generalized order statistics

The model of a random vector with ordered components arises in natural way when we arrange
in increasing order a set of observations from a random variable. Another example is the case of
epoch times of a counting process, like the case of a nonhomogeneous Poisson process. Epoch times
of nonhomogeneous Poisson processes can be introduced as record values of a proper sequence of
random variables, which is another typical example of ordered data. Given the similarity of several
results for order statistics and record values, Kamps [20] introduced the model of generalized order
statistics. This model provides a uni�ed approach to study order statistics and record values, and
several other models of ordered data. Next, we recall the de�nition of generalized order statistics
following Kamps [20] and Kamps [21].

De�nition 4. Let n ∈ N, k ≥ 1, m1, . . . ,mn−1 ∈ R, Mr =
∑n−1
j=r mj, 1 ≤ r ≤ n−1, be parameters

such that γr = k + n − r + Mr ≥ 1 for all r ∈ 1, . . . , n− 1, and let m̃ = (m1, . . . ,mn−1), if n ≥ 2
(m̃ ∈ R arbitrary, if n = 1). We call uniform generalized order statistics to the random vector
(U(1,n,m̃,k), . . . , U(n,n,m̃,k)) with joint density function

h(u1, . . . , un) = k

n−1∏
j=1

γj

n−1∏
j=1

(1− uj)mj

 (1− un)k−1

on the cone 0 ≤ u1 ≤ · · · ≤ un ≤ 1. Now, given a distribution function F , we call generalized order
statistics based on F to the random vector

(X(1,n,m̃,k), . . . , X(n,n,m̃,k)) =
(
F−1(U(1,n,m̃,k)), . . . , F

−1(U(n,n,m̃,k))
)
.

Theorem 3. Let X be the vector of generalized order statistics based on the distribution function
F of a random variable X. Then, X is mct-IFR [mct-DFR] if, and only if, X is IFR [DFR].

Proof. Let Y be a random vector of generalized order statistics based on E ∼ Exp(1), with
the same parameters than X, i.e. Y = (Y(1,n,m̃,k), . . . , Y(n,n,m̃,k)). First, we will prove that
Y follows a conditional multivariate exponential distribution. From Theorem 3.10 in Kamps
[20], the normalized spacings of Y are i.i.d. exponential distributions with λ = 1, i.e. D =
(D(1, n, m̃, k), . . . , D(n, n, m̃, k)) =st E ∼MCE(In×n,0n), where

D(1, n, m̃, k) = γ1Y(1,n,m̃,k),

D(r, n, m̃, k) = γr(Y(r,n,m̃,k) − Y(r−1,n,m̃,k)),

for 2 ≤ r ≤ n. A straightforward computation shows that Dt = AYt, where A is given by

A =


γ1 0 0 . . . 0
−γ2 γ2 0 . . . 0

0 −γ3 γ3 . . . 0
...

...
...

. . .
...

0 0 0 . . . γn

 .

Then, just considering the inverse matrix, we have that Y ∼ MCE(A−1,0n), where A−1 is given
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by

A−1 =


1
γ1

0 . . . 0
1
γ1

1
γ2

. . . 0
...

...
. . .

...
1
γ1

1
γ2

. . . 1
γn

 .

Since Theorem 4 in Belzunce et al. [9] and due to the fact that X and Y have the same set of
parameters, X ≤mct Y holds if, and only if, X ≤c [≥c]E. By (2), the last condition holds if, and
only if, X is IFR [DFR].

As mentioned in the previous section several models of increasingly ordered sequences of failure
times can be considered as particular cases of the general model of generalized order statistics. Next
we provide some of these models.

Taking mi = 0 for all i = 1, . . . , n − 1 and k = 1, we get the random vector of order statistics
from a set of n independent and identically distributed (i.i.d) observations. Taking mi = −1 for
all i = 1, . . . , n − 1 and k = 1, we get that the generalized order statistics correspond to failure
times of a unit which is being continuously minimally repaired (see [6]). A life-testing experiment of
interest in reliability studies involves N independent and identically distributed random variables
placed simultaneously on test and at the time of the mth failure Ri surviving units are randomly
censored from the test (see [7]). The progressively Type-II censored order statistics arising from
such reliability experiment can be obtained from the model of by setting n = m, mi = Ri and
k = Rm + 1. To �nish, we recall the model of order statistics under multivariate imperfect repair
(see [32]). Let us consider that n items start to work at the same time 0, with common distribution
F . Upon failure, an item undergoes a repair. If i items (i = 0, 1, ..., n−1) have already been scrapped
then, with probability pi+1, the repair is unsuccessful and the item is scrapped, and with probability
1−pi+1, the repair is successful and minimal. If we consider the ordered random lifetimes resulting
under a minimal repair policy as above, then they are a particular case of the density of generalized
order statistics based on F with parameters k = pn and mj = (n− j + 1)pj − (n− j)pj+1 − 1.

5. A computational study for the bivariate case

Let X be a bivariate random vector, if we want to prove that X is mct-IFR, we need to �nd a
random vector Y ∼ MCE(A2×2,b2), such that X ≤mct Y. As we pointed out in Section 2, this
is equivalent to study the convexity of the function de�ned in (6), which using the expression (8)
is given by

Φ1(x1) = −a11 log(1− FX1(x1)) + b1, (12)

Φ2(x1, x2) = −a21 log(1− FX1(x1))− a22 log(1− F(X2|X1=x1)(x2)) + b2. (13)

Note that the convexity of Φ1 and Φ2 does not depend on the parameter a11 > 0 neither b1
and b2. Thereby, we can choose a11 = 1, b1 = 0 and b2 = 0 without loss of generality. On the other
hand, a21 and a22 play an important role in order to study the convexity of Φ2. A �rst approach to
study whether Φ2 is a convex function is to analyze its Hessian matrix, however this is not always
a straightforward task. In this case, we suggest using the expressions (12) and (13) to plot the Φ1

and Φ2 functions. Of course, FX1 and F(X2|X1=x1) are not always available, therefore we propose
to estimate them numerically from the joint probability density function.
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Let us analyze the mct-IFR property for some bivariate random vector. From these examples,
we consider the numerical method a feasible path to study the mct-IFR condition for bivariate case,
thereby we provide the R-code which let us calculate the FX1

and F(X2|X1=x1) functions and Φ1

and Φ2 plots in Arriaza et al. [1].

5.1. Bivariate normal distributions

Let X ∼ N(µ2,Σ2×2) be a bivariate Normal distribution and Y ∼MCE(A2×2,b2) a bivariate
conditional exponential distribution. The parameters of both distributions are given by

X ∼ N(µ2,Σ2×2)


µ = 0 ∈ R2

Σ =

(
1 0
0 1

) and Y ∼MCE(A2×2,b2)


A =

(
1 0
2 1

)
b = 0 ∈ R2

The joint probability density functions of both random vectors are given by (14) and (15) and
their plots are shown in Figure 1.

fX(x1, x2) =
1

2π
exp

{
−x

2
1 + x22

2

}
, (x1, x2) ∈ R2 (14)

fY(y1, y2) =
1

a11a22
exp

{(
a21

a11a22
− 1

a11

)
y1 −

1

a22
y2

}
,

(y1, y2) ∈ D =

{
(x, y) ∈ R2 : y ≥ a21

a11
x

}
(15)

E

F

z

Bivariate Normal Distribution

G

H

z

Bivariate Conditional Exponential Distribution

Figure 1: Jpdf of X and Y random vectors.

In Figure 2, plots of both component functions of Φ are shown. The convex shape of these plots
graphically reinforces the result obtained in Theorem 2.
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Figure 2: Plots of Φ1 and Φ2 function.

5.2. Bivariate conditional beta distributions

This example deals with a random vector X for what the mct-IFR condition is hard to verify
analytically. Let us consider a particular case of a distribution family of which conditional distri-
butions belong to exponential family, see Chapter 4 in Arnold et al. [4]. The general model is given
by

f(x, y) = r1(x)r2(y) exp{q1(x)
t
Mq2(y)},

where q1(x) = (1 q11(x) . . . q1l1(x))t and q2(y) = (1 q21(y) . . . q2l2(y))t, with the qk components
linearly independent for all k ∈ {1, 2}; M ∈ Ml1×l2(R); r1, r2, q1i, q2j are real functions for all
i ∈ {1, . . . , l1} and all j ∈ {1, . . . , l2}.

If we �x the following parameters

r1(x) =
1

x(1− x)
, r2(y) =

1

y(1− y)

q1(x) = (1 log(x) log(1− x))t, q2(y) = (1 log(y) log(1− y))t

then, we obtain the bivariate beta conditional family, denoted by BC2(M3×3). On the other hand,
let Y ∼ MCE(A2×2,b2) be a bivariate conditional exponential distribution. The parameters for
both distributions are given by

X ∼ BC2(M3×3), M =

3.84 1 1
1 −1 −1
1 −3 −1

 and Y ∼MCE(A2×2,b2)


A =

(
1 0
3 2

)
b = 0 ∈ R2

The joint probability density functions of both random vectors are given in (16) and (17) and
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their plots are given in Figure 3.

fX(x1, x2) =
1

x1(1− x1)x2(1− x2)
exp{m22 log(x1) log(x2)

+m23 log(x1) log(1− x2) +m32 log(1− x1) log(x2)

+m33 log(1− x1) log(1− x2) +m21 log(x1) +m31 log(1− x1)

+m12 log(x2) +m13 log(1− x2) +m11}, 0 < x1, x2 < 1 (16)

fY(y1, y2) =
1

a11a22
exp{( a21

a11a22
− 1

a11
)y1 −

1

a22
y2},

(y1, y2) ∈ D = {(x, y) ∈ R2 : y ≥ a21
a11

x}. (17)

M

N

z

Bivariate Beta Conditional Distribution

J

K

z

Bivariate Conditional Exponential Distribution

Figure 3: Jpdf of X and Y random vectors.
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Figure 4: Plots of Φ1 and Φ2 function.

From Figure 4, we observe again that Φ1 and Φ2 have a convex shape, this fact graphically
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suggests that the random vector X could be mct-IFR. Of course, it must be con�rmed by any
analytic method.

6. Conclusions

Ageing notions play an important role in reliability, survival analysis and other research �elds,
because they describe how a component or system improves or deteriorates with age. For example,
from ageing notions, bounds for survival functions or moment inequalities may be derived. In litera-
ture, an abundance of lifetime distributions describing ageing have been considered. Among others,
we focus on the IFR (and DFR) notion, that is, distributions having increasing (or decreasing)
hazard rate function.

The univariate IFR de�nition has a clear interpretation and provides the basis for many useful
results, which apply when dealing with the analysis of a single unit or of several units with stochasti-
cally independent lifetimes. The key of this work is that the IFR ageing of a random variable can be
characterized by comparisons with an exponential distribution in the univariate convex transform
order proposed by van Zwet [35].

Taking into account the previous characterization of the univariate IFR notion in terms of
the univariate convex transform order, we have provided a new multivariate IFR [DFR] notion,
the so-called mct-IFR [mct-DFR], comparing a random vector with a properly de�ned multivariate
exponential distribution in a recent generalization of the convex transform order to the multivariate
case proposed by Belzunce et al. [9]. This order and, consequently, this new IFR notion are based
in the convexity of a well-known transformation which maps a random vector onto another.

In short, a multivariate exponential distribution and a multivariate generalization of the IFR
ageing notion is introduced. Properties and relationships of this notion are given, as well as examples
dealing with some known probabilistic models related to engineering. A computational study for
the bivariate case, and the used R-code that allow us to obtain the plots shown along the paper, is
also provided.
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