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Abstract

The aim of this work is to characterize two models of concatenated convolutional codes based on the theory of linear
systems. The problem we consider can be viewed as the study of composite linear system from the classical control
theory or as the interconnection from the behavioral system viewpoint. In this paper we provide an input-state-output
representation of both models and introduce some conditions for such representations to be both controllable and
observable. We also introduce a lower bound on their free distances and the column distances.
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1. Introduction

The link between convolutional codes and the theory of linear systems has already been established by several
authors. Massey and Sain [24, 25] were the first ones to tackle theoretically the systems analysis of convolutional
codes and encoders. Omura [28] considered Viterbi decoding and its relationship to dynamic programming and later
[29] the applications of control theory to optimal receiver design for convolutional codes. Forney in his landmark
papers [13, 14] introduce the foundation for the algebraic structure of convolutional codes.

Other authors have also shown the existence of a close connection between linear systems over finite fields and
convolutional codes. Rosenthal [31] provides a survey of the different points of view about convolutional codes. He
reviews their definition in the context of symbolic dynamics and studies different first-order representations in each
of the different viewpoints. These representations have been applied to generating optimal convolutional codes (see,
for example, [33, 35, 37]). Again, Rosenthal [31] reviews the class of time-invariant, complete linear behaviors in
the sense of Willems. Willems [39, 40, 41] had already introduced the behavioral approach to linear systems and
shown that the systems theory and the convolutional coding theory were interconnected. Willems does not assume
the input/output point of view in his description of system/environment interaction. He in fact, focuses on the set
of systems trajectories, its behavior, that is, on the mathematical model to describe the relations among all systems
variables.

Concatenated codes form a class of error-correcting codes that are derived from combining two or more codes.
The general idea can be tracked back to Elia’s product code construction [11], developed later by Forney [12] as a
solution to the problem of finding a code that has both exponentially decreasing error probability with increasing block
length and polynomial-time decoding complexity. Concatenated codes became widely used in space communications
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in the 1970s [7]. In fact, thanks to deep-space communications, both convolutional and concatenated codes found
their first practical use in the Voyager and Mariner missions in the late sixties [1, 27].

Berrou, Glavieux and Thitimajshima [5] introduced an interleaver between the two encoders of a serial concate-
nation, which provides the correction of error burst from the inner encoder by the outer encoder. The result was called
“turbo codes”. Turbo coding combines multiple simple codes into single powerful codes that operate close to Shan-
non capacity (see [5]). While their performance resembles that of random codes, the availability of iterative decoding
algorithms makes the implementation of turbo codes practical (see, for example[9, 10, 16]).

A major parameter of a convolutional code is its free distance [21, 30] since it determines the decoding capability
of a code under maximum likelihood decoding. It depends on the collection of code sequences, not on the specific
device that is used to generate those sequences. So, to obtain convolutional codes with good distance properties
one has to work with finite representations of convolutional codes. In fact, McEliece [26, Section 2] points out that
finite-weight codewords are the only ones that can occur in engineering practice.

This paper is structured as follows. In Section 2, we review convolutional codes and we highlight their definition
in terms of linear systems. We also explain some recent advances in systems theory in the context of convolutional
codes defined over a Galois field. In Section 3, we study two models of parallel concatenated codes from the linear
systems point of view, giving their input-state-output representations, and we supply conditions to get a minimal
input-state-output representation for observable concatenated codes. Finally, in Section 4, we provide some lower
bounds on the column distances and free distance of the second model of concatenation.

2. Preliminary results

In this paper, we denote by F = GF(q) the Galois field of q elements, F[z] the polynomial ring on the variable z
with coefficients in F and F the algebraic closure of F.

Following [31, 32], we define a convolutional code as a submodule C of Fn[z]. Since F[z] is a principal ideal
domain, and C is a submodule of the free submodule Fn[z], the convolutional code C is free and it has a well defined
rank k (with k ≤ n). Assume that the columns of G(z) ∈ Fn×k[z] form a basis of C, then C is defined as

C =
{
v(z) ∈ Fn[z] | v(z) = G(z)u(z) with u(z) ∈ Fk[z]

}
.

In that case, we say that C has rate k/n, and that G(z) is a generator matrix of C. The free distance of C is given by

dfree(C) = min {wt(v(z)) | v(z) ∈ C with v(z) , 0}

where wt(v(z)) =

l∑
i=0

wt(vi) with wt(vi) the Hamming weight of vi ∈ Fn, i.e., the number of nonzero components of vi,

and v(z) =

l∑
i=0

vizi ∈ Fn[z].

A matrix G(z) ∈ Fn×k[z] is called basic if it has a polynomial left inverse (see for example [20, 21, 36]). The
degree or complexity δ of a rate k/n convolutional code C is the maximum degree of the k × k minors of any generator

matrix (see [26, 30]). A generator matrix G(z) =
(
gi j(z)

)
∈ Fn×k[z] of C is called minimal if the number

k∑
j=1

δ j attains

the minimal value among all generator matrices of C, where δ j = max
1≤i≤n

deg
(
gi j(z)

)
, for j = 1, 2 . . . , k (see for example

[15, 36]); in that case, δ =

k∑
j=1

δ j, where δ is the degree of C.

Following [32], we consider a convolutional code to be observable if it has a basic generator matrix; basic matrices
are commonly known as noncatastrophic matrices (see, for instance, [25],[30, Chapter 2],[36, Definition 1.1]).

Assume that A ∈ Fδ×δ, B ∈ Fδ×k, C ∈ F(n−k)×δ, and D ∈ F(n−k)×k. A rate k/n convolutional code of degree δ can be
described by the linear system of equations (see [35])

xt+1 = Axt + But,
yt = Cxt + Dut,

}
, vt =

(
yt
ut

)
, t = 0, 1, 2, . . . , x0 = 0. (1)
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For each instant t, we call xt ∈ Fδ the state vector, ut ∈ Fk the information vector, yt ∈ Fn−k the parity vector, and
vt ∈ Fn the code vector. We assume that {vt}t≥0 in expression (1) is a finite-weight codeword (see [35]), i.e., expression
(1) is satisfied for all t = 0, 1, 2, . . . and there is an integer γ such that xt+1 = 0, ut = 0, and therefore yt = 0, for
t ≥ γ + 1; this means that, beginning from the zero state, after a finite number of steps, we return to the zero state. If

u(z) =

γ∑
t=0

utzγ−t, y(z) =

γ∑
t=0

ytz
γ−t, and v(z) =

(
y(z)
u(z)

)
, then the set of finite-weight codewords has a natural module

structure over the polynomial ring F[z] (see [35]). We call this module a finite-weight convolutional code C generated
by matrices (A, B,C,D) or that (A, B,C,D) is an input-state-output representation of C. From now on we only consider
finite-weight convolutional codes.

It is possible to describe the code C using an input-state-output representation (A′, B′,C′,D′) with A′ ∈ Fδ′×δ′ ,
B′ ∈ Fδ′×k, C′ ∈ F(n−k)×δ′ , and D′ ∈ F(n−k)×k with δ′ ≥ δ. But if C has complexity δ, then it is possible (see [23, 35]) to
choose the matrices A, B, C, and D of sizes δ × δ, δ × k, (n − k) × δ, and (n − k) × k, respectively. In this case, we say
that (A, B,C,D) is a minimal input-state-output representation of C, and a condition for that to happen is that the pair
(A, B) is controllable (see [35]), i.e.,

rank
(
B AB · · · Aδ−1B

)
= δ

or equivalently (see [17]),
rank

(
zI − A B

)
= δ, for all z ∈ F.

Note that if rank(B) = δ, then the pair (A, B) is controllable.
On the other hand, we say that the pair (A,C) is observable if the pair (AT ,CT ) is controllable. Furthermore, if

rank(C) = δ, then the pair (A,C) is observable.
If the pair (A, B) is controllable, it means that, by an appropriate choice of input vectors, it is possible to drive a

given state vector to any other state vector in finite time. Analogously, the observability of the pair (A,C) means that
it is possible to determine the state vector at a given time t0 by observing the output vectors for a finite number of time
steps beginning with t0 (see, for example, [18, 19, 32, 35]).

From now on, we adopt the notation used by McElliece [26] and we call a convolutional code of rate k/n and
degree δ an (n, k, δ)-convolutional code.

The following result, that we quote for further references, characterizes the observable convolutional codes.

Lemma 1 (Lemma 2.11 of [35]): Assume that (A, B,C,D) is an input-state-output representation of an (n, k, δ)-
convolutional code C. Assume also that the pair (A, B) is controllable. Then the convolutional code C represents
an observable convolutional code if and only if the pair (A,C) is observable.

Once we have a minimal input-state-output representation of an observable convolutional code, we analyze the
characterization of the free distance in terms of linear systems. It is well known that the free distance determines
the decoding capability of a convolutional code, especially when Viterbi decoding [38] or sequential decoding [6] are
used.

In terms of the input-state-output representation (1), the free distance of a convolutional code C can be character-
ized (see [18]) as

dfree(C) = lim
j→∞

dc
j(C) (2)

where

dc
j(C) = min

u0,0

 j∑
t=0

wt(ut) +

j∑
t=0

wt(yt)


is the jth column distance of C, for j = 0, 1, 2, . . ..

Finally, the free distance of an (n, k, δ)-convolutional code C is always upper-bounded (see [34]) by the generalized
Singleton bound

dfree(C) ≤ (n − k)
(⌊
δ

k

⌋
+ 1

)
+ δ + 1.

Moreover, the convolutional code C is called maximum distance separable (MDS) if its free distance is equal to the
generalized Singleton bound [34].
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C1(n, k, δ1)

C2(n, k, δ2)

-

-

-

-
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y(1)
t

y(2)
t

y(1)
t + y(2)

tut

Figure 1: Concatenated convolutional code PC(1)

Depending on the value of the column distances, we can obtain the following classification of convolutional codes.
A convolutional code C has a maximum distance profile, and we say that it is an MDP code (see [18]), if its column
distances are maximal, that is,

dc
j(C) = (n − k)( j + 1) + 1, for j = 0, 1, . . . , L, where L =

⌊
δ

k

⌋
+

⌊
δ

n − k

⌋
.

In addition, a convolutional code C is called a strongly MDS code (see [18]) if the sequence
{
dc

j(C)
}

j≥0
attains the

generalized Singleton bound at the earliest possible step, i.e.,

dc
M(C) = (n − k)

(⌊
δ

k

⌋
+ 1

)
+ δ + 1, for M =

⌊
δ

k

⌋
+

⌈
δ

n − k

⌉
.

3. Input-state-output representation of parallel concatenated convolutional codes

In this section, we analyze two models of parallel concatenated convolutional codes from the point of view of
linear systems theory.

For l = 1, 2, let (Al, Bl,Cl,Dl) be an input-state-output representation of the convolutional code Cl. For each
instant t, let x(l)

t , u(l)
t , y(l)

t and v(l)
t be the state vector, the information vector, the parity vector and the code vector of Cl,

for l = 1, 2. Recall that the code vector v(l)
t of Cl, is given by

v(l)
t =

(
y(l)

t

u(l)
t

)
, for l = 1, 2. (3)

The first model of parallel concatenation which we study is the one used in the state space theory (see, for instance,
[22]). In this model, the convolutional codes C1 and C2 of rates k/n are concatenated as Figure 1 shows. The input
information ut is encoded by the two convolutional codes so

u(1)
t = ut and u(2)

t = ut,

and the parity vector of the concatenation is given by the sum of the parity vectors of the constituent codes, i.e.,

yt = y(1)
t + y(2)

t .

We denote by PC(1) the corresponding concatenated convolutional code. For each instant t, the vector state xt, and
the code vector vt of PC(1) are given by

xt =

(
x(2)

t

x(1)
t

)
and vt =

(
yt
ut

)
=

(
y(1)

t + y(2)
t

ut

)
.

The next theorem introduces an input-state-output representation of the concatenated convolutional code PC(1)

from input-state-output representations of the constituent codes (see [2]). From now on, we denote by O the zero
matrix of the appropriate size.
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C1(n1, k, δ1)

C2(n2, k, δ2)

-

-

-
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-
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y(1)
t
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t

ut

Figure 2: Concatenated convolutional code PC(2)

Theorem 1: For l = 1, 2, letCl be an (n, k, δl)-convolutional code with input-state-output representation (Al, Bl,Cl,Dl).
Then, an input-state-output representation (A, B,C,D) for the rate k/n concatenated convolutional codePC(1) is given
by expression (1), where

A =

(
A2 O
0 A1

)
, B =

(
B2
B1

)
, C =

(
C2 C1

)
and D = D1 + D2. (4)

The second model of parallel concatenation is used, for example, in some constructions of turbo codes [3, 4], and
it can be represented as in Figure 2. In this model, the information vector ut is also encoded by both codes C1 and C2,
so

u(1)
t = ut and u(2)

t = ut, (5)

but in this case, the parity vector yt of the concatenation is given by the parity vectors of the constituent codes, i.e.,

yt =

(
y(2)

t

y(1)
t

)
. (6)

We denote by PC(2) the corresponding concatenated convolutional code. Note that the vector state xt is given, as
in the previous model, by

xt =

(
x(2)

t

x(1)
t

)
.

But in this case, the code vector vt of PC(2) is given by

vt =

(
yt
ut

)
=

y(2)
t

y(1)
t
ut

 =

(
y(2)

t

v(1)
t

)
. (7)

As in the previous case, our next theorem introduces an input-state-output representation of the concatenated
convolutional code PC(2) from input-state-output representations of the constituent convolutional codes C1 and C2.

Theorem 2: For l = 1, 2, letCl be an (nl, k, δl)-convolutional code with input-state-output representation (Al, Bl,Cl,Dl).
Then, an input-state-output representation (A, B,C,D) for the rate k/(n1 + n2 − k) concatenated convolutional code
PC(2) is given by expression (1), where

A =

(
A2 O
0 A1

)
, B =

(
B2
B1

)
, C =

(
C2 O
O C1

)
and D =

(
D2
D1

)
. (8)

Once we have obtained an input-state-output representation of the concatenated convolutional code, we are in-
terested in the conditions on the matrices Al, Bl, Cl, and Dl of the convolutional codes Cl, for l = 1, 2, so that the
concatenated convolutional code is observable and has a minimal input-state-output representation. However, the re-
sults we introduce below are valid for matrices A, B, C, and D with the same structure as the ones given by expressions
(4) and (8), not necessarily obtained from a concatenation of convolutional codes. Later, we apply these results to the
two models of concatenation described previously.
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We begin with the study of the controllability of the pair (A, B), where A and B are matrices given by expressions
(4) or (8). Note that these matrices have the same structure in both cases, so the results developed here will be
applicable to both models of concatenation.

For l = 1, 2, let Al and Bl be matrices of sizes δl × δl and δl × k, respectively, and assume that A and B are the
matrices of sizes (δ1 + δ2) × (δ1 + δ2) and (δ1 + δ2) × k, respectively, described by expressions (4) or (8). The next
example shows that it is not sufficient that the pair (Al, Bl) is controllable, for l = 1, 2, to get a controllable pair (A, B).

Example 1: Let α be a primitive element of the Galois field F = GF(9), with α2 +α+2 = 0. Consider the controllable
pair (Al, Bl), for l = 1, 2, given by

A1 =
(
α
)
, B1 =

(
1 0 0 0

)
, A2 =

(
α6 α5

α5 α3

)
and B2 =

(
α α3 α7 1
α3 α4 1 α

)
.

Let A and B be the matrices given by (4) and (8), i.e.,

A =

α
6 α5 0
α5 α3 0
0 0 α

 and B =

 α α3 α7 1
α3 α4 1 α
1 0 0 0

 .
It follows then that (A, B) is not a controllable pair because rank

(
αI − A B

)
= 2 , 3. �

However, if the matrices A1 and A2 do not have common eigenvalues, we have the following result. The proof can
be found in [8, Chapter 30]. Here, we denote by σ(Al) the set of eigenvalues of Al, for l = 1, 2.

Theorem 3: For l = 1, 2, let Al and Bl be matrices of sizes δl × δl and δl × k, respectively, such that the pair (Al, Bl)
is controllable. Assume that A and B are the matrices given by expressions (4) or (8). If σ(A1) ∩ σ(A2) = ∅, then the
pair (A, B) is controllable.

Now, in the particular case where k = 1, we can ensure that the condition of Theorem 3 is a necessary and sufficient
condition. The proof can be found in [8, Chapter 30].

Theorem 4: For l = 1, 2, let Al and Bl be matrices of sizes δl × δl and δl × 1, respectively. Assume that A and B are
matrices given by expressions (4) or (8). Then, the pair (A, B) is controllable if and only if σ(A1) ∩ σ(A2) = ∅.

As a consequence of Theorem 3 and the fact that rank B = δ1 + δ2 implies that the pair (A, B) is controllable, we
obtain the following result for the particular case where δ1 = δ2 = 1.

Corollary 1: For l = 1, 2, let Al and Bl be matrices of sizes 1 × 1 and 1 × k, respectively. Assume that A and B are
matrices given by expressions (4) or (8). Then the pair (A, B) is controllable if and only if A1 , A2 or rank(B) = 2.

The above results can be applied concretely to both convolutional codesPC(1) andPC(2), which can be summarized
in the following result. As we mentioned earlier, matrices A and B of both concatenated convolutional codes PC(1)

and PC(2) have the same structure. Since we develop results for both types of concatenation, we denote by PC the
concatenated convolutional code PC(1) described by expression (4) as well as the concatenated convolutional code
PC(2) described by expression (8). So we consider an (n1, k, δ1)-convolutional code C1 and an (n2, k, δ2)-convolutional
code C2, taking into account that for the convolutional code PC(1), they must satisfy the additional condition n1 = n2.

Corollary 2: For l = 1, 2, let Cl be an (nl, k, δl)-convolutional code described by matrices (Al, Bl,Cl,Dl), such that
the pair (Al, Bl) is controllable and let PC be the parallel concatenated convolutional code described by the matrices
(A, B,C,D) given by expression (4) or (8).

1. If σ(A1) ∩ σ(A2) = ∅, then (A, B,C,D) is a minimal representation of PC with complexity δ1 + δ2.
2. If k = 1, then (A, B,C,D) is a minimal representation ofPC with complexity δ1+δ2 if and only ifσ(A1)∩σ(A2) =

∅.
3. If δ1 = δ2 = 1, then (A, B,C,D) is a minimal representation of PC if and only if A1 , A2, or rank(B) = 2.
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Now, we are interested in the conditions the matrices defining the constituent convolutional codes C1 and C2 must
satisfy so that the pair (A,C) of the parallel concatenation is observable. Although the matrices A and B are the same
in both cases, note that matrix C has different expressions depending on the model of concatenation. So we may have
different results for the observability of each concatenated convolutional code.

As for the controllability case, we begin with some results on control theory.
For l = 1, 2, let Al and Cl be matrices of sizes δl × δl and (n − k) × δl, respectively, such that the pair (Al,Cl) is

observable. Assume that A and C are the matrices of sizes (δ1 + δ2) × (δ1 + δ2) and (n − k) × (δ1 + δ2), respectively,
described by expression (4). Then, (A,C) is not necessarily an observable pair, as the next example shows.

Example 2: As in Example 1, let α be a primitive element of F = GF(9), such that α2 + α + 2 = 0. Consider the
observable pair (Al,Cl), for l = 1, 2, given by

A1 =
(
α
)
, C1 =


1
0
0
0

 , A2 =

(
α6 α5

α5 α3

)
and C2 =


α6 1
α2 α3

α6 α7

1 α


and let A and C be the matrices given by expression (4)

A =

α
6 α5 0
α5 α3 0
0 0 α

 and C =


α6 1 1
α2 α3 0
α6 α7 0
1 α 0

 .
Now, since

rank
(
αI − A

C

)
= rank



1 α 0
α α2 0
0 0 0
α6 1 1
α2 α3 0
α6 α7 0
1 α 0


= 2 , 3,

we can ensure that the pair (A,C) is not observable. �

From now on, our aim is to give conditions on the matrices Al and Cl, for l = 1, 2 so that the pair (A,C) described
by expression (4) is observable.

Recall that if the matrices A1 and A2 do not have common eigenvalues, Theorem 3 says that the pair (A, B)
described by expression (4) is controllable. Now, as a consequence of the structure of matrices A and C, it follows
that the pair (A,C) is observable. So, we can state the following result.

Theorem 5: For l = 1, 2, let Al and Cl be matrices of sizes δl × δl and (n − k) × δl, respectively. Assume that A and C
are matrices given by expression (4). If σ(A1) ∩ σ(A2) = ∅, then the pair (A,C) is observable.

Proof: Taking into account that the pair (A,C) is observable if and only if (AT ,CT ) is controllable, we obtain the
observability of (A,C) by following a similar argument as the one used in Theorem 3. ♦

Now, for the particular case where n = k + 1, we can ensure that the condition of Theorem 5 is a necessary and
sufficient condition.

Theorem 6: For l = 1, 2, let Al and Cl be matrices of sizes δl × δl and 1 × δl, respectively. Assume that A and C are
matrices given by expression (4). Then the pair (A,C) is observable if and only if σ(A1) ∩ σ(A2) = ∅.

Proof: If σ(A1) ∩ σ(A2) = ∅, we know from Theorem 5 that the pair (A,C) is observable.
Assume that the pair (A,C) is observable. Then, the pair (AT ,CT ) is controllable. Note that the matrix CT is of

size δ × 1, so by following a similar argument as in the proof of Theorem 4, we get σ(A1) ∩ σ(A2) = ∅. ♦
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As a consequence of Theorem 5 and the fact that rank C = δ1 + δ2 implies that the pair (A,C) is observable, we
obtain the following result for the particular case where δ1 = δ2 = 1.

Corollary 3: For l = 1, 2, let Al and Cl be matrices of sizes 1 × 1 and (n − k) × 1, respectively. Assume that A and C
are matrices given by expression (4). Then the pair (A,C) is observable if and only if A1 , A2 or rank(C) = 2.

The above results can also be applied to the concatenation PC(1). We summarized these results in the corollary
bellow. Remember that a minimal representation (A, B,C,D) of the convolutional code C is characterized through the
condition that the pair (A, B) is controllable and, from Lemma 1, if the pairs (A, B) and (A,C) are controllable and
observable, respectively, then C is an observable convolutional code.

Corollary 4: For l = 1, 2, let Cl be an (n, k, δl)-observable convolutional code with minimal input-state-output repre-
sentation (Al, Bl,Cl,Dl). Let PC(1) be the rate k/n concatenated convolutional code described by matrices (A, B,C,D)
in expression (4).

1. If σ(A1) ∩ σ(A2) = ∅, then (A, B,C,D) is a minimal and observable representation of PC(1) with complexity
δ1 + δ2.

2. If k = 1 and n = 2, then (A, B,C,D) is a minimal and observable representation of PC(1) with complexity δ1 +δ2
if and only if σ(A1) ∩ σ(A2) = ∅.

3. If δ1 = δ2 = 1, then (A, B,C,D) is a minimal and observable representation of PC(1) with complexity δ = 2 if
and only if A1 , A2 or rank(C) = rank(B) = 2.

Example 2 shows that if the pair (Al,Cl) is observable, for l = 1, 2, then the pair (A,C) described by expression
(4) is not necessarily observable. Nevertheless, for matrices A and C described by expression (8), we do not have the
same situation.

Theorem 7: For l = 1, 2, let Al and Cl be matrices of sizes δl×δl and (nl−k)×δl, respectively, so that the pair (Al,Cl)
is observable. Assume that A and C are matrices given by expression (8). Then, the pair (A,C) is observable.

Proof: Since (Al,Cl) is observable, for l = 1, 2, we have that

rank
(
zI − Al

Cl

)
= δl for all z ∈ F,

so, from expression (8),

rank
(
zI − A

C

)
= rank


zIδ2 − A2 O

O zIδ1 − A1
C2 O
O C1

 = rank


zIδ2 − A2 O

C2 O
O zIδ1 − A1
O C1

 = δ1 + δ2,

for all z ∈ F. We conclude then that the pair (A,C) is observable. ♦

4. Column distances and free distance

Note that the parity vector yt of the input-state-output representation of the concatenated convolutional code PC(1)

given by expression (4) is the sum of the parity vectors y(1)
t and y(2)

t of the constituent codes. This means that, in some
cases, the above parallel concatenation leads to a convolutional code with poor free distance, as we can see in the
example below.

In the next examples, we compute the column distances of all codes using an appropriate software and then we
obtain the free distances of these codes according to expression (2).

8



Example 3: Let F = GF(2) and let C1 be the (4, 2, 1)-convolutional code with free distance dfree(C1) = 2, described
by the matrices

A1 =
(
1
)
, B1 =

(
1 1

)
, C1 =

(
1
0

)
and D1 =

(
1 1

)
.

Let C2 be the (4, 2, 1)-convolutional code with free distance dfree(C2) = 3, described by the matrices

A2 =
(
1
)
, B2 =

(
1 0

)
, C2 =

(
0
1

)
and D2 =

(
0 1

)
.

Then, the matrices (A, B,C,D) of expression (4) are

A =

(
1 0
0 1

)
, B =

(
1 1
1 0

)
, C =

(
1 0
0 1

)
and D =

(
1 0

)
.

Since rank(B) = rank(C) = 2, by applying Corollary 4, it follows that the above matrices are a minimal input-state-
output representation of the (4, 2, 2)-observable concatenated convolutional code PC(1). Furthermore, we obtain that
it has free distance

dfree(PC(1)) = 3 = dfree(C2).

That is, we obtain a parallel concatenated convolutional code whose free distance is not greater than the free distances
of the constituent codes. Note that the free distance of PC(1) is far from the generalized Singleton bound, which in
this case is 7. �

However, in some cases, we can obtain an optimal concatenated convolutional code from a non MDS convolutional
code and an MDS convolutional code, as we show in the following example.

Example 4: Let α be a primitive element of the Galois field F = GF(8) with α3 + α + 1 = 0. Let C1 be the (2, 1, 1)-
MDS convolutional code with dfree(C1) = 4, described by the matrices

A1 =
(
α2

)
, B1 =

(
α
)
, C1 =

(
α4

)
and D1 =

(
1
)
.

Let C2 be the (2, 1, 1)-convolutional code with free distance dfree(C2) = 3 (non MDS code), described by the
matrices

A2 =
(
α
)
, B2 =

(
1
)
, C2 =

(
α3

)
and D2 =

(
0
)
.

By applying Theorem 1, the matrices (A, B,C,D) with

A =

(
α 0
0 α2

)
, B =

(
1
α

)
, C =

(
α3 α4

)
and D =

(
1
)

are an input-state-output representation of the (2, 1, 2)-concatenated convolutional code PC(1).
Furthermore, dfree(PC(1)) = 6, which is the generalized Singleton bound in this case. So PC(1) is an MDS convo-

lutional code. �

As we show in the previous examples, the free distance of the concatenated convolutional code PC(1) can either
attain the generalized Singleton bound or be far away from it. Furthermore, the expression of the parity vector as the
sum of the parity vectors of the constituent codes makes it difficult to obtain a relation between the free distance of
the convolutional code PC(1) and the free distances of the convolutional codes of the concatenation. However, note
that, according to expression (7), the code vector vt of the convolutional code PC(2) is given by

vt =

y(2)
t

y(1)
t
ut


that is, it contains the code vector v(1)

t =

(
y(1)

t
ut

)
of C1 and the code vector v(2)

t =

(
y(2)

t
ut

)
of C2 (see expression (3)). This

fact allows us to obtain a lower bound on the free distance of PC(2) in terms of the free distances of the constituent
codes. Firstly, we obtain a lower bound on the column distances of PC(2) in terms of the column distances of C1 and
C2.
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Lemma 2: Let PC(2) be the concatenated convolutional code obtained by Theorem 2 from the convolutional codes
C1 and C2. Then

dc
j(PC

(2)) ≥ max
{
dc

j(C1), dc
j(C2)

}
for j = 0, 1, 2, . . . (9)

Proof: Taking into account the relationship between the vectors yt, y(1)
t , y(2)

t ; ut, u(1)
t , u(2)

t and vt, v(1)
t , v(2)

t given by
expressions (5), (6) and (7), we obtain

dc
j(PC

(2)) = min
u0,0

 j∑
t=0

wt(vt)

 ≥ min
u(1)

0 ,0

 j∑
t=0

wt(v(1)
t )

 = dc
j(C1), (10)

dc
j(PC

(2)) = min
u0,0

 j∑
t=0

wt(vt)

 ≥ min
u(2)

0 ,0

 j∑
t=0

wt(v(2)
t )

 = dc
j(C2). (11)

So, inequality (9) follows from the above inequalities. ♦

Now, if rank(Dl) = k, for some l = 1, 2, we have a refinement on the bound given in Lemma 2, as the following
result shows.

Lemma 3: Let PC(2) be the concatenated convolutional code obtained by Theorem 2 from the convolutional codes
C1 and C2.

1. If rank(D1) = k, then
dc

j(PC
(2)) ≥ max

{
dc

j(C1), dc
j(C2) + 1

}
, for j = 0, 1, 2, . . . (12)

2. If rank(D2) = k, then
dc

j(PC
(2)) ≥ max

{
dc

j(C1) + 1, dc
j(C2)

}
, for j = 0, 1, 2, . . . (13)

3. If rank(D1) = rank(D2) = k, then

dc
j(PC

(2)) ≥ max
{
dc

j(C1) + 1, dc
j(C2) + 1

}
, for j = 0, 1, 2, . . . (14)

Proof: 1. Since y(1)
0 = D1u(1)

0 and rank(D1) = k, then y(1)
0 , 0 if and only if u(1)

0 = u0 , 0. Moreover, since u0 = u(2)
0 ,

we obtain that

dc
j(PC

(2)) = min
u0,0

 j∑
t=0

wt(ut) +

j∑
t=0

wt(yt)


≥ min

u(2)
0 ,0

 j∑
t=0

wt(u(2)
t ) +

j∑
t=0

wt(y(2)
t ) + wt(y(1)

0 )

 ≥ dc
j(C2) + 1. (15)

Then, from expressions (10) and (15), we obtain inequality (12).
2. Following a similar argument as in part 1, we obtain inequality (13) from expression (11) and condition

rank(D2) = k.
3. Inequality (14) follows as a direct consequence of expressions (12) and (13). ♦

Now, as an immediate consequence of expression (2) and the above lemmas, we obtain the following result.

Theorem 8: Let PC(2) be the concatenated convolutional code obtained by Theorem 2 from the convolutional codes
C1 and C2. Then

1. dfree(PC(2)) ≥ max {dfree(C1), dfree(C2)} .
2. If rank(D2) = k, then dfree(PC(2)) ≥ max {dfree(C1) + 1, dfree(C2)} .
3. If rank(D1) = k, then dfree(PC(2)) ≥ max {dfree(C1), dfree(C2) + 1} .
4. If rank(D1) = rank(D2) = k, then dfree(PC(2)) ≥ max {dfree(C1) + 1, dfree(C2) + 1} .

10



Taking into account that a code vector vt contains a part of the code vectors v(1)
t and v(2)

t , we obtain a new lower
bound on the column distances of the concatenated code, which in some cases improves the lower bounds introduced
in the above lemmas.

Lemma 4: Let PC(2) be the concatenated convolutional code obtained by Theorem 2 from the convolutional codes
C1 and C2. Then

dc
j(PC

(2)) ≥ dc
j(C1) + dc

j(C2) − k( j + 1) for j = 0, 1, 2, . . . (16)

Proof: Assume that u0 , 0. Taking into account the relationship between yt, y(1)
t , y(2)

t ; ut, u(1)
t , u(2)

t and vt, v(1)
t , v(2)

t
given by expressions (5), (6) and (7), we obtain

j∑
t=0

wt(vt) =

j∑
t=0

wt(v(1)
t ) +

j∑
t=0

wt(v(2)
t ) −

j∑
t=0

wt(ut) ≥ dc
j(C1) + dc

j(C2) − k( j + 1).

So dc
j(PC

(2)) = min
u0,0

 j∑
t=0

wt(vt)

 ≥ dc
j(C1) + dc

j(C2) − k( j + 1). ♦

The following corollary is an immediate consequence of Lemmas 2, 3 and 4.

Corollary 5: Let PC(2) be the concatenated convolutional code obtained by Theorem 2 from the convolutional codes
C1 and C2. Then

dc
j(PC

(2)) ≥ max
{
dc

j(C1), dc
j(C2), dc

j(C1) + dc
j(C2) − k( j + 1)

}
for j = 0, 1, 2, . . .

Moreover,

1. If rank(D1) = k, then

dc
j(PC

(2)) ≥ max
{
dc

j(C1), dc
j(C2) + 1, dc

j(C1) + dc
j(C2) − k( j + 1)

}
, for j = 0, 1, 2, . . .

2. If rank(D2) = k, then

dc
j(PC

(2)) ≥ max
{
dc

j(C1) + 1, dc
j(C2), dc

j(C1) + dc
j(C2) − k( j + 1)

}
, for j = 0, 1, 2, . . .

3. If rank(D1) = rank(D2) = k, then

dc
j(PC

(2)) ≥ max
{
dc

j(C1) + 1, dc
j(C2) + 1, dc

j(C1) + dc
j(C2) − k( j + 1)

}
, for j = 0, 1, 2, . . .

Theorem 8 provides us lower bounds on the free distance of PC(2), but it does not tell us whether the convolutional
concatenated code is MDS or it is not. However, under certain conditions, we can ensure that if one of the constituent
codes is not an MDP code, then the concatenated code will also fail to have that property. In fact, for l = 1, 2, let

Ll =

⌊
δl

k

⌋
+

⌊
δl

nl − k

⌋
(17)

and consider the block Toeplitz matrix (see expression (2.1) of [18])

TLl =



Dl

ClBl Dl

ClAlBl ClBl Dl
...

...
. . .

ClA
Ll−1
l Bl ClA

Ll−2
l Bl · · · ClBl Dl


.
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From Theorem 2, the above block Toeplitz matrix corresponding to the (n1 + n2 − k, k, δ1 + δ2)-convolutional concate-
nated code PC(2) is

TL =



D2
D1

C2B2 D2
C1B1 D1

C2A2B2 C2B2 D2
C1A1B1 C1B1 D1

...
...

. . .

C2AL−1
2 B2 C2AL−2

2 B2 · · · C2B2 D2
C1AL−1

1 B1 C1AL−2
1 B1 · · · C1B1 D1


(18)

where L =

⌊
δ1 + δ2

k

⌋
+

⌊
δ1 + δ2

n1 + n2 − 2k

⌋
. So, if for l = 1 or l = 2, Cl is not an MDP code, then from [18, Corollary 2.5]

there is a zero minor of TLl which is not trivially zero. Consequently, if L ≥ max{L1, L2}, this minor is in fact a minor
of TL, and therefore PC(2) is not an MDP code.

Moreover, taking into account the block Toeplitz matrix corresponding to the concatenated code PC(2) given by
expression (18), we obtain that, if D1 = D2, then we can ensure that PC(2) is not an MDP code. In particular, if we
consider two identical convolutional codes, taht is, C1 = C2, then the concatenated convolutional code PC(2) can never
be an MDP code.

Furthermore, we can not ensure that the concatenated code is an MDP code even when the constituent codes are
MDP codes. However, if we concatenate two MDP convolutional codes C1 and C2, then, by Lemma 4, we obtain new
lower bounds of the column distances of the concatenated code PC(2), as we show in the next result.

Corollary 6: Let PC(2) be the concatenated convolutional code obtained by Theorem 2 from the convolutional codes
C1 and C2. For l = 1, 2, assume that Cl is an MDP convolutional code and let Ll be the parameter defined by
expression (17). Let u, v ∈ {1, 2} such that min{L1, L2} = Lu and max{L1, L2} = Lv.

1. If 0 ≤ j < Lu, then dc
j(PC

(2)) ≥ (n1 + n2 − 3k)( j + 1) + 2.

2. If Lu ≤ j ≤ Lv, then dc
j(PC

(2)) ≥ (nu − k)(Lu + 1) + (nv − 2k)( j + 1) + 2.

3. If j > Lv, then dc
j(PC

(2)) ≥ (n1 − k)(L1 + 1) + (n2 − k)(L2 + 1) + 2 − k(Lν + 1).

Finally, as a consequence of the above result, we obtain the following lower bound on the free distance of the
concatenated code PC(2), for the particular case where the constituent codes are strongly MDS convolutional codes.

Corollary 7: Let PC(2) be the concatenated convolutional code obtained by Theorem 2 from the convolutional codes

C1 and C2. Consider Ml =

⌊
δl

k

⌋
+

⌈
δl

nl − k

⌉
, for l = 1, 2, and let M = max{M1,M2}. If C1 and C2 are strongly MDS

convolutional codes, then

dc
j(PC

(2)) ≥ dfree(C1) + dfree(C2) − k(M + 1), for j ≥ M. (19)

Furthermore,

dfree(PC(2)) ≥ dfree(C1) + dfree(C2) − k(M + 1)

= (n1 − k)
(⌊
δ1

k

⌋
+ 1

)
+ δ1 + (n2 − k)

(⌊
δ2

k

⌋
+ 1

)
+ δ2 + 2 − k(M + 1) (20)

Proof: Since Cl is an strongly MDS convolutional code, for l = 1, 2, then the sequence
{
dc

j(Cl)
}

j≥0
attains the gener-

alized Singleton bound at the earliest possible step and, in particular, it stabilizes and attains its free distance dfree(Cl)
at step Ml, that is,

dc
j(Cl) = dc

Ml
(Cl) = (nl − k)

(⌊
δl

k

⌋
+ 1

)
+ δl + 1 = dfree(Cl) for j ≥ Ml and l = 1, 2.
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Applying expression (16) in Lemma 4 for j = M = max{M1,M2}, we obtain

dc
M(PC(2)) ≥ dc

M(C1) + dc
M(C2) − k(M + 1) = dfree(C1) + dfree(C2) − k(M + 1.) (21)

Now, since {dc
j(PC

(2))} j≥0 is a nondecreasing sequence,

dc
j(PC

(2)) ≥ dc
M(PC(2)) for j ≥ M. (22)

Expression (19) follows now from expressions (21) and (22). Finally, taking into account that dfree(PC(2)) ≥ dc
j(PC

(2))
for j ≥ 0, we obtain expression (20). ♦

5. Conclusions

In this paper we introduced two models of parallel concatenation of convolutional codes from linear systems
viewpoint. We introduce conditions on the constituent codes of the concatenation in order to get a minimal input-
state-output representation of the observable concatenated code. The main result of this paper is a series of lower
bounds on the column distances and free distance of the second model of concatenation. In our future work, we want
to give concrete constructions of the constituent codes in order to get a concatenated MDP convolutional code or a
concatenated strongly MDS convolutional code.
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