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Abstract

In this paper, we provide a new concept of relative skewness among multivariate

distributions, extending to the multivariate case a similar concept in the univariate

case. In this case, a random variable Y is said to be more right skewed than a random

variable X if there exits an increasing convex transformation which maps X onto Y .

Given two random vectors X and Y and an appropriate transformation which maps

X onto Y, we define a new concept of relative skewness assuming the convexity of this

transformation. Properties and applications of this concept are given.

Keywords: Relative Skewness, Standard Construction, Multivariate Quantile Trans-

form, Multivariate Convex Order, Copula, Multivariate IFR distributions.



1 Introduction

The need to provide skewed multivariate distributions to fit multivariate data sets has been

the origin of several proposals of multivariate skewed distributions. The papers by Azzalini

and Dalla Valle (1996), Azzalini and Capitano (1999), Azzalini (2005) and Arellano-Valle

and Azzalini (2006) are examples of multivariate skew-normal distributions and related dis-

tributions.

Other proposals in the multivariate case consider multivariate extensions of “skewing mech-

anisms” developed in the univariate case. We describe next two different approaches.

Ferreira and Steel (2006) developed a skewing mechanism in which a symmetric distribution

F is skewed through a distortion. More precisely, given a symmetric distribution F and a

distribution P with support on the interval [0, 1], the distorted version of F through P ,

that is, P ◦ F , is the skewed version of F . Recently, Abtahi and Towhidi (2013) gave

an unified representation of multivariate skewed distributions extending to the multivariate

case the proposal of Ferreira and Steel (2006) for the representation of univariate skewed

distributions. They use the Rossenblatt construction (see Arnold et al., 2006) to provide

such representation of multivariate skewed distributions.

Another approach is the one developed by Ley and Paindaveine (2010). Given a random

variable X with symmetric distribution F , they consider an increasing transformation Φ(X)

of X which provides a skewed version of X. When Φ is increasing, it can be easily seen

that Φ ≡ G−1 ◦ F (see Proposition C.6. by Marshall and Olkin, 2007), where G is the

distribution function of Φ(X) and G−1 is the quantile function associated with G, that is,

G−1(p) = inf{x : G(x) ≥ p}. This skewing mechanism is then extended to the multivariate

case considering an appropriate increasing transformation for a random vector.

In both cases, the point of departure is a symmetric distribution, but in the approach by

Ferreira and Steel (2006), they consider a transformation (distortion) of the quantile space,

and in the approach by Ley and Paindaveine (2010), they consider a transformation of the

sample space.

In the univariate case, when dealing with asymmetry or skewness, van Zwet (1964) intro-
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duced the concept of relative skewness. Let X be a random variable with interval support

and distribution function F . Let us consider another random variable Y with distribution

function G, van Zwet (1964) says that the distribution function G (or the random variable

Y ) is more right-skewed, than the distribution F (or the random variable X) if G−1 ◦ F is

a convex function on the support of X.

The approaches by van Zwet and by Ley and Paindaveine have in common the transfor-

mation of the sample space, but van Zwet does not consider that the random variable X is

symmetric, and does not consider general increasing transformations of X, but increasing

convex transformations of X. That is the reason why the random variable Y is more right

skewed than the random variable X.

This idea arises in a reasonable way when trying to find a formal definition of what it means

that one distribution G is more skewed to the right than a distribution F . Marshall and

Olkin (2007, p. 70) provide an explanation of this fact. This idea provides a partial ordering

among the set of distributions. In particular a random variable X with distribution F is said

to be less in the convex transform order than a random variable Y with distribution function

G, denoted by X ≤c Y , if G−1◦F is a convex function (see Shaked and Shanthikumar, 2007).

Equivalently, it can be seen that X ≤c Y if and only if there exists and increasing and convex

transformation Φ, which maps X onto Y , that is, Y =st Φ(X). It is clear also that, in this

case, there exists and increasing and concave transformation Ψ, which maps Y onto X, that

is, X =st Ψ(Y ).

Next, we describe some situations where this comparison of skewness arises in a natural

way.

The first example is the case of increasing convex transformations of some parametric

models of random variables. For instance, if we consider a random variable X with normal

distribution, with mean equals to 0 and standard deviation equals to 1, then the random

variable Y = exp(σX + µ), where σ is a positive real number and µ is a real number, is

an increasing convex transformation of X and therefore more skewed to the right than X,

or following the previous notation X ≤c Y . In this case the random variable Y follows a

lognormal distribution, and therefore lognormal distributions are more skewed to the right
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than normal distributions.

Another example is when we consider a random variable exp(λ) exponentially distributed.

In this case, increasing concave (convex) transformations of exp(λ) lead to random variables

with increasing [decreasing] failure rate, denoted by IFR [DFR]. Given a random variable

X with absolutely continuous distribution function F and density function f , the hazard or

failure rate is defined as r(x) = f(x)/(1−F (x)) for all x, such that F (x) < 1. This function

is one of the basics functions in the context of reliability and survival analysis, where a

random variable X represents the random lifetime of a unit or a mechanism. The hazard

rate describes the process of ageing and can be considered as the rate at which a unit fails

when survive up to a fixed time x (see Barlow and Proschan, 1975, and Lai and Xie, 2006).

Namely, if we denote by E an exponential distribution with parameter 1, i.e., E ∼ exp(1),

the IFR [DFR] aging class can be characterized via the univariate convex transform order,

i.e., given a random variable X (or its distribution) then

X is IFR [DFR] ⇔ X ≤c [≥c]E,

⇔ X ≤c [≥c]aE + b, ∀a > 0, b ∈ R. (1)

The purpose of this paper is to extend the idea of van Zwet to the multivariate case.

That is, to compare the degree of skewness from one random vector X to another random

vector Y if there exists some transformation Φ such that maps X onto Y, that satisfies some

convexity property.

As we have mentioned before in the univariate case, when Φ is increasing then Φ = G−1◦F .

In the multivariate case is possible to find such function Φ which maps a random vector X

onto a random vector Φ(X) with the same distribution that Y. Next, we describe the

construction of such function. Throughout this paper, “increasing” means “nondecreasing”

and “decreasing” means “nonincreasing”. We will denote by =st, the equality in law, and

by ≤a.s., the almost surely inequality. For any random vector X, or random variable, we will

denote by (X|A) a random vector, or random variable, whose distribution is the conditional

distribution of X given A.

Let us consider two n-dimensional random vectors X = (X1, . . . , Xn) and Y = (Y1, . . . , Yn)
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with absolutely continuous distribution.

First, we consider the multivariate quantile transform introduced by O’Brien (1975), Arjas

and Lehtonen (1978) and Ruschendorf (1981). Let us consider the random vector Y, the

multivariate quantile transform, also called the standard construction, associated

with Y, is defined recursively as

QY,1(u1) = G−1
Y1

(u1),

QY,2(u1, u2) = G−1
(Y2|Y1=QY,1(u1))(u2),

...

QY,n(u1, . . . , un) = G−1

(Yn|
Tn−1

j=1 Yj=QY,j(u1,...,uj))
(un),

(2)

for every (u1, u2, . . . , un) ∈ (0, 1)n, where G−1
Y1

(·) is the quantile function of Y1 and for i =

2, . . . , n, G−1

(Yi|
Ti−1

j=1 Yj=QY,j(u1,...,uj))
(·) is the quantile function of the univariate conditional

random variable given by (
Yi|

i−1⋂
j=1

Yj = QY,j(u1, . . . , uj)

)
.

This known transform is widely used in simulation theory and plays the role of the quantile

in the multivariate case. It can be seen that given U1, . . . , Un independent and identically

distributed random variables uniformly distributed on the interval (0, 1), then, denoting

QY(u1, . . . , un) = (QY,1(u1), QY,2(u1, u2), . . . , QY,n(u1, . . . , un)),

we have that

(Y1, . . . , Yn) =st QY(U1, . . . , Un). (3)

Next, we recall the multivariate distributional transform. Let us consider the random

vector X, the multivariate distributional transform is defined recursively as

DX,1(x1) = FX1(x1),

DX,2(x1, x2) = F(X2|X1=x1)(x2),
...

DX,n(x1, . . . , xn) = F(Xn|
Tn−1

j=1 Xj=xj)(xn),

(4)

4



for every (x1, . . . , xn) in the support of X, where FX1(·) is the distribution function of X1 and

for i = 2, . . . , n, F(Xi|
Ti−1

j=1Xj=xj)(·) is the distribution function of the conditional distribution(
Xi |

⋂i−1
j=1Xj = xj

)
.

Denoting

DX(x1, . . . , xn) = (DX,1(x1), DX,2(x1, x2), . . . , DX,n(x1, . . . , xn)),

it can be seen that

(U1, . . . , Un) =st DX(X1, . . . , Xn). (5)

Therefore, if we consider the transform

Φ ≡ QY ◦DX, (6)

defined for every (x1, . . . , xn) in the support of X, we have, from (3) and (5), that

Y =st QY(DX(X)),

and, hence, the function Φ maps the random vector X onto Y.

Remark 1.1. From (2) and (4), the i-th component of Φ depends only on (x1, . . . , xi) and

it is given by

Φ1(x1) = G−1
Y1

(FX1(x1)) (7)

Φi(x1, . . . , xi) = G−1(
Yi|

i−1T
j=1

Yj=Φj(x1,...,xj)

)
F(

Xi|
i−1T
j=1

Xj=xj

)(xi)

 . (8)

From the increasingness of both the distribution function and its inverse, it is apparent that

Φi(x1, . . . , xi) is increasing in xi, for all i = 1, . . . , n. Hence the Jacobian matrix of Φ is

always a lower triangular matrix with diagonal elements strictly positive.

Remark 1.2. In addition, as a clear extension of the univariate case, Fernández-Ponce and

Suárez-Llorens (2003) proved in their Theorem 3.1 that if we take a function k : Rn → Rn

such that Y =st k(X) and k has a lower triangular Jacobian matrix with diagonal elements

strictly positive, then k has necessarily the form of the function Φ given in (6).
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The purpose of this paper is to provide a new concept of relative skewness for multivariate

distributions assuming some convexity properties for the function Φ. The organization of the

paper is the following. In Section 2, we define and study a criteria of relative skewness based

on convexity properties for the function Φ. We provide some properties and examples. In

Section 3, we study the case of random vectors with the same copula, and we provide several

examples for this case. Section 4 is devoted to define and study a new multivariate IFR

[DFR] notion based on this new notion of relative skewness. Along the paper, we assume

absolute continuity of the multivariate distributions and convex supports for random vectors

and random variables.

2 Relative skewness of multivariate distributions

In this section, we consider a new multivariate convex order based on the generalization of

the convexity of G−1◦F to the multivariate case for the function Φ = QY◦DX. This general-

ization is clearly inspired on the multivariate dispersive order proposed by Fernández-Ponce

and Suárez-Llorens (2003). Along this section, we will assume that the random variables

or vectors, upon which we consider convex transformations, have a convex support and,

analogously to the previous section, also have absolutely continuous distribution functions.

Finally, we will restrict our study to the case when the function Φ, defined in (6), is differ-

entiable.

We start by recalling the definition of a multivariate convex function, see Marshall et al.

(2011) for more details.

Let f : S→ R be a real-valued function defined on a convex set S ⊆ Rk, k ≥ 1. Then f is

convex on the set S if for all x1,x2 ∈ S and for all λ ∈ (0, 1) we have

f(λx1 + (1− λ)x2) ≤ λf(x1) + (1− λ)f(x2).

There exist many interesting characterizations of convex functions in Literature. Along

this paper we will assume the regularity conditions that make possible the following well

known characterizations, when we use them.
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Characterization 2.1. If the function f : S → R, S ⊆ Rk, is differentiable in the interior

of their support, the convexity is equivalent to check

(f(x2)− f(x1))
t ≥ ∇f(x1)(x2 − x1)

t,

for all x1, x2 in the support of f , where

∇f(x1)(x2 − x1)
t =

k∑
i=1

∂f

∂xi
(x1)(x2i − x1i),

represents the classical tangent hyperplane to the hypersurface given by f at x1.

Characterization 2.2. If the function f : S → R, S ⊆ Rk, is twice differentiable in the

interior of their support, the convexity is equivalent to check if the Hessian, denoted by

∇2f(x), is a semidefinite positive matrix, for every x in the support of f .

We recall that by Young’s Theorem, the Hessian of any function, for which all second

partial derivatives are continuous, is symmetric for all values of the argument of the function.

Finally, attending to the Sylvester’s criterion, ∇2f(x) is semidefinite positive if and only if

all its principal minors are nonnegative.

Definition 2.3. Let X and Y be two n-dimensional random vectors. Let Φ be the function

defined in (6) which maps X onto Y. Then, X is said to be smaller than Y in the multi-

variate convex transform order, for short mct-order and denoted by X ≤mct Y, if and

only if the i-th component of Φ, Φi, is convex in their support for all i = 1, . . . , n.

Denoting by JΦ(x) the Jacobian matrix of Φ at x and using Characterization 2.1 for each

Φi, i = 1, . . . , n, it is apparent that Definition 2.3, in case of differentiability, is equivalent

to check the following inequality:

(Φ(x2)−Φ(x1))
t ≥ JΦ(x1)(x2 − x1)

t, (9)

which contains all the information of the tangent hyperplanes given by ∇Φi, i = 1, . . . , n.

Note that from Remark 1.1, the Jacobian matrix of Φ is a lower triangular matrix with
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diagonal elements strictly positive having the following form

JΦ(x) =


∂Φ1

∂x1
(x1) 0 · · · 0

∂Φ2

∂x1
(x1, x2)

∂Φ2

∂x2
(x1, x2) · · · 0

...
...

. . .
...

∂Φn

∂x1
(x1, . . . , xn) ∂Φn

∂x2
(x1, . . . , xn) . . . ∂Φn

∂xn
(x1, . . . , xn)

 .

Due to the fact that Φ maps the multivariate quantile transform of X to the corresponding

of Y, i.e., Φ(QX(u)) = QY(u), for all u = (u1, . . . , un), ui ∈ (0, 1), condition (9) can be

interpreted as a particular distance between multivariate quantiles:

(QY(v)−QY(u))t ≥ JΦ(QX(u))(QX(v)−QX(v))t,

for all v = (v1, . . . , vn) and u = (u1, . . . , un).

A meaningful interpretation of the mct-order is given by the following result.

Proposition 2.4. Let X and Y be two n-dimensional random vectors. If X ≤mct Y, then

X1 ≤c Y1, (10)(
Xi

∣∣∣∣∣
i−1⋂
j=1

{Xj = QX,j(u1, . . . , uj)}

)
≤c

(
Yi

∣∣∣∣∣
i−1⋂
j=1

{Yj = QY,j(u1, . . . , uj)}

)
, (11)

for i = 2, . . . , n and for all ui such that 0 < ui < 1, i = 1, . . . , n.

Proof. Under hypothesis assumption Φi(x1, . . . , xi) is convex for all i = 1, . . . , n. Therefore,

it is also convex in xi, when x1, . . . , xi−1 remains fixed. If we take in account that Φ maps the

multivariate quantile transform of X to the corresponding of Y, the proof follows directly

just observing the expressions (7) and (8) and recalling the definition of the univariate convex

order.

Therefore, the mct-order implies the univariate convex order of the conditional distribu-

tions. Next, we will present two examples. First we consider an example to show that (10)

and (11) in Proposition 2.4 are not sufficient conditions for the mct-order.
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Example 2.5. Let X = (X1, X2) be a nonnegative bivariate distribution and let m1 ≥ 1 and

m2 ≥ 1 two fixed constant. Let us consider the random vector Y = (Y1, Y2) given by

(Y1, Y2) = k(X1, X2),

= (k1(X1), k2(X1, X2)),

= (Xm1
1 , Xm1

1 Xm2
2 ).

Since Remark 1.2, it is apparent that the function Φ, given in (6), which maps X onto Y

has the form

Φ(x1, x2) = QY(DX(x1, x2)) = (xm1
1 , xm1

1 xm2
2 ).

If we compute the Hessian matrix of Φ2, we obtain

∇2Φ2(x1, x2) =

 m1(m1 − 1)xm1−2
1 xm2

2 m1m2x
m1−1
1 xm2−1

2

m1m2x
m1−1
1 xm2−1

2 m2(m2 − 1)xm2−2
2 xm1

1

 ,

where

det(∇2Φ2(x1, x2)) = −(m1 +m2 − 1)m1m2x
2m1−2
1 x2m2−2

1 ≤ 0,

which obviously achieves strictly negative values. Therefore, ∇2Φ2(x1, x2) is not semidefinite

positive and X �mct Y. However, it is apparent that Φ1(x1) is convex in x1 and Φ2(x1, x2)

is convex in x2 when x1 remains fixed.

Now we present an example concerning to the multivariate normal distribution. We will

show that all multivariate normal distributions are equal in the mct-order sense.

Example 2.6. Let X Nn(µ1,Σ1) and Y  Nn(µ2,Σ2) be two multivariate normal distri-

butions. Since Fernández-Ponce and Suárez-Llorens (2003), Example 4.1, the function Φ,

defined in (6), that maps X to Y satisfies JΦ = AB where A and B are two lower triangular

matrices with AAt = Σ2 and BtB = Σ−1
1 . Furthermore, according to Theorem 14.5.11 in

Harville (1997), we have that

At = D
1/2
A U, B = D

−1/2
B (V−1)t and Σ1 = VtDBV,

with U be the unique unit upper triangular matrix and DA = {di} be the unique diagonal

matrix such that

Σ2 = UtDAU and D
1/2
A = {

√
di}.
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Similarly for the B matrix. The U and V matrices can be calculated using the Cholesky

decomposition (see Harville, 1997). Consequently, if JΦ is always a matrix, it follows directly

that the Hessian matrix of Φi is the null matrix for all i = 1, . . . , n, and analogously for the

function that maps Y to X. Hence X =mct Y.

In previous example the function Φ is an affine transformation. Recalling the univariate

convex order, given two univariate random variables X and Y then X =c Y if and only if

Y =st aX + b for all a > 0 and real b. (see Proposition C.9 by Marshall and Olkin, 2007).

Therefore, it is natural to wonder if a similar property holds for the mct-order: the answer is

yes, as we will see in Proposition 2.8. In order to prove it, we recall first the inverse function

theorem.

Lemma 2.7. Let A ⊆ Rn be an open set and Φ : A → Rn a differentiable and continuous

function with differentiable and continuous inverse Φ−1. Then,

JΦ−1(y)|y=Φ(x) = (JΦ(x))−1.

for all x ∈ A.

Proposition 2.8. Let X = (X1, . . . , Xn) and Y = (Y1, . . . , Yn) be two random vectors.

Then,

X =mct Y

if and only if

Yt =st AXt + b

for a lower triangular matrix A = (aij) with diagonal elements, aii > 0, i = 1 . . . , n, and a

column matrix b.

Proof. First, we will prove the sufficient condition. If Yt =st AXt+b, as specified previously,

using Remark 1.2 we obtain that Φ(x) = QY(DX(x)) = Axt + b. Hence it is apparent that

X ≤mct Y. Just observing that Xt =st A−1(Yt − b) and taking in account that A−1 is also

a lower triangular matrix with diagonal elements strictly positive, using again Remark 1.2,

Y ≤mct X holds with a similar argument.
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We will show now the necessary condition. Let us suppose that X =mct Y. Note that the

function Φ, defined in (6), which maps X to Y has a lower triangular Jacobian matrix with

diagonal elements strictly positive. If we denote by Φ? the function that follows from (6),

exchanging X by Y, then it is not difficult to see that Φ? = Φ−1. Hence, by hypothesis

assumption, the components of Φ and Φ−1 are convex functions. Therefore,

JΦ(x1)(x2 − x1)
t ≤ (Φ(x2)−Φ(x1))

t (12)

and, from Lemma 2.7, we have

(JΦ(x1))
−1(Φ(x2)−Φ(x1))

t ≤ (x2 − x1)
t, (13)

where x2, x1 are in the support of X.

Let us see that these inequalities imply that Φ(x) = Axt+b. Let us proceed by induction

on i = 1, . . . n.

For the case i = 1, the result is trivial, because we have that Φ1(x1) and Φ−1
1 (x1) are

increasing and convex and, therefore, Φ1(x1) = a11x1 + b1 where a11 > 0.

Let us assume that this is true for j = 1, . . . , i− 1, that is

Φj(x1, . . . , xj) = a1jx1 + . . .+ ajjxj + bj

and let us see that is true for j = i. Then we can write

J(Φ1,...,Φi)(x1, . . . , xi) =


Ai−1

0
...

0

∂Φi

∂x1
(x1, . . . , xi) . . .

∂Φi

∂xi−1
(x1, . . . , xi)

∂Φi

∂xi
(x1, . . . , xi)


and

(J(Φ1,...,Φi)(x1, . . . , xi))
−1 =


A−1
i−1

0
...

0

B(x1, . . . , xi)
(
∂Φi

∂xi
(x1, . . . , xi)

)−1


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where Ai−1 is a lower triangular matrix with dimension (i− 1)× (i− 1) and

B(x1, . . . , xi) = − 1
∂Φi

∂xi
(x1, . . . , xi)

(
∂Φi

∂x1

(x1, . . . , xi), . . . ,
∂Φi

∂xi−1

(x1, . . . , xi)

)
A−1
i−1.

From (12), taking x2 = (x21, . . . , x2n) and x1 = (x11, . . . , x1n) in the support of X, we

obtain that

i∑
j=1

∂Φi

∂xj
(x11, . . . , x1i)(x2j − x1j) ≤ Φi(x21, . . . , x2i)−Φi(x11, . . . , x1i). (14)

From (13), we also have that

x2i − x1i ≥ B(x11, . . . , x1i)


Φ1(x21)−Φ1(x11)

...

Φi−1(x21, . . . , x2(i−1))−Φi−1(x11, . . . , x1(i−1))


+

1
∂Φi

∂xi
(x11, . . . , x1i)

(Φi(x21, . . . , x2i)−Φi(x11, . . . , x1i)).

Now, taking into account the expression of B(·) and the induction hypothesis, the previous

inequality is equivalent to

x2i − x1i ≥ − 1
∂Φi

∂xi
(x11, . . . , x1i)

i−1∑
j=1

∂Φi

∂xj
(x11, . . . , x1i)(x2j − x1j)

+
1

∂Φi

∂xi
(x11, . . . , x1i)

(Φi(x21, . . . , x2i)−Φi(x11, . . . , x1i)).

From this inequality, we get

i∑
j=1

∂Φi

∂xj
(x11, . . . , x1i)(x2j − x1j) ≥ (Φi(x21, . . . , x2i)−Φi(x11, . . . , x1i)).

Therefore, from previous inequality and (14) we get

i∑
j=1

∂Φi

∂xj
(x11, . . . , x1i)(x2j − x1j) ≤ Φi(x21, . . . , x2i)−Φi(x11, . . . , x1i)

≤
i∑

j=1

∂Φi

∂xj
(x11, . . . , x1i)(x2j − x1j).

Hence, Φi is an affine transformation.

12



It is easy to see that the mct-order is closed under conjunctions and verifies a sort of

marginalization closure property. We state these properties without proof.

Proposition 2.9. The following properties hold:

(i) Let X1, . . . ,Xn be a set of independent random vectors where the dimension of Xi is

ki, i = 1, . . . , n. Let Y1, . . . ,Yn be a set of independent random vectors where the

dimension of Yi is ki, i = 1, . . . , n. If Xi ≤mct Yi for i = 1, . . . , n, then

(X1, . . . ,Xn) ≤mct (Y1, . . . ,Yn).

(ii) Let X = (X1, . . . , Xn) and Y = (Y1, . . . , Yn) be two n-dimensional random vectors.

Let 1 ≤ i ≤ n and XI = (X1, . . . , Xi) and YI = (Y1, . . . , Yi). If X ≤mct Y, then

XI ≤mct YI .

Due to the fact that the composition of multivariate convex functions is not always convex,

the multivariate transform convex order does not satisfy the transitive property. Let us see

the following example:

Example 2.10. Let X = (X1, X2), Y = (X2
1 , X

2
2 ) and Z = (2X2

1 ,−3X2
1 + X2

2 ) be three

bivariate random vectors on (0,∞)2. Since Remark 1.2, a straightforward computation shows

that

Φ(1)(x1, x2) = QY(DX(x1, x2)) = (x2
1, x

2
2),

Φ(2)(y1, y2) = QZ(DY(y1, y2)) = (2y1,−3y1 + y2),

Φ(x1, x2) = QZ(DX(x1, x2)) = (2x2
1,−3x2

1 + x2
2).

Just computing the Hessian matrices of all component functions it is easily obtained that

X ≤mct Y =mct Z but X 6≤mct Z.

However, transitive property holds for some particular transformations, as we can see in

the following proposition. The proof is a direct consequence of the composition of convex

functions, see Proposition B.7. in Marshall et al. (2011), and it has been omitted.

Proposition 2.11. Let X, Y and Z be three n-dimensional random vectors such that X ≤mct
Y ≤mct Z and let Φ(1) ≡ QY ◦DX and Φ(2) ≡ QZ ◦DY as described in (6). If Φ(2)(y) is

increasing for all y ∈ Rn, then X ≤mct Z.
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3 On relative skewness for random vectors with the

same copula

In this section we discuss the case of random vectors with the same copula. A copula C is

a cumulative distribution function with uniform margins on [0, 1]. The notion of copula was

introduced by Sklar (1959). The main purpose of copulas is to describe the interrelation of

several random variables. Given a random vector X with margins F1, . . . , Fn, there exists a

copula C such that

F (x1, . . . , xn) = C(F1(x1), . . . , Fn(xn)).

Moreover, if F1, . . . , Fn are continuous, then C is unique (for a complete review about copulas,

see Nelsen, 1999). On the other hand, any copula evaluated with some margins in the right

way, leads to a multivariate distribution function. Next we show that for random vectors with

the same copula, the mct order is equivalent to compare in the convex order the marginals

distributions.

Theorem 3.1. Let X = (X1, . . . , Xn) and Y = (Y1, . . . , Yn) be two random vectors sharing

a common copula. Then, X ≤mct Y if and only if Xi ≤c Yi for all i = 1, . . . , n.

Proof. Arias-Nicolás et al. (2005) showed that, for two random vectors with the same copula,

the function Φ, defined in (6), which maps X to Y satisfies that

Φi(x1, . . . , xi) = G−1
Yi

(FXi
(xi)), (15)

for all i = 1, . . . , n. The result follows directly from expression (15) and recalling the defini-

tion of the univariate convex order.

From Proposition 2.11 and Theorem 3.1 we obtain the following Corollary.

Corollary 3.2. Let X = (X1, . . . , Xn) and Y = (X1, . . . , Xn) be two random vectors such

that X ≤mct Y. Then X ≤mct W for all random vector W = (W1, . . . ,Wn) having the same

copula than Y such that Yi ≤c Wi, for all i = 1, . . . , n.
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Proof. Using Theorem 3.1 Y ≤mct W holds and the transformation Φ ≡ QY ◦DW, defined

in (6), only depends on the marginal distributions, i.e., it can be expressed as

Φi(x1, . . . , xn) = G−1
Yi

(FWi
(xi)),

where it is apparent that Φ is trivially increasing. The proof concludes just using Proposition

2.11.

We would like to point out that Theorem 3.1 can be used to provide many examples of

random vectors ordered in the mct order. Just fixing a copula, many multivariate random

vectors can be ordered in the ≤mct via the univariate comparison of the marginal distribu-

tions. Next we describe some situations where previous results can be applied.

3.1 Multivariate normal and lognormal distributions

Given a random vector X = (X1, . . . , Xn) with multivariate normal distribution (see Example

2.6), the random vector Y = (Y1, . . . , Yn), where Yi = expXi for i = 1, . . . , n, follows a

multivariate lognormal distribution (see Aitchison and Brown, 1957). Clearly X and Y

share the same copula and the function that maps Xi onto Yi is convex, for all i = 1, . . . , n.

Therefore, using Theorem 3.1, we obtain that X ≤mct Y. Hence the multivariate lognormal

distribution is a right skewed transformation of a multivariate normal distribution. We

also observe that given any other multivariate normal distribution X′, from Example 2.6

X′ =mct X holds. Then, using Proposition 2.11 X′ ≤mct Y also holds.

3.2 Multivariate distributions with IFR [DFR] marginals

Next corollary provides a situation where we can apply previous ideas.

Corollary 3.3. Let X = (X1, . . . , Xn) be a random vector having a copula C such that all

marginal distributions, Xi, i = 1, . . . , n, satisfy the IFR [DFR] aging property. If we consider

a random vector Y = (Y1, . . . , Yn) with the same copula C but having shifted exponential

marginal distributions, that is Yi ∼ aiE + bi, where ai > 0, b ∈ R and E ∼ exp(1), then

X ≤mct [≥mct]Y.
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Proof. The proof follows easily from Theorem 3.1 and the univariate characterization of the

IFR [DFR] aging property given in (1).

Taking into account previous results we can construct a great bunch of examples of mul-

tivariate distributions ordered in the mct-order. Let us see some examples.

Example 3.4. Other examples can be taken from the literature. For instance, let X be a

Weibull distributed bivariate random vector, where the suruvival copula is given by a Gumbel

copula, that is,

C(u1, u2) = exp
{
−
[
(− log u)1/θ + (− log v)1/θ

]θ}
for u1, u2 ∈ (0, 1),

where 0 < θ < 1, and the margins are Weibull distributed like in the previous example. This

bivariate distribution can be found in Lu and Bhattacharyya (1990). Now, if we consider

Y a Gumbel bivariate exponential distribution, i.e., a random vector with Gumbel survival

copula and exponential margins (Gumbel, 1960), we have again that X ≤mct Y [≥mct] if

βi > 1 [ < 1] for i = 1, 2, respectively. In fact, in Figure 1, we plot the joint density

functions of the bivariate Weibull and Gumbel distributions for θ = 0.3, β1 = β2 = 3 and

α1 = α2 = 1. Clearly the bivariate Gumbel distribution is more skewed than the bivariate

Weibull distribution.
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Figure 1: Joint density function of Weibull and Gumbel bivariate distributions.
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Example 3.5. Another example is the following. Let us consider a random vector X with

a Clayton copula which is given by

C(u1, u2) =
[
u
−1/θ
1 + u

−1/θ
2 + 1

]−θ
for u1, u2 ∈ (0, 1),

where θ > 0 and exponentially distributed margins. Let Y be a bivariate Pareto distribution

as defined in Lindley and Singpurwalla (1986). Y has a Clayton copula and Pareto dis-

tributed margins (see Balakrishnan and Lai, 2009). It is known that the Pareto distribution

is DFR. Hence, again from Corollary 3.3, we have X ≤mct Y.

In Figure 2, we can see the plots of the joint density functions of a distribution with a

Clayton copula and exponential margins and a Pareto bivariate distribution for θ = 0.3 in

both cases.
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Figure 2: Joint density function of the Clayton copula with exponential margins and Pareto

bivariate distributions.

3.3 Relative skewness for ordered data

The model of a random vector with ordered components arises in natural way when we

arrange in increasing order a set of observations from a random variable. Another example

is the case of epoch times of a counting process, like the case of a nohomogeneous Poisson
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process. Epoch times of nohomogeneous Poisson processes can be introduced as record values

of a proper sequence of random variables, which is another typical example of ordered data.

Given the similarity of several results for order statistics and record values Kamps (1995a)

introduces the model of generalized order statistics. This model provides a unified approach

to study order statistics and record values, and several other models of ordered data. First,

we recall the definition of generalized order statistics following Kamps (1995a) and (1995b).

Definition 3.6. Let n ∈ N, k ≥ 1, m1, . . . ,mn−1 ∈ R, Mr =
∑n−1

j=r mj, 1 ≤ r ≤ n − 1,

be parameters such that γr = k + n − r + Mr ≥ 1 for all r ∈ 1, . . . , n− 1, and let m̃ =

(m1, . . . ,mn−1), if n ≥ 2 (m̃ ∈ R arbitrary, if n = 1). We call uniform generalized

order statistics to the random vector (U(1,n,m̃,k), . . . , U(n,n,m̃,k)) with joint density function

h(u1, . . . , un) = k

(
n−1∏
j=1

γj

)(
n−1∏
j=1

(1− uj)mj

)
(1− un)k−1

on the cone 0 ≤ u1 ≤ . . . ≤ un ≤ 1. Now, given a distribution function F , we call generalized

order statistics based on F to the random vector

(X(1,n,m̃,k), . . . , X(n,n,m̃,k)) ≡
(
F−1(U(1,n,m̃,k)), . . . , F

−1(U(n,n,m̃,k))
)
.

If F is an absolutely continuous distribution with density f , the joint density function of

(X(1,n,m̃,k), . . . , X(n,n,m̃,k)) is given by

f(x1, . . . , xn) = k

(
n−1∏
j=1

γj

)(
n−1∏
j=1

F̄ (xj)
mjf(xj)

)
F̄ (xn)k−1f(xn)

on the cone F−1(0) ≤ x1 ≤ . . . ≤ xn ≤ F−1(1).

For GOS’s, we have that two random vectors of GOS’s with the same set of parameters and

possibly based on different distributions have the same copula (see Belzunce et al., 2008).

Let us see now several models that are included in this model. As we have mentioned

previously, order statistics and record values are a particular case of this model (see Belzunce,

2013, for a detailed review).

Taking mi = 0 for all i = 1, . . . , n−1 and k = 1, we get the random vector of order statistics

(X1:n, X2:n, . . . , Xn:n) from a set of n independent and identically distributed (i.i.d) observa-

tions X1, X2, . . . , Xn with common absolutely continuous distribution F , in particular, we

get that Xi:n =st X(i,n,0,1).
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Taking mi = −1 for all i = 1, . . . , n − 1 and k = 1, we get the random vector of the first

n record values (see Chandler, 1952).

Some additional particular cases of GOS’s are the following.

Taking mi = −1 for all i = 1, . . . , n − 1 and k ∈ N, we get k-records. Taking n = m,

mi = Ri and k = Rm + 1, we get order statistics from Type-II censored data. Another

particular case is the case of order statistics under multivariate imperfect repair (see Shaked

and Shanthikumar, 1986).

Next, we show a property dealing with the comparison of relative skewness for generalized

orders statistics.

Theorem 3.7. Let X = (X(1,n,m̃,k), . . . , X(n,n,m̃,k)) and Y = (Y(1,n,m̃,k), . . . , Y(n,n,m̃,k)) be the

random vectors of generalized order statistics based on distributions F and G from random

variables X and Y , respectively. If

X ≤c Y,

then

X ≤mct Y.

Proof. Since the vectors of generalized order statistics have the same copula, the result

follows easily if X(r,n,m̃,k) ≤c (Y(r,n,m̃,k) for all r = 1, . . . , n. This follows observing that

G−1
Y(r,n, em,k)

(FX(r,n, em,k)
(x)) = G−1(F (x)),

where GY(r,n, em,k)
and FX(r,n, em,k)

denote the distribution functions of Y(r,n,m̃,k) and (X(r,n,m̃,k),

respectively (see also Belzunce et al., 2005).

4 On a new definition of multivariate IFR [DFR] dis-

tributions

Among other interesting applications, Stochastic Orders are related to the study of aging (see,

for example, Belzunce and Shaked, 2008a, and, 2008b). In particular, in all these well known
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aging criteria we are comparing the relative performance of a unit under consideration with

that of an exponential distribution, -it is worth to recall that a unit with an exponential

life distribution suffers no aging-. In particular, as we have pointed out in (1), the well

known IFR and DFR aging notions are characterized via the comparison in the univariate

convex order sense. Roughly speaking, a random variable which represents the lifetime of a

component or system is IFR [DFR] if, and only if, it is smaller [larger] than an exponential

distribution in the convex order sense.

Next we propose a multivariate aging notion as a direct extension of the univariate char-

acterization given in (1). Note that this new definition will be based on the mct-order and

therefore also based on the multivariate quantile transform. It is worth to mention that

the multivariate quantile transform has been already used in literature to define other

aging notions, (see Arias-Nicolás et al., 2009 and 2010) and also it is interesting to note that

Roy (2002), clearly inspired in the univariate case, proposed another type of multivariate

aging notion based on certain comparisons with a multivariate distribution type Gumbel.

For our purpose, we first define the family of multivariate conditional exponential distri-

butions.

Definition 4.1. Given an n-dimensional random vector Y, we will say that Y follows a

multivariate conditional exponential distribution with parameter matrix A = (aij) ∈ Mn×n

and constant vector b ∈ Rn, denoted by Y ∼ MCE(A,b), if Y =st AE + b, where A

is lower triangular with diagonal elements strictly positive and E = (E1, . . . , En) denotes

a multivariate random vector with i.i.d. exponential marginal distributions with common

parameter λ = 1.

Under the previous notation, it is apparent that E ∼MCE(In×n,0n), where In×n and 0n

represent the identity matrix and the null vector, respectively.

Remark 4.2. Given Y ∼ MCE(A,b), it is remarkable that all marginal distributions are

linear combinations of independent shifted exponential distributions. The name “conditional

exponential” for Y comes from the property that all sequential conditional distributions are
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shifted exponential distributions, i.e.,

Y1 ∼ a11E1 + b1,

(Y2|Y1 = y1) ∼ a21α1 + a22E2 + b2,

(Y3|Y1 = y1, Y2 = y2) ∼ a31α1 + a32α2 + a33E3 + b3,

...(
Yn |

n−1⋂
j=1

Yj = yj

)
∼

n−1∑
j=1

anjαj + annEn + bn, (16)

where conditional distributions are well defined. A straightforward computation shows that

(α1, . . . , αn−1)
t = A−1

n−1(y1 − b1, . . . , yn−1 − bn−1)
t,

where An−1 is a submatrix formed by deleting the n-th row and n-th column of A.

Remark 4.3. Let Y1 ∼MCE(A1,b1) and Y2 ∼MCE(A2,b2) be two multivariate condi-

tional exponential distributions. A straightforwad computation shows that

Y2 =st A2A
−1
1 (Y1 − b1) + b2.

Just taking in account that A−1
1 is a lower triangular matrix with diagonal elements strictly

positive and then A2A
−1
1 is also a lower triangular matrix with diagonal elements strictly

positive, using Proposition 2.8, all multivariate conditional exponential distributions are equal

in the mct-order, i.e. Y1 =mct Y2.

From the definition of the multivariate conditional exponential distribution and clearly

inspired in (1), we define a new multivariate aging notion based on the ≤mct order.

Definition 4.4. Let X be an absolutely continuous random vector. Then X is said to be mct-

IFR [mct-DFR] if there exists a particular multivariate conditional exponential distribution,

Y ∼ MCE(A,b), such that X ≤mct [≥mct]Y. We will call the random vector Y an upper

bound exponential distribution associated with X.

Remark 4.5. From Remark 4.3 one could expect that if X is mct-IFR [mct-DFR], then

X could be ordered in the mct-order sense with any multivariate conditional exponential
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distribution. However, due to the lack of transitivity of the multivariate transform convex

order, recall Example 2.10, this is not necessarily true. On the other hand, it is also apparent,

just changing the constant vector b, that the upper bound distribution is not unique.

Propositions 4.6, 4.7 and 4.8 present some desirable properties associated with Definition

4.4.

Proposition 4.6. Let X = (X1, . . . , Xn) be an absolutely continuous random vector with

independent components. Then X is mct-IFR [mct-DFR] if, and only if, Xi is IFR [DFR]

for all i = 1, . . . , n.

Proof. We just need to prove that E ∼ MCE(In×n,0n) is an upper bound exponential

distribution associated with X. Due to the fact that X and E share the same independence

copula, just using Theorem 3.1 X ≤mct [≥mct]E holds if, and only if, Xi ≤c [≥c]Ei holds, for

all i = 1 . . . , n. Since (1), the last condition holds if, and only if, Xi’s are IFR [DFR].

Proposition 4.7. Let X = (X1, . . . , Xn) be an absolutely continuous mct-IFR distribution

and let Y ∼MCE(A,b) be an upper bound exponential distribution associated with X. Let

Φ ≡ QY ◦DX be the transformation described in (6). If Φ(x) is increasing for all x in the

support of X, then the random vector BX is also mct-IFR for all lower triangular matrix B

with strictly positive diagonal elements.

Proof. Since Proposition 2.8, it is apparent that BX =mct X. Using the fact that X is

mct-IFR, BX =mct X ≤mct Y holds. By hypothesis assumption and using Lemma 2.11 the

proof is concluded.

Proposition 4.8. Let X = (X1, . . . , Xn) be an absolutely continuous mct-DFR distribution,

then the random vector BX is also mct-DFR for all lower triangular matrix B = {aij} such

that aij ≥ 0 with diagonal elements strictly positive.

Proof. Let Y ∼ MCE(A,b) be the corresponding upper bound exponential distribution

associated with X. Since Proposition 2.8 it is apparent that BX =mct X. Using the fact

that X is mct-DFR, BX =mct X ≥mct Y holds. Using Remark 1.2, the function Φ(x) = Bx

22



has the form of (6) and trivially is increasing. The proof concludes just using Lemma

2.11.

The following result shows that if a random vector X satisfies the mct-IFR [mct-DFR]

aging property, then all sequential conditional distributions associated with X are univariate

IFR [DFR].

Theorem 4.9. Let X be a mct-IFR [mct-DFR] distribution. Then,

X1 is IFR [DFR]

and the conditional distribution(
Xi

∣∣∣∣∣
i−1⋂
j=1

{Xj = QX,j(u1, . . . , uj)}

)
is IFR [DFR]

for i = 2, . . . , n and for all uj such that 0 < uj < 1, j = 1, . . . , i− 1.

Proof. Let Y ∼ MCE(A,b) be the corresponding upper bound exponential distribution

associated with X. From Proposition 2.4 and using (10)

X1 ≤c [≥c]Y1,

and using (11)(
Xi

∣∣∣∣∣
i−1⋂
j=1

{Xj = QX,j(u1, . . . , uj)}

)
≤c [≥c]

(
Yi

∣∣∣∣∣
i−1⋂
j=1

{Yj = Qy,j(u1, . . . , uj)}

)
,

for i = 2, . . . , n and for all uj such that 0 < uj < 1, j = 1, . . . , i − 1. The proof follows

directly just taking in account that all sequential conditional distributions associated with

Y are univariate shifted exponential distributions, see Remark 4.2, and using (1).

Just recalling that the definition of the mct-order depends on the multivariate quantile

transform which, in turn, is based on sequential conditional distributions, it is not surprising

that Definition 4.4 is not invariant under permutation of the marginal distributions. Let us

consider the following example: let X and Y be two independent DFR univariate random

variables. It is apparent from Proposition 4.6 that the random vector X = (X, Y ) is mct-

DFR. If we consider now the lower triangular matrix A = (aij) ∈ M2×2, such that a11 =
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a21 = a22 = 1, using Proposition 4.8 we obtain that AX = (X,X + Y ) is also mct-DFR. In

general, however, we can not expect the mct-DFR property for the random vector (X+Y,X)

as can be seen using the following reasoning: if we assume that (X+Y,X) is mct-DFR, using

Theorem 4.9 the sum X + Y is also DFR. Because we have not considered any restriction

for X and Y , our first assumption is in contradiction with the well known fact that the sum

of two independent DFR random variables is not necessarily DFR.

The above drawback naturally arises in the multivariate case and several authors have

solved it in different ways. For example, it is common to restrict the study to the interesting

case of exchangeable distributions, see Spizzichino (2001). Of course, Definition 4.4 can

be also considered for all permutations of the marginal variables as a stronger condition.

In conclusion, Definition 4.4 is a priori appropriated for random vectors with a natural

order on their components, such as the family of generalized order statistics, exchangeable

distributions and random vectors where the sequence of failures could determine the aging

properties. We encounter situations where some components are “more relevant” than others.

For instance, from a medical point of view, it is apparent that the sequence of multiple

organ failure {heart, brain, liver, kidney} could have different aging properties than that by

{kidney, liver, heart, brain}.

Now, we will provide some examples of classical distributions that satisfies the new multi-

variate aging property.

Theorem 4.10. Let X ∼ Nn(µ,Σ) be a multivariate normal distribution. Then, X is

mct-IFR.

Proof. We just need to prove that E ∼ MCE(In×n,0n) is an upper bound exponential

distribution associated with X. Since Example 2.6, we obtain that X =mct Z, where

Z ∼ Nn(0, In×n). Due to the fact that Z and E share the same independence copula,

just using Theorem 3.1 Z ≤mct [≥mct]E holds if, and only if, Zi ≤c [≥c]Ei holds, for all

i = 1 . . . , n. Since (1), the last condition holds from the well-known fact that univariate

normal distributions are IFR. The proof concludes just using Corollary 3.2.

Theorem 4.11. Let X be a random variable with distribution function F , and let X be
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a random vector of generalized order statistics based on F , X = (X(1,n,em,k), . . . , X(n,n,em,k)).

Then X is mct-IFR [mct-DFR] if, and only if, X is IFR [DFR].

Proof. Let Y be a random vector of generalized order statistics based on E ∼ exp(1), with

the same parameters than X, i.e. Y = (Y(1,n,em,k), . . . , Y(n,n,em,k)). First we will prove that Y

follows a conditional multivariate exponential distribution. From Theorem 3.10 in Kamps

(1995), the normalized spacings of Y are i.i.d. exponential distributions with parameter

λ = 1, i.e. D = (D(1, n, m̃, k), . . . , D(n, n, m̃, k)) =st E ∼MCE(In×n,0n) where

D(1, n, m̃, k) = γ1Y(1,n,em,k),
D(r, n, m̃, k) = γr(Y(r,n,em,k) − Y(r−1,n,em,k)),

for 2 ≤ r ≤ n. A straightforward computation shows that D = AY, where A is a lower

triangular matrix given by

A =



γ1 0 0 . . . 0

−γ2 γ2 0 . . . 0

0 −γ3 γ3 . . . 0
...

...
...

. . .
...

0 0 0 . . . γn


.

Then just considering the inverse matrix, we obtain that Y ∼ MCE(A−1,0n), where A−1

is given by the lower triangular matrix

A−1 =


1
γ1

0 . . . 0

1
γ1

1
γ2

. . . 0
...

...
. . .

...

1
γ1

1
γ2

. . . 1
γn

 .

Due to the fact that X and Y have the same set of parameters, since Theorem 3.7 X ≤mct Y

holds if, and only if, F ≤c [≥c]E holds. Since (1), the last condition holds if, and only if, F

is IFR [DFR].
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