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Abstract

Predicting accurate bond-length alternations (BLAs) in long conjugated oligomers

has been a significant challenge for electronic-structure methods for many decades,
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made particularly important by the close relationships between BLA and the rich

optoelectronic properties of π-delocalized systems. Here we test the accuracy of recently

developed, and increasingly popular, double-hybrid (DH) functionals, positioned at

the top of Jacobs Ladder of DFT methods of increasing sophistication, computational

cost and accuracy, due to incorporation of MP2 correlation energy. Our test systems

comprise oligomeric series of polyacetylene, polymethineimine and polysilaacetylene up

to six units long. MP2 calculations reveal a pronounced shift in BLAs between the

6-31g(d) basis set used in many studies of BLA to date, and the larger cc-pVTZ basis

set, though only modest shifts between cc-pVTZ and aug-cc-pVQZ results. We hence

perform new reference CCSD(T)/cc-pVTZ calculations for all three series of oligomers

against which we assess the performance of several families of DH functionals based on

BLYP, PBE and TPSS, along with lower-rung relatives including global- and range-

separated hybrids. Our results show that DH functionals systematically improve the

accuracy of BLAs relative to single-hybrid functionals. xDH-PBE0 (N4 scaling using

SOS-MP2) emerges as a DH functional rivalling the BLA-accuracy of SCS-MP2 (N5

scaling), which was found to offer the best compromise between computational cost and

accuracy last time the BLA accuracy of DFT- and wavefunction-based methods was

systematically investigated. Interestingly, xDH-PBE0 (XYG3), which differs to other

DHs in that its MP2 term uses PBE0 (B3LYP) orbitals which are not self-consistent

with the DH functional, is an outlier of trends of decreasing average BLA errors with

increasing fractions of MP2 correlation and HF exchange.

Introduction

Bond length alternation (BLA) is a geometrical parameter defined as the difference in bong

length between a single bond and an adjacent double or triple bond and is closely related

to many optoelectronic properties of π-delocalized systems, including electronic (and hence

optical) band gaps,1,2 polarizabilities,3,4 2-photon absorption efficiencies,5 and photochromic

properties.6 Simple as it seems, accurately describing BLA is a challenge for many electronic
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structure methods. Trans-polyacetylene (referred to here as CC-II) is the most intensively

studied system. It is well known that Hartree-Fock (HF) overestimates BLA in CC-II while

schemes based on pure density functional theory (DFT), e.g. BLYP,7,8 leads to the opposite

error.9 In terms of post-HF methods, second-order Møller-Plesset (MP2) provides improved

accuracy for CC(II) BLA, though this method slightly underestimates the BLA and overes-

timates the rate of decrease in BLA with increasing chain length10–12 (see Figure 3), while

spin-component scaled MP2 (SCS-MP2)13 is in better agreement with CCSD(T).11,14 As un-

derestimation of BLA by pure DFT approaches can be traced to self-interaction errors,15,16

self-interaction corrected DFT schemes15 and global-hybrid9,11,14,17,18 and range-separated

hybrid functionals10,14,19,20 show improved performance. Interestingly, upon optimization

of the range parameter (considered by some to be an unavoidable step21 when studying

π-conjugated materials), the rate at which BLA decreases with increasing chain length is

severely overestimated.16 Systematic studies over oligomeric series of several other polymers

has allowed their division into three phenomenological categories:14,18,22 In type-I oligomers

(e.g. CSi-I, see Figure 1), the BLA decreases exponentially with chain length and rapidly

converges to zero. Symmetric, type-II oligomers (e.g. CC-II) exhibit nonzero BLA for all

chain lengths due to Peierls distortion. Finally, asymmetric, type-III oligomers (e.g. CN-III)

present a large BLA for all chain lengths. A study published three years ago by one of

us (CA) presented a thorough assessment of the ability of many DFT and wave-function

methods to correctly describe BLA across these three categories of systems, using CCSD(T)

as a reference.14 Though trends in BLA errors for each method tested were found to vary

significantly between different oligomer series, a few general trends were nevertheless iden-

tified: HF was found to overestimate BLA with mean absolute deviations (MAD) of about

3 × 10−2 Å; MP4(SDQ) and CCSD also overestimated BLA, but to a lesser extent (MAD

about 1×10−2 Å); MP2, MP4, and spin-component-scaled (SCS-)MP213 generally produced

accurate BLAs (MAD about 5× 10−3 Å), the two former (the latter) slightly underestimat-

ing (overestimating) the reference data. None of the tested DFT functionals were able to
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compete with MP2, MP4, and SCS-MP2 across the full set of molecules. Indeed, for long

oligomers, global hybrids including a large share to exact exchange (BH&HLYP23 or M06-

2X24) or a range-separated hybrid (CAM-B3LYP25) were found to provide the best results,

while for the shortest oligomers, B3LYP26 and B2PLYP27 performed well. The latter is the

first example of a modern double hybrid (DH) functional which, in addition to a fraction of

exact HF exchange, includes MP2 correlation energy. Improvements in accuracy afforded by

early double-hybrids such as B2PLYP have fuelled the development of many more (see28,29 for

recent reviews). In this study, we subject some of the most accurate and recently-developed

DHs to the BLA test using the most representative example of each class of oligomers shown

in Figure 1.

Figure 1: Representation of the oligomers considered in this study. All chains are capped by
terminal hydrogen atoms. n is the number of repeat units.
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Double Hybrid Functionals

Following the pioneering studies of Ernzerhof30 and Truhlar,31 the first modern double hybrid

functional, B2-PLYP, was developed by Grimme in 2006.27 B2-PLYP, and related functionals

can be expressed using a simple formula, similar to that used for global hybrids such as

B3LYP:26

EDH
XC = (1− aX)EDFT

X + aXE
HF
X + (1− aC)EDFT

C + aCE
MP2
C (1)

where EDFT
X and EDFT

C are, respectively, the DFT-exchange and correlation energies, and

EHF
X and EMP2

C are the HF exchange and MP2 perturbative correlation energy, both com-

puted on the basis of DFT orbitals. EHF
X and EMP2

C are scaled by the parameters aX and

aC . In B2-PYLP, aX and aC take values of 0.53 and 0.27, respectively, obtained by fitting to

small-molecule heats of formation. Since the development of B2-PLYP, many more double

hybrid functional have been developed.28,29 Apart from the use of different DFT exchange

and correlation functionals, DHs can be chiefly distinguished by the strategy employed to

determine the mixing parameters ax and ac and the type of MP2 term used. The former

allows DHs to be divided into empirical functionals, whose parameters are determined by fit-

ting to reproduce benchmark data, and non-empirical (or parameter-free) functionals, whose

parameters are determined according to theoretical considerations. The MP2 term allows dis-

tinction between DHs employing a conventional MP2-type term in which correlation-energy

contributions of electron-pairs with same and opposite spin are given the same weights, and

spin-component-scaled (SCS) approaches in which they are given different weights.13 Spin-

opposite-scaled (SOS) MP2 term is a special case of SCS in which the same-spin component

is ignored (thus bringing down the formal scaling from N5 to N4, where N is the number

of basis functions).32 Another distinction is what orbitals are used in the MP2 calculation:

while most DHs, like B2PLYP, use orbitals obtained from a self-consistent calculation using

the conventional hybrid functional defined by the first three terms in eq. 1 (i.e. the DH
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functional itself, but without the MP2-term), DHs have been developed which use B3LYP33

or PBE034 orbitals for the MP2 calculation. In this study we have selected a range of

functionals summarized in Table 1.

Table 1: Functionals used in this study, as defined in Equation 1

Name Year DFTX DFTC aX aC aCo
† aCs

‡

Empirical
B2-PLYP27 2006 B88 LYP 0.53 0.27
B2GP-PLYP35 2008 B88 LYP 0.65 0.36
XYG333¶ 2009 B88 LYP 0.8 0.32
DSD-PBEP8636§ 2011 PBE P86 0.7 0.43 0.53 0.25
xDH-PBE034‖ 2012 PBE PBE 0.83 0.54 0.54 0
Non-empirical
PBE0-DH37 2011 PBE PBE 0.5 0.125
PBE0-238 2012 PBE PBE 0.79 0.5
PBE-QIDH39 2014 PBE PBE 0.693 0.333
TPSS-QIDH39 2014 TPSS TPSS 0.693 0.333

†aCo is the opposite-spin scaling factor for SCS and SOS MP2 terms
(ac does not affect the MP2 terms, but (1− ac) still scales the DFT correlation).

‡aCs is the same-spin scaling factor for SCS MP2 terms.
¶Uses B3LYP orbitals in MP2 term.

§Uses SCS-MP2 term and D3 dispersion corrections.
‖Uses SOS-MP2 term with PBE0 orbitals.

Methods

Geometry optimizations were performed using the DHs shown in Table 1, as well as the pure

functionals BLYP,7,8 PBE40 and TPSS,41 the global-hybrid functionals B3LYP,26 BH&HLYP,23

PBE0,42,43 PBE01/344 and TPSSh,41 and the range-separated hybrids45 LC-BLYP, LC-PBE

and LC-TPSS. The latter three LC-functionals were tested using both fixed values of the

range separation parameter µ and values tuned for each oligomer so as to minimize the

difference between the highest occupied molecular orbital energy and the ∆SCF ionisation

potential (IP), defining OT-LC functionals.46 OT-LC-optimized geometries were obtained

by iterating between cycles of IP-tuning and geometry optimization to self-consistency. LC-

functionals employing a fixed µ used the value of 0.47 Bohr−1 proposed by Hirao et al.45
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rather than the conventional choice of 0.33 used in one of our previous studies on BLA.14 The

value of 0.47 Bohr−1 was chosen as a recent study of polarizabilities and the second hyperpo-

larizabilities (which are closely linked to BLA) in conjugated oligomeric series, demonstrated

that a µ of 0.47 Bohr−1 provided better results than 0.33 Bohr−1.47 All calculations were

performed with the Gaussian0948 program, with the exception of and XYG3 and xDH-

PBE0 calculations, which were performed using a development version of NWChem,49 and

MP2, SCS-MP2 and CCSD(T) calculations, which were performed using the RICC2 module

of Turbomole.50 The latter employs the resolution of identity (RI) approximation in the

post-HF correlation calculations. Test calculations on all the oligomers considered in this

work demonstrated that full MP2 (performed with Gaussian 09) and RI-MP2 BLAs dif-

fer by less than 10−4 Å, justifying the use of the RI approximation in all our other MP2,

SCS-MP2 and CCSD(T) calculations. All post-HF and DH calculations relied on the frozen

core approximation. We systematically employed a tightened SCF threshold (10−9 for MP2,

SCS-MP2 and CCSD(T), 10−8 au elsewhere) and geometry optimization criteria (RMS force

smaller than 10−5 au). All calculations relied on analytical gradients, with the exception of

CCSD(T), which used numerical gradients. Geometry optimizations took advantage of the

maximal molecular symmetry present (C2h for CC, Cs for CN and CSi). Note that all the

chains of Figure 1 are capped by terminal hydrogen atoms in our calculations and BLAs

were measured at the centre of the oligomers. The cc-pVTZ basis set was employed for all

calculations, following MP2 test-calculations with larger basis sets (see below). All optimized

geometries generated in this study are available in .xyz format as part of the supplementary

information. The SIE11 data presented in Figure 7 are those reported in previous studies39,51

with the exception of those for xDH-PBE0 which were computed using the GTlarge basis

set.
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Basis Set Effects

As the choice of basis set can significantly impact results, we performed tests on the 6-31G(d)

basis set used in several studies on BLA to date,14,18,22 as well as the larger (aug-)cc-pVTZ

and (aug-)cc-pVQZ basis sets. Tests were performed with MP2 calculations, as these were

found to be more sensitive to basis set than DH DFT methods, and should provide an

indicator for the basis-set dependence of the more computationally demanding CCSD(T)

calculations. The results are shown in Figure 2, highlighting a significant shift between

6-31G(d) and cc-pVTZ results for all three systems, which is particularly severe for CSi.

The impact of the resolution of identity (RI) approximation on BLAs obtained from RI-

MP252 was assessed and the MP2/cc-pVTZ and RI-MP2/cc-pVTZ curves were found to be

indistinguishable, and hence the RI approximation was used in all subsequent CCSD(T) and

MP2 calculations (but not in the MP2 part of DH calculations). For CC and CN, cc-pVTZ

and cc-pVQZ curves are superimposed, and do not deviate significantly from aug-cc-pVTZ

and aug-cc-pVQZ curves, while for CSi, cc-pVTZ does not deviate significantly from the aug-

cc-pVTZ, cc-pVQZ and aug-cc-pVQZ curves, which are superimposed. This suggests that

BLAs obtained with cc-pVTZ are almost converged with respect to basis set, and will thus

represent a good balance between accuracy and computational cost. As far as we aware, this

is the first time that reference CCSD(T) calculations for a series of oligomers of increasing

length have utilised the cc-pVTZ basis set for these systems.

Wave function results

Figure 3 shows HF, MP2, SCS-MP2 (n=2 to n-6) and CCSD(T) (n=2 to n=4) BLAs

obtained with the cc-pVTZ basis set. HF is found to strongly overestimate BLA for CC(II)

and CN(III) for all n considered and for short oligomers of CSi(I) (for which the HF BLA

decreases far too rapidly). MP2 underestimates BLA in CC(II) and CN(III) (and the BLA

decreases too rapidly with chain length), while SCS-MP2 is in good agreement with the

available CCSD(T) results. MP2 and SCS-MP2 results are similarly faithful to the CCSD(T)
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Figure 2: Basis set dependence of MP2 BLAs, showing that while 6-31G(d) B LAs are far
from converged with respect to basis set (especially for CSi), cc-pVTZ BLAs are sufficiently
close to being converged to allow for accurate conclusions to be made.

9



results for CSi, though MP2 is slightly more accurate.

Figure 3: HF, MP2, SCS-MP2 and CCSD(T) BLA, all using the cc-pVTZ basis set.

Double Hybrid Results

In order to assess the performance of each method, here we focus on the errors relative to

CCSD(T) BLAs for the oligomers n=2 to n=4. Plots and tables of the full set of BLA

results can be found in the SI. A first glance at Figure 4 (and Figures S1 and S2) suggests

that all of the DHs tested provide quite accurate BLAs, with DH curves mainly falling in

between SCS-MP2 and MP2 results for CC and CN, and competitive with SCS-MP2 for
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Figure 4: Errors in DH BLAs relative to CCSD(T) results.
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CSi with absolute errors lower than 6 × 10−3 Å. However, as a general trend, it appears

that the BLA decreases too rapidly with chain length, meaning that while errors in BLA

grow rapidly with chain length. To quantify such errors, we define a metric for the change

in BLA with chain length, ∆BLA
∆n

= BLA(n=4)−BLA(n=2)
2

, as well as defining its associated

error: E(∆BLA
∆n

) = ∆BLA
∆n
− ∆BLA

∆n

CCSD(T )
. Mean signed E(∆BLA

∆n
) (MSE(∆BLA

∆n
)) values and

mean unsigned errors (MUEs) relative to CCSD(T) results are summarized in in Figure 5

and in Figure 6, and tabulated in the SI. All the DHs as well as (SCS-)MP2 suffer from a

too rapid decrease in BLA with chain length (E(∆BLA
∆n

) < 0), with the exception of xDH-

PBE0, for which the decrease in BLA is too slow (E(∆BLA
∆n

) > 0). Interestingly, xDH-PBE0

is also the most accurate DH with mean (unsigned) deviations relative to CCSD(T) of -

14 (14) pm, which outperforms even SCS-MP2 with values of 19 (20) pm.Comparing DH

performance across the different series (Figure 5), it can be seen that xDH-PBE0 provides

both the smallest MUEs and MSE(∆BLA
∆n

)s for both CC and CN. For CSi, however, a related

functional XYG3 yields the smallest MSE(∆BLA
∆n

) of -6 pm per unit (though with relatively

large MUE of 49 pm, while DSD-PBEP86 seems to provide the most balanced description

with the smallest MUE (15 pm) and a modest MSE(∆BLA
∆n

) of -12 pm per unit. However,

xDH-PBE0 comes close to this, with the same MSE(∆BLA
∆n

) of -12 pm, and only a slightly

higher MUE of 26 pm. This excellent performance of xDH-PBE0 in describing BLA is

consistent with previous findings that xDH-PBE0 provides accurate geometries, generally

more accurate than PBE0-DH and PBE0-2.53

In an attempt to rationalize DH performance, we looked for trends in MUEs, Mean

Signed Errors (MSEs) and MSE(∆BLA
∆n

)s errors as a function of the weight of HF exchange

(ax) and MP2 correlation energy (ac) in each DH. The only clear-cut trend to emerge is of

an improved ∆BLA
∆n

for higher fractions of MP2 correlation and HF exchange (see Figure 7),

which is consistent with previous findings that a high (average) fraction of HF is important for

describing BLA in longer oligomers with global (range-separated) hybrids.11,14 High fractions

of HF exchange are important for reducing self-interaction errors which have a direct impact
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Figure 5: Average BLA MUE and MSE(∆BLA
∆n

) for each oligomer series. For clarity, the
absolute value of MSE(∆BLA

∆n
) has been plotted (affecting the sign of xDH-PBE0 for all

three series and SCS-MP2 for CN)
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Figure 6: Average BLA MUE and MSE(∆BLA
∆n

) accross all the methods tested. Pure DFT
functionals are highlighted in red, (single) hybrid functionals in yellow, and DH functionals
in green.
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Figure 7: MSE(∆BLA
∆n

) and SIE11 errors vs the fraction of HF exchange and MP2 correlation
(in the case of SCS- or SOS-MP2, the fraction of opposite-spin correlation) present in each
DH. Dashed lines are linear fits to filled points, unfilled points are not included in the linear
fit.
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on delocalisation and BLA.15,16 MUEs across the SIE1151 benchmark specifically designed to

test self-interaction errors, for those DHs for which results are available39 are also plotted in

Figure 7, confirming that the SIE errors are indeed decreased with increasing MP2 correlation

and HF exchange. Interestingly, however, XYG3 and xDH-PBE0, the two functionals using

non-self-consistent B3LYP and PBE0 orbitals, respectively, in their MP2 terms are outliers

of the trends, providing much smaller MSE(∆BLA
∆n

) than the trend would predict (however

at the price of larger SIE MUE). It is also interesting to note that empirical and non-

empirical groups (as defined in Table 1) perform similarly well, with neither group having

a clear advantage. Finally, we compare the performance of DHs against lower-rung pure,

global-hybrid and range-separated hybrids to assess whether DHs represent a significant

improvement over these functionals of lower computational cost. We tested range-separated

hybrids using both fixed values of the range separation parameter (µ=0.47 Bohr−1) and

optimally-tuned (OT) µ values chosen separately for each oligomer to minimize the difference

between the highest occupied molecular orbital energy and the ionisation potential (see

Methods section for details). Figure 6 presents a summary of the performance across pure,

hybrid and DH functionals. Results are grouped into families employing the same DFT

exchange and correlation functionals. These results show that DHs are indeed more accurate

than their lower-rung counterparts, with consistently the lowest MUEs and some of the lowest

MSE(∆BLA
∆n

)s. However, some of the hybrid functionals with high fractions of HF exchange,

namely BH&HLYP and the non-tuned LC functionals, feature lower MSE(∆BLA
∆n

)s than

some of their DH counterparts. Nevertheless, the DHs XYG3 and xDH-PBE0 still feature

the smallest MSE(∆BLA
∆n

) within the BLYP and PBE families, respectively. It is interesting

to note the effect of tuning on the performance of LC functionals. Non-tuned LC functionals

significantly overestimate BLA (resulting in large MUEs), but feature an error which is

relatively constant with chain-length (resulting in low MSE(∆BLA
∆n

)s). Upon tuning, µ, and

hence the fraction of HF exchange at short range, decreases with increasing chain length: For

n=2, OT-LC-BLYP µ values for CSi, CC and CN are 0.27, 0.33 and 0.36 Bohr−1, respectively,

16



while at n=6 they are 0.21, 0.22 and 0.26 Bohr−1. Tuned µ value for all oligomer lengths for

both OT-LC-BLYP and OT-LC-PBE can be found in the SI.

This reduces MUEs, but comes at the expense of increased MSE(∆BLA
∆n

).16 Recent stud-

ies have shown that LC-tuned functionals provide no improvement in calculated optical

bandgaps54 and polarizabilities and second hyperpolarizabilities47 of series of conjugated

oligomers, as they overestimate changes with chain length to a greater extent than non-

tuned functionals. So while the tested LC hybrids can provide either small MUEs (tuned)

or accurate ∆BLA
∆n

(non-tuned), our results show that the tested DHs provide both.

Conclusions

In this study, we assess the performance of several recently developed double hybrid func-

tionals when applied to the challenging problem of describing bond length alternation in

conjugated oligomers (in our case, oligomeric series of polyacetylene, polymethineimine and

polysilaacetylene up to six units long). We perform a careful analysis of basis-set effects, and

find a pronounced shift in BLAs between the 6-31g(d) basis set used in many studies of BLA

to date, and the larger cc-pVTZ basis set, though only modest shifts between cc-pVTZ and

aug-cc-pVQZ results. Our CCSD(T)/cc-pVTZ calculations for all three series of oligomers

are used as new reference data against which we assess the performance of several families of

DH functionals based on BLYP, PBE and TPSS, along with lower-rung relatives including

global- and range-separated hybrids (the latter employing both constant and optimally-tuned

range separation parameters). Our results show that DH functionals systematically improve

the accuracy of BLAs relative to single-hybrid functionals, consistently providing smaller

MUEs than single-hybrid functionals and MP2, and ∆BLA
∆n

(slopes in BLA vs chain length)

competitive with the best single-hybrid functionals. It is furthermore worth highlighting

that while the tested LC hybrids can provide either small MUEs (employing tuned range

separation parameters), or accurate ∆BLA
∆n

(employing non-tuned µ=0.47), our results show

that the tested DHs provide both small MUEs and accurate ∆BLA
∆n

. xDH-PBE0 (N4 scal-
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ing using SOS-MP2) emerges as a DH functional rivalling the BLA-accuracy of SCS-MP2

(N5 scaling), which was found to offer the best compromise between computational cost

and accuracy last time the BLA accuracy of DFT- and wavefunction-based methods was

systematically investigated.14

Our finding that xDH-PBE0 produces particularly accurate BLAs is consistent with

previous studies indicating that xDH-PBE0 generally provides accurate geometries (which

are slightly more accurate than PBE0-DH, PBE0-2 geometries).53 DHs with the highest

fractions of MP2 correlation and HF exchange were found to provide the most accurate

∆BLA
∆n

, consistent with similar findings for the fraction of HF exchange in global and range-

separated hybrids.14 Interestingly, xDH-PBE0 (XYG3), which differs to other DHs in that its

MP2 term uses PBE0 (B3LYP) orbitals which are not self-consistent with the DH functional,

is an outlier of trends of decreasing average ∆BLA
∆n

errors with increasing (decreasing) MP2

correlation and HF exchange (self-interaction errors). Surprisingly, these two functionals

suffer from larger self-interaction errors (over the SIE11 test-set), but smaller errors in ∆BLA
∆n

than would be expected based on their fraction of MP2 correlation and HF exchange. This

is consistent with previous findings that reducing self-interaction errors does not necessarily

reduce ∆BLA
∆n

errors.16
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2014, 141, 031101.

(40) Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865–3868.

(41) Tao, J.; Perdew, J.; Staroverov, V.; Scuseria, G. Phys. Rev. Lett. 2003, 91, 146401.

(42) Adamo, C.; Barone, V. J. Chem. Phys. 1999, 110, 6158.

(43) Ernzerhof, M.; Scuseria, G. E. J. Chem. Phys. 1999, 110, 5029.
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