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Highlights 

 We present a systematic approach to optimize the thermal insulation of a building. 

 The optimization reduces simultaneously the cost and several environmental impacts. 

 We resort to an objective reduction method to simplify the problem resolution.  

 We built a surrogate model to expedite the search for Pareto optimal solutions. 

 Significant improvements compared to the base case (no insulation) are achieved. 

 

Abstract  

With the recent trend of moving towards a more sustainable economy, the interest on designing 

buildings with lower cost and environmental impact has grown significantly. In this context, 

multi-objective optimization has attracted much attention in building design as a tool to study 

trade-off solutions (“cost” vs “environmental impact”) resulting from the optimization of 

conflicting objectives. One major limitation of this approach (as applied to building design) is 

that it is computationally demanding due to the need to optimize several objectives using 

complex models based on differential equations (which are required to model the energy 

required by a building). In this work, we propose a systematic framework for the design of 

buildings that combines a rigorous objective reduction method (which removes redundant 

objectives from the analysis) with a surrogate model (which simplifies the calculation of the 

energy requirements of the building), both of which expedite the identification of alternative 

designs leading to environmental improvements. The capabilities of our methodology are 

illustrated through a case study based on a thermal modelling of a house-like cubicle, in which 

we optimize the insulation thicknesses of the building envelope. Results show that significant 

economic and environmental improvements can be achieved compared to the base case (cubicle 

without insulation). Furthermore, it is clearly illustrated how the minimization of an aggregated 

environmental metric, like the Eco-Indicator 99, as unique environmental objective may 

overlook some Pareto solutions that may be appealing for decision-makers.  
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Nomenclature 

Abbreviations 

ACH  Air changes per hour 

COP  Coefficient of performance 

EI99  Eco-indicator 99 

GLO   Average global impact  

LCA  Life cycle assessment 

MILP  Mixed-integer linear programming 

moNLP  Multi-objective non-linear programming  

MOO  Multi-objective optimization 

NLP  Nonlinear programming 

OECD  Organisation for Economic Co-operation and Development 

PCA  Principal component analysis 

PDE  Partial differential equations 

PU  Polyurethane 

Indices 

c  Impact category 

k  Construction material 

n  Year 



Sets 

C  Set of impact categories 

I  Set of solutions 

K  Set of construction materials 

RSO  Reduced set of objectives 

SOO  Set of objectives to be optimized 

Variables 

CONSEN Energy consumption [kWh] 

COSTEN Energy cost [€] 

COSTMAT Materials cost [€] 

COSTTOT
 Total (material and energy) cost of the building [€] 

EN

cIMP  Energy impact in each impact category c [Points] 

MAT

cIMP  Material impact in each impact category c [Points] 

TOT

cIMP  Total (material and energy) impact of the building in each impact category c 

[Points] 

Mk  Mass of material k [kg] 

Parameters 

ir    Yearly electricity inflation rate [%]  

UCOSTEN  Cost per kWh of energy [€/kWh] 

MAT

kCOSTU  Cost per kilogram of component k [€/kg] 



EN

cUIMP  Impact in category c per kWh of energy [Points/kWh] 

MAT

kcUIMP  Impact in category c per kilogram of component k [Points/kg] 

Other symbols 

gI(·)  Implicit inequality constraints (i.e., embedded in the building simulation) 

hE(·)  Explicit equality constraints (i.e., computed offline) 

hI(·)  Implicit equality constraints (i.e., embedded in the building simulation)  

It  Iterations 

xD  Vector of decision variables 

z  Vector of objective functions 

 

1 Introduction 

In both developed and developing countries, the building sector is responsible for approximately 

40% of the total annual worldwide consumption of energy [1], and for one third of global 

greenhouse gas emissions [2]. Many OECD countries have dictated measures for minimizing 

energy consumption in the building sector. In March 2007, the European Parliament approved a 

binding legislation comprising several goals: i) to achieve a 20% reduction in EU greenhouse 

gas emissions from 1990 levels; ii) to increase the share of EU energy consumption produced 

from renewable resources to 20%; and iii) to improve the EU's energy efficiency by 20% [3]. To 

meet these targets, several energy strategies must be put in place. Among them, building 

insulation appears as a promising option, since it has the potential to decrease the cooling and 

heating demand without compromising comfort and can be applied in both, new and refurbished 

buildings [4–6].    



Nowadays the current trend is to implement high insulation thicknesses, given the fact that a 

thicker insulation reduces energy consumption and therefore the associated environmental 

impact. This strategy might be suboptimal, as the cost and environmental impact embodied in 

the insulation materials can be quite large. Blengini et al. [7] analysed the impact produced in all 

the phases of the life of a low energy house, finding that the impact embodied in the 

construction materials represented the greatest contribution towards the total impact. Following 

a similar approach, Stephan et al. [8] concluded that up to 77% of the total energy (embodied 

and operational) used by a passive house over 100 years can correspond to the energy embodied 

in the construction materials. Hence, the impact embodied in the insulation materials needs to 

be accounted for a proper optimization of the whole system.    

At present, multi-objective optimization (MOO) [4,9–14] has become the prevalent approach to 

solve problems with more than one objective function (e.g. economic cost and environmental 

impact). This mathematical approach is widely employed in many areas of science and 

engineering for studying trade-off solutions and for optimizing several objective functions 

simultaneously [15–18]. Unfortunately, MOO is rather sensitive to the number of objectives 

considered in the analysis, mainly because both the calculation of the Pareto solutions and their 

visualization and analysis become more complex as we increase the number of criteria. To 

overcome this problem, the optimization is typically restricted to two or three objectives [19] by 

either removing objectives or by aggregating some of them into a single indicator based on 

subjective weights [20–22]. Both approaches are inadequate; the former because it omits 

objectives that might be relevant, and the later because it alters the structure of the problem by 

eliminating Pareto solutions potentially appealing for decision-makers. These drawbacks can be 

bypassed by means of dimensionality reduction methods, which remove redundant objectives 

from the multi-objective model while still preserving its underlying structure. Several 

dimensionality reduction methods have been proposed in the literature. In a seminal work, Deb 

and Saxena [23] introduced a statistical method based on principal component analysis (PCA) 

for removing redundant objectives in MOO problems. Brockhoff and Zitzler [24] presented 



another approach based on the minimization of an approximation error (i.e., delta error) 

resulting from the elimination of objectives. More recently, Guillén-Gosálbez [25] introduced a 

multi-dimensionality reduction method based on a mixed-integer linear program (MILP) that 

minimizes the delta error proposed by Brockhoff and Zitzler [24].  

Unfortunately, applying multi-objective optimization to building design is further complicated 

by the fact that estimating the energy performance of a building through simulation is 

computationally challenging. That is, even if the optimization is performed in a reduced domain 

of objectives, it might yet be difficult to evaluate the objective functions, as this requires solving 

a system of partial differential equations (PDE). Some approaches have attempted to reduce the 

complexity of the PDE model by streamlining the simulation process [26–28]. Other authors 

have explored the use of surrogate models to accelerate the optimization process [29–31]. These 

methods simulate first a set of sample points, to then use the output to construct a surrogate 

model. This is a black box model fitted to data points (generated with the rigorous simulation), 

which is faster to solve than the original model (which requires solving a system of PDEs), yet 

it provides approximated results. The use of surrogate models is particularly appealing when 

they are coupled with an optimization algorithm, as the latter needs to interrogate the simulation 

model many times during the optimization task. Caballero et al. [29,32] presented a 

methodology for the rigorous optimization of nonlinear programming (NLP) problems in which 

the objective function and some constraints are represented by noisy implicit black box 

functions. The black box modules are replaced by kriging meta-models, an interpolating method 

based on basic functions with adjustable parameters. Costas et al. [31] applied a surrogate-based 

multi-objective optimization technique to car crashworthiness problems, while Eisenhower et al. 

[30]  presented a method to optimize building energy models using a meta-model generated 

from a set of design and operation scenarios of the building around its baseline.  

This work introduces a novel approach for the multi-objective optimization of buildings that 

integrates multidimensionality reduction and surrogate modelling. To the best of our 

knowledge, this is the first time that these two methodologies have been combined within a 



single framework. We illustrate the capabilities of our approach through a case study based on a 

house-like cubicle where the goal is to determine the optimal insulation thickness (for the 

building envelope) according to economic and environmental criteria.  

The article is structured as follows. The problem statement is presented in Section 2. The 

methodology, which includes the description of the objective functions and the solution 

procedure, is introduced in Section 3. Details of the case study are given in Section 4, whereas 

in Section 5, the results are presented and discussed. Finally, the conclusions of the work are 

drawn in Section 6. 

2 Problem statement 

The problem we aim to solve can be formally stated as follows. Given is a building (i.e., 

cubicle) that will be retrofitted through the installation of insulation materials. The detailed 

cubicle configuration, along with cost and environmental data associated with different 

insulation materials and energy demands are provided. The goal of the analysis is to determine 

the optimal insulation material and thickness of the insulation layer so as to optimize 

simultaneously the economic and the environmental performance of the overall system.  

3 Methodology 

Our approach is based on building a surrogate model of the building that is optimized in a 

reduced domain of objectives. The model of the building is described first before presenting in 

detail our algorithmic framework.  

3.1 Mathematical model 

The optimization of a building considering economic and environmental criteria can be 

mathematically posed as a multi-objective non-linear programming problem (moNLP) such as 

problem SIMMOD: 



(𝑆𝐼𝑀𝑀𝑂𝐷) 𝑚𝑖𝑛𝑥𝐷

𝑠. 𝑡.

𝑧 = {𝑧1(𝑥, 𝑥𝐷), … , 𝑧𝑝(𝑥, 𝑥𝐷)}

ℎ𝐼(𝑥, 𝑥𝐷) = 0

𝑔𝐼(𝑥, 𝑥𝐷) ≤ 0

ℎ𝐸(𝑥, 𝑥𝐷) = 0

𝑔𝐸(𝑥, 𝑥𝐷) ≤ 0

    (1) 

𝑥, 𝑥𝐷 ∈ ℜ 

Here, z1 corresponds to the economic objective whereas z2 to zp are the p-1 environmental 

objectives. Regarding the constraints, we can distinguish between implicit and explicit 

constraints. Implicit equality and inequality constraints, denoted by hI(·) and gI(·) respectively, 

are the equations implemented in the building simulator to describe the energy balances through 

the building walls and roof (refer to the next section for further details).  Conversely, explicit 

constraints, referred to by hE(·) and gE(·), are equations computed externarly (i.e., outside of the 

building simulator), and which are mainly used to evaluate the objective functions in the point 

determined by the simulator as well as to establish bounds on the variables. Finally, xD are the 

independent decision variables of the problem (i.e., the insulation thicknesses of the external 

surfaces of the building), whereas x account for the remaining dependent variables. That is, we 

distinguish between independent decision variables xD (independent variables) whose values 

must be optimized, and dependent variables x whose values are given once the decision 

variables (corresponding to the degrees of freedom of the problem) are fixed. 

3.1.1 Simulation software encoded equations 

The energy loads of the building are calculated using EnergyPlus v.8 [33–35], which is a 

commercial simulator that models energy and water use in buildings. EnergyPlus includes a set 

of simulation properties, calculated via user-configurable modular systems, that are integrated 

with a heat and mass balance-based simulation environment that considers variable time steps 

and input/output data structures oriented to facilitate third party module and interface 

development [34]. In mathematical terms, EnergyPlus contains a system of partial differential 

equations (PDE) that describe a set of energy balances. These PDEs model the energy 

consumption during a given time horizon. 



The simulator requires the decision variables xD to be fixed to a given value and then runs the 

calculations to provide as output the value of the remaining variables x (mainly, the energy 

consumed). Note that the simulator does not perform the optimization, but rather determines the 

value of x for a given value of xD.  

3.1.2 Objective function equations 

In the ensuing sections, we describe each block of objective function equations in detail. Note 

that the objective functions considered in this study are encoded externally (i.e., outside of the 

simulation program), which provides more flexibility to the approach.  

3.1.3 Economic indicators 

The economic performance of each building design alternative is quantified through the cost of 

the construction materials and the cost of the energy consumed for heating and cooling over the 

operational phase of the building. Hence, the final goal is to minimize the total cost (
TOTCOST ) 

[36–39], which is calculated as in Eq. (2).  

TOT MAT ENCOST COST COST          (2) 

Here, 
MATCOST  denotes the cost of the materials, whereas 

ENCOST  accounts for the cost of the 

energy consumed over the operational phase of the building: 

The cost of the construction materials, which is assumed to be paid the first year of the time 

horizon, is given by Eq. (3). 

·MAT AT

k k

k

M

K

UCOST COST M


       (3)     

Here UCOSTk is the unitary cost of raw material k (belonging to the set of raw materials K) and 

kM is the corresponding mass of raw material k.  



The total economic cost of the energy required to cover the heating and cooling requirements of 

the building is given by: 

 · · 1+ir
EN EN

n N

n
nCOC NS UCO TO SST



       (4) 

where 
nCONS is the energy consumed for heating and cooling (which is considered to be 

constant for all the years) in year n (belonging to the set of years N), 
ENUCOST is the current 

unitary energy cost (i.e., the unitary cost of energy at the start of the simulated time horizon) and 

ir is the yearly increase in the energy cost.  

3.1.4  Environmental indicators 

The environmental impact caused by the energy consumed and the construction materials is 

assessed through the Eco-indicator 99 (EI99) methodology [40,41], which is based on LCA 

principles. The EI99 covers three different damage categories (human health, ecosystem quality 

and resources), which include a total of 10 specific impact indicators. In this study, we consider 

individual indicators according to the EI99 report [40], which carry less uncertainty than the 

aggregated indicator. This is because the aggregated indicator suffers from the added 

uncertainty resulting from the weighting process of converting the individual indicators into an 

aggregated metric. We also report the values of the aggregated impact calculated according to 

the average weighting set and the hierarchic perspective. Particularly, the following impacts are 

considered: acidification & eutrophication, ecotoxicity, land occupation, carcinogenics, climate 

change, ionising radiation, ozone layer depletion, respiratory effects, fossil fuel extraction and 

mineral extraction. The total impact of the building in each impact category c (e.g. 

carcinogenics belonging to the set of categories C), denoted by TOT

cIMP , is calculated from the 

impact in category c associated to the construction materials of the building, which is given by 

MAT

cIMP , and the impact of the energy consumed over the operational phase, which is 

represented by EN

cIMP : 



TOT MAT EN

c c cIMP IMP IMP   ∀𝑐 ∈ 𝐶     (5) 

The total impact of the building materials in impact category c is determined via Eq. (6), 

 · MAT MAT

c kc k

k K

IMP UIMP M


           ∀𝑐 ∈ 𝐶      (6) 

where MAT

kcUIMP  is the impact in category c per kilogram of component k (an information 

available in environmental databases, such as the ecoinvent database version 3 [42]), and kM is 

the mass of material k.  

The impact of heating and cooling is calculated using the following equation: 

 · EN EN

c c n

n N

IMP UIMP CONS


          ∀𝑐 ∈ 𝐶        (7) 

Here EN

cUIMP   is the impact in category c per kWh of energy and 
nCONS  is the energy 

consumed in the building in year n for heating and cooling requirements. 

3.2 Solution procedure 

We solve problem SIMMOD combining dimensionality reduction and surrogate modelling. 

First, we apply sampling techniques to generate an initial set of solutions. This initial sample 

serves two main purposes, as it is used to: (i) apply the dimensionality reduction method, which 

will reduce the number of objectives in the original model; and (ii) build a surrogate model, 

which will expedite the optimization task. Finally, the surrogate model is optimized in the 

reduced set of objectives, yielding a set of optimal building designs (Pareto solutions). These 

Pareto points can be used in turn to improve the performance of the dimensionality reduction 

algorithm and the quality of the surrogate model, thereby leading to better solutions.  

The algorithm (see Fig. 1) we propose is summarized next. Let SOO be the set of objectives to 

be optimized.  



0) Initialize the reduced set of objectives RSO = ∅, and the iteration counter it = 0. 

1) Simulate a given number of building designs. Let I be the set of solutions resulting 

from these simulations. 

2) If |RSO| = |SOO|, stop: further reductions in the number of objectives are not 

possible and hence I is the final set of optimal building designs. Else: 

1) If it ≠ 0, make SOO = RSO, it = 0 and return to 2.1. Else, make it = 1 and:  

1) Apply the objective reduction method to set I. Update RSO 

eliminating the redundant objectives. 

2) Build a surrogate model SURMOD from solutions in set I. 

3) Use a MOO method to optimize the surrogate model SURMOD 

considering objectives in RSO (i.e., optimize model RSUMOD). 

Update I so that it containts the resulting set of optimal solutions.  

2) End if. 

3) End if. 

Note that steps 2.1.1 and 2.1.2 can be applied in parallel. Each of the steps of the previous 

approach is explained in detail in the ensuing sections. 

 

3.2.1 Generation of an initial sample 

A set of solutions I is generated by running different simulations with EnergyPlus using a 

parametric tool called JEPlus [43]. Specifically, JEPlus is used to generate a sample composed 

of |I| different combinations of values of the decision variables xD. These values of the decision 

variables are then fixed in EnergyPlus, which simulates the corresponding building designs and 

provides the values of the remaining variables x (note that this is accomplished by solving the 

energy balances implemented in the simulator). Finally, the values of the objective functions 

𝑧1(𝑥, 𝑥𝐷) to 𝑧𝑝(𝑥, 𝑥𝐷) are determined from the values of the variables. 



The samples serve two different purposes: (i) reduce the dimensionality of the problem; and (ii) 

construct a surrogate model that approximates the PDEs implemented in the building simulator. 

3.2.2 Dimensionality reduction method 

A dimensionality reduction analysis is carried out to eliminate redundant objectives. The model 

objectives are different in nature and their values may differ in several orders of magnitude, 

thereby causing numerical problems during dimensionality reduction. To overcome this, the 

solutions in the set I are first normalized so they fall in the range 0-1. Then, a dimensionality 

reduction method is applied to eliminate redundant objectives. The overall strategy presented in 

section 3.2. can work with any dimensionality reduction method available in the literature 

[23,25]. Without loss of generality, however, we apply here an exhaustive exploration based on 

the work by Brockhoff and Zizler [24]. This method seeks to replace the original set of 

objectives SOO by a reduced subset of objectives RSO that shows minimum delta 

approximation error (δ). This concept is further clarified by means of Fig. 2, which depicts 4 

Pareto optimal solutions (A,B,C,D) (i.e., no solution is dominated by any of the others). Assume 

that objective 4 is removed from the original set of objectives (SOO = {1, 2, 3, 4}), thus 

yielding a new reduced set of objectives (RSO = {1, 2, 3}). If we do this, the original 

dominance structure of the problem will be modified (i.e., solution C is dominated by solution B 

in the reduced set of objectives RSO, whereas in the original one this does not happen). In this 

context, it is possible to define a delta error associated with the approximation made (when 

removing subsets of objectives), which is given by the largest difference between the objective 

values (before and after removing objectives) that would prevent a change in the dominance 

structure (i.e., that would prevent that a Pareto optimal solution in the original set of objectives 

is dominated in the reduced set). In the case of RSO, the delta error is given by the difference 

between the value of objective 4 in solution B, and the value required to dominate solution C in 

the original space of objectives (i.e., δ = 0.25). Now consider the reduced set resulting from 

removing objectives 2 and 3, while maintaining objectives 1 and 4 (RSO’= {1, 4}). As seen, this 

reduced set does not modify the dominance structure, since all the solutions are also Pareto 



optimal in the reduced domain RSO’. In this case, we say that the reduced objective set (RSO’ = 

{1, 4}) is non-conflicting with the original one (SOO = {1, 2, 3, 4}). Hence, the goal of 

objective reduction is to identify the minimum number of objectives entailing a zero delta error, 

or the minimum delta error for a given number of objectives. 

3.2.3 Building the surrogate model  

The PDE model SIMMOD is complex and leads to large CPU times associated with the solution 

of the PDEs. Furthermore, when this model is coupled with an optimization algorithm, we need 

to calculate its derivatives. This is a very time consuming task that can show inherent numerical 

noise, thus leading to poor numerical performance [44]. In order to simplify the calculations and 

enhance the robustness of the optimization algorithm, we build a surrogate model SURMOD to 

approximate the original model SIMMOD and to estimate the p explicit objective functions. 

Hence, the optimization algorithm minimizes the decision variables by interrogating the 

surrogate model (rather than the original model) as follows: 

(𝑆𝑈𝑅𝑀𝑂𝐷) 𝑚𝑖𝑛𝑥𝐷
𝑧 = {𝑓1

𝑆𝑈𝑅(𝑥𝐷), … , 𝑓𝑝
𝑆𝑈𝑅(𝑥𝐷)}    (8) 

The functions of the surrogate model, 𝑓𝑜𝑏
𝑆𝑈𝑅(·), are obtained from the initial sample I generated, 

as described in Section 3.2.2. In particular, and without loss of generality, the interpolated value 

at a query point is based on a cubic spline interpolation (using not-a-knot end conditions) of the 

values at neighbouring grid points in each respective dimension. Interpolation by cubic splines 

ensures C2 continuity, which is very important when optimizing the resulting model. Other 

interpolation approaches (i.e. linear interpolation is just C0, nearest point is discontinuous and 

cubic only ensure C1 continuity) could be also applied in this step of the method. 

In order to get an accurate interpolation, it is necessary to generate a 5-dimensional grid. A 

sufficient number of points are required to ensure a satisfactory level of accuracy in the 

predictions while at the same time improving the numerical performance of the optimization 

algorithm by avoiding the direct use of the simulation model.  



3.2.4 MOO of the surrogate model in the reduced domain 

In this step of the algorithm, we aim to identify the optimal building designs that minimize 

simultaneously the objective functions in vector 𝑧. For this, the MOO problem SURMOD is 

solved in a reduced domain of objectives 𝑅𝑆𝑂 ⊆ 𝑆𝑂𝑂, thus giving rise to problem RSUMOD: 

(𝑅𝑆𝑈𝑀𝑂𝐷) 𝑚𝑖𝑛𝑥𝐷
𝑧′ = {𝑓𝑜𝑏

𝑆𝑈𝑅(𝑥𝐷)|𝑜𝑏 ∈ 𝑅𝑆𝑂}    (9) 

Note that model RSUMOD makes use of both, the surrogate model SURMOD obtained in step 

2.1.2 of the algorithm and the reduced set of objectives RSO identified in step 2.1.1. 

The solution of multi-objective optimization problems like RSUMOD is given by a set of Pareto 

points representing the optimal trade-off between conflicting objectives [9,45]. These Pareto 

solutions feature the property that it is not possible to find another solution that improves any of 

them in one objective without worsening at least one of the others. In mathematical terms, 

*x X  is a Pareto optimal solution if there does not exist any Xx'  such that 

( ') ( *)SUR SUR

ob obf fx x  for all ob ∈ RSO, and 
' '( ') ( *)SUR SUR

ob obf fx x  for some ob’ ∈ RSO. If 

*x  is Pareto optimal, then '( *)z x  is called non-dominated point or efficient point.   

In order to solve problem RSUMOD and obtain a set ot Pareto optimal solutions, one can use 

any MOO method available in the literature [46–49]. Without loss of generality, here we use the 

epsilon constraint method [50,51], which consists of calculating a set of auxiliary single-

objective problems in which one objective is kept as main criterion while the others are 

transferred to auxiliary constraints and limited within allowable bounds. 

3.2.5 Remarks 

 The initial sample I is not the result of any optimization process, but rather the outcome 

of evaluating model SIMMOD in different points of the space of the decision variables. 



 The CPU time of the objective reduction approach is rather sensitive to the number of 

solutions, but the outcome itself does not change significantly with an increasing 

number of points (i.e., sample size). 

 Different surrogate models might be used to approximate the solution of the simulation 

model SIMMOD, including kriging or linear, thin-plate and splines interpolations 

[52,53]. 

4 Case study 

The capabilities of the proposed approach are illustrated through the optimization of the 

insulation thickness of a house-like cubicle considering both economic and environmental 

concerns. The decision variables of the problem are the insulation thicknesses of the external 

surfaces of the building. 

4.1 Cubicle description 

The model of the cubicle is based on real life cubicles built by the research group GREA in 

Puigverd, (Lleida, Spain). Several studies before are based on these cubicle models [20,54,55]. 

The cubicles considered in the present study show identical dimensions (five plane walls with 

2.42.40.15m), and the same construction systems, but differ in the insulation thickness 

implemented (polyurethane in this case study, see Table 1 for its physical properties).  

The cubicles show a conventional Mediterranean construction system (Fig. 3). Four mortar 

pillars with reinforcing bars allocated in each corner of the building configure the structure of 

the cubicle. The walls of the cubicle, which are identical from one model to the other except for 

the insulation thickness, are configured with 6 layers of different materials: an exterior cement 

mortar cover (0.1m), a hollow bricks structure (0.07m), a 0.05m air chamber, the polyurethane 

layer (insulation) whose thickness varies depending on the case, a perforated bricks structure 

(0.14m) and the interior cover, which is a plaster plastering layer (0.01m). A concrete base of 

33m with reinforcing bars configure the floor, which is in contact with the ground. On the 



other hand, the roof contains a structure of concrete precast beams (0.05m) and 0.05m of 

concrete slab. The internal finish is a plaster plastering layer (0.01m). The insulation material is 

placed over the concrete, and it is protected with a cement mortar layer (0.1m) with a slope of 3 

% and a double asphalt membrane (0.05m). The construction materials of the cubicles are 

displayed in Table 2. Data for the case study were retrieved from the LIDER [56] and ITeC [57] 

databases. A reference cubicle with no insulation is also considered [54,58] for comparison 

purposes.  

 

Heating and cooling demands are supplied by a heat pump with a COP of 3. The electricity 

consumed is calculated by dividing the demand by the COP of the heat pump.  

4.2 Model specifications  

For the physical modelling EnergyPlus is implemented. This software mainly requires four 

modelling modules. The first one includes the building physical description (construction 

system, materials, geometry and internal distribution), and for the energy simulations the 

operational spaces can be defined as thermal units. The second module defines the HVAC 

systems including the selection of the equipment, power, efficiency and the operation 

scheduling for the set points. The third module defines the internal loads (people occupation and 

activity, electronic devises and miscellaneous). Finally, module four allows to define the 

weather conditions including temperature, solar radiation, wind speed and direction and 

humidity (defined using time steps per hour). For more details see [34].  

For the cubicle simulation, the following specifications are used. The construction system is the 

one defined in Section 4.1. The range of insulation thickness considered varies from 0.01 to 

0.21m of insulation. As will be later discussed in more detail, the insulation thickness is first 

varied uniformly (i.e., all the walls with the same thickness), and then considering different 

thicknesses for the five external surfaces of the cubicles. Heating and cooling demands are 

supplied by a heat pump with a COP of 3, and an internal set point temperature of 24°C is fixed 



for the whole year [54,55]. Neither doors nor windows are included in the model. No 

mechanical or natural ventilation is used, but a fixed infiltration rate of 0.12 ACH (air changes 

per hour) [59] is assumed. There is no internal mass, and no human occupancy is considered. A 

building lifetime of 20 years is assumed [60,61]. The investment in construction materials is 

paid the first year of the time horizon. As for the electricity, a cost of 0.16 €/kWh [62] is 

considered with a yearly increase in cost of 5%.   

The weather conditions of the simulations are given by the location of the cubicles, which 

corresponds to a continental Mediterranean climate characterized by moderate cold winters, dry 

hot summers and significant daily temperature oscillations between day and night [63]. 

The environmental impact of each cubicle alternative, quantified via LCA principles, takes into 

account the manufacturing, operational and dismantling phases. In particular, the 10 impact 

categories considered in the EI99 methodology, along with the EI99 itself, are studied. Table 3 

summarizes the impact per kilogram of material used, whereas Table 4 presents environmental 

data of the Spanish electricity market. This information has been retrieved from the ecoinvent 

database [42]. 

 

 

   

 

 

 

5 Results and discussions 

5.1 Initial simulation results 



An initial sample of solutions is first obtained by simulating different cubicle designs. We 

define 6 insulation thicknesses (i.e. 0.01, 0.03, 0.06, 0.09, 0.15 and 0.21m) and generate 7776 

points by means of JEPlus (number of alternatives raised to the number of walls, that is, 65), 

each with a different combination of external building surfaces. We then simulate the resulting 

cubicles in EnergyPlus to obtain sample I containing 7776 solutions. Note that for these 

solutions the building properties and weather conditions are the same, but the insulation 

thicknesses and consequently the energy consumption and objective functions values are 

different.   

Fig. 4 shows a parallel coordinates plot corresponding to the solutions (belonging to I) with the 

same insulation thicknesses in all their external surfaces (i.e., that is, the solution with all the 

thickness values equal to 0.01 m, the one with all of them equal to 0.03 m, and so on). Each line 

in the plot represents a different solution. As seen in the figure, impacts related with ecotoxicity, 

land occupation, ionizing radiation, ozone layer depletion and mineral extraction tend to 

decrease with the insulation thickness of the cubicles, while the other impacts behave in an 

opposite manner. This suggests the existence of objectives showing similar behavior and which 

might be removed from the pool without altering the dominance structure of the problem. 

 

5.2 Objective reduction 

The cubicle solutions generated in the previous step (i.e., solutions in the set I) are normalized 

and then used to identify redundant objectives by means of the exhaustive exploration 

dimentionality reduction approach presented in Section 3.2.2. In this particular case, we force 

the economic performance to be always part of the reduced set of objectives RSO. The approach 

was implemented in GAMS in a computer HP Compaq Pro 6300 SFF with an Intel Core 

Processor 3.30 GHz and 3.88 GB of RAM. The required CPU time was around 120 seconds.  

Fig. 5 shows the minimum delta error achieved for a decreasing number of objectives retained. 

Note that different combinations of objectives can be removed for a given reduction in size (for 



a given cardinality of the set |RSO|), and each such combination will lead to a different delta 

error. As seen, 3 objectives suffice to keep the original Pareto structure unaltered (i.e., delta 

error = 0). 

 

Table 5 displays the delta error (expressed in %) for all possible sets of three objectives kept 

sorted in lexicographic order. As seen, two out of 55 combinations (i.e., the triples: economic 

objective, carcinogenics, ionising radiation; and economic objective, carcinogenics, ozone layer 

depletion) present a delta error of 0. These results are consistent with Fig. 4, where we already 

observed that several indicators behave similarly.  

 

 

 

 

 

 

 

Carcinogenics and ionising radiation are finally selected along with the cost as the reduced set 

of objectives to be minimized (i.e., RSO = {Cost, Carcinogenics, Ionising radiation}). Note that 

the delta error of the couple “EI99 - Economic cost” is 10.64. Hence, it is clear that the use of 

the aggregated EI99 as unique environmental objective may leave Pareto points out of the 

analysis. This is an important finding that highlights the need to avoid aggregated metrics and 

work instead with disaggregated environmental metrics in the optimization. In fact, even when 

considering a third environmental indicator along with the EI99 and cost, the delta error is still 

above zero (Table 6). 



 

5.3 Optimization with a surrogate model   

The surrogate model SURMOD is implemented in Matlab R2015a [62] using the 7776 cubicle 

solutions of sample I generated in the first step. A multivariate cubic spline interpolation, which 

uses piecewise cubic polynomials, is applied to build this surrogate model, for which analytical 

derivatives can be obtained. The use of low-order polynomials is especially attractive for 

surface fitting because they reduce the numerical instabilities that arise with higher degree 

polynomials. The most compelling reason for their use is their C2 continuity, which guarantees 

continuous first and second derivatives across all polynomial segments. To optimize the 

surrogate we access the state-of-the-art NLP solvers through the MATLAB-TOMLAB [63] 

optimization environment. TOMLAB allows us to standardize the model definition and 

interfaces with the main optimization solvers regardless of the different syntax (i.e., it is not 

required a specific inter-face routine for each optimization solver). In addition, for the definition 

of the optimization problem we have developed a homemade modeling system with indexing 

capacities and interfaced with the MATLAB-TOMLAB optimization environment. Building the 

SURMOD takes approximately 77,760 seconds in a computer HP Compaq Pro 6300 SFF with 

an Intel Core Processor 3.30 GHz and 3.88 GB of RAM. Some of the objectives in SURMOD 

are eliminated according to the output of the objective reduction algorithm. This gives rise to 

multi-objective surrogate model RSUMOD, which is then solved using the epsilon-constraint 

method. 25 epsilon parameters values were defined for each objective, leading to 625 NLPs 

(i.e., 25|RSO|-1 = 252), which were solved by CONOPT version 3.10. The algorithm takes 

2,500 seconds to solve the 625 NLPs, which leads to a total CPU time of 80,260 seconds 

(around 1 day), considering also the time required for the construction of the surrogate model. 

Note that the time required to optimize the system using EnergyPlus would be much higher than 

the one associated to the surrogate model. More precisely, using CONOPT, each NLP requires 

on average 17 iterations to be solved, each of which needs 6 evaluations of the objective 

functions. If we consider 625 NLPs, 17 iterations per NLP, 6 evaluations per iteration and a 



simulation time of 10 seconds for each simulation in EnergyPlus, the whole process would take 

637,500 seconds (around 1 week). Hence, the CPU time is reduced more than 7 times (i.e., 

approximately 8 times), compared to the direct optimization of the simulation software. 

Moreover, this reduction in time in the optimization task might be much more significant for 

more complex building models. Note also that in addition to the reduction in time, we benefit 

from a simplified analysis of the Pareto solutions that focuses on key environmental metrics, 

thereby avoiding the need to study all of them simultaneously. 

At this point of the overall algorithm, the Pareto solutions obtained can be used in both, the 

dimensionality reduction and the construction of the surrogate model, in an attempt to further 

improve the quality of the final set of solutions. However, in this case study this step is not 

required, since a significant reduction in the number of objectives is achieved in the first 

iteration (i.e. RSO contains only 3 objectives). 

5.4  MOO solutions 

After conducting the optimization with the surrogate model we obtain 19 different Pareto 

solutions (Fig.6) (we solve 625 NLPs, 48 render feasible, and within this group of solutions 

there are 29 repeated solutions and 19 unrepeated points). In these solutions, the insulation 

thickness of North, East and West walls vary from 0.06 to 0.21 m, that of the South from 0.04 to 

0.2 m and that of the roof from 0.07 to 0.21 m.  

The minimum cost solution has 0.08 m of insulation thickness in the North, East and West 

walls, and 0.07 and 0.09 m in the South and roof, respectively. The optimal solution from the 

perspective of carcinogenic effects on humans has thinner insulation thicknesses in all of the 

external surfaces (0.06 m in the North, East and West and 0.04 and 0.07m in the South and the 

roof, respectively). The solution with minimum impact on human health caused by ionizing 

radiation shows thicker insulation thicknesses (i.e., 0.20 m in the South facade and 0.21 m in all 

the other surfaces). This solution is the worst from the standpoints of impact in carcinogenics 

and economic performance.  



For a better understanding of the tradeoff between the objectives, Fig. 6 shows the 19 optimal 

solutions of the problem in a three dimensional space along with the two dimensional 

projections onto 2-D subspaces. When solutions are projected onto the bi-criteria space 

considering objectives “carcinogenics” and “cost”, only 4 of them keep their Pareto optimality 

condition (i.e., the remaining 15 solutions that are Pareto optimal in the 3 dimensional space are 

dominated when only these two objectives are considered). In the bi-criteria space “cost” vs 

“ionising radiation”, 16 solutions keep their Pareto optimality condition and 3 become 

dominated. Finally, the original 19 Pareto optimal solutions (in the 3 dimensional space) are 

also Pareto optimal in the space of the two environmental impacts (i.e., “carcinogenics” and 

“ionising radiation”). These results reinforce the idea that selecting a proper set of objectives in 

the objective reduction step is crucial to avoid losing potential Pareto optimal solutions. 

 

Table 7 shows the different extreme optimal solutions and their improvements with respect to 

the base case (without insulation). For instance, the use of insulation can lead to savings 

between 800 and 1400€ (i.e., between 16 and 26%) in total cost. This means that the cost of the 

insulation material is compensated by the savings in the energy consumed. Regarding the 

impact in ionising radiation, the use of appropriate insulation allows for an improvement 

between 38 and 51%. In our case study, this impact is strongly dependant on the electricity 

consumption, and thus, on the electricity mix of the country. Consequently, the minimum 

ionising radiation solution (which consumes less electricity) reduces more than twice this 

indicator compared to the base case solution (with high electricity consumption). Conversely, 

not all the extreme solutions improve the base case in terms of carcinogenics impact. In 

particular, the minimum ionising radiation solution involves an impact 9% higher than that of 

the base case in this category. The carcinogenic impact caused by the polyurethane is relatively 

important. Thus, when considering cubicles with thick insulation like this one (i.e., between 0.2 

and 0.21 m in each external surface), the carcinogenics impact increases when compared to the 



base case. Despite this, the results reinforce the general idea that selecting a proper insulation 

thickness leads to significant reductions in economic cost and environmental impact. 

The recommended insulation values of the regulatory framework about buildings basic 

requirements of safety and habitability are not close to the optimal results obtained in the 

present study [7]. In the location of Lleida, the Spanish law requires a thermal transmittance of 

0.66 W/m2·K for the external facade walls and 0.38 W/m2·K for the roof. However, the results 

of the present study suggest lower thermal transmittance values of between 0.33 and 0.26 

W/m2·K for the best economic solution in the facades and 0.285 W/m2·K in the roof. The 

solution showing better environmental performance from the point of view of ionising radiation 

suggests an insulation with a thermal transmittance of 0.133 W/m2·K in facades and roofs. To 

attain the solution with lower values of carcinogenics, the results of the present study suggest 

thermal transmittances of between 0.37 to 0.44 W/m2·K in facades and 0.33 in the roof.   

A cubicle constructed according to the Spanish law requirements and evaluated through the 

sated methodology presents a higher price compared to the optimal solutions attained (between 

a 3% and 10% higher depending on the solution). This cubicle also presents higher values of 

ionizing radiation compared to the optimal solutions of the present study (between a 10 and a 

24% higher depending on the solution) and also higher values of carcinogenics (between a 2% 

and a 7%).   

  

6 Conclusions 

In this work we have presented a systematic tool to effectively identify optimal building designs 

according to economic and environmental criteria that combines: (i) an objective reduction 

method that identifies redundant environmental metrics; and (ii) a surrogate modelling approach 

that expedites the optimization task by reducing the time required to estimate the energy 

consumed by the building.  



The tool presented, which can be easily adapted to solve other MOO problem with similar 

features, was applied to a case study of a house-like cubicle where the insulation thicknesses of 

the external surfaces were optimized in order to minimize the cost and several environmental 

impacts assessed through LCA principles. Numerical results show that 3 objectives suffice to 

optimize the system while keeping its original dominance structure. We showed as well that the 

bi-objective optimization of the cost together with the widely used aggregated EI99 might 

change the problem’s structure, with the associated potential risk of losing solutions that are 

Pareto optimal in the original space of objectives. 

Results also demonstrate that the surrogate model notably reduces the computational burden of 

the optimization task, thereby expediting the overall solution time (i.e., 8 times). This reduction 

in time may become more significant as the complexity of the building model considered 

increases.  

The results of the case study illustrate how significant improvements can be achieved with 

respect to the base case (cubicle without insulation), when the appropriate insulation is used. In 

particular, the cost can be reduced by 26%, the carcinogenics impact can be mitigated by 17%, 

and the ionising radiation impact can be decreased by 51 %.   

The methodology presented here is intended to promote optimal economic solutions for energy 

efficiency in buildings, while also minimizing their environmental impact. This tool can guide 

decision-makers towards the adoption of more sustainable designs as well as policy-makers 

during the development of more effective regulations for improving the economic and 

environmental performance in the building sector. 
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Fig.1.  

Algorithm summarizing the proposed optimization strategy. 

  



 

Fig.2. Dominance structure for the original set of objectives SOO. No solution dominates any of the others in the 

space of all the objectives, thus they are weakly efficient. RSO modifies the dominance structure (δ = 0.25), however 

RSO’ does not (all the solutions are still optimal in the reduced set of objectives).  

 

 



 

Fig.3. 

Construction profile of the experimental cubicles in Puigverd de Lleida (Spain). 

 

 



 

Fig. 4.  

Parallel coordinate plot where the different objectives are presented in the horizontal axis and in the vertical one there 

are the normalized values of each solution in each objective. Only solutions of sample I entailing the same insulation 

thickness in all the external surfaces are depicted. 

 

 

 



 

Fig. 5. 

Minimum delta error achieved by sets with a given number of objectives.  

 

 

 

Fig. 6 

Pareto optimal solutions in the three dimensional space (3 objectives) and their corresponding projections on the 

different two dimensional spaces (2 objectives). As the insulation thickness of the optimal solutions increases, the 



cost and the impact of carcinogenics on human health tend to decrease, while the impact of ionising radiation on 

human health tends to increase.  

 

Table 1. 

Properties of the insulation material. 

Insulation material Density (kg/m3) 

Thermal conductivity 

(W/(m·K)) 

Specific heat 

(J/(kg·K)) 

Cost 

(€/m3) 

Polyurethane  45 0.027 1,000 175 

 

 

Table 2. 

Inventory list of the materials and quantities used for the building construction and their corresponding cost. Since the 

amount of polyurethane (insulation material) varies from one case to another as a result of the value of the decision 

variables, a cubicle with 0.01m of polyurethane in all exterior surfaces is considered and included in the inventory list 

for illustrative purposes. 

Component Used Mass 

(kg) 

Cost 

(€) 

Brick 5,456 287 

Base plaster 518 43 

Cement mortar 608 30 

Steel bars 262 157 

Concrete 1,240 44 

In-floor bricks 1,770 62 

Asphalt 153 317 

PU (0.01m) 20 79 

 

 



Table 3. 

Inventory list of the materials and quantities used for the building construction and their corresponding environmental impacts. As an illustrative example, the amount of polyurethane (PU) used 

in a cubicle with 1cm of insulation thickness in all of their surfaces is also displayed. 

 

    Ecosystem quality  (PDF*m2*yr/kg) Human Health (Daly/kg) Resources (MJ/kg) 

Component 
Name in the data base Eco 

Invent  

Acidification 

& 

eutrophicatio

n  Ecotoxicity 

Land 

occupation 

Carcinog

enics 

Climate 

change 

Ionising 

radiation 

Ozone 

layer 

depletion 

Respirato

ry effects 

Fossil 

fuels 

Mineral 

extraction 

Brick 

market for brick, at plant,GLO 

[kg]  
3.73·105 2.1·105 3.6·105 1.9·1010 6.3·1010 5.2·1012 2.1·1013 1.0·109 4.1·109 3.7·1011 

Base plaster 

market for base plaster, GLO 

[kg]  
5.3·105 4.9·105 7.1·105 2.9·1010 8.2·1010 4.0·1012 1.8·1013 1.9·109 2.2·109 3.3·1011 

Cement mortar 

market for cement mortar, GLO 

[kg]  
6.0·105 6.5·105 8.3·105 3.3·1010 8.2·1010 4.3·1012 2.1·1013 2.1·109 2.6·109 4.3·1011 

Steel bars 

market for section bar rolling, 

steel, GLO [kg] 
3.1·105 1.3·104 5.1·104 9.5·1010 6.2·1010 5.1·1012 2.5·1013 1.9·109 1.6·109 1.5·1010 

Concrete 

market for concrete, normal, 

GLO [m3] 
7.5·102 7.8·102 5.5·102 3.9·107 1.1·106 4.2·109 2.6·1010 1.2·106 3.2·106 7.1·108 

In-floor bricks 

market for concrete roof tile, 

GLO [kg]  
5.8·105 8.6·105 5.8·105 5.7·1010 8.1·1010 4.2·1012 2.3·1013 2.2·109 2.9·109 1.5·1010 

Asphalt 

market for mastic asphalt, GLO 

[kg]  
7.4·105 8.0·105 1.4·104 4.5·1010 7.1·1010 8.3·1012 8.1·1013 3.1·109 9.7·109 3.3·1011 

Polyurethane   

market for polyurethane, rigid 

foam, GLO [kg]  
8.9·104 8.4·104 2.4·104 5.2·109 1.2·108 3.1·1011 8.8·1013 4.1·108 1.5·107 7.6·1010 

Disposal bricks 

market for waste brick, GLO 

[kg] 
9.3·106 2.4·106 -4.9·106 5.7·1012 3.5·1011 9.4·1014 4.0·1014 6.9·1010 5.3·1010 2.6·1012 

Disposal plaster 

market for waste mineral 

plaster, GLO [kg]  
6.7·106 8.0·106 -1.1·107 1.8·1011 3.1·1011 3.7·1013 3.8·1014 6.5·1010 4.7·1010 4.0·1012 



Disposal mortar 

market for waste cement in 

concrete and mortar, GLO [kg]  
1.1·105 3.5·105 1.4·105 1.5·109 5.1·1011 6.0·1013 5.3·1014 8.0·1010 6.5·1010 7.4·1012 

Disposal concrete 

+ steel bars 

market for waste reinforced 

concrete, GLO [kg]  
9.4·106 3.5·104 5.8·106 3.3·1010 3.9·1011 5.0·1013 4.6·1014 7.3·1010 4.6·1010 6.2·1012 

Disposal in-floor 

bricks 

market for waste concrete, not 

reinforced, GLO [kg]  
7.9·106 1.1·105 4.0·106 2.6·1010 3.2·1011 4.3·1013 3.4·1014 6.8·1010 4.0·1010 4.0·1012 

Disposal asphalt 

market for waste asphalt, GLO 

[kg] 
7.9·106 1.8·105 2.7·105 5.6·1011 5.0·1011 4.7·1013 4.4·1014 2.5·1010 5.6·1010 8.1·1012 

Disposal PU 

market for waste polyurethane, 

GLO [kg] 
1.0·104 7.1·104 3.7·105 2.7·108 2.8·109 1.6·1012 1.6·1013 2.0·109 2.1·109 2.7·1011 

 

Table 4. 

Environmental data per kWh of electricity in Spain (this dataset has been extrapolated from year 2008 to the year 2014).             

 

  Ecosystem quality  (PDF*m2*yr/kWh) Human Health (Daly/kWh) Resources (MJ/kWh) 

Component Acidification & 

eutrophication  Ecotoxicity 

Land 

occupation Carcinogenics 

Climate 

change 

Ionising 

radiation 

Ozone layer 

depletion 

Respiratory 

effects Fossil fuels 

Mineral 

extraction 

Electricity (Spain)  1.133104 4.03·104 9.47·105 1.28·109 1.30·109 6.47·1011 8.92·1013 3.99·109 9.87·109 1.99·1010 

 

 

 



 

Table 5. 

Delta error for all possible combinations of three objectives. These combinations are always formed by the economic 

objective (i.e., cost, Obj. 1) and two environmental objectives (Obj. 2 and Obj. 3). Here, 1 is total cost, 2 is 

acidification & eutrophication, 3 is ecotoxicity, 4 is land occupation, 5 is carcinogenics, 6 is climate change, 7 is 

ionising radiation, 8 is ozone layer depletion, 9 is respiratory effects, 10 is fossil fuels, 11 is mineral extraction and 12 

is the EI99 aggregated.  

Obj 1 Obj 2 Obj 3 Delta error [%] Obj 1 Obj 2 Obj 3 Delta error [%] 

1 2 3 11.19 1 5 7 0 

1 2 4 11.19 1 5 8 0 

1 2 5 23.51 1 5 9 23.51 

1 2 6 13.63 1 5 10 23.51 

1 2 7 11.19 1 5 11 7.3 

1 2 8 11.19 1 5 12 23.51 

1 2 9 13.63 1 6 7 11.19 

1 2 10 13.63 1 6 8 11.19 

1 2 11 11.19 1 6 9 23.51 

1 2 12 13.63 1 6 10 23.51 

1 3 4 11.19 1 6 11 11.19 

1 3 5 7.3 1 6 12 23.51 

1 3 6 11.19 1 7 8 11.19 

1 3 7 11.19 1 7 9 11.19 

1 3 8 11.19 1 7 10 11.19 

1 3 9 11.19 1 7 11 11.19 

1 3 10 11.19 1 7 12 11.19 

1 3 11 11.19 1 8 9 11.19 

1 3 12 11.19 1 8 10 11.19 

1 4 5 6.33 1 8 11 11.19 

1 4 6 11.19 1 8 12 11.19 

1 4 7 11.19 1 9 10 23.51 

1 4 8 11.19 1 9 11 11.19 

1 4 9 11.19 1 9 12 23.51 

1 4 10 11.19 1 10 11 11.19 

1 4 11 11.19 1 10 12 23.51 

1 4 12 11.19 1 11 12 11.19 

1 5 6 23.51         

 

  



 

Table 6. 

Delta error for all combinations of three objectives considering cost (Obj. 1) and the EI99 (Obj. 2) along with 

different environmental midpoint indicators (Obj. 3). Here, 1 is cost, 2 is EI99, 3 is acidification & eutrophication, 4 

is ecotoxicity, 5 is land occupation, 6 is carcinogenics, 7 is climate change, 8 is ionising radiation, 9 is ozone layer 

depletion, 10 is respiratory effects, 11 is fossil fuels and 12 is mineral extraction.  

Obj 1 Obj 2 Obj 3 Delta error 

1 2 3 13.63 

1 2 4 11.19 

1 2 5 11.19 

1 2 6 23.51 

1 2 7 23.51 

1 2 8 11.19 

1 2 9 11.19 

1 2 10 23.51 

1 2 11 23.51 

1 2 12 11.19 

 

  



Table 7. 

Comparison of the base case and the extreme optimal solutions. In the table, E, N, S, W, R are East, North, South, 

West and Roof and the attached numbers denote the thickness of insulation of the corresponding surface in cm (i.e. 

E8 is 0.08m of polyurethane in the East wall).  

  
Cubicle 

model 

Economic 

cost (€) 

Carcinogenics 

(DALYS) 

Iionising 

radiation 

(DALYS) 

Improvement (%) 

  
  Economic 

  

Carcino-

genics 

Ionising 

radiation 

Base case No insulation 5,485.24 2.53·10-5 1.08·10-6 0 0 0 

Economic 
E8_N8_S7_

W8_R9 
4,067.27 2.13·10-5 6.21·10-7 25.9 15.7 42.4 

Carcinogenics 
E6_N6_S4_

W6_R7 
4,123.63 2.09·10-5 6.68·10-7 24.8 17.3 38.0 

Ionising radiation 
E21_N21_S2

0_W21_R21 
4,625.71 2.76·10-5 5.24·10-7 15.7 -9.2 51.4 

 

 

 


