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Abstract 

Enzyme immobilization and purification are two steps that are usually required 

in the development of any industrial biocatalyst. In this review, we detail the efforts 

performed to couple the purification and the immobilization of industrial enzymes in a 

single step. The use of antibodies (versus the target enzyme or versus some 

domains), the development of specific domains with affinity for some specific 

supports or just to increase the affinity for standard ones (ionic exchangers, silicates) 

will be revised.  We will show how the control of the immobilization conditions may 

convert some unspecific supports in largely specific ones. The development of tailor-

made heterofunctional supports as a tool to immobilize-stabilize-purify some proteins 

will be discussed in deep, using low concentration of adsorbents groups and a dense 

layer of groups able to give an intense multipoint covalent attachment. The final 

coupling of mutagenesis and tailor made supports will be a the last part of the review. 

Key words: controlled immobilization, enzyme stabilization, multimeric 

enzymes, chimeric proteins, covalent attachment, ionic exchange, IMAC.
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1. Introduction 

Enzymes are biocatalysts with outstanding prospects as catalysts in industrial 

processes which include high activity under very mild environmental conditions, high 

selectivity, and high specificity (Gröger and Hummel, 2014, Reetz, 2013, 

Schrittwieser and Resch, 2013, Teixeira et al., 2014, Wells and Meyer, 2014). 

However, enzymes have also some limitations that may hinder their industrial 

implementation (Schoemaker et al., 2003).  

Enzymes are water water-soluble molecules that need to be separated from 

the reaction media to be re-used. This is important for improving the economy of the 

process and also to for facilitate facilitating the control of in the reactor (Brady and 

Jordaan, 2009, Garcia-Galan et al., 2011, Sheldon, 2007). Furthermore, they may 

not neither be stable enough under industrially relevant conditions (presence of 

organic solvents, high temperatures to avoid contamination, etc.) nor has have high 

enough activity, selectivity or specificity towards the target industrial substrate 

(sometimes quite far from the physiological substrates). Moreover, they are produced 

in conjunction with many other similar proteins (some of them with undesired catalytic 

activity versus the substrates or even the products) and that decreases the final 

volumetric activity because some surface of the support will be occupied by other 

proteins. The activity of minority enzymes with opposite catalytic activity may also 

decrease the enantio or regioselectivity or specificity of the “biocatalyst” if it includes 

some any of these contaminant enzymes. 

The latter issue is tackled using purification strategies, which in some cases 

may be a long and tedious process, while in other cases it includes just one 

chromatographic step (Clonis et al., 2000, Porath, 1992, Wilchek et al., 1984, Zeng 
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and Ruckenstein, 1999). Nevertheless, even in the best case scenario this may have 

a negative economic impact in the final cost of the biocatalyst. 

On the other hand, the most obvious solution to get a simpler recovery of the 

enzyme is its immobilization (Brady and Jordaan, 2009, Garcia-Galan et al., 2011, 

Sheldon, 2007). Moreover, considering that the immobilization is in most cases a 

requirement to use the enzyme as an industrial biocatalyst, many researchers have 

endeavored to couple immobilization with the improvement of other enzyme 

properties (Garcia-Galan et al., 2011, Guzik et al., 2014, Hernandez and Fernandez-

Lafuente, 2011, Hwang and Gu, 2013, Rodrigues et al., 2013, Stepankova et al., 

2013, Zucca and Sanjust, 2014). Multipoint (Mateo et al., 2007c) or multisubunit (in 

multimeric enzymes (Fernandez-Lafuente, 2009)) immobilization may improve 

enzyme rigidity and thus, improve enzyme stability (Figure 1). The rigidification of 

certain areas of the proteins surface and its controlled distortion resulting from the 

immobilization process have been shown to be able to tuning tune (in some 

instances significantly improving) enzyme activity, selectivity or specificity (Mateo et 

al., 2007c, Rodrigues et al., 2013).  

 Moreover, in certain cases, the immobilization protocol (including support, 

enzyme modification and immobilization conditions) has been designed to couple the 

immobilization of the enzyme and its purification in just one process preferably 

without sacrificing other potential enzyme improvements (Garcia-Galan et al., 2011). 

The present review will discuss the use of techniques that permit to join, in a single 

step, immobilization and purification. To this goal, it is very important to know if  the 

interaction of the enzyme molecule interaction with just one active group of the 

support is enough to keep the enzyme coupled to the support under the 

immobilization conditions, or, by on the contrary, only after several enzyme -support 
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interactions the protein molecule remains attached to the support. These  will be the 

key for the final adsorption selectivity of the adsorption, even though the final 

objective will be a multipoint or multisubunit attachment to improve the enzyme 

stability (Figure 2) (Garcia-Galan et al., 2011).  

First, a rapid view of different affinity immobilization strategies using supports 

bearing specific receptors to domains included in the target protein structure will be 

presented (Binz et al., 2005, Linder and Teeri, 1997, Ong et al., 1989, Saleemuddin, 

1999). In general, these immobilizations will be just via one point (the domain) with 

scarce effect on enzyme stability (except those effects derived from the 

immobilization of enzymes inside a porous support), but in certain cases they may 

include several enzyme subunits of multimeric enzymes, with the positive effect on 

enzyme stability that this may have (Bolivar and Nidetzky, 2012b, Hernandez and 

Fernandez-Lafuente, 2011). A special case will be the immobilization of lipases on 

hydrophobic supports via interfacial activation, and that waywhich produces some 

stabilization (Palomo et al., 2002). The use of tailor- made supports to specifically 

immobilize proteins with certain structural particular features (large or small proteins, 

lipases via interfacial activation), with the final development of heterofunctional 

supports to achieve the specific enzyme immobilization followed by its stabilization 

via multipoint or multisubunit immobilization will be also an important part of this 

review (Barbosa et al., 2013). Finally, the coupling of site directed mutagenesis (to 

introduce specific domains in the desired areas of the protein) to these 

heterofunctional supports immobilization/stabilization of the protein will be discussed 

(Barbosa et al., 2013).  

 This strategy requires to having in mind that the immobilization involves 

different steps with different objectives. The first one is a somehow rapid 
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immobilization, via the moieties that we have introduced which are able to recognize 

the protein. The second one, it is the promotion of covalent attachments (as many as 

possible to improve stability) between the enzyme and the support which may be 

quite a quite slow process and proceed at different conditions. 

 

2. Coupled immobilization/purification of proteins via antibody specific 

adsorption. 

One general strategy to couple immobilization to with purification with any 

protein is to immobilize it on a previously immobilized anti-target protein 

(Saleemuddin, 1999). This strategy may use monoclonal or polyclonal antibodies, 

and permits an extremely selective protein adsorption, only the target protein 

becomes immobilized (i) if the antibody is properly immobilized (Ahmed et al., 2006, 

Batalla et al., 2008, Cho et al., 2007, Iwata et al., 2008, Schmid et al., 2006) and (ii) if 

we can prevent any undesired adsorption (Fuentes et al., 2005a). Using polyclonal 

antibodies, the target protein will be immobilized following different orientations. This 

may be useful if it is going to be used in proteomics, if all the surface of the protein is 

available to interact with other proteins in one or another protein molecule, it may be 

used to detect any protein able to interact with any area of the immobilized protein 

(Fuentes et al., 2005a.) Using monoclonal antibodies, it is even possible to get a 

particular orientation of the enzyme regarding the support surface (Figure 3). That is 

interesting in Biocatalysis, as it may permit the selection of different protein 

orientations where the active center is fully exposed to the medium (Hernandez and 

Fernandez-Lafuente, 2011). 

Moreover, if the selected epitope on the protein is a fragile region, the 

immobilization may improve enzyme stability to some degree, and the antibodies 
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may also prevent the interaction of some areas of the protein with inactivating 

compounds (Fatima and Husain, 2007, Haider and Husain, 2009, Jan et al., 2001, 

Jan et al., 2006, Khan et al., 2005, Varshney et al., 2001, Younus et al., 2001, 

Younus et al., 2002, Younus et al., 2004). In general, immobilization yield is near to 

100%, with almost complete pure immobilized enzyme, maximum stabilization 

achieved (in adsencceabsence of intermolecular inactivation causes) is under a 

factor of 20. 

In other cases, the enzyme and the antibody was were exposed in free 

solution, and them then the antibody was captured using immobilized protein A or G 

(Kondo and Teshima, 1995, Wang et al., 2001a). This strategy, due to its complexity 

and cost (antibodies are expensive, their immobilization needs to be in a proper 

orientation, a final inert support is required, reuse is not that simple, and operation 

conditions should be compatible with antibody stability) has not been analyzed in 

detail in the literature. 

In some instances, the antibody is not designed for the target protein, but for a 

specific domain, which is introduced in the target protein sequence using site-

directed mutagenesis (Solomon et al., 1991, Vishwanath et al., 1997, Wang et al., 

2001b, Witkowski et al., 1993). This permits to always have the desired orientation, 

but it will hardly have a very positive effect on enzyme properties. The advantage is 

that a single antibody-matrix may be used for the immobilization of any protein where 

this domain has been introduced. Immobilization (if using a stoichiometric amount of 

target protein and immobilized antibody) is near to 100%, purity of the immobilized 

enzyme is almost total, but stabilization in absence of intermolecular aggregation is 

not significant, since the domain prevents interactions between enzyme and support. 
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These immobilization strategies, based on physical interactions, should 

produce reversible immobilization protocols, which is a requirement considering that 

the immobilization matrix may be far more expensive than the immobilized protein 

target. This becomes economically viable only if the resulting systems can be reused 

for many cycles. The stability of the antibodies is quite high, in fact some reports 

show that the recognition capacity is maintained after several weeks even at 50 ºC at 

neutral pH values (Batalla, 2010). However, it should be considered that high affinity 

antibodies may yield adsorptions under which only very drastic conditions will permit 

the enzyme desorption from the antibody- matrix after the enzyme inactivation. 

These conditions also can inactivate the antibody, reducing the number of cycles 

during which they may reused to immobilized fresh proteins batches (Batalla, 2010). 

Thus, low affinity antibodies may be preferred on in this kind of processes. 

 

3. Coupled immobilization/purification of enzymes and proteins via specific 

domains. 

There are many different peptides and proteins having which have a high 

affinity for different groups or structures, which may be added to the structure of the 

target protein by genetic routes, and thus, transfer this affinity property to the 

employed protein (Figure 4). These peptides may be very small (just a dozen of 

residues or even less), like in the poly-His tags, or domains with several kD (e.g. 

cellulose binding domain) (Linder and Teeri, 1997, Nordon et al., 2009, Ong et al., 

1989). Perhaps the most popular domain is the poly-His tag, with high affinity for 

metal chelates (Figure 5) (e.g. for purification by IMAC) (Porath et al., 1975, Porath 

and Olin, 1983, Porath, 1992) but the range of these affinity peptides is huge and still 

growing: domains of affinity for cellulose, chitin binding domain, peptide tags, among 
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others (Arroyo et al., 2011, Baumann et al., 1998, Bello-Gil et al., 2014, Bergeron et 

al., 2009, Bolivar and Nidetzky, 2012a, b, Cassimjee et al., 2011, Chern and Chao, 

2005, Chiang et al., 2008, Chiang et al., 2009, Cho et al., 2007, Daunert et al., 2007, 

Fishman et al., 2002, Ha et al., 2013, Hernandez and Fernandez-Lafuente, 2011, 

Kondo and Teshima, 1995, Kowsari et al., 2014, Kumada et al., 2009, Kweon et al., 

2005, Lee et al., 2005, Li et al., 2012, Li et al., 2009, Lin et al., 2011, Linder and 

Teeri, 1997, Linder et al., 1998, López-Gallego et al., 2012, Lu et al., 2012, Martinez 

et al., 2000, Mateo et al., 2001b, Moldes et al., 2004a, Moldes et al., 2004b, Richins 

et al., 2000, Scaramozzino et al., 2005, Seino et al., 2014, Shpigel et al., 1999, 

Simon et al., 2002, Tominaga et al., 2005, Vishwanath et al., 1995, Wang et al., 

2013a, Wang et al., 1997, Wang et al., 2010, Wang et al., 2013b, Wiesbauer et al., 

2011, Yang et al., 2013, Zhao et al., 2013). Table 1 shows a summary of the main 

domains used for this purpose while Table 2 shows some specific examples of uses 

of these domains. 

It should be considered that the affinity ligand may have possibilities of for 

adsorbing natural proteins, because it will hardly will be fully physically inert (it may 

be hydrophobic, possess certain ionic character, or other physical properties). Thus, 

if many ligands are present on the enzyme support, they may be able to interact by 

multiple points with any biomacromolecule (Fuentes et al., 2007, Murza et al., 1999). 

Thus, the design of these matrices needs to be carefully performed to avoid 

unspecific adsorption of other proteins. In the case of multimeric enzymes, enzyme 

immobilization may involve all or at least several subunits, enabling the prevention of 

enzyme dissociation and thus increasing enzyme stability (Fernandez-Lafuente, 

2009).  
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Another strategy is to use tags or domains that increase the tendency of the 

enzyme to become adsorbed on “standard” matrices, such as cation exchangers 

(using poly-Arg, poly-His, some cationic rich domains) (Figure 6) (Fuchs and Raines, 

2005, Gräslund et al., 2000, Rodrigues et al., 2014) or anion exchangers (using poly-

Glu or poly-Asp) (Hedhammar et al., 2004). Table 2 shows some examples of these 

uses. In this case, the conditions and support used by the researcher must be 

designed to favor the ion exchange of proteins of the tagged protein compared with 

standard proteins. These processes involve multipoint adsorption, and the anion tag 

permits to have a very intense one. Using cation exchangers, at pH 7 just a few 

proteins become adsorbed, thus a cationic domain may permit quite a selective 

adsorption of the tagged protein (Figure 7) (Bolivar and Nidetzky, 2012a, b, Gräslund 

et al., 2000, Gräslund et al., 2002a, Gräslund et al., 2002b, Hedhammar et al., 2006, 

Hedhammar and Hober, 2007, Nock et al., 1997, Sassenfeld and Brewer, 1984, 

Wiesbauer et al., 2011).  

The affinity domains, in order to yield a very high purification factors, require to 

be properly designed to prevent unspecific adsorption of other proteins.  And aA two 

too low amount of groups in the support may produce a slow immobilization (taking 

many hours to have fully immobilized enzymes. Stabilization may be mainly found by 

preventing subunit dissociation of multimeric enzymes, the values found will depend 

on the free enzyme concentration sused for comparison (ranging from factors of 10 

to thousands) (Bolivar and Nidetzky, 2012a, b, Gräslund et al., 2000, Gräslund et al., 

2002a, Gräslund et al., 2002b, Hedhammar et al., 2006, Hedhammar and Hober, 

2007, Nock et al., 1997, Sassenfeld and Brewer, 1984, Wiesbauer et al., 2011).  We 

have not found actual uses of these strategies at industrial level, perhaps the 
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moderate stabilization achieved did not encourage this as a protocol of for industrial 

enzyme immobilization, even being quite a quite simple protocol. 

 

4.- Coupled immobilization/purification of enzymes and proteins via control of 

the immobilization process. 

 

4.1- The case of lipases immobilization via interfacial activation on 

hydrophobic supports 

In some cases, it is possible to use some specific particularities of the catalytic 

mechanism of an enzyme to differentiate it from others. That is the case of lipases. 

These enzymes are capable of acting in the surface of drops of oils (Brzozowski et 

al., 1991, Van Tilbeurgh et al., 1993). To reach this goal, lipases have a mechanism 

of action called interfacial activation (Verger, 1997). In aqueous media, they usually 

have the hydrophobic catalytic center blocked by a polypeptide chain, called lid, with 

a very hydrophobic internal face and a hydrophilic external face. This is called the 

closed form of lipases., in In certain cases the active center is not fully secluded from 

the medium (e.g. lipase B from Candida antarctica) (Uppenberg et al., 1994), whereas 

in other cases the lid fully blocks the active center (e,g, lipases from Thermomyces 

lanuginosus (Brady et al., 1990) or Rhizomur miehei (Derewenda et al., 1992)), while in 

a few cases the enzyme even has a double lid that moves in a coordinated form 

(e.g., lipase from Bacillus thermocatenulatus) (Carrasco-López et al., 2009). This 

closed form is in equilibrium with an open form where this lid is displaced exposing a 

very large hydrophobic pocket to the medium (Brzozowski et al., 1991, Van Tilbeurgh 

et al., 1993). This form is unfavorable in aqueous homogenous medium and the 

equilibrium is shifted towards the closed form. In the presence of a hydrophobic 
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surface, like that of an oil drop, the open form of the lipase becomes adsorbed via 

this very large hydrophobic pocket, shifting the equilibrium towards the open form 

(Figure 8) (Brzozowski et al., 1991, Van Tilbeurgh et al., 1993).  

This oriented adsorption of lipases on hydrophobic surfaces is called 

interfacial activation of lipases and permits the lipases to act on insoluble substrates 

like triglycerides. However, this mechanism of action causes lipases to become an 

exception among water soluble proteins: while the surface of the closed form is fairly 

hydrophilic, the open form has a huge hydrophobic pocket. This permits that the 

lipases may suffer interfacial activation with different hydrophobic surfaces: a drop of 

oil (Verger, 1997) or a hydrophobic support (Bastida et al., 1998, Fernandez-

Lafuente et al., 1998, Garcia-Galan et al., 2014, Hernandez et al., 2011), but also a 

hydrophobic protein or the open form of another lipase (Fernández-Lorente et al., 

2003, Palomo et al., 2003, Palomo et al., 2005a). All of them have been used to 

purify and/or immobilize lipases. That way, immobilization of lipases on hydrophobic 

supports at low ionic strength is a much utilized protocol because it permits, in a 

single step, to immobilize and to stabilize the open form of the lipase (producing its 

hyperactivation in many cases and the tuning of the enzyme properties (Figure 9) 

(Fernandez-Lorente et al., 2008, Fernández-Lorente et al., 2007) and to purify it 

(Fernandez-Lafuente et al., 1998). 

Lipase adsorption on hydrophobic supports at low ionic strength is not a 

conventional hydrophobic adsorption, but an affinity interfacial process (Fernandez-

Lafuente et al., 1998). At low ionic strength (e.g. 5 mM of buffer, or even in the 

presence of glycerin or polyethyleneglycol), the only water soluble protein able to 

become adsorbed in a moderately hydrophobic support will be the lipases (Figure 

10) (Fernandez-Lafuente et al., 1998). The influence of the experimental conditions 
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neither do not fit a conventional hydrophobic adsorption (Manoel et al., 2015). This 

process involves the open form of the lipase., high High ionic strength during 

adsorption has a double negative effect in immobilization/purification process: other 

proteins may become adsorbed on the hydrophobic support (reducing the purification 

impact of the strategy) and lipase adsorption is slower, because the closed form is 

favored and the lipase needs to be adsorbed via conventional hydrophobic 

adsorption, which is not as efficient a process not as efficient as interfacial activation 

(Fernandez-Lafuente et al., 1998, Manoel et al., 2015). 

Irreversible inactivation of the lipases adsorbed on this kind of supports using 

chemical Ser-hydrolases inhibitors, that need to have access to the catalytic Ser and 

depend only in the exposition of this group to the medium, is much more rapid after 

the immobilization on hydrophobic supports than in the free enzyme or in other 

immobilized preparations (Carrasco-López et al., 2009, Manoel et al., 2015, Santos 

et al., 2014a, b). This confirms that this strategy keeps the active form of the lipase 

open.  

On the other hand, as lipase adsorption is related to interfacial affinity, some 

lipases become adsorbed only on certain hydrophobic supports and not in on others 

even permitting even the separation of different lipases contained in a sample in 

certain cases. In some instances, this follows a hydrophobicity support criterion: 

some lipases are only are adsorbed on very hydrophobic supports while not in on 

other less hydrophobic ones (Cunha et al., 2009, Fernández-Lorente et al., 2005, 

Sabuquillo et al., 1998, Volpato et al., 2010, Volpato et al., 2011). In other cases, the 

nature of the group that is on the support is more relevant that the hydrophobicity: 

lipase from porcine pancreas immobilized very slowly on octyl supports but fairly 

rapidly on phenyl-ones (Palomo et al., 2005b, Segura et al., 2004, Segura et al., 
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2006). Thus, supports not specifically designed for specific adsorption permit to 

haveallow having selective immobilization of lipases due to this peculiarity of the 

lipase mechanism of action. The lipases thus immobilized may be used under a 

variety of conditions; even in relatively high concentrations of organic cosolvents the 

enzyme will remain attached to the support (Fernandez-Lafuente et al., 1998). After 

enzyme inactivation, it the enzyme may be desorbed using detergents, such as 

guanidine etc. and new enzyme loaded, enabling theo reuse ofe the support. Full 

lipase immobilization on these supports may proceed in few minutes (even using 1 g 

of support/50 ml of lipase solution), with increments on enzyme activity that may 

become even 100 fold for some substrates (Fernandez-Lafuente et al., 1998) while in 

other cases it may produce a decrease in activity (Garcia-Galan et al., 2014). Lipase 

stability uses tends to be increase for thousand thousand-fold factors using octyl 

agarose or Sepabeads decaoctyl (Palomo et al., 2002)., this This has been attributed 

to the importance of the stabilization of the open form of the lipases, that has a more 

compact and ordered structure (Peters et al., 1996). 

The protocol is so simple that it is simple to implement it at industrial level., in 

In fact the most popular immobilized preparation of a lipase, Novozym 435, is 

prepared using this technique, and Resindions Srl (Italy) commercialize Sepabeads 

octadecyl for this use, with several small companies using the support to prepare 

lipase biocatalysts. 

 

4.2. Selective immobilization of large multimeric proteins in standard supports 

 

4.2.1. One-step immobilization-purification of large proteins via physical 

adsorption on standard chromatographic matrices 
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In this point, it is critical to bear in mind that natural proteins are adsorbed on 

most of the matricesx (ion exchanger, IMAC matrix) via interaction with several 

groups located in on the support (Kumar et al., 2000, Porath, 1992). Large proteins 

usually have two differences with small proteins: i-they can cover larger surfaces of 

the support, permitting the establishment of long distance multi-interactions and ii- 

they usually will have a higher number of groups on their surface able to interact with 

the support). This has been exemplified using multimeric proteins from 240 or 360 

KDa  (Fuentes et al., 2004, Fuentes et al., 2007, Pessela et al., 2004a). 

The first fact has permitted to develop simple systems for the purification of 

large proteins using supports with very low activation degree (Figure 11) (Fuentes et 

al., 2004, Fuentes et al., 2007, Pessela et al., 2004a). These supports are designed 

by preparing decreasing superficial density of the groups on the supports (decreasing 

each by a half each step)., the The support that will have better performance will be 

the one with the lowest activation that is able to adsorb the desired amount of the 

target enzyme. The purification Purification depends on the distribution of charges 

and size of the target protein and the contaminant ones, having a protein of 200 KDa 

and contaminants not larger than 100 KDa purification may be almost total by this 

technique. Even stabilization of weakly associated proteins, shifting the equilibrium 

toward the associated form may be achieved using this strategy (Fuentes et al., 

2005b, Fuentes et al., 2006, Fuentes et al., 2007). Unfortunately, this did not permit 

to use the enzyme in an immobilized form. The enzymes adsorbed on lowly activated 

supports are very easily desorbed from them. In the section below, this lowly 

activated adsorbent supports will be used for the implementation of heterofunctional 

supports (discussed later). 
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The second peculiarity has permitted to use highly activated supports to 

selectively and very strongly immobilize large proteins. The number of enzyme-

support interactions necessary to fix the enzyme to the support may be controlled by 

controlling the medium (Pohl et al., 1997). For example using an ion exchanger, the 

higher the ionic strength, the higher the number of enzyme-support interactions 

required to fix the enzyme to the support. Using IMAC matrices, a similar effect is 

achieved by adding the competitor imidazole during the protein adsorption (Figure 

12). Thus, using a medium that hinders adsorption, only the proteins that can give 

many enzyme-support interactions may become adsorbed, favoring the larger 

proteins over the smaller ones.  

Having a large multimeric enzyme (eg, over 200 KDa), this strategy may 

permit to discard around 80% of the monomeric proteins and the fraction of the 

multimeric ones that cannot become adsorbed on the support, which is an interesting 

purification factor associated to the immobilization (Pessela et al., 2004b). However, 

this may even have a higher interest if the target protein is the only large protein in 

the extract. This may be the case if the multimeric and large protein is from a 

thermophilic microorganism cloned in a mesophilic host; after a thermal treatment, all 

the multimers of the mesophilic host are destroyed, and the only large protein 

remaining in solution is the target termophilic enzyme (Pessela et al., 2004a, Pessela 

et al., 2004b). 

Two papers may be found in the literature using anion exchangers or IMAC 

supports. In the first one, the authors showed that the immobilization of two large 

beta-galactosidases (from Escherichia coli and from Thermus sp.) on very highly 

activated anion exchangers supports (e.g., containing 40 μmol of ethylenediamine 

immobilized per wet gram of 4 BCL agarose) was so strong that the enzyme can 
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hardly be released from the support (Pessela et al., 2006). Thus, these supports 

were not valid for protein purification, but the very high adsorption strength and 

activity retention suggested that they could be very suitable for immobilization of 

these large proteins. Using high ionic strength (e.g., 300 mM NaCl), both large target 

proteins may be still be fully adsorbed on these supports, while only around 20% of 

total proteins adsorb, permitting some purification of the large proteins but not a total 

one (Pessela et al., 2006). Moreover, adsorption under these conditions further 

increased the adsorption strength on the support (now there is no desorption of any 

enzyme molecule even using 800 mM NaCl) (Pessela et al., 2006). Thus, the partial 

purification and the strong reversible immobilization of both beta-galactosidases were 

performed in a very simple two-step process. On such a protocol, these large 

proteins were directly adsorbed on these supports after desorption (at 200 mM of 

NaCl) from poorly activated supports (Pessela et al., 2006). Furthermore, direct 

adsorption on very highly activated supports promotes a significant thermal 

stabilization of both enzymes, mainly under dissociation conditions, because the face 

of the protein that involves more enzyme subunits will be those that where it is easier 

to have a higher number of enzyme-support interactions. 

In a second example, IMAC supports were used to get the selective 

adsorption of the multimeric α- and β-galactosidases from Thermus sp. T2 (Pessela 

et al., 2007b). First, it was shown that both enzymes hardly desorbed from highly 

activated IMAC supports, even in the presence of 1 M imidazole. In the presence of 

50 mM of imidazole, these very large proteins can be adsorbed on these supports 

while the medium-small proteins did not adsorb. In this way a very simple purification 

and reversible immobilization of these large proteins cloned on Escherichia coli can 

be performed by first heating of the crude preparation to leave as the only large 
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protein the thermophilic one (Pessela et al., 2007b). Interestingly, immobilized β-

galactosidase from Thermus sp. T2 was 10-fold more stable than the native enzyme 

when incubated at 70 °C and pH 7.0, very likely as in the other example; the 

involvement of the largest areas of these multimeric enzymes in the adsorption 

process may promote a multi-subunit adsorption with stabilizing effects (Pessela et 

al., 2007b). These immobilized-stabilized enzymes can be desorbed away from the 

support/the reactor after inactivation and a fresh solution of enzyme can be purified, 

immobilized and stabilized again for 3 cycles (Pessela et al., 2007b). The protocol 

has as main problem the use of drastic conditions, which in certain cases may 

produce enzyme precipitation, perhaps by this reason we have been unable to find 

any actual industrial biocatalyst using this technology. 

 

4.2.2. One-step immobilization-purification of multimeric proteins via covalent 

immobilization on glyoxyl supports  

This strategy is based on the specific features of glyoxyl supports: the first 

immobilization must be via several enzyme-support weak imino bonds (Mateo et al., 

2005). This produces a positive effect; the enzyme is oriented towards the area 

where there is the highest density of Lys residues, which is the area where there is 

the highest possibility of getting an intense multipoint covalent attachment. This has 

converted glyoxyl supports in very suitable to for obtaining important stabilization 

factors upon immobilization of many different enzymes via multipoint covalent 

attachment (Mateo et al., 2006). Moreover, the immobilization of enzymes on this 

support requires that it may have several reactive primary amino groups under the 

immobilization conditions. At pH 10, protein immobilization may be very rapid, 

because the ε-amino group of Lys has some reactivity (Mateo et al., 2005). However 
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at pH 7, the immobilization of most proteins on glyoxyl agarose did not occur (Figure 

13) (Mateo et al., 2005).  

Multimeric proteins are the exception; they have several terminal amino 

groups, which may have a pK around 7-8, enabling its their selective immobilization 

on glyoxyl agarose if several terminal amino groups are in the same plane. One 

example of this strategy is the immobilization on glyoxyl agarose beads at pH 7 of a 

multimeric glutamate dehydrogenase from Thermus thermophilus cloned in E. coli 

(Bolivar et al., 2009c). This permitted to perform the immobilization, purification and 

stabilization of this enzyme in just one step. A first thermal shock of the crude 

preparation destroyed most mesophilic multimeric proteins. After this treatment, 

glutamate dehydrogenase became immobilized in less than 1 h on highly activated 

glyoxyl agarose beads at pH 7 with a 100% yield and a purity over 90% and its 

multimeric structure became stabilized. After immobilization, a further incubation at 

pH 10 improved enzyme stability under any inactivating conditions by increasing the 

number of enzyme-support bonds (Figure 14) (Bolivar et al., 2009c), becoming 3 

times more stable than the glyoxyl biocatalyst prepared at pH 10. This enzyme could 

be even submitted to reactivation strategies following unfolding /refolding 

strategiesreactions, because subunits cannot be released from the support (Bolivar 

et al., 2010b).  

Other multimeric proteins have been also immobilized on glyoxyl supports at 

pH 7, like β-galactosidase from Escherichia coli (Pessela et al., 2007a), catalase 

from bovine liver, and IgG from rabbit (Grazu et al., 2006). However, other multimeric 

proteins are not immobilized under these conditions, perhaps because several 

terminal amino groups cannot react simultaneously with the glyoxyl support at pH 7 

(glucose oxidase from Aspergillus niger and Penicillium vitale; catalase from 
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Micococcus sp., A. niger and bovine liver; alcohol oxidase from Pichia pastoris, 

Hansenula sp. and Candida boidinii, β-galactosidase from Thermus sp) (Grazu et al., 

2006). The purification factor depended on the number of other multimeric proteins 

on the extract and the proteolysis of the proteins in the crude: each point of 

proteolysis produced a terminal amino bond. This means that in an extract with high 

proteolytic activity, purification of multimeric proteins by immobilization on glyoxyl 

agarose at pH 7 may be short (Grazu et al., 2006). This protocol has not been used 

at industrial level., together Together to with the cited sample requirements, the 

glyoxyl supports require a final reduction with sodium borohydride as reaction end-

point (Blanco and Guisán, 1989), and this may be a problem for many small 

biotechnological companies.  

 

4.2.3. One-step immobilization-purification of poly-Lys tagged proteins via 

covalent immobilization on glyoxyl supports 

Terreni and coworkers have shown that the introduction of poly-Lys tags on 

the enzyme penicillin G acylase may permit the immobilization of the tagged protein 

even at pH 7 on glyoxyl supports (Scaramozzino et al., 2005). Although the objective 

of this tag was to get an oriented immobilization, this means that under these 

conditions only poly-Lys tagged proteins and multimeric proteins having the terminal 

amino groups on the same plane will be immobilized on the support, enabling a 

significant purification via a simple immobilization protocol (Figure 15). The 

immobilization gave 100% yield in less than 1 h, keeping the enzyme activity intact 

the enzyme activity, and even more importantly keeping the properties of the free 

enzyme in kinetically controlled synthesis of antibiotics. 
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5. Coupled immobilization, purification and multipoint or multisubunit 

immobilization of enzymes and proteins via covalent immobilization on 

heterofunctional supports. 

Now, we will present the development of tailor-made heterofunctional supports 

to get the specific immobilization of target proteins. Heterofunctional supports has 

have been recently reviewed (Barbosa et al., 2013); here we will focus on the 

prospects to use them to perform one step immobilization-purification. 

Heterofunctional supports are defined as those matrices that present several 

functionalities on its their surface, with different physical or chemical properties, able 

to interact with a protein (Barbosa et al., 2013, Mateo et al., 2000, Mateo et al., 

2003).  

In this section, our interest lies in those heterofunctional supports bearing 

groups able to specifically adsorb a target protein, and other groups able to give a 

covalent attachment to make this enzyme-support interaction irreversible (Figure 

16). A requirement for using this strategy to get the coupled immobilization-

purification of proteins is that the covalently reactive groups on the support must be 

unable to immobilize the enzyme under the employed conditions., that Thusway the 

selective adsorption of the protein produced by the other groups will permit the 

purification of the target protein. Most examples found in the literature involve 

multimeric large proteins. As chemically reactive groups, epoxydes (Mateo et al., 

2007a, Mateo et al., 2007b) and glyoxyl groups (Mateo et al., 2006) have been 

utilized. Glyoxyl, as stated above, cannot immobilize monomeric proteins at neutral 

pH value (Mateo et al., 2005). 

On the other hand epoxy supports react very slowly with free proteins., in In 

fact a previous adsorption of the proteins on the support is required to have 
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covalently immobilized enzymes using epoxy supports (Melander et al., 1984, Smalla 

et al., 1988, Wheatley and Schmidt Jr, 1993, 1999), with the exception of that those 

proteins bearing an exposed Cys residue (Grazu et al., 2012). As selective 

adsorbents, cationic groups that require a multipoint ionic exchange to fix the protein 

on the support have been utilized (Kumar et al., 2000, Pohl et al., 1997, Porath, 

1992). 

As already explained above, large multimeric proteins will be able to interact 

with groups in the support quite far apart, enabling the selective adsorption of large 

versus small proteins (Pessela et al., 2004a). After this first adsorption, the very near 

proximity of the groups on the support and the groups on the enzyme may permit the 

establishment of some covalent bonds (Bolivar et al., 2009a). However, the increase 

of the pH value to increase the reactivity of the nucleophilic groups on the enzyme 

surface is recommended to achieve some additional enzyme-support bounds 

(Pedroche et al., 2007).  

This strategy has been utilized to selectively immobilize, purify and stabilize a 

glutamate dehygrogenase from Thermus thermophilus cloned in E. coli after a 

thermal treatment using amino-epoxy supports (Bolivar et al., 2009b). In another 

paper, a tetrameric enzyme, β-galactosidase from Thermus sp., also cloned in E. coli 

and submitted to a thermal shock, was immobilized and purified by immobilization on 

amino-epoxy and amino-glyoxyl supports (Bolivar et al., 2010a). As this strategy 

permitted to ensure the identical orientation of the enzyme on the support, this paper 

showed that glyoxyl supports are more effective to stabilize proteins than epoxy 

supports. And this occurred even although epoxy groups can react with a handful of 

amino acids, including Cys, Tyr, Lys and even Asp and Glu (Turková et al., 1978) 

while glyoxyl only react with primary amino groups. These supports are not 
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commercially available because their properties have been very recently described, 

thus, although the immobilization protocol is simple, they are not used at industrial 

level but although a gradual implementation in the middle term may be expected a 

gradual implementation in the middle term. 

Another application of the concept of heterofunctional supports is being 

applied to lipases. Interfacial activation of lipases on hydrophobic supports is a very 

useful reversible protocol to immobilize-purify lipases (see section 4.1 of this review) 

(Fernandez-Lafuente et al., 1998). However, it presents some limitations, as the 

enzymes may become desorbed from the support after inactivation or by cause of 

organic solvents or detergents, reducing the range of conditions where they may be 

applied. To solve this problem, the crosslinking of the lipase immobilized via 

interfacial activation using polymers (Fernandez-Lorente et al., 2010, Pizarro et al., 

2012) or glutaraldehyde (Barbosa et al., 2012) has been proposed.  A simpler 

solution may be forthcoming by achieving the covalent attachment of interfacially 

activated lipases. A recent paper shows the combination of on a siliceous support of 

hydrophobic moieties (e.g., octyl groups) and glyoxyl groups (Bernal et al., 2014). 

This way, at pH 7 and low ionic strength the lipase is selectively immobilized via 

interfacial activation, while after increasing the pH value to 10, some covalent 

attachments between enzyme and support are expected to be obtained (Bernal et al., 

2014). Although the real establishment of the covalent attachments has not been 

studied, this new support permitted to improve the lipase stability in thermal and 

organic solvent induced inactivations (Bernal et al., 2014), keeping the 

hyperactivation achieved by the immobilization on hydrophobic supports. The 

problem is the necessity of having at least a primary amino group near the area 

involved in the immobilization., in In a recent paper it has been shown that this may 
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not always occur, and some solution should be implemented to have 100% of the 

immobilized lipases covalently attached to the support (using octyl-glyoxyl agarose 

beads) (Figure 17) (Rueda et al., 2014). In other papers, amino-phenyl silicates were 

used to immobilize the lipases from C. antarctica (form B) (Boros et al., 2013) and 

Burkholderia cepacia (Abaházi et al., 2014). After adsorption, the immobilized 

enzymes were treated with glycerol diglycidyl ether to have some enzyme-support 

crosslinking. This strategy gave better results that the mono-derivatized supports. 

Immobilization was suggested to proceed via interfacial activation (activity improved 

after immobilization), and the final covalent attachments improve enzyme stability 

(Abaházi et al., 2014, Boros et al., 2013)  

This kind of heterofunctional hydrophobic supports may greatly improve the 

prospects of using interfacial activation of lipases as a tool to prepare biocatalysts 

useful under any experimental conditions, using the hydrophobic groups to have the 

a selective adsorption, and the other groups to transform this in an irreversible 

immobilization. The change of reversible to irreversible immobilization means that the 

support cannot be reused, therefore the strategy is only recommended when the 

improvement in enzyme stability or the prevention of enzyme release to the reaction 

medium are really relevant. This methodology of lipase immobilization is very simple, 

but the very recent description of the advantages and prospects (2014 was the first 

report) made that they are not implemented, neither as commercial supports or used 

to produce industrial lipase biocatalyst. 

 

6. Coupled immobilization, purification and multipoint or multisubunit 

immobilization of domain tagged enzymes and proteins via covalent 

immobilization on heterofunctional supports 
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In some cases, the mere attachment of the enzyme and the support achieved 

by using some of the tags described in section 3 of this review is not desired by 

different reasons, for example by the risk of some desorption of the enzyme during 

operation, a necessity for improving enzyme stability, the intention of submitting the 

enzyme to processes of unfolding/refolding, etc. (Bolivar et al., 2010b). In these 

situations, the use of heterofunctional supports bearing a few groups able to give the 

specific interaction with the tag, and others able to give a further covalent attachment 

(multipoint if possible) may be a good solution for both problems. In the literature, it is 

possible to find two examples of this strategy, both using poly-His tagged proteins 

and IMAC-epoxy matrices. One involved a glutaryl acylase (Mateo et al., 2001a), 

while the other involved a β-galactosidase from Thermus sp. (Pessela et al., 2003). 

After the selective adsorption on the immobilized metal chelate groups via the His-tag 

(a very low activation was used to get this selective adsorption), the incubation at 

alkaline pH values was utilized to increase the number of enzyme support bonds 

(Figure 18). In both cases, the enzymes were stabilized via this protocol.  

This strategy could be extended to any other kind of tag or domain. However, 

this means that a reversible immobilization is transformed in irreversible., Thus, the 

convenience of this needs to be analyzed in each case. Even although the 

immobilization protocol is not complex, they are not implemented at industrial level, 

because the supports ae not commercially available and need to be prepared for 

each enzyme to maximize the purification. 

 

7. Immobilization-purification based on different immobilization rates 

In some cases, mainly using strategies based that require a multipoint 

enzyme-support interaction, the target enzyme may have a much faster 
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immobilization rate than the other contaminant proteins. This may not be enough for 

having a good purification if other proteins are also very rapidly immobilized because 

the difficulty in stopping the immobilization, and less at industrial level where the 

volumes that they manage may make it almost impossible to have a strict control of 

the immobilization process. However, this opens an opportunity for the purification of 

the enzyme. If the target enzyme is the one most rapidly immobilized on the support, 

using an amount of the target enzyme that oversaturates the loading capacity of the 

support, a very good purification could be achieved (Garcia-Galan et al., 2011).  

The only example we have located in the literature has been the purification of 

a glutamate racemase by immobilization on glyoxyl agarose (Mateo et al., 2005). The 

enzyme was among the ones that more rapidly immobilized on the support. Using an 

excess of glutamate racemase enzyme, ultimatefinally most of the immobilized 

enzyme was this enzyme (Mateo et al., 2005). Obviously, this strategy implied that 

many of the target enzyme molecules did not immobilize and therefore the yield was 

not complete, but the purification factor was quite high (Mateo et al., 2005).  

The immobilization rate can be modulated using genetic engineering to add an 

amino acid on the enzyme surface that facilitates its immobilization on the support. 

For example, using glyoxyl supports, this may be performed by adding poly-Lys tags 

or by adding new Lys on rich-Lys areas of proteins, this can be a simple way to get 

the one pot immobilization, orientation, purification and, at least in the second case, 

the hyper-stabilization of enzymes (Abian et al., 2004, Cecchini et al., 2007, Cecchini 

et al., 2012, Scaramozzino et al., 2005, Serra et al., 2009, Serra et al., 2013, 

Temporini et al., 2010).  

 

Conclusions 
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The coupling of immobilization to purification of enzymes and proteins has an 

undoubtable undoubted interest. The interest goes further if the final biocatalyst has 

an improved stability via multisubunit or multipoint covalent attachment, or we can 

get enzymes with a better orientation. The better understanding of the immobilization 

mechanism on the different supports may open new strategies to reach this 

objective. For example, glyoxyl supports have shown their real impact in this area 

only after recognizing the mechanism of the first immobilization of the enzyme on the 

support (via multiple enzyme supports interactions) (Mateo et al., 2005).  

In this context, heterofunctional supports may be a real alternative for the one 

step immobilization-purification (Barbosa et al., 2013). There are not many 

heterofunctional supports in the literature, but most of the chromatographic supports 

described to purify enzymes (affinity ligands, dyes, etc.) may be compatible with the 

introduction of other moieties that may permit a covalent immobilization, changing 

from a support useful to purify enzymes (that is, a support that can easily release the 

adsorbed proteins), to a support useful to immobilize proteins. Thus, other 

heterofunctional supports bearing groups different to amino or IMAC may open new 

opportunities to have different strategies for the one step immobilization-purification-

stabilization and even orientation of the target enzyme.  

The industrial use of the heterofunctional supports technologies is still very 

poor, . just only lipase immobilization on hydrophobic supports is seems very popular 

at both, academic and industrial level. This may be founded in the wide use of 

lipases, one of the most used enzymes at industrial level. For the other cases, the 

problem lies in the lack of commercial support suppliers, in most cases the supports 

need to be designed for each specific enzyme and still the demand will be too low to 

make this commercially available. 
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The integrated use of tailor made heterofunctional supports and tailor made 

enzymes (via site directed mutagenesis) may be a very useful and efficient strategy 

to develop new methodologies to reach the goals pursued in this review. The present 

time already offers a wide handful of possibilities, the future is full with unexpected 

promises in this very interesting area in the development of industrial biocatalysts. 
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Figure legend 

Figure 1. Improved properties of enzymes by immobilization on supports. 

Figure 2. Strategies of enzyme immobilization in biocatalysts design. 

Figure 3. Use of chimeric proteins with inserted tags and immobilized anti-tags 
to achieve site-directed immobilization of the target protein. 

Figure 4. Site-directed immobilization of chimerical protein having biotin tags 
on avidin-coated-support. 

Figure 5. Site-directed Immobilization of poly-His tagged proteins on IMAC 
support . 

Figure 6. Improved ionic exchange of tagged proteins with cationic and anionic 
domains on ionic exchangers. 

Figure 7. One step purification/immobilization of poly-Hys tagged proteins. 

Figure 8. Interfacial activation of lipases on hydrophobic interface. The 3D 
structure of lipase RML was obtained from the Protein Data Bank (PDB) code 
3TGL using Pymol vs. 0.99. 

Figure 9. Interfacial activation of lipases on hydrophobic supports at low ionic 
strength. 

Figure 10. One step purification-Immobilization of lipases on hydrophobic 
support at low ionic strength. 

Figure 11. Purification of large proteins using ionic exchanger with very low 
activation degree. 

Figure 12. Purification and selective immobilization of large proteins on highly 
activated heterofunctional amino supports and IMAC support by controlling the 
reaction medium. 

Figure 13. Multipoint immobilization of proteins on glyoxyl-agarose supports. 
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Figure 14. Stabilization of multimeric enzymes by multisubunit immobilization 
on glyoxyl support.  

Figure 15. Site directed immobilization and stabilization of poly-Lys tagged 
enzyme by multipoint attachment on glyoxyl support. 

Figure 16. Enzyme immobilization on heterofunctional supports: amine-epoxy 
and amine-glyoxil supports are able to adsorb proteins first, and later generate 
a multipoint attachment with reactive groups of enzyme. 

Figure 17. Immobilization of lipases on heterofunctional Octyl-glyoxyl 
supports. The lipase is immobilized by interfacial adsorption. Then, covalent 
attachment is generated by reaction between ɛ-amine groups of enzyme and 
glyoxyl groups of support. 

 

Figure 18. Site directed immobilization and stabilization of poly-His tagged 
enzyme by multipoint attachment on heterofunctional IMAC support. 
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Table 1: Structural domains used for enzyme and protein 
immobilization/purification 
 
Type of Protein Binding Domain References 
Cellulose Binding Domain (CBD) Fishman et al. (2002), Linder and Teeri 

(1997), Linder et al. (1998), Lu et al. (2012), 
Richins et al. (2000), Zhao et al. (2013)  

Chitin Binding Domain (ChBD) Bergeron et al. (2009), Chern and Chao 
(2005), Chiang et al. (2008), Chiang et al. 
(2009) 

Thermostable Chitin Binding Domain (TtChBD) Wang et al. (2013b) 
Substrate Binding Domain (SBD) Lee et al. (2005) 

Albumin Binding Domain (ABD) Baumann et al. (1998) 
Lectin Binding Domain (LecBD) López-Gallego et al. (2012) 
Biotin carboxyl carrier protein domain  (BCCPD) Cho et al. (2007), Wang et al. (1997) 
Calmodulin Protein Domain (CaM-tag) Daunert et al. (2007) 

Ribosomal Protein L2 (203-273) domain (Si-tag) Yang et al. (2013) 
Polystyrene binding peptide domain (PS-tag) Kumada et al. (2009) 
Ig-G binding domain from Protein A and G (AG-tag) Kondo and Teshima (1995) 
Methionine tag domain (Met-tag) Seino et al. (2014) 
Aldehyde tag domain (Ald-tag) Wang et al. (2013a) 
Peptide tag domain (Pep-tag) Simon et al. (2002), Tominaga et al. (2005) 
PolyHis tag domain (PolyHis-tag) 
 

Ha et al. (2013), Li et al. (2009), Lin et al. 
(2011), Wang et al. (2010) 
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Table 2: Structural domains used for enzyme and protein immobilization/ 
purification onto supports 
 
Type of 
Protein 
Binding 
Domain 

Type of 
Immobilization 
and/or 
purification 

Example of protein 
used for enzyme 
Immobilization/purifi
cation  

Biochemical properties 
improved by this 
methodology  

Ref. 

Cellulose 
Binding 
Domain (CBD) 

Immobilization onto 
cellulose supports 

Antibodies fused to 
CBD 
 
 
 
 
 

Protein was immobilized 
with a yield over 99% in a 
column with cellulose as 
stationary phase 
 

Linder et al. 
(1998)  
 
 
 

 
Organosphosphate 
hydrolase fused with 
CBD 
 
 
 
 
 
 

The CBD-OPH fusion 
proteins could be 
immobilized onto a variety 
of cellulose 
matrixesmatrices, and 
retained up to 85% of their 
original activity for 30 days 
 

(Richins et al., 
2000) 
 
 
 
 
 
 
 

Horseradish peroxidase 
fused with CBD 
 
 
 
 
 
 
 
 
 
 

A six-fold increase in the 
half-life of the enzyme in 
buffer resulted from 
immobilization onto 
cellulose via CBD. The 
immobilized enzyme was 
also more stable than the 
native enzyme in increasing 
concentrations of acetone 
(0-92%). 
 

(Fishman et 
al., 2002) 
 
 
 
 
 
 
 
 
 
 

Heparinase fused with 
CBD 
 
 
 
 
 
 
 
 

Enzyme was active against 
heparin for over 40 h and 
produced much lower 
molecular weight fragments 
of heparin at the same 
percentage of 
depolymerization. 
 

(Shpigel et al., 
1999) 
 
 
 
 
 
 
 

Beta-galactosidase 
fused with CBD 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The immobilized enzyme 
reached a maximum yield of 
galactooligosaccharides 
(GOS) of 49% (w/w) from 
400 g/L lactose (pH 7.6) at 
45 °C for 75 min, with a 
high productivity of 156.8 
g/L/h. Moreover, the 
immobilized enzyme could 
retain over 85% activity 
after twenty batches with 
the GOS yields all above 
40%. 
 

(Lu et al., 
2012) 
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Beta-glucosidase (BGL) 
fused with CBD by a 
peptide linker 
 

A high immobilization 
efficiency of 90% was 
achieved. In addition, the 
fusion of CBD structure 
enhanced the hydrolytic 
efficiency of the BGL-CBD 
against cellobiose, which 
displayed a 6-fold increase 
in Vmax/Km in comparison 
with the BGL. 

(Zhao et al., 
2013) 

Chitin Binding 
Domain 
(ChBD) 

Immobilization onto 
chitin supports 

Hydantoinase fused 
with ChBD 
 
 
 
 
 

Immobilized d-hydantoinase 
exhibited higher 
thermostability with a half-
life of 270 h at 45°C 
compared to soluble 
enzyme. Furthermore, d-
hydantoinase immobilized 
on chitin could be reused 
for 15 times to achieve a 
conversion yield exceeding 
90%. 

(Chern and 
Chao, 2005)  
 

Carbamoylase fused 
with ChBD 
 
 
 

Half-life of the immobilized 
carbamolyase CBL303 
could reach 210 h at 45°C, 
whereas its free form had 
that of 17 h. D-p-
hydroxyphenylglycine (D-
HPG) production with 
immobilized enzyme could 
be carried out in 16 cycles 
with 100% conversion yield. 
 

(Chiang et al., 
2008)  
 
 
 

Penicillin amidase-
Chaperone chimera 
fused with ChBD 
 

During amoxicillin synthesis 
in aqueous-methanol 
mixtures, the total turnover 
number of immobilized 
chimera was 2.8 times 
higher after 95 h than the 
immobilized penicillin 
amidase lacking a 
chaperone domain.  
 

(Bergeron et 
al., 2009) 
 

  Levansucrase fused 
with ChBD 

The chitin immobilization of 
hibrid Z. mobilis 
levansucrae (encoded by 
levU) was attempted for the 
repeated production of 
levan. Using the 
immobilized levansucrase 
with 20% sucrose, the 
production of levan was 
enhanced by 60% as 
compared to that by the free 
counterpart. 

(Chiang et al., 
2009) 
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  Chitinase Chit42 fused 
with ChBD 

Chimeric chitinase was 
produced by fusing a ChBD 
from T. atroviride chitinase 
18-10 to Chit42. The 
improved chitinase 
containing a ChBD 
displayed a 1.7-fold higher 
specific activity than chit42. 
This increase suggests that 
the ChBD provides a strong 
binding capacity to insoluble 
chitin. 
 

(Kowsari et al., 
2014) 
 

Thermostable 
Chitin Binding 
Domain 
(TtChBD) 
 

Immobilization onto 
chitin supports 

Hemicellulase fused 
with ThChBD 

Immobilized multifunctional 
hemicellulase exhibited high 
stability to producing xylose 
for at least 19 or 30 times in 
continuous operation with 
the achievement of 60% or 
80% conversion yield at 
temperatures up to 65 ºC. 
 

(Wang et al., 
2013b) 

Substrate 
Binding 
Domain (SBD) 

Immobilization on 
poly-hydroxyl- 
alkanoate (PHA) 
beads 

Different Fluorescent 
and virus proteins fused 
with SBD 

Using this PHA microbead 
system combined with SBD 
fusion technology, 
immunoassays could be 
successfully carried out. 
 

(Lee et al., 
2005) 

Albumin 
Binding 
Domain (ABD) 

Immobilization on 
polystyrene coated 
with Rat Serum 
Albumin (RSA)  
microplates 

Different protein fused 
to ABD 

The ABD-RSA interaction 
remained stable after 
addition of different 
albumins. The use of RSA-
microtiter plates for indirect 
immobilization of ABP 
fusion protein was shown to 
be superior to direct 
adsorption on plastic. The 
binding capacity of the 
RSA-microtiter plates was 
determined to be about 0.8 
pmol of monomeric ABP 
protein. 
 

(Baumann et 
al., 1998) 

Lectin Binding 
Domain 
(LecBD) 

Immobilization on 
Agarose beads 
 
 

Lipase and green 
fluorescent protein 
fused with a LecBD 

High immobilization rates 
on agarose are achieved. 
The strongest lectin-
agarose interaction is also 
quite stable under a survey 
of different conditions such 
as high temperatures (up to 
60 °C) or high organic 
solvent concentrations (up 
to 60% of acetonitrile). 
 

(López-Gallego 
et al., 2012) 

Biotin carboxyl 
carrier protein 
domain  
(BCCPD) 

Immobilization on 
avidin -coated 
surfaces 

Luciferase fused with 
BCCPD 

Highly purified recombinant 
luciferase was obtained by 
a one-step purification 
protocol, utilizing 
immobilized metal affinity 
chromatography. The novel 
BCCP-luciferase had 
properties, stability, and 
activity similar to those of 
native luciferase. 
 

(Wang et al., 
1997) 

  β-galactosidase fused 
with BCCPD 

β-galactosidase was fused 
with BCCPD. The 

(Vishwanath et 
al., 1995) 
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immobilization of this 
biotinylated enzyme in 
aividin immobilized in 
poly(ether sulfone) 
membranes permitted a 
twenty-fold improvement in 
immobilized enzyme activity 
when compared to fully 
biotinylated enzyme. 
 

 

Calmodulin 
Protein 
Domain (CaM-
tag) 

Immobilization onto 
a silica surface and 
cellulose membrane 
modified by 
covalently attaching 
a phenothiazine 
ligand 

Organophosphorus 
hydrolase (OPH) and 
beta-lactamase 
genetically modified with 
CM-tag 

Immobilized OPH retained 
more than 80% of the 
activity of the free enzyme. 
The phenothiazine-modified 
silica particles are stable for 
long periods of time, i.e., up 
to 2 years when stored at 4 
°C. 
 

(Daunert et al., 
2007) 

Ribosomal 
Protein L2 
(203-273) 
domain (Si-tag) 
 

Immobilization on 
diatoms silica 

Green fluorescent 
protein fused with Si-
Tag 

The results showed that the 
purification performance of 
this affinity purification 
method was good. 
 

(Yang et al., 
2013) 

Polystyrene 
binding peptide 
domain (PS-
tag) 

Immobilization on 
polystyrene supports 

Single-chain Fv 
antibodies (scFv) 
genetically fused with 
PS-tags 

scFv-PS-tags immobilized 
on a hydrophilic PS (phi-
PS) plate in the presence of 
Tween 20 showed high 
antigen-binding activity 
comparable to, or greater 
than, that of a whole 
monoclonal antibody (mAb) 
on a hydrophobic PS (pho-
PS) plate. 
 

(Kumada et al., 
2009) 

Ig-G binding 
domain from 
Protein A and 
G (AG-tag) 

Immobilization on 
Poly(methylmethacr
ylate/N-
isopropylacrylamide/
methacrylic acid) 
[P(MMA/NIPAM/MA
A)] and 
poly(styrene[N-
isopropylacrylamide/
methacrylic acid) 
[P(St/NIPAM/MAA)] 
latex particles 
 

Beta-galactosidase 
fused with AG-tag 
(AGβgal) 

Immobilized AG β-gal 
retained approximately 75% 
of its activity in solution and 
the binding is stable enough 
to allow repeated use. 

(Kondo and 
Teshima, 
1995) 

Methionine tag 
domain (Met-
tag) 

Immobilization on 
Au/Fe-oxide 
composite 
nanoparticles 

Subtilisin fused with 
Met-tag 

Methionine-tagged 
immobilized enzymes 
showed 98% residual 
specific activity, while the 
untagged enzymes showed 
78%. The methionine-
tagged immobilized 
enzymes retained their 
activities in a wide 
temperature range of 30-70 
°C. 
 

(Seino et al., 
2014) 

Aldehyde tag 
domain (Ald-
tag) 

Immobilization on 
mesocellular 
siliceous foam 
(MCF) support 
activated with amino 
groups  

Lipase fused with Ald-
tag 

The specific activity and the 
kcat/Km of the immobilized 
lipase using aldehyde tag 
(IL-AT) were 2.50 and 3.02 
fold higher, respectively, 
than those of the 
traditionally immobilized 

(Wang et al., 
2013a) 
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lipase using glutaraldehyde 
(IL-GA). The newly 
immobilized lipase also 
presented better thermo-
stability than the 
traditionally immobilized 
one. 
 

Peptide tag 
domain (Pep-
tag) 
 

Immobilization on 
agarose gel beads 
chemically modified 
with β-casein to 
display reactive 
glutamine (Gln) 
residues 
 

Alkaline phosphatase 
(AP) genetically 
modified with specific 
peptide tags containing 
a reactive lysine (Lys) 
residue with different 
length Gly-Ser linkers. 
  

Enzymatically immobilized 
AP showed comparable 
catalytic turnover (kcat) to 
the soluble counterpart and 
comparable operational 
stability with chemically 
immobilized AP. 

(Tominaga et 
al., 2005) 
 
 
 
 

PolyHis tag 
domain 
(PolyHis-tag) 
 

Immobilization on 
nitrilotriacetic-acid-
modified ordered 
mesoporous silicas 
(NTA-OMPSs) 
 
 
 
 
 
 

Horseradish peroxidase 
genetically modified with 
histidine tags with 
different lengths (His6, 
His4, His3, and His2)  
 
 
 
 
 
 

Immobilized enzymes 
exhibit good stability toward 
heat and pH changes. 
Negligible leakage of these 
enzymes over a wide range 
of acidic conditions was 
observed 
 
 

(Lin et al., 
2011) 
 
 
 
 
 
 
 
 
 

Immobilization on 
silica oxide beads 
activated with a 
chelating Co(II) 
 
 
 

Different lipases 
genetically modified with 
His6 tags 
 
 
 
 

Direct extraction of C. 
antarctica lipase B (CalB) 
from a periplasmic 
preparation with a minimum 
of 58% activity yield was 
produced in a one-step 
extraction-immobilization 
protocol. Immobilized CalB 
was effectively employed in 
organic solvent 
(cyclohexane and 
acetonitrile) in a 
transacylation reaction and 
in aqueous buffer for ester 
hydrolysis. 
 

(Cassimjee et 
al., 2011)  
 

Immobilization onto 
single-walled carbon 
nanotubes 
functionalized with 
Nα,Nα-
bis(carboxymethyl)-l-
lysine hydrate 
 

NADH-oxidase 
genetically modified with 
His6 tags 
 

Immobilization resulted in a 
good loading capacity and 
stability maintaining 92% 
maximum activity of the 
native enzyme. 
immobilization was 
reversible and can retain 
ca. 92% activity for a couple 
of loading cycles. 
 

(Wang et al., 
2010) 
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Immobilization and 
purification on Ni2+-
Complexed poly(2-
acetamidoacrylic 
acid) (PAAA) 
hydrogel support 

Recombinant histidine-
tagged glutamyl 
aminopeptidase (His-
tagged GAP). 

Catalytic activity of 
immobilized His-tagged 
GAP for the hydrolysis of 
alanyl-para-nitroanilide 
revealed 90% conversion 
after 30 min of incubation. 
The hydrogel-immobilized 
enzyme also exhibited 
enhanced thermal stability 
of sustained 70% activity 
after 1 h incubation at 60 
°C, while the free enzyme 
activity was reduced to 50% 
at the same condition. After 
four cycles of hydrogel 
regeneration, the 
immobilized enzyme lost 
only 20% of its initial 
activity. 
 

(Ha et al., 
2013) 

Cationic 
binding module  

Immobilization on 
Sepabeads FP-SP 
400 (Sepabeads) 
and Fractogel EMD 
SO3 (Fractogel) 
harboring 
sulfopropyl and 
sulfoisopropyl 
 
 

Chimeras of d-amino 
acid oxidase (TvDAO) 
and sucrose 
phosphorylase 
(LmSPase) modified 
with Z basic2 
 
 
 

70% of the LmSPase 
activity and 90% of TvDAO 
activity were bound to the 
carrier in each of the 
different conditions used. 
non-covalent attachment to 
anionic supports through a 
Zbasic2 module was a very 
useful approach for a 
reversible oriented 
immobilization of TvDAO, 
LmSPase. 
 

(Wiesbauer et 
al., 2011) 
 
 

Immobilization on 
unmodified silica 
supports 
 

Chimeras of d-amino 
acid oxidase and 
sucrose phosphorylase 
modified with Z basic2 
functions as highly 
efficient silica binding 
module (SBM). 
 

Immobilized enzymes 
displayed full biological 
activity, suggesting that 
their binding to the glass 
surface had occurred in a 
preferred orientation via the 
SBM. Z basic2 proteins 
were immobilized on porous 
glass in a loading of 30 mg 
protein/g support or higher, 
showing that attachment via 
the SBM combines 
excellent binding selectivity 
with a technically useful 
binding capacity. 
 

(Bolivar and 
Nidetzky, 
2012a) 
 
 

Immobilization on 
functionalized silica 
carrier with 3-
(trihydroxysilyl)-1-
propane sulfonic 
acid. 

D-Amino acid oxidase 
from Trigonopsis 
variabilis (TvDAO) fused 
positively charged 
module Z basic2. 
 

Immobilized TvDAO was 
not sensitive to bubble 
aeration and received 
substantial stabilization of 
the activity at 45°C as 
compared to free enzyme. 

(Bolivar and 
Nidetzky, 
2012b) 
 

His-tagged 
polyhydroxyalk
anoate (PhaZ) 
domine. 

Immobilization on 
Ni2+ nitrilotriacetate-
agarose matrix. 

Recombinant 
depolymerase from 
Pseudomonas putida 
KT2442 fused with His-
tagged 
polyhydroxyalkanoate 
(PhaZ) 

The immobilized enzyme 
was more stable than its 
soluble counterpart and 
showed optimal hydrolytic 
activity on p-
nitrophenylacetate at 37°C 
and 50 mM phosphate 
buffer pH 8.0. 

(Arroyo et al., 
2011) 
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poly-Lys tags 
domain  

 Penicillin G acylase 
genetically modified with 
poly-Lys tags 
 
 
 

Enzyme keeps catalytic 
properties of the soluble 
enzyme on kinetically 
synthesis of cefamadole 
and cefonicid. 
 

(Scaramozzino 
et al., 2005) 
 
 
 

Cyclodextrin 
glycosyltransferase of 
Bacillus macerans 
genetically modified with 
poly-Lys tags 
 
 
 
 
 
 

Immobilized enzyme 
retained fully the CGTase 
activity. Furthermore, 
although the poly-lysine-
mediated immobilization is 
reversible, the binding force 
is strong enough to block 
protein leakage from the 
solid support at neutral and 
basic pH. 
 

(Kweon et al., 
2005)  
 
 
 
 
 
 
 
 

Protease of S. 
cerevisiae fused with a 
poly-Lys tag 

Enzyme is simply purified 
from cell extracts with very 
high purity in just one-step. 

(Li et al., 2012) 
 
 

Choline-
binding domain 
(C-Lyt) 
 

Immobilization on 
choline immobilized 
supports and DEAE 
 
 
 
 

A fragment of a hepatitis 
virus protein was bound 
to C-Lyt. 
 
 

The hydrophilic fragment of 
hepatitis C virus (HCV) E2 
protein was expressed in 
Escherichia coli as a 
chimera, bound C-Lyt of the 
major autolysin of 
Streptococcus pneumoniae. 
The C- LytE2 chimera was 
purified by affinity 
chromatography using 
DEAE-Sepharose. The 
purified antigen was used to 
immunize rabbits and the 
specific humoral immune 
response to E2 protein was 
examined. Induction to high 
levels of antibodies against 
this HCV E2 protein was 
found. 
 

(Martinez et 
al., 2000) 
 
 
 
 

Graphite electrode 
surfaces were 
modified with N,N- 
diethylethylenediami
ne groups, acting as 
choline analogs 

C-LytA-β-galactosidase The ability of the prepared 
electrodes to specifically 
bind C-LytA-tagged 
recombinant proteins was 
tested with a C-LytA-β-
galactosidase fusion 
protein. The hybrid protein 
was immobilized in a 
specific and reversible way, 
while retaining the catalytic 
activity. Moreover, these 
functionalized electrodes 
were shown to be highly 
stable and reusable. 

(Bello-Gil et al., 
2014) 

 
 




